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Abstract. We present a systematic study of various statistical characteristics of
high-frequency returns from the foreign exchange market. This study is based on
six exchange rates forming two triangles: EUR–GBP–USD and GBP–CHF–JPY.
It is shown that the exchange rate return fluctuations for all of the pairs
considered are well described by the non-extensive statistics in terms of q-
Gaussians. There exist some small quantitative variations in the non-extensivity
q-parameter values for different exchange rates (which depend also on the
time scales studied), and this can be related to the importance of a given
exchange rate in the world’s currency trade. Temporal correlations organize the
series of returns such that they develop the multifractal characteristics for all
of the exchange rates, with a varying degree of symmetry of the singularity
spectrum f (α), however. The most symmetric spectrum is identified for the
GBP/USD. We also form time series of triangular residual returns and find
that the distributions of their fluctuations develop disproportionately heavier
tails as compared to small fluctuations, which excludes description in terms
of q-Gaussians. The multifractal characteristics of these residual returns reveal
such anomalous properties as negative singularity exponents and even negative
singularity spectra. Such anomalous multifractal measures have so far been
considered in the literature in connection with diffusion-limited aggregation and
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with turbulence. Studying the cross-correlations among different exchange rates,
we found that market inefficiency on short time scales leads to the occurrence
of the Epps effect on much longer time scales, but comparable to the ones for
the stock market. Although the currency market is much more liquid than the
stock markets and has a much greater transaction frequency, the building up of
correlations takes up to several hours—a duration that does not differ much from
what is observed in the stock markets. This may suggest that non-synchronicity
of transactions is not the unique source of the observed effect.
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1. Introduction

The foreign exchange market (FX), with its daily volume of over five trillion USD in 2009,
is by far the world’s largest financial market. Any other financial market can hardly approach
such volume. This market connects international institutions participating in currency exchange
transactions all across the world and encompasses essentially everything of what is going
on in the world, first of all including economic factors, political conditions and market
psychology, all of them constantly changing. Also, this market has a direct influence on all
other markets because any price is expressed in terms of a currency. The large volume makes it
virtually impossible to control from outside and there is no friction (transactions are basically
commission-free). Due to time differences, FX transactions are performed 24 h a day, 5 days
a week with maximum volume between 13:00 and 16:00 GMT, when both American and
European markets are open. Hence, the FX time series relations represent an exceptionally
complex network indeed, and they therefore constitute an especially challenging target of a
detailed quantitative analysis.

In connection with the almost continuous trading, FX is also much more effective
and liquid than other speculative markets. The significance of this market (an example of
globalization) is even more important, since it became an indicator of the condition of the
world’s economy. From a physicist’s viewpoint, FX is a complex system with extremely
convoluted time dependences. The FX effectiveness is intensified by the correlations between
exchange rates known as the triangular arbitrage. It is possible only on small time scales and
disappears immediately after taking advantage of inconsistent crossrates by the traders. To
quantify such correlations, we employed multifractal analysis measuring the nonlinear features
of time series, in particular their multifractal spectra. Especially interesting is the relation
between the fractal properties of the exchange rates remaining in the triangular dependence.
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Encapsulating this relation—especially of the empirical residuals within the triangle—may shed
more light on this so far poorly understood issue. The resulting scale-free statistics encode
information about complex interactions in FX.

The FX data [1] used in the present analysis include the following six indicative exchange
rate pairs: USD/EUR, EUR/GBP, GBP/USD, JPY/GBP, GBP/CHF and CHF/JPY, sampled
with 1 min frequency over the period from 21:00 on 2 January 2004 to 21:00 on 30 March 2008
(1183 days, 169 weeks). The selection of currency pairs and the time interval was constrained
by the availability of sufficient quality data, so not all of the important pairs could be included in
our analysis. In consequence, we deal with six synchronized time series of length T = 1703 520
that can be labelled x B

A (ti), i = 1, . . . , T , where x(ti) denotes a value of currency A expressed
in terms of a currency B at time ti . Consequently, the corresponding returns over the time period
1t are expressed as

G B
A(ti; 1t) = ln x B

A (ti + 1t) − ln x B
A (ti). (1)

Let us define residual returns as

G4(ti; 1t) = G B
A(ti; 1t) + GC

B(ti; 1t) + G A
C(ti; 1t), (2)

which are expected to fulfil the following relation,

G4(ti; 1t) = 0. (3)

Departures from (3) generate the so-called triangular arbitrage opportunities that, whenever
detected, may be exploited and, in fact, are commonly used for risk-free profit generation.
In the contemporary markets, execution of the corresponding operation typically takes at most a
few seconds [2] and is hence far below the scale of 1 min considered here. Of course, this does
not yet imply that returns of the corresponding three exchange rates synchronously evaluated
at larger time scales (1t) obey equation (3) exactly. Viewed at the same instant of time,
some mismatch may result just from the time needed (a few seconds) to execute the arbitrage
opportunity, and this introduces some dispersion. It may also reflect some noise component
involved. Clearly, on the larger time scales, such effects of departure from zero in equation (3)
become less and less relevant relative to the total return. For the two exchange rate triangles,
EUR–GBP–USD and GBP–CHF–JPY, which operate within the six currency exchange rates
considered here, the logarithmic returns defined by equation (1) are shown in figure 1 for all
of the three exchange rates involved in each triangle accompanied by the sum of these three
returns (the left-hand side of equation (3)). These characteristics are presented for the shortest
time lag here accessible of 1t = 1 min (left panels) and for 1t = 60 min (right panels). As far
as the magnitude of the fluctuations is concerned, one sees essentially no sizeable difference
for the four series so generated for 1t = 1 min. The only visually detectable difference is in
the structure of fluctuations; the sum of the three returns (lowest row in each panel) looks more
uniform in each case and large fluctuations are less frequent. The situation changes considerably
for 1t = 60 min. What is natural, the magnitude of returns for the individual exchange rates
significantly increases while, at the same time, their sum in each triangle decreases even relative
to 1t = 1 min. What seems also worth pointing out already at this stage is that the fluctuations
of returns in the EUR/GBP exchange rate look quieter than for the remaining two pairs in this
triangle for both time lags of 1 and 60 min. The same applies to the CHF/GBP exchange rate in
the second triangle.

Irrespective of such details, the relation expressed by equation (3) definitely introduces a
crucial factor that affects the dynamics of the currency exchange network in multiple ways. It
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Figure 1. Time series of 1 min (left) and 60 min (right) returns for six
currency exchange rates forming two triangles: EUR–GBP–USD (top) and
GBP–CHF–JPY (bottom). In each case the appropriate residual time series (2) is
also shown in the lowermost panel.

first of all sets constraints on the dynamics by effectively reducing the number of independent
degrees of freedom. For N currencies instead of N (N − 1)/2, there in fact exist N − 1
independent exchange rates. This crucially shapes the topology of the corresponding exchange
rate network structure [3]–[5]. Furthermore, some of the exchange rates may be primarily driven
by the trade needs or some speculation-specific arguments, while the dynamics of the others
may be affected more by the market adjustments towards eliminating, or at least reducing, the
arbitrage opportunities.

In the following, we analyse a few most informative statistical characteristics of time series
for the exchange rates listed above. These characteristics determine the sectional organization
of the paper. In each section, some novel results not discussed previously in the literature are
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presented. In section 2, we show that although the distribution of returns for the individual
exchange rates can be approximated (similar to the returns from other financial markets) by the
q-Gaussian distributions, the residual signals G4(ti; 1t) clearly cannot. Section 3 is devoted
to an analysis of temporal correlations and detection of repeatable patterns of market activity.
We found that exchange rates exhibit different temporal correlation properties depending on
the trading significance of a particular currency pair. Next, in section 4, we study multifractal
properties of the exchange rates in terms of the singularity spectra and, for the first time, identify
their anomalous structure: negative exponents α and negative f (α). Finally, section 5 deals with
the cross-correlation structure of the currency triangles, documenting the occurrence of the Epps
effect, i.e. an increase in coupling strength between the exchange rates with increasing sampling
time 1t , observed for surprisingly long 1t .

2. Distribution of return fluctuations

One of the most relevant quantitative characteristics of the financial dynamics is the functional
form of the distribution of returns. The related—in the past well-identified stylized fact—is
the so-called inverse cubic power law [6], which applies to developed stock markets [7]–[10], to
some emerging stock markets like the Polish market [11], to the commodity market [12], as well
as to the most traded currency exchange rates [13] in the early 1990s. Of course, this type of
distribution is Lévy-unstable and thus, for sufficiently long time lags 1t , the returns distribution
is expected to converge towards a Gaussian. This convergence, and thus departures from the
inverse cubic power law, has been found to be very slow as a function of 1t . In more recent
data, however, this convergence appears [10, 11] significantly faster, and departures from the
inverse cubic power law in the contemporary stock markets can be seen already for 1t = 1 min.

A formalism that appears [11, 14] attractively compact and economic for describing the
two extremes—the inverse cubic as well as the Gaussian distributions—including all of the
intermediate cases is the one based on the generalized non-extensive entropy [15]. Accordingly,
optimization of the corresponding generalized entropic form under appropriate constraints [16]
yields the following q-Gaussian form for the distribution of probabilities,

p (x) =Nq e
−Bq(x−µ̄q)

2

q , (4)

where the constants Nq , Bq and µ̄q and the q-exponential function ex
q are defined in

the appendix. In order to attain better stability in this kind of analysis, we prefer to use the
cumulative form of the distribution (4). See the appendix for the corresponding formulae.

As a standard procedure that makes the distributions for different exchange rates directly
comparable, we convert G B

A of equation (1) into the normalized returns gB
A defined as

gB
A =

G B
A − 〈G B

A〉T

vB
A

, (5)

where vB
A ≡ vB

A(1t) is the standard deviation of returns over the period T .
The empirical cumulative distributions for all the exchange rates considered here versus

their best fits in terms of the q-Gaussians (equation (A.5)) are shown in figure 2. The left
column corresponds to the three exchange rates from the EUR–GBP–USD triangle, while the
right column corresponds to the exchange rates from the GBP–CHF–JPY triangle. As one can
see in all cases, the q-Gaussians provide a very reasonable representation over the whole span
of fluctuations and for the increasing return time lags 1t of 1, 10 and 60 min. Some asymmetry
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Figure 2. Cumulative distributions of 1, 10 and 60 min returns for all the
exchange rates from the triangles EUR–GBP–USD (left) and GBP–CHF–JPY
(right). In each case, the empirical distributions are best fitted by the q-Gaussian
distributions.
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Figure 3. Cumulative distributions of normalized residual returns g4(t; 1t)
for 1t = 1 min, 1t = 10 min and 1t = 60 min corresponding to the EUR–
GBP–USD (left) and GBP–CHF–JPY (right) triangles. The central parts of
empirical distributions are best fitted by q-Gaussians.

between the left and right wings in the distributions, as expressed by the slightly different
values of the corresponding q-parameter can be detected. As expected, with increasing time
lags 1t , the q-values decrease, which reflects an expected (slow) convergence to the Gaussian
(q = 1) distribution. Among the pairs considered here, one interesting difference in this respect
can be detected, however: the decrease in the q values with increasing 1t is slower for the
intra-European exchange rates (EUR/GBP and GBP/CHF) than for the intercontinental ones.
The convergence towards a Gaussian distribution is thus slower in the former case. This result
is qualitatively similar to an earlier observation based on data from 1992 to 1993 (i.e. long
before the introduction of the euro), which has been documented in [17]. This indicates that the
global FX market is largely stable as regards the statistical distribution of returns. Moreover,
the degree of convergence towards the Gaussian distribution appears to behave similarly as
in the contemporary stock markets [10, 14]. It should also be noted that analogous to what the
recent S&P500 analysis shows [18], a slight departure from the inverse cubic power law (which,
in the present formalism of the q-Gaussians, corresponds to q = 3/2) takes place already for
1t = 1 min. Perhaps this law is approached more accurately only for time lags even smaller
than 1 min.

It is interesting to look at the distributions of the residual returns as defined by equation (3),
since—according to our knowledge—they have not yet been shown in the literature. Figure 3
shows such distributions for the same time scales: 1t = 1, 10 and 60 min. The q-Gaussians
are now able to fit only the central part of the distributions up to about three mean standard
deviations. The corresponding q-values only weakly decrease with 1t starting from q ≈ 1.2
for 1t = 1 min. The tails of the empirical distributions are significantly thicker than expected
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Figure 4. Autocorrelation function (6) of 1 min returns corresponding to each
exchange rate from the two considered currency triangles. Insets: the same
function for a broader range of τ and with rescaled vertical axis; the 95%
confidence levels are also indicated.

by the q-Gaussian model and become even more so for larger 1t . Such an effect is in fact
visible already in figure 1. The background fluctuations in their lowest panels sizably decrease
with increasing 1t , while at the same time the largest fluctuations remain of the same order
as compared to the individual exchange rates shown in the upper panels. These ‘outliers’ may
reflect a longer time needed to balance departures from equation (3) resulting from sudden large
returns in one of the pairs in the triangle. These characteristics are very similar in both of the
triangles considered here.

3. Temporal correlations

The issue of the character of temporal correlations is equally important in the financial context
and many related questions still remain open. The simplest measure of the temporal correlations
is in terms of the autocorrelation function c(τ ), which for a function f (t) is defined as

c(τ ) = 〈 f (t + τ) f (t)〉, (6)

where 〈. . .〉 denotes an average over t . The most studied cases in the financial context correspond
to the autocorrelation of returns, here represented by gA

B , and of the volatility that can be defined
as the modulus |gA

B | of returns.
Figure 4 shows the return autocorrelation as a function of τ , in the upper panel for the

exchange rates from the EUR–GBP–USD triangle and in the lower panel for the exchange rates
from the GBP–CHF–JPY triangle. Similarly, as for the typical stock market returns, in fact even
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Figure 5. Autocorrelation function (6) of volatility time series corresponding to
each exchange rate from the two considered currency triangles. The daily trend
has been removed according to a standard procedure, in which at each instant
signal is divided by the volatility mean standard deviation characteristic for this
particular instant (as evaluated from all the trading days included).

faster because in all these six cases already for τ = 2 min, such an autocorrelation is seen to
assume values at the null level. This even faster disappearance of the FX return autocorrelation
is probably related to the higher liquidity involved. Characteristic of all of the cases considered
here is the appearance of the ‘correlation hole’ [19] of negative autocorrelation for τ = 1 min,
which reflects some anti-persistent tendencies on such short time scales. There is no unique
explanation of this effect first mentioned in [20]; it can originate from the divergent opinions of
traders about the direction of imminent price changes as well as from certain actions of market-
makers and banks [21, 22]. The depths of these ‘holes’ is different for different pairs even within
the same triangle. For the pairs that can be considered leading in the FX dynamics (GBP/USD,
USD/EUR and JPY/GBP), this depth at τ = 1 min can be seen to be smaller than for the other
(EUR/GBP, GBP/CHF and CHF/JPY) pairs.

The volatility autocorrelations for the same six pairs of currencies are shown in figure 5.
It is quite obvious, due to the log–log scale used in this figure, that their behaviour can
well be approximated by the power-law time dependence c(τ ) ∼ τ α with α ≈ 0.4. This value
of the scaling index does not differ from the value that is typical for a majority of stock
markets [8, 23, 24]. What’s more, all of the volatility autocorrelations between events that are
separated by more than about 104 basic units (1 min) suddenly drop down and start oscillating
between the positive and negative values (not visible in this figure) with a decreasing amplitude.
This effect has recently been found also for stock markets in [14]. Its natural interpretation is
that the so-determined time horizon of the power-law volatility autocorrelations corresponds to
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an average length of either low- or high-volatility clusters. As far as the exclusive characteristics
of FX are concerned, one more effect needs to be pointed out based on figure 5. For the same
pairs (GBP/USD, USD/EUR and JPY/GBP) that above have been indicated as the leading
ones in the FX dynamics, the volatility autocorrelation is systematically stronger than for the
remaining pairs (as the relative location of the corresponding lines shows).

A somewhat more advanced method for quantifying the character of financial temporal
correlations is to use a variant of the correlation matrix. In this approach, initiated in [25, 26],
the entries of the corresponding matrix are the correlation coefficients between the time series
of returns representing different disconnected time intervals, such as the consecutive trading
days or weeks. The structure of the eigenvalues and eigenvectors of such a matrix allows us to
quantify further characteristics of the temporal correlations.

Suppose that from the time series g(ti) of length T one extracts K disconnected series
gβ(ti) (β = 1, . . . , K ) of length TK . Of course, the condition K T K 6 T has to be fulfilled. By
using such time series as rows, one forms a K × TK matrix M. Then, the correlation matrix is
defined as C = (1/T ) MM̃, where ·̃ is the matrix transpose. By diagonalizing C,

Cvk
= λkvk, (7)

one obtains the eigenvalues λk (k = 1, . . . , K ) and the corresponding eigenvectors vk
= {vk

β}.
In the limiting case of entirely random correlations, the density of eigenvalues ρC(λ) is known
explicitly [27, 28] and reads

ρC(λ) =
Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
, (8)

where

λmax
min = σ 2(1 + 1/Q ± 2

√
1/Q), (9)

with λmin 6 λ6 λmax, Q = TK /K > 1, and where σ 2 is equal to the variance of the time
series.

For a better visualization, each eigenvector can be associated with the corresponding time
series by the following expression,

zk(ti) =

K∑
β=1

vk
βgβ(ti), k = 1, . . . , K ; i = 1, . . . , TK . (10)

Thus, these new time series form orthogonal components into which the original signal gβ(ti)

is decomposed. They reflect distinct patterns of oscillations common to all of the time intervals
labelled β. These time series can therefore be called the eigensignals.

The above methodology on a weekly basis is now applied to the present FX data. Our
original time series of returns comprise K = 169 complete weeks counted from Sunday 21:00
to Friday 22:00 GMT. The length is TK = 7260 min. For each pair of currencies and for the
residual signals, the distributions of matrix elements are displayed in figure 6. As can be seen,
for a majority of the rates the empirical distributions are Gaussian like. Only for the most heavily
traded pairs, USD/EUR and GBP/USD, C has a significant number of non-Gaussian entries.

Eigenvalue densities for the corresponding correlation matrices for all of the six currency
exchange rates discussed here, including the residual time series representing departures
from the triangle rule, are shown (histograms) in figure 7. The left panel corresponds to the
EUR–GBP–USD triangle and the right panel to the GBP–CHF–JPY one. For comparison, the
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equation (8).

pure noise distribution—as prescribed (equation (8)) by the corresponding Wishart ensemble
of random matrices [27, 28]—is indicated by dashed lines. As one can see, besides some small
departures at the edges, the empirical eigenvalue distributions do not differ much from their pure
noise counterparts. This fact may indicate that the intra-week exchange rate behaviour does not
involve any particularly significant repeatable patterns. This observation applies more to the
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pairs within the GBP–CHF–JPY triangle. The most evident departures between the empirical
and the theoretical distributions one observes for the USD/EUR and GBP/USD exchange rates.
In both cases, the two largest eigenvalues stay visibly outside the noise range and thus may carry
some system-specific information. This is in agreement with the distributions of matrix entries
shown in figure 6.

More insight into this issue can be gained by looking at the corresponding eigensignals as
defined by equation (10). For each exchange rate, four such eigensignals are shown in figure 8:
the first three eigensignals corresponding to the first three largest eigenvalues and the fourth one
corresponding to an eigenvalue that is embedded deeply (k = 89) in the spectrum. Indeed, the
cases of the GBP/USD and USD/EUR exchange rates look most spectacular. In both cases,
the first two eigensignals and even the third one display large outstanding fluctuations that
by a factor of even about 50 surpass the neighbouring ones. Their presence documents an
enhanced market activity systematically at the same instants of time during the consecutive
weeks. Interestingly, such instants of time are concentrated more before the weekend than just
after it. Such special hours are 13.30 GMT and others. What is natural, the eigensignals from
the bulk of the spectrum do not display such a kind of activity. Another fact that deserves special
attention is the EUR/GBP exchange rate. Despite belonging to the same triangle, the dynamics
are equally smooth for all the eigensignals. One may hypothesize that this indicates a different
mechanism that governs the dynamics of the exchange rates within this pair as compared to the
GBP/USD and USD/EUR. It seems that in a world in which currency trade is dominated by
GBP/USD and USD/EUR, the complementary rate EUR/GBP can in the first approximation
be considered only as a spectator adjusting its value to the behaviour of the in-play rates. This
receives additional support from the fact that on time scales longer than 1t = 1 min considered
here, the time series of EUR/GBP has fluctuations resembling the ones corresponding to the
other exchange rates. From the same perspective, the dynamics within the GBP–CHF–JPY
triangle look more tranquil. Yet, within the JPY/GBP and GBP/CHF pairs, one also
sees the outlying fluctuations (although relatively smaller than in the previous case) at the
very recognizable instants of time during the week period.

4. Multi-fractal characteristics

At present, the most compact frame to globally grasp the whole richness of structures and
correlations as identified above is—if applicable—in terms of the multifractal spectra [29]. The
presence of the long-range nonlinear power-law temporal correlations, possibly accompanied
by the non-Gaussian character of fluctuations, constitutes the necessary—likely not sufficient,
however—ingredients in this respect [14]. Furthermore, by now there exists quite a convincing
collection of evidence [30]–[33] that the financial dynamics often carry signatures of
multifractality. In this section, we therefore examine the multifractal characteristics of all of
the exchange rates considered in the previous sections.

The multifractal detrended fluctuation analysis (MFDFA) [34] is the most efficient practical
method to quantify multifractality in the financial time series [35]. In MFDFA for an x(ti)i=1,...,T

discrete signal, one starts with the signal profile Y ( j) =
∑ j

i=1 (x(i) − 〈x〉), j = 1, . . . , T ,
where 〈. . .〉 denotes averaging over all is. Then one divides the Y ( j) into Mn non-overlapping
segments of length n (n < T ) starting from both the beginning and the end of the signal (2Mn

segments total). For each segment, a local trend is estimated by fitting an lth order polynomial
P (l)

ν , which is then subtracted from the signal profile. For the so-detrended signal, a local
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Figure 8. Eigensignals corresponding to the three largest eigenvalues (k =

1, 2, 3) and a typical eigenvalue (k = 89) of the correlation matrices calculated
from the intra-week time series of returns for the GBP–USD–EUR (left) and
GBP–CHF–JPY (right) currency triangles. Some of the largest fluctuations have
been suppressed by the indicated factors in order to be fitted into the graphs.
Hours are expressed as GMT.
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variance F2(ν, n) in each segment ν is calculated for each, from nmin to nmax, scale variable n.
Finally, by averaging F2(ν, n) over all segments ν, one calculates the r th order fluctuation
function,

Fr(n) =

{ 1

2Mn

2Mn∑
ν=1

[F2(ν, n)]r/2
}1/r

, (11)

where r ∈ R. The relevant power-law behaviour of the fluctuation function reads

Fr(n) ∼ nh(r), (12)

where h(r) is a generalized Hurst exponent. For simple fractals, h(r) = const. If h(r) in addition
depends on r , the signal is multifractal. Then the singularity spectrum f (α) [29] can be
calculated as

f (α) = r [α − h(r)] + 1, (13)

where α = h(r) + rh′(r) is the singularity strength. Equivalently, with the commonly used
scaling exponent

τ(r) = rh(r) − 1, (14)

the singularity strength is expressed as

α =
dτ(r)

dr
. (15)

In [14], some results were shown concerning requirements to reliably determine the
multifractal spectra such that potentially spurious effects are eliminated. This, in particular,
concerns the length of the time series and the quantitative characteristics of the temporal
correlations that determine the size of the scaling intervals. Since, as shown above, the FX
time series develop heavy tails, the range of the index r needs to be appropriately narrow; thus
we consistently choose r ∈ [−4, 4]. The detrending polynomial P (l)

ν used is of second order,
which, as is usual in this kind of analysis, proves to be an optimal choice. An example of Fr(n)

for the GBP/USD returns is shown in figure 9. For the other exchange rate returns, the overall
Fr(n) picture looks qualitatively similar. The scaling of the fluctuation functions Fr(n) is quite
convincing and the scaling indices h(r) depend on r . This, as shown in the inset of figure 9,
results in a concave τ(r), which is characteristic of conventional multifractals. The reference
dashed line in this inset represents τ(r) calculated from the randomized original time series
of GBP/USD returns, i.e. by randomly shuffling the data points—a procedure that entirely
destroys the temporal correlations. From the corresponding linear dependence of τ(r), one
straightforwardly identifies a monofractal with all of the strength concentrated at α = 0.5.

Singularity spectra f (α) calculated for all of the exchange rates are presented in figure 10.
They are all multifractal with the widths ranging from about 0.15 (USD/EUR) to about
0.25 (GBP/CHF, CHF/JPY and EUR/GBP) with the maxima located at around α ≈ 0.5,
similarly as for the typical stock market cases. The dispersion of the maxima of f (α)

is, however, larger within the GBP–CHF–JPY triangle than within EUR–GBP–USD. An
even more interesting difference is seen in the shape of f (α) for different exchange rates.
A majority of them develop an asymmetric f (α) with the distortion somewhat towards the
shapes characteristic of bifractals [14]. The most beautiful and symmetric shape—like the model
binomial cascade [35]—is developed by the GBP/USD (London–New York ‘cable’ connection)
and to a lesser extent by the USD/EUR exchange rates. Interestingly, these two are the leading
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Figure 9. Main: fluctuation function Fr(n) for an exemplary time series of
returns (USD/EUR). Approximate scaling relation for about two decades of n
can easily be seen. Inset: multifractal spectrum τ(r) for the same time series
(solid line) together with its counterpart for a randomly shuffled time series
(dashed line).

and the most traded exchange rates and the previously seen graphs illustrating their return
fluctuations look the most ‘erratic’ among all of the exchange rates considered here. A trace of
a similar effect can be seen in the second, GBP–CHF–JPY triangle. There, the most symmetric
shape of f (α) corresponds to the leading JPY/GBP exchange rate. The degree of symmetry
can also be seen to go in parallel with the strength of the volatility autocorrelation (figure 5).
Stronger volatility autocorrelation corresponds to the more symmetric shape of f (α). These
effects to some extent resemble the situation encountered in the human electrocardiogram.
There, the most healthy and, at the same time, most ‘erratic’ case generates the widest and
most symmetric singularity spectrum [36].

In contrast to the proper exchange rate returns, we do not observe such conventionally
interpretable multifractal characteristics for time series of the residual returns g4. The
complexity of the processes underlying such signals can be assessed from the scale n-parameter
dependence of the fluctuation function Fr(n) for different values of r . The result based on
calculation within the same range of the parameters r as before is shown in figure 11(a)
for the EUR–GBP–USD triangle and in figure 11(b) for the GBP–CHF–JPY triangle. While
for the individual values of r the fluctuation functions Fr(n) clearly behave scale-free to a
similar accuracy as in figure 9, the r -dependence of the corresponding scaling indices h(r)

is significantly different. For the positive values of r , with increasing values, the slope (in the
log–log scale) of Fr(n) systematically redirects its orientation such that h(r) becomes negative.
For the negative values of r , on the other hand, the slope of Fr(n)—and thus h(r)—almost does
not depend on r , which signals a monofractal character of the small fluctuations as these are
predominantly filtered by the negative parameters r . The resulting τ(r) is shown in the inset and
can be seen to have a profoundly different functional form as compared to the original returns
case of figures 9 and 10. Still, by randomly shuffling the residual returns time series, one obtains
the same monofractal form of τ(r) (dashed lines in the insets of figures 11(a) and (b)) as before
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Figure 10. Singularity spectra f (α) for time series of returns corresponding to
exchange rates between currencies forming the triangles: EUR–GBP–USD (top)
and GBP–CHF–JPY (bottom).

when the series of returns were shuffled. This signals that the currently observed anomalous
functional form of τ(r) for the residual returns g4 is primarily encoded in the specific form of
the temporal correlations in g4.

The singularity spectra f (α) that correspond to the above two cases are shown in
figure 12. They develop essentially only the left wing that corresponds to the positive values
of r . Somewhat related ‘left-sided’ multifractals have in fact already been considered in
the literature [37]–[39] in applications to diffusion-limited aggregates (DLA) and to fully
developed turbulence. This may signal further analogies between the FX dynamics and the
physics of turbulence in accord with, and giving more arguments in favour of, the conjecture
put forward in [40]. Furthermore, f (α) extends to the negative values of the singularity
exponents α where, at the edge, f (α) even assumes the negative values. To our knowledge,
such an anomalous form of multifractality has never been identified before in the context of
financial dynamics. However, even such a possibility appears to be implicitly involved in the
Mandelbrot considerations [41] on the fluid dynamics and already explicitly in more recent
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Figure 11. Fluctuation function Fr(n) (main) and multifractal spectrum τ(r)

(inset) for time series of residual returns g4 corresponding to the EUR–
GBP–USD triangle (top) and the GBP–CHF–JPY triangle (bottom). In both of
the main panels, the fluctuation functions are shown for r ∈ [−4, 4] with a step of
0.4. An anomalous scaling behaviour of Fr(n) with negative slope is seen in both
of the main panels for large positive values of r . Note also a small dispersion in
the slope of Fr(n) seen for the EUR–GBP–USD triangle and negative values of
r (top). As a reference, both insets also present τ(r) for randomly shuffled time
series (red line).

statements on the issue of negative critical dimensions [42]. This latter extended study has been
motivated by a rigorous demonstration [43] of the presence of negative fractal quantities for
the (conformal invariant) harmonic measure around a number of incipient percolation clusters.
A related indication is that the ‘multifractal anomalies’ arise when the system under study
behaves canonically—in the statistical physics sense—instead of microcanonically. Illustrated
by means of the binomial cascade, this extends to the situation such that the sum of partitions
at each recursion is not preserved exactly but only in the average. Several quantitative
characteristics seen above indicate that the dynamics associated with the constraint imposed
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Figure 12. Singularity spectra f (α) for time series of residual returns g4

corresponding to the triangles: EUR–GBP–USD (top) and GBP–CHF–JPY
(bottom). The aggregation of data points near α ≈ 0.04 observed for
EUR–GBP–USD is related to a small dispersion in the slope of Fr(n) for
negative values of r in the top panel of figure 11.

by the FX triangle rule belong to this category of phenomena. In the real FX dynamics, the
triangle relation expressed by equation (3) is obeyed also only in the average. A complementary
interpretation of the negative fractal dimensions is that they describe the missing fluctuations—
therefore typically large and thus filtered by the positive parameters r—in a studied finite size
sample. Such fluctuations are thus expected to come into view in another realization of a finite
size sample from the same ensemble.

5. Cross-correlations

It is well known that time series of returns of different assets traded on the same market are
typically cross-correlated. This holds true also for the currency market [44, 45]. Unlike other
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Figure 13. Top: eigenvalues of the correlation matrix calculated for three time
series of returns corresponding to three exchange rates forming two triangles:
EUR–GBP–USD (left) and GBP–CHF–JPY (right). Each eigenvalue is shown
as a function of the time scale 1t . The corresponding eigenvector components
for the longest time scale considered here (1t = 512 min.) are printed in square
brackets. Bottom: the same for three exchange rates that do not form a triangle:
JPY/GBP, JPY/CHF, EUR/GBP (left) and GBP/USD, USD/EUR, EUR/GBP
(right).

studies before, here we analyse a specific case of correlations between the exchange rates
coupled by the triangle rule. We expect that deviations from the perfect triangle relation can
be observed not only by means of the residual returns distributions (figure 3) but also by
means of the eigenvalue spectra of the correlation matrix calculated from the triples of time
series corresponding to currency triangles. We can exploit here the fact that our time series
were recorded simultaneously. We follow the same procedure for constructing a correlation
matrix as above, but now we consider the complete time series of length T = 1703 520. For a
few different choices of the time scale 1t , we create two matrices of size 3 × 3, each for one
currency triangle. Due to equation (3), the triangle rule, if fulfilled, implies that C has only two
non-zero eigenvalues whose sum satisfies the condition λ1 + λ2 = 3. The existence of λ3 > 0
would thus mean the possibility of a triangular arbitrage.

In figure 13, the top panels show functional dependence of the eigenvalues of C on 1t
for the two considered currency triangles. For the shortest 1t = 1 min, the data clearly do
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not comply with equation (3) and C has three non-zero eigenvalues in both cases. Although
possibilities of the triangular arbitrage, with today’s computer trading, are not expected to
last longer than a fraction of a second, in the correlation matrix representation their trace can
be seen clearly on much longer time scales. This is because all of the exchange rates were
sampled precisely at the same time and thus the inconsistencies in exchange rates could not be
consumed yet. Since these inconsistencies, as regards their absolute magnitude, are the same
no matter which time scale one considers, their relative magnitude should gradually decline
with increasing 1t (and, therefore, with increasing variance of the unnormalized returns). This
effect should manifest itself by a declining value of λ3(1t). Due to the fact that the trace of
C is independent of 1t , decreasing the level of λ3 must be associated with an increase in the
two remaining eigenvalues. This resembles the well-known Epps effect observed on the stock
markets [46]. In fact, even the time scales at which λ1(1t) saturates (50–100 min) are roughly
the same as those found for stocks.

The same effect can, in general, be observed for any triples of the exchange rates not
necessarily forming a triangle, as it is documented by two examples shown in the bottom panels
of figure 13, where the exchange rates are formed from four currencies and thus do not constitute
any cycle. The only quantitative difference between the eigenvalues of the triangles and the
‘non-triangles’ is in the asymptotic magnitude of λ3(1t), which in the former case is zero and
in the latter case is small but positive. One therefore sees that the triangle rule implies that the
fully developed couplings among the involved exchange rates are associated with a zero mode
of C.

The origin of the Epps effect in the forex market is likely to be similar to its counterpart for
the stock market: a finite speed of information spreading among the assets. One possible source
is a lack of transaction synchronicity on different assets, which introduces noise-like effects on
their correlated evolution [47, 48]. However, this non-synchronicity of trading is probably not
the unique cause of the Epps effect in the currency market: the trading frequency on this market
is much higher than its counterpart on the stock markets, yet the time scales of saturation are
comparable for both market types. This suggests that some other factor may play an important
role in the development of correlations. Indeed, other sources of the Epps effect have already
been proposed and may be relevant here, like the microstructure noise and the discretization
error [49]. However, their influence in this is has yet to be assessed.

6. Summary

In this paper, we have analysed time series of currency exchange rate returns for the two
triples of currencies forming triangles: EUR–GBP–USD and GBP–CHF–JPY. Market efficiency
requires that cycling through currencies in such triangles must not be profitable except for
very short time scales, which is reflected in the triangle rule. For the original FX time series,
we find that the main statistical properties of the corresponding returns—their distributions,
temporal correlations and multifractality—are qualitatively similar to those found for other
markets. However, we found also some quantitative differences between the properties of
different exchange rates, which may reflect their different significance in the world currency
exchange system. We also studied the residual signals consisting of short-time deflections from
the perfect no-arbitrage condition. A related interesting observation is that while the proper
exchange rate returns are well modelled by the q-Gaussian distributions, the residual returns
develop disproportionately heavier tails.
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Among the most illuminating views is the one that can be obtained after diagonalizing the
correlation matrices constructed from time series representing different weeks and calculating
the corresponding eigensignals, i.e. independent components of dynamics associated with
repeatable patterns of activity. Eigensignals carry system-specific information if one can identify
large fluctuations that can be related to some periodic external perturbation of the market (e.g.
economic news releases). It occurs that such fluctuations are clearly visible already on 1 min
time scale for heavily traded cross-rates, like USD/EUR and GBP/USD, but only on longer
time scales for less frequently traded rates, like EUR/GBP. The same refers to the second
triangle, in which more popular rates, JPY/GBP and GBP/CHF, have more characteristic
eigensignals on the 1 min time scale, while the less popular CHF/JPY rate has more universal
(noisy) eigensignals. We argued that this effect reflects the fact that less popular exchange rates
play a passive role, tuning their values according to changes in dominant rates as demanded by
the triangle rule.

A parallel effect is related to the different shapes of the singularity spectra for different
currency pairs. In this respect, the most symmetric f (α) spectrum is observed for the GBP/USD
pair, while other currency pairs have spectra that are more asymmetric, especially those from
the GBP–CHF–JPY triangle. Even more intriguing are the signatures of negative singularity
exponents and negative singularity spectra for the triangle residual returns. This opens up
an exciting direction for further investigations towards perhaps establishing a closer analogy
between the FX dynamics and the phenomenon of turbulence.

We also found that some inefficiency of the market that is allowed for extremely short time
scales leads to the emergence of the Epps effect, i.e. an increase in couplings between different
exchange rates from the same triangle, if going from shorter to longer time scales. Our result
indicates that, from the point of view of returns, the influence of market inefficiency on cross-
correlations among exchange rates can be neglected on time scales longer than, roughly, an hour.
An increase in coupling with similar characteristic time scales involved is, in fact, observed for
any triples of exchange rates not necessarily forming a triangle.

Appendix. q-Gaussian distribution

The q-Gaussian distribution is defined by [16]

p (x) =Nq e
−Bq(x−µ̄q)

2

q , (A.1)

where

Nq =



0

5 − 3q

2 − 2q


0

2 − q

1 − q


√

1 − q

π
Bq for q < 1,

0

(
1

q − 1

)
0

(
3 − q

2(q − 1)

) √
π

(q − 1)Bq

for 1 < q < 3,
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µ̄q =

∫
x

[p (x)]q∫
[p (x)]q dx

dx ≡ 〈x〉q , Bq =
[
(3 − 1) σ̄ 2

q

]−1
(A.2)

and ex
q denotes the q-exponential function

ex
q = [1 + (1 − q) x]1/(1−q) . (A.3)

For q > 1, this distribution asymptotically (x � 1) develops a power-law form p(x) ∼

x2/(1−q). In particular, for q = 3/2, on the level of the cumulative distribution, it recovers the
inverse cubic power law. This is a particularly useful aspect of the functional form expressed by
equation (4) because it at the same time provides a compact form for the probability distribution
for any value of x .

Instead of directly using equation (4), it is more practical to convert it to the cumulative
form by defining

P±(x) = ∓

∫ x

±∞

p(x ′)dx ′, (A.4)

where the + and − signs correspond to the right and left wings of the distribution, respectively.
By using equation (4), one obtains

P±(x) =Nq

√
π 0

(
1
2(3 − q) β

)
2 0(β)

√
Bq

β

± (x − µ̄q) 2 F1(α, β; γ ; δ)

, (A.5)

where α =
1
2 , β = 1/(q − 1), γ =

3
2 , δ = −Bq(q − 1)(µ̄q − x)2 and 2 F1(α, β; γ ; δ) is the Gauss

hypergeometric function

2 F1(α, β; γ ; δ) =

∞∑
k=0

δk (α)k (β)k

k! (γ )k
. (A.6)
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