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Abstract
We consider mean-variance analysis so as to propose improvements, or at least
“things to think about,’’ in the classical problem of jump-diffusion option pricing.
We see how to minimize variance by dynamically hedging, and then how to further
reduce jump risk by static hedging. Results are given for a up-and-out barrier call
option.

1 Introduction
In Ahn & Wilmott (2003) we wrote about mean-variance pricing in a sto-
chastic volatility framework to solve the problem of hedging and pricing
in incomplete markets. In the interests of completeness, in modelling if
not in markets,1 we are here going to give the details of applying the
same technique but now in a jump-diffusion setting. See Merton (1976)
for the original work on jump-diffusion models. Other work of interest
in this field is due to Platen (2004), Arai (2005), Lin (2005) and Cont,
Tankov & Voltchkova (2006) who variously consider incomplete markets,
including mean-variance pricing and utility theory. Tankov (2007) also
considers various dynamic hedging strategies with some ad hoc static
hedging.

Our proposals result in non-linear models for the value of options.
One should therefore see the work by Avellaneda & Parás (1996) and Hua
& Wilmott (1997) on other non-linear models (uncertain volatility and
crashes), summarized in Wilmott (2006).

2 The Model for the Underlying Asset
We are going to work with the classical jump-diffusive random walk for
an asset, S, given by

dS = µS dt + σ S dX + (J − 1)S dq,

where µ is the drift rate in the absence of jumps, σ is the volatility in the
absence of jumps, dX is a Wiener process, J is the, possibly random, fac-
tor representing the size of the jump (so that a stock that has value S be-
fore a jump becomes JS after a jump), dq is a Poisson process with
intensity λ. We assume that all of the parameters in the above and the
distribution of J are known. They need not be constant since we will typ-
ically have to solve our final equations numerically, they may therefore
be time and/or asset dependent.

3 Processes
The Poisson process q is independent of the Wiener process X and
P(dq = 0) = 1 − λdt + o(dt), P(dq = 1) = λdt + o(dt), and P(dq > 1) =
o(dt). In addition, the jump size J is independent of both q and X.

Given a function f with suitable differentiability and integrability
conditions, we have

Et [f (S + dS, t + dt) − f (S, t)]

= Et [f (S + µdt + σ SdX, t + dt) − f (S, t)] (1 − λdt)

+ Et [f (µdt + σ SdX + JS, t + dt) − f (S, t)] λdt + o(dt)



5.2 Variance

Note that

C(S, t) − m(S, t)

= e−rdt [C(S + dS, t + dt) − m(S + dS, t + dt)]

− �dS + r� Sdt + e−rdt m(S + dS, t + dt) − m(S, t)

The expected value of the square of the first term at t is:

e−2rdt Et [V(S + dS, t + dt)] .

The expected value of the cross product of the two terms at t is zero, be-
cause the expected value of the first term at t + dt vanishes. The expected
value of the square of the second term at t is

Et

[(−� dS + r�S dt + e−rdt m(S + dS, t + dt) − m(S, t)
)2

]
= σ 2S2(mS − �)2dt + λE

[(
m(JS, t) − m − (J − 1)SdS

)2
]

dt

+ o(dt).

Thus,

v(S, t) = e−2rdt Et [v(S + dS, t + dt)]

+ σ 2S2(mS − �)2dt + λE
[(

m(JS, t) − m − (J − 1)S dS
)2

]
dt

+ o(dt)

and hence,

vt + 1

2
σ 2S2vSS + µS vS + λE[v(JS, t) − v] − 2rv

+ σ 2S2(mS − �)2 + λE
[
(m(JS, t) − m − (J − 1)S�)2

] = 0.

(2)

6 Choosing the Hedge Ratio
The instantaneous variance in this replication portfolio is given by

σ 2S2(mS − �)2 + λE
[
(m(JS, t) − m − �(J − 1)S)2

]
, (3)

multiplied by dt.
Traditionally in the classical Merton jump model one chooses � to re-

move the diffusive component of the process, leaving only the jump com-
ponent. The argument is then that the remaining jump risk is not priced
in on the grounds of diversification. Of course, this is highly unsatisfac-
tory in theory. In practice, however, it does at least result in some simple
closed-form expressions for the value of vanilla options.

In the present framework this would amount to choosing

� = mS. (4)

This leaves an instantaneous variance of

λE
[
(m(JS, t) − m − (J − 1)S mS)

2
]
.
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= ftdt + fSµS dt + 1

2
fSSσ

2S2dt + λE [f (JS, t) − f (S, t)] dt + o(dt)

4 Concept
In what follows there will be no talk of risk neutrality, risk-neutral prob-
abilities or risk-neutral distributions. All processes are real and all expec-
tations are real. The symbol E[·] will be used to denote the real
expectation over J, while Et [·], as used above, is over dX, dq and J.

The concept described in this paper is as follows.

• We want to replicate an option as closely as possible using a dynam-
ic strategy in the underlying asset, �

• Because of the existence of jumps, this replication will not be per-
fect. Our market is incomplete

• We will consider two dynamic hedging strategies, both highly classi-
cal, but different

• The mean of a discounted and aggregated future cash-flow generat-
ed from maintaining a dynamic trading strategy � is going to be de-
noted by m(S, t) and its variance by v(S, t)

• We will relate these two functions to the ‘value’ of an option
• We will see how to improve the ‘value’ of an option by statically

hedging

5 Set Up
The evolution of the discounted and aggregated future cash-flow gener-
ated from maintaining a dynamic trading strategy � is described by:

C(S, t) = e−rdt C(S + dS, t + dt) − �dS + r�Sdt.

The quantity above depends upon the realization of S in the future as
well as �, and hence is generally not determined at time t, i.e. it is ran-
dom. The mean and the variance are:

m(S, t) = Et [C(S, t)] ,

v(S, t) = Et

[
(C(S, t) − m(S, t))2

]
,

where Et , as mentioned, is the expectation at time t.
We will choose � so as to replicate an option payoff (or portfolio of op-

tions) as closely as possible.

5.1 Mean

From the definition, we have

m(S, t) = Et

[
e−rdt C(S + dS, t + dt) − �dS + r�Sdt

]
= Et

[
e−rdt m(S + dS, t + dt) − �dS + r�Sdt

]
.

Applying the expansion yields

mt + 1

2
σ 2S2mSS + µS mS + λE[m(JS, t) − m]

− (µ − r + λE[J − 1])S� − rm = 0.

(1)

In this and unless otherwise specified m is simply m(S, t).
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We call this ‘diffusion-eliminating dynamic hedging.’
However, we can do better than this.
A more satisfactory, albeit more complicated, suggestion (discussed en

passant in Wilmott, 1998) is to choose � to minimize (3). This results in
the choice

� = mS + λ
E[(J − 1)(m(JS, t) − m) − (J − 1)2S mS ]

S(σ 2 + λE[(J − 1)2])
, (5)

as can be seen by differentiating (3) with respect to � and setting the re-
sulting expression equal to zero.

This leaves an instantaneous variance of

λE
[
(m(JS, t) − m − (J − 1)S mS)

2
]

− λ2

σ 2 + λE[(J − 1)2]
(E[(J − 1)(m(JS, t) − m) − (J − 1)2S mS ])2.

We call this ‘optimal dynamic hedging.’
We will explore both of these dynamic replication strategies below.

7 Final Conditions, etc.
The equation for the mean is given by (1) subject to the usual final condi-
tion depending on the payoff. � will be given by either expression (4) or
(5) depending on how the dynamic hedge is chosen.

For a call option the final condition is

m(S, T) = max(S − E, 0)

where E is the option’s strike and T its expiration.
The equation for the variance is given by (2). Again v = v(S, t), and �

will be given by either expression (4) or (5) depending on how the dy-
namic hedge is chosen. This equation is subject to the final condition of
zero at expiration.

8 Special Case: Jump to Zero
The following results are all based on the simple case in which the jump
factor is zero, that is J = 0, so that a jump amounts to a total collapse in
the value of the underlying asset. This is the simplest case to consider,
and has only the one parameter λ, whereas the general model has a λ and
a probability distribution for J.2 In this special case the probability densi-
ty function for J is a delta function. Let us here emphasize that all of the
ideas and qualitative results carry over to the general case of arbitrary
jump distributions.3 The sole difference between the general and the spe-
cific is in the complexity of the numerical solution.

This case is particularly easy to analyze since a) there are closed-form
formulæ for simple contracts and b) the numerical analysis does not re-
quire full solution of a partial integro-differential equation. Most com-
ments and results are relevant to the full, general case, of course.

In this special case, the two governing equations are

mt + 1

2
σ 2S2mSS + µSmS − (µ − r − λ)S� − (r + λ)m + λm(0, t) = 0, (6)

and

vt + 1

2
σ 2S2vSS + µSvS − (2r + λ)v

+ σ 2S2(mS − �)2 + λ(m(0, t) − m + S�)2 = 0,

(7)

since it is clear that v(0, t) = 0.
The choices for � are

� = mS

and

� = mS + λ
(m − m(0, t) − SmS)

S(σ 2 + λ)
.

8.1 Diffusion-eliminating Dynamic Hedging

With the choice � = mS the equation, (6), for the mean becomes identical
to the classical Black–Scholes equation with interest rate, r, replaced by
r + λ with an added ‘source’ term λm(0, t) on the left-hand side.

8.2 Optimal Dynamic Hedging

With the choice � = mS + λ
(m−m(0,t)−SmS )

S(σ 2 +λ)
the equation, (6), for the mean

also becomes identical to the classical Black–Scholes equation with inter-
est rate, r, replaced by

r + λ + λ

σ 2 + λ
(µ − r − λ) = r + λ

σ 2 + λ
(µ − r + σ 2),

and this time a source term of λ(µ − r + σ 2)/(σ 2 + λ) m(0, t).
So, in either case, clearly Black–Scholes-type formulæ will be relevant

(and important in checking numerical solutions).

9 Results for a Single Vanilla Option
In this section we look at the valuation of a single call option. (Later we
will consider a barrier option.) For a call option we have m(0, t) = 0. With
the above assumption for the jump the problem for the call options be-
comes

mt + 1

2
σ 2S2mSS + µSmS − (µ − r − λ)S� − (r + λ)m = 0, (8)

and

vt + 1

2
σ 2S2vSS + µSvS − (2r + λ)v

+ σ 2S2(mS − �)2 + λ(−m + S�)2 = 0.

(9)

The choices for � are

� = mS
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and

� = mS + λ
(m − SmS)

S(σ 2 + λ)
.

9.1 Diffusion-eliminating Delta

As mentioned above, with the choice � = mS the equation, (8), for the
mean becomes identical to the classical Black–Scholes equation with in-
terest rate, r, replaced by r + λ.

Figure 1 shows the value of a call option against strike both with and
without the jump. The variables and parameters are
S = 100, σ = 0.2, r = 0.05, T = 0.25, and λ = 0.05. (The last parameter is,
of course, only relevant in the case of jumps.) Figure 2 shows the same re-
sults in terms of implied volatility. (The non-jump case is not shown, it
would be a constant 0.2.) Inevitably one finds a negative skew when the
call prices are interpreted in terms of implied volatility.

Figure 3 shows the standard deviation, the square root of the vari-
ance, of the call option value against strike.

9.2 Optimal Delta

Again, as mentioned above, with the choice � = ms + λ
(m−Sms)

S(σ 2 +λ)
the equa-

tion, (8), for the mean also becomes identical to the classical Black—
Scholes equation with interest rate, r, replaced by

r + λ + λ

σ 2 + λ
(µ − r − λ) = r + λ

σ 2 + λ
(µ − r + σ 2).

^Figure 1: Diffusion-eliminating delta: Call option value versus strike, with and
without jumps. S = 100, σ = 0.2, r = 0.05, T = 0.25, and λ = 0.05.
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Figure 2: Diffusion-eliminating delta: Implied volatility versus strike, with
jumps. S = 100, σ = 0.2, r = 0.05, T = 0.25, and λ = 0.05.
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Figure 3: Diffusion-eliminating delta: Standard deviation of call option value
versus strike, with jumps. S = 100, σ = 0.2, r = 0.05, T = 0.25, and λ = 0.05.
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^

3. The skew will be more negative than in the diffusion-eliminating
case if µ − r − λ > 0

Figure 4 shows the value of a call option against strike both with and
without the jump. The variables and parameters are
S = 100, σ = 0.2, r = 0.05, T = 0.25, λ = 0.05 and µ = −0.1. Figure 5
shows the same results in terms of implied volatility. We have deliberately
chosen the parameters to show the atypical positive skew. Indeed, for suffi-
cient low strikes the value goes below the payoff and is therefore inconsis-
tent with any implied volatility.

Figure 6 shows the standard deviation, the square root of the vari-
ance, of the call option value against strike. Note that for these parame-
ters the residual risk, as measured by the standard deviation, is half that
when diffusion-eliminating dynamic hedging is used.

10 Significance for Local Volatility
Models
If, briefly, we interpret the mean, m, as the value of the option then the
above results may have some significance for those who either like to in-
terpret prices and/or deltas in terms of implied volatility or who use local
volatility models.

Using the diffusion-eliminating dynamic hedge then there are no
problems. In our special, jump-to-zero, case the mean is the same as
Black–Scholes with an increased interest rate. The effect of the jump to

Figure 4: Optimal delta: Call option value versus strike, with and without
jumps. S = 100, σ = 0.2, r = 0.05, T = 0.25, λ = 0.05 and µ = –0.1.
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Figure 5: Optimal delta: Implied volatility versus strike, with jumps. S = 100, 
σ = 0.2, r = 0.05, T = 0.25, λ = 0.05 and µ = -0.1.
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Figure 6: Optimal delta: Standard deviation of call option value versus strike,
with jumps. S = 100, σ = 0.2, r = 0.05, T = 0.25, λ = 0.05 and µ = -0.1.
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There are several points of note about this.

1. The value, m, and hence the direction of the skew, depends on µ
2. The skew will be negative if µ − r + σ 2 > 0, otherwise positive
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zero is then like having a call with a slightly lower strike. Implied volatil-
ities exist and you get the classical negative skew.

However, with the optimal dynamic hedge the mean is still given by
Black– Scholes with an adjusted interest rate, but now the rate could be
reduced. And so, depending on the parameters, it would be like having a
higher strike for the call. In the European case this can result in values
that have no implied volatility. The same is also true of the implied delta
that is found by matching, not the price to the market, but the delta to
the market delta. In other words the optimal dynamic hedge may give
deltas that no Black–Scholes model could give for any volatility.

A local volatility model obviously permits a broader range of prices
but similar results could be expected, the best, i.e. optimal dynamic,
hedge may not be given even by local volatility models.

11 How to Interpret and Use the Mean
and Variance
Take an option position in a world with jumps, and dynamically delta
hedge using one of the methods explained above. Because we cannot
eliminate all the risk we cannot be certain how accurate our hedging will
be. Think of the final value of the portfolio together with accumulated
hedging as being the ‘outcome.’ We can use the mean, m, and variance, v,
to help us ‘price’ the option.

If the distribution of the outcome were normal, which, of course, it
won’t be, then the mean and the variance are sufficient to describe the
probabilities of any outcome. If we wanted to be 95% certain that we
would make money then we would have to sell the option for

m + 1.644853v1/2

or buy it for

m − 1.644853v1/2.

The 1.644853 comes from the position of the 95th percentile in a nor-
mal distribution.

Of course, the distribution of the outcome will not be normal. The
shape will depend very much on the option position we are hedging.
However, assuming that our trade is not the only one we have on our
books then we can appeal to the Central Limit Theorem to argue that we
can still use

m ± ξv1/2,

as our price for the option. Here the ξ is a personal choice, representing
our degree of risk aversion.

Clearly the larger ξ the greater the potential for profit from a single
trade, see Figure 7.

However, the larger ξ the fewer trades, see Figure 8.
The net result is that the total profit potential, being a product of the

number of trades and the profit from each trade, is of the form shown in
Figure 9. Don’t be too greedy or too generous.

12 Nonlinearity and Static Hedging
If we use the above approach to give our option a ‘value’ then clearly the
model is non linear. Nonlinearity is seen in other derivatives models,
such as the uncertain volatility model of Avellaneda & Parás (1996), theFigure 7: Expected profit from a single trade versus ξ .
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Figure 8: Number of trades versus ξ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

Number of
trades

^



104 WILMOTT magazine

crash model of Hua & Wilmott (1997) and the stochastic volatility and
mean variance model of the present authors (Ahn & Wilmott, 2003). In
such non-linear models we typically find that the value of a portfolio
made up of several different contracts is different from the sum of the
values of the component options valued in isolation. Thus we find
economies of scale and the concept of optimal static hedging. To give a
simple example of the latter result let us suppose we have an exotic op-
tion that we value at $10. This option might have a lot of model risk so we
might like to hedge with a vanilla option that has similar risk but of the
opposite sign. So now suppose we see such an option and it is selling for
$5. We buy this option and now value our portfolio of exotic plus vanilla.
In a linear world the portfolio would be worth $10 + $5 = $15. So there is
no theoretical gain from such static hedging. But in a non-linear world
we may find that the new portfolio is worth $17. We have made $2 it ap-
pears. Or we could say that the exotic on its own is worth just $10, since
it is quite risky. But hedged with a vanilla we reduce risk and so the exot-
ic is worth $17 – $5 (the cost of the static hedge) = $12.

We will see this happen in our barrier option example that follows.

13 Example 1: Valuing and Hedging an
Up-and-out Call, No Static Hedge
We are now going to look at the pricing and hedging of a short up-and-
out call option. (Because it is a short position, watch out for otherwise
unexpected minus signs.) The option has a strike at 100, a barrier at 120
and three months until expiration. The volatility is 20%, drift rate 0%, λ
is 5% and the risk-free rate is also 5%. The following are the results of fi-
nite-difference schemes, one for each of the m and v equations, in the
case of the barrier option valued in isolation.

The problem is as follows. We solve the equations (6) and (7) subject to

(a) m(Su, t) = v(Su, t) = 0;
(b) m(S, T) = −max(S − E, 0) where E is the strike;
(c) v(S, T) = 0.

In this the barrier is located at Su .
Notice in the above we are now valuing at expiration the barrier op-

tion as −max(S − E, 0) with the minus sign representing the sale of the
barrier option.

13.1 Diffusion-eliminating Dynamic Hedge, No Static
Hedge

When delta is chosen to eliminate diffusion in the portfolio’s value we
find that the mean, m, when the underlying has value 100, is −3.34. The
variance, v, is 21.85, so that the standard deviation is 4.67. If we were sell-
ing this option then we would sell it for

−3.34 − ξ × 4.67.

Let us suppose that our personal degree of risk aversion is given by
ξ = 0.5. Therefore we would sell the option for 5.68 and no less.

13.2 Optimal Dynamic Hedge, No Static Hedge

When delta is chosen optimally we find

m = −3.02, and v = 9.58

so we would sell for 4.57. Observe how much the variance has been re-
duced using the optimal delta. Note also that this is less than the price
we would have to sell at in the diffusion-eliminating case. This is not al-
ways the situation since the optimally hedged m could be greater than
the diffusion-eliminating m.

See Figures 10 and 11 for means and standard deviations against the
underlying asset for these two cases.

The above results are shown in the table. DEDH means “Diffusion-
eliminating dynamic hedge,’’ “NSH is “No static hedge’’ and ODH is
“Optimal dynamic hedge.’’

14 Example continued: Valuing and
Hedging an Up-and-out Call, Static
Hedge
No let us introduce into our universe the following six call options, all
with the same expiration as our barrier option.

Figure 9: Total profit potential versus ξ .
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OODDHH,,  NNSSHH –3.02 9.58 –4.57



^

WILMOTT magazine 105

TECHNICAL ARTICLE 4

How can we use these vanillas or the information contained within
these prices? We are going to see how to incorporate quantities of the
vanillas into a portfolio along with the barrier option to construct a port-
folio that has a better ‘value’ than the barrier on its own, unhedged as
above. Here ‘value’ means the theoretical value of the portfolio under
this non-linear model after the cost of the static hedge, the vanillas, has
been subtracted off.

14.1 The Algorithm

Suppose we trade (q1, . . . , q6 ) of the above instruments and let Ei be the
strikes among the payoffs. Furthermore, let (m(0), v(0) ) be the mean vari-
ance pair after knockout and (m(1), v(1) ) be that before knockout. Then
(m(i), v(i)), i = 0, 1, satisfy the equations (6) and (7) subject to:

(a) m(1)(Su, t) = m(0)(Su, t) and v(1)(Su, t) = v(0)(Su, t) ;
(b) m(0)(S, T) = ∑6

i=1 qi max(S − Ei, 0);
(c) m(1)(S, T) = ∑6

i=1 qi max(S − Ei, 0) − max(S − E, 0) ;
(d) v(1)(S, T) = v(0)(S, T) = 0.

Thus m(1)(S, 0) stands for the mean of the cashflows excluding the up-
front premium.

We then find a (q1, . . . , q6 ) that maximizes

m(1)(S, σ, 0) −
6∑

i=1

p(qi) − ξ
√

v(1)(S, σ, 0)

where p(qi) is the market price of trading qi shares of strike Ei, allowing
for bid-offer prices. Again, in our example we use ξ = 0.5.

14.2 Diffusion-eliminating Dynamic Hedge, Optimal
Static Hedge

With the diffusion-eliminating delta hedge we find that when S = 100
our optimal choice for the static hedge’ is given by:

The cost of this static hedge is −6.42, the mean, m, is +3.26 and the
variance, v, is 11.03. The barrier option is therefore valued at 4.82. This is
in contrast to the 5.68 value without any static hedge. Recall that we are
trying to reduce this value as much as possible so that we can sell the bar-
rier option as cheaply as possible. Results are shown in Figure 12.

OOppttiioonn 11 22 33 44 55 66

Strike 80 90 100 110 120 130
Bid Price 21.01 11.50 4.22 0.91 0.11 0.01
Ask Price 21.05 11.87 5.01 1.50 0.32 0.02

Option 1 2 3 4 5 6

Strike 80 90 100 110 120 130
Quantity 0.14 0.31 0.00 –0.04 –1.25 1.02

Figure 10: Mean and standard deviation for the diffusion-eliminating hedged
up-and-out call barrier option. See text for parameters.
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Figure 11: Mean and standard deviation for the optimally hedged up-and-out
call barrier option. See text for parameters.
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14.3 Optimal Dynamic Hedge, Optimal Static Hedge

With the optimal delta hedge we find that when S = 100 our optimal
choice for the static hedge is given by

The cost of this static hedge is −6.39, the mean, m, is +3.29 and the
variance, v, is 5.55. The barrier option is therefore valued at 4.28. This is
in contrast to the 4.57 value without any static hedge. Also the variance is
dramatically reduced from the suboptimal, non-statically hedged case.
Results are shown in Figure 13.

All of the above results are summarized in the following table.
From these examples we can see that the final one, OODDHH,,  OOSSHH is opti-

mal (as you would expect), both in terms of having the lowest price and is
therefore the easiest to sell, and by far the smallest variance, and there-
fore the smallest jump risk.

From all of these examples we can see how we can control to some ex-
tent the mean and variance of the barrier option by different forms of dy-
namic hedging, and also how static hedging can be used to further
reduce risk and make a contract’s value more appealing. These final re-
sults are only possible because the model is non linear.

15 Some thoughts
We have taken the classical jump-diffusion model of Merton and classical
mean-variance analysis and put the two together. It is clear from the re-
sults that there is far more to jump-diffusion pricing that simple Black–
Scholes-type formulæ and naive calibration to vanilla options. Indeed the
role of vanilla options ought to be through static hedging rather than
calibration since the informational content in vanillas (in terms of
volatilities and jump parameters) may be minimal because of supply and
demand. It is also clear that adoption of diffusion-eliminating dynamic
hedging is inferior to the obvious approach of variance minimization, es-
pecially when the justification for its use is on the flimsy, economic,
grounds of diversification.

However, rather than pull the rug from under the Merton approach
completely we would like to suggest one justification for diffusion-only
hedging. The justification is that choosing � = mS is the only way to
eliminate the dependence of m on the difficult-to-estimate parameter µ.
This parameter is rarely measured by quants since it does not appear in
the ubiquitous complete-market models. Although most models of in-
complete markets result in the appearance of µ it still makes quants un-
comfortable (and often you will see in the research papers that this
parameter morphs into r for no particular reason). So choose � = mS and

Figure 12: Mean, standard deviation and payoff for the diffusion-eliminating
hedged up-and-out call barrier option with optimal static hedge. See text for
parameters.
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Option 1 2 3 4 5 6

Strike 80 90 100 110 120 130
Quantity 0.30 0.01 0.00 –0.00 –0.62 0.00

MMeeaann (m) VVaarr.. (v) SSttaattiicc  HHeeddggee VVaalluuee

DDEEDDHH,,  NNSSHH –3.34 21.85 –5.68
OODDHH,,  NNSSHH –3.02 9.58 –4.57
DDEEDDHH,,  OOSSHH 3.26 11.03 6.423 –4.82
OODDHH,,  OOSSHH 3.29 5.55 6.390 –4.28

Figure 13: Mean, standard deviation and payoff for the optimally dynamically
hedged up-and-out call barrier option with optimal static hedge. See text for
parameters.
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it disappears (although it remains in the v equation). We would like to
suggest therefore that either Merton was wrong or, if correct, then cor-
rect for the wrong reason.

16 Sensitivity to µ
As the final test for this up-and-out call option we calculate the value of
the option in all four cases, diffusion-eliminating dynamic hedge or opti-
mal dynamic hedge, and with and without optimal hedge while varying
the drift parameter µ. Note that the optimal static hedge has been found
assuming that µ = 0, therefore the following results show sensitivity to
the parameter µ after it has been estimated at zero. The results are shown
in Figure 14. Remember that we want the value to be as high as possible.
(Since it is negative we want its absolute value to be as small as possible,
we are selling the option.)

For most values of µ the doubly optimal solution is the best. For
smaller values of µ the optimal dynamic hedge does better, but had we
known µ our static hedge would have been different. For all values of µ in
this example the classical diffusion-eliminating hedge without optimal
static hedging does the worst.4

17 Example 2: Valuing and Hedging a
Down-and-out Put, No Static Hedge
We are now going to look at the pricing and hedging of a short down-and-
out put option with the same parameter and variable values as in the 
up-and-out call example, except that the barrier is now at 80.

17.1 Diffusion-eliminating Dynamic Hedge, No Static
Hedge

When delta is chosen to eliminate diffusion in the portfolio’s value we
find that the mean, m, when the underlying has value 100, is –2.52. The
variance, v, is 28.24, so that the standard deviation is 5.31. If we were sell-
ing this option then we would sell it for

−2.52 − ξ × 5.31.

With ξ = 0.5 we would sell the option for 5.17 and no less.

17.2 Optimal Dynamic Hedge, No Static Hedge

When delta is chosen optimally we find

m = −3.00, and v = 13.24

so we would sell for 4.82.
See Figures 15 and 16 for means and standard deviations against the

underlying asset for these two cases.

18 Example 2 continued: Valuing and
Hedging a Down-and-out Put, Static
Hedge
Now let us introduce into our universe the same six call options as be-
fore.

Figure 14: Sensitivity of final value in all four cases.
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Figure 15: Mean and standard deviation for the diffusion-eliminating hedged
down-and-out put barrier option. See text for parameters.
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18.1 Diffusion-eliminating Dynamic Hedge, Optimal
Static Hedge

With the diffusion-eliminating delta hedge we find that when S = 100
our optimal choice for the static hedge’ is given by:

The cost of this static hedge is −10.09, the mean, m, is 13.25 and the
variance, v, is 7.15. The barrier option is therefore valued at 4.49. This is
in contrast to the 5.17 value without any static hedge. Results are shown
in Figure 17.

18.2 Optimal Dynamic Hedge, Optimal Static Hedge

With the optimal delta hedge we find that when S = 100 our optimal
choice for the static hedge is given by:

The cost of this static hedge is −11.16, the mean, m, is 14.18 and the
variance, v, is 4.32. The barrier option is therefore valued at 4.05. This is
in contrast to the 4.82 value without any static hedge. Results are shown
in Figure 18.

All of the above results are summarized in the following table.

In terms of both value and variance reduction the down-and-out put is
even more impressive than the up-and-out call.

19 Other definitions of ‘value’
In the above examples we have statically hedged so as to find the best
value according to our definition of value. This is by no means the only
static hedging strategy. One can readily imagine different players having
different criteria.

Obvious strategies that spring to mind are as follows.
• Minimize variance, that is minimize the function v. This has the ef-

fect of reducing model risk as much as possible using all available in-
struments (the underlying and all traded options). This may be a
strategy adopted by the sell side.

Option 1 2 3 4 5 6

Strike 80 90 100 110 120 130
Quantity –0.44 –0.30 0.51 0.01 0.00 0.58

Option 1 2 3 4 5 6

Strike 80 90 100 110 120 130
Quantity –0.57 –0.00 0.15 0.01 0.05 0.59

Figure 17: Mean, standard deviation and payoff for the diffusion-eliminating
hedged down-and-out put barrier option with optimal static hedge. See text
for parameters.
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MMeeaann (m) VVaarr.. (v) SSttaattiicc  HHeeddggee VVaalluuee

DDEEDDHH,,  NNSSHH –2.52 28.24 –5.17
OODDHH,,  NNSSHH –3.00 13.24 –4.82
DDEEDDHH,,  OOSSHH –13.25 7.15 –10.09 –4.49
OODDHH,,  OOSSHH –14.18 4.32 –11.16 –4.05

Figure 16: Mean and standard deviation for the optimally hedged down-and-
out put barrier option. See text for parameters.
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• Maximize the return-risk ratio. This is perhaps more of a buy-side
strategy, for maximizing Sharpe ratio, for example.

Appendix: Application to Lévy processes
According to the Lévy-Khinchin representation, a Lévy process X is essen-
tially a sum of Wiener processes, Poisson processes, and a straight line:

1

t
log E[eiθX(t) ] = iγ θ − 1

2
σ 2θ 2

+
∫

eiθ x − 1 − iθx1(|x| < 1)ν(dx),

(A.1)

where γ is a coefficient for the straight line, σ is the scale of the Wiener
process, and ν is a positive measure which satisfies:∫ 1

−1
x2ν(dx) +

∫
|x|>1

ν(dx) < ∞.

The Lévy measure ν aggregates many Poisson jumps in such a way that
small jumps can occur more often, while large jumps are sparse, to satis-
fy the regularity condition for a stochastic process: applying Taylor ex-
pansion of the integrand in (A.1), one can see that the integrability
condition above indeed makes the integral in (A.1) valid. Many well
known Lévy processes, such as alpha-stable processes, have infinitely
many jumps in a finite time period with probability one, and also pro-
vide closed-form transition probability density functions. From a practi-
cal point of view, the tiny jumps are not visible due to the fluctuation of

the Wiener process, at least numerically, and we might as well omit them
and make the measure finite: ∫

ν(dx) = λ.

Especially when we are dealing with complicated path integrals to deter-
mine the value of an exotic payoff, there is no loss by doing so. In this
case, the methodology in this article can be exploited by setting the dis-
tribution of the jumps as follows:

E[f (J)] = 1

λ

∫
f (ex)ν(dx).

In other words, the scaled Lévy measure is the probability distribution of
the logarithm of the jump. An additional contribution to the straight
line in this case is

−iθ
∫

|x|<1
xν(dx).

FOOTNOTES & REFERENCES

1. This is a quantitative finance joke.
2. In the jump-to-zero case we could have taken the traditional route of hedging one op-
tion with another to eliminate jump risk. This introduces the market price of jumps risk.
Again traditionally, this would then be determined by calibration. Unfortunately, calibrated
market prices of risk tend to be highly unstable, and certainly more unstable than historical
parameters. The model here does not rely on the existence or stability of the market price
of risk, but rather relies on the relative stability of the historical, real, parameters.
3. And even to Levy processes, as discussed in the appendix.
4. Note that this test assumes that µ is constant, and then varies it. So the sensitivity to
drift may be greater than here if we were to use a more general, weaker, assumption for
the drift.
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Figure 18: Mean, standard deviation and payoff for the optimally dynamically
hedged down-and-out put barrier option with optimal static hedge. See text
for parameters.
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