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Abstract

This paper deals with a stochastic order-driven market model with waiting costs, for order books with
heterogenous traders. Offer and demand of liquidity drives price formation and traders anticipate future
evolutions of the order book. The natural framework we use is mean field game theory, a class of stochastic
differential games with a continuum of anonymous players. Several sources of heterogeneity are considered
including the mean size of orders. Thus we are able to consider the coexistence of Institutional Investors and
High Frequency Traders (HFT). We provide both analytical solutions and numerical experiments. Implica-
tions on classical quantities are explored: order book size, prices, and effective bid/ask spread. According
to the model, in markets with Institutional Investors only we show the existence of inefficient liquidity im-
balances in equilibrium, with two symmetrical situations corresponding to what we call liquidity calls for
liquidity. During these situations the transaction price significantly moves away from the fair price. However
this macro phenomenon disappears in markets with both Institutional Investors and HFT, although a more
precise study shows that the benefits of the new situation go to HFT only, leaving Institutional Investors
even with higher trading costs.

Keywords: order book modeling, mean field games, order-driven market, waiting cost, liquidity equi-
librium, high frequency trading

1 Introduction

With the recent changes in regulation on financial markets (MiFID, 2007, in Europe and Reg NMS, 2005,
USA) the competition across trading venues favored the appearance of new trading rules, in a global attempt
to capture most of the decreasing liquidity available in the post-2008 financial crisis world. Trading venues
thus proposed innovative ways to trade in electronic order books (that have the favor of regulators and policy
makers because of their native traceability):

• tiny tick sizes (i.e. the minimum price change between two consecutive quotes [Hall et al., 2005]) to
attract automated market orders using SORs (Smart Order Routers [Pagès et al., 2012],
[Foucault and Menkveld, 2008]),

• low latency networks and matching engines, to allow high frequency players to decrease their exposure
to market risk, in attempts to give them incentive to provide more liquidity [Madhavan, 2011],

• maker/taker fee schedules to pay Liquidity Provider orders inserted in order books, in order to attract
liquidity,

• creation of Dark Pools of various kinds (see [Ganchev et al., 2010]), to promote anonymous liquidity
seeking so that large investors can continue to exchange blocks in an electronic manner,

• size-priority and pro-rata matching rules [Mendelson and Amihud, 1991] to complement the usual time-
priority models,

are among these changes in market microstructure.

The analysis of the efficiency of the emerging ecology of partially connected trading pools is questioned,
especially since the flash crash [Madhavan, 2011], [Kirilenko et al., 2010] during which the US equity market
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has lost around 10% of its value in 10 minutes, regaining it in 20 minutes. The resiliency of the liquidity
provided by HFT (High Frequency Traders [Menkveld, 2010]) raised concerns. So did the spread of liquidity
on such an heterogeneous network of pools.
Addressing these points is difficult because the market microstructure is not only a set of trading rules that
could be studied statically, it changes with market participants behaviors, each of them trying to optimize
her own utility function and anticipating others’ moves.
This article provides an order-driven market modeling, where the volume of arriving flows is the risk source
and where the key driver is the demand/offer of liquidity.
Yet only a limited number of papers have explored such models, the most notables being [Roşu, 2009]
(modeling the order book queue dynamics) and [Gareche et al., 2013] (empirically studying order book data
to extract the main components of the dynamics). This paper can be seen as a very good complement to
those two very interesting ones: with an accurate economic modeling on the one hand, and empirical results
on the other hand. The MFG approach links them together since we provide for instance Partial Derivative
Equation formulations (compatible with the Fokker-Planck equation described in the second paper) arising
from a structural modeling (compatible with the modeling of the first one). The problem is very complex,
and the topic deserves for more studies and publications. Indeed, such liquidity models involve a very
large number of traders who arrive and leave the system at different times and strategically interact. Such
components lead necessarily to complex situations.

In our model we consider smart traders (we call them players as soon as we use the game theory environ-
ment) that arbitrate between limit and market orders. That is they have to choose between the immediate
transaction price and expected later transaction prices. The dynamic model is in continuous time, in infinite
horizon. Since patience is at the heart of our model, the present approach belongs to the family of waiting
cost order-driven market models. Closely related papers are the work of [Foucault et al., 2005], and the
more recent paper by [Roşu, 2009]. The former is the seminal waiting cost based model (as opposed to
asymmetry information models) in discrete time. The latter is a continuous time approach where traders
have the possibility to cancel their orders for free. This late assumption greatly simplifies the problem and
allows the author to describe the equilibrium in an elegant manner.
Our paper is most closely related to [Roşu, 2009] since it is also a continuous time model with Poisson
processes used to model newcomers’ arrivals. On the other hand, our model present some important dis-
similarities. First the patience structure of traders is more endogenous since no cancellation of orders are
permitted. Choices made by the players are thus irreversible and traders’ anticipations of future events
become a core issue. Their is a deep impact on the equilibrium equations: the problem becomes nonlinear.
Secondly, the goal of our paper is to study the case with heterogenous traders, in particular to model the
interactions of Institutional Investors and High Frequency Traders. In [Roşu, 2009] several types of traders
are considered, but the strategical arbitrage between market and impact orders is allowed only for one of
the types. This is not the case in our work, where all types make choices.

Game theory is necessary as soon as markets are incomplete. When markets are complete, strategy is
unnecessary and the only task agents have to perform is to optimize in regards to the price. Order-driven
markets are by essence incomplete since the source of risk is the random arrival of traders, and it is impossible
to hedge this risk because choices made by traders are irreversible (note that the more realistic modeling
where the modeler considers costly cancellation of orders must lead to a similar incompleteness).
Consequently we are convinced that game theory offers a proper framework.
Mean Field Games (MFG monotone systems, as detailed in the next section) are the suitable class of games
that naturally allow to take into account the specific components of the order-driven market we consider,
that is: a continuum of anonymous players, irreversibility of the actions, recursivity (anticipation of future
prices).
The resulting dynamics is thus a mix of backward-driven behaviors (based on actualized anticipations of
future values of trades) and forward-driven ones (resulting from the immediate actions taken by agents).
The MFG framework has been built to capture this two way dynamics, therefore this paper uses it to render
the dynamics of a stylized order book, allowing to obtain results on different market configurations.

The paper is organized as follows. In section 2 we provide a quick introduction to Mean Field Game theory.
In section 3 we introduce the modeling approach. We start with a one-sided order book as a base camp
towards the two-sided order book exposed later. Section 4 and 5 are dedicated to the introduction and
theoretical study of the recursive equations characterizing the equilibrium. Finally we conclude the paper
in section 6, where we apply the model to several markets: markets with Institutional Investors only versus
markets with both Institutional Investors and High Frequency Traders.

2 Mean Field Games: a quick introduction

Mean Field Games (MFG for short) are a class of stochastic differential games with a continuum of agents.
They have been introduced by [Lasry and Lions, 2007]. Similar ideas have been introduced from an en-
gineering viewpoint by [Huang et al., 2007] and [Adlakha et al., 2013]. From then on, MFG have known
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numerous developments and applications to various fields, mainly in economics [Lucas and Moll, 2013,
Guéant et al., 2010], statistics [Pequito et al., 2011a, Pequito et al., 2011b], and human crowd behaviors
[Lachapelle and Wolfram, 2011]. The mathematics and numerics of MFG have been widely developed.
Most of the mathematical tools for MFG have been the purpose of a 5 years course at Collège de France
[Lions, 2012], and recent developments are described in [Cardaliaguet et al., 2012] from an analysis viewpoint
and [Carmona et al., 2012] with a probabilistic approach.

In the continuum, agents are atomized, which means that their influence on the global state is reduced to
nil. In economics, this aspect has to be linked with the notion of price taker agents as opposed to the case
of a price maker monopolist for instance. This is precisely the whole continuum that makes the equilibrium.
The nil influence may have other sources than the presence of infinitely many players in the game. Indeed,
a game with stochastic continuous entries and exits of players leads to the same property. This will be in
particular the case of the model we propose in the present paper, where we consider Poisson entries and
exits.

The complete information consists of a measure on the space of states S. Being a measure, it is often denoted
by m in the literature, but to be consistent with the notations of the model, we rather call it x. Then x(s)
quantifies the density of agents having state s.
In a MFG, players individually optimize (by choosing actions) their expected pay-off, considering the evolu-
tion of the global dynamic of the collectivity as an observable parameter (and they anticipate its evolution).
Simultaneously, the statistical evolution of the collective dynamic follows from the individual optimal be-
haviors. The equilibrium takes place as soon as the anticipated evolution coincides with the statistical
evolution.

A core characteristic of Mean Field Games is that they are anonymous games. This notion is well known
and means that the game is invariant for any permutation of the players. In other words, the players are
not labelled. This assumption is very natural in complex systems involving numerous players.
Mean Field Games are approximations of anonymous games with finitely many players. But things are
getting much simpler in MFG. The strategical powerlessness of individuals (i.e. the atomized characteris-
tic of players) dramatically shrinks the traditional complexity (materialized by numerous coupling of the
equilibrium equations) of N -player games, which is well-known as being Achilles’ heel of classical stochastic
differential games. Players interact with others only via the global state of the collectivity.

In N -player stochastic differential games, each player optimizes her value function ui, depending upon every
individual states of agents (including herself). The equilibrium is then characterized by a complex system
of coupled differential equations.
In a Mean Field Game, the N value functions become a single value function U depending upon the the
state s of a generic player and the density x of the continuum.
The MFG equilibrium is then characterized by a master equation verified by U . The master equation is in
general very tricky and mathematically challenging. Their is a natural classification of cases in term of risk
structure.

• Individual risk: in this case, the stochasticity of each player’s dynamic is independent of each other.
This particular case was firstly introduced. A major simplification is that the value function does not
depend on the density x, but only on the state s. Consequently the master equation reduces to a system
of two coupled partial differential equations having a forward-backward structure. The dynamic of the
collectivity is deterministic.

• Shared risk: here the only risk that agents face is common to all of them. When agent’s space S is
finite (that is x := (x1, ..., xM )), then the value function can be discretized

U := (uj), uj(x1, . . . , xM ), j = 1, . . . ,M.

This class of cases have been deeply investigated and is referred to as the case of monotone systems
(see [Lions, 2012]). The monotone system takes the following form:

(1) 0 = −ruj −
N∑
k=1

αk(u, x)
∂uj
∂xk

+ βj(u, x), for j = 1, ...,M,

where

u→ αj(u, x) is monotone for all j

u→ βj(u, x) is monotone for all j.

We will see later that our order book model falls into this class of MFG.
Note that there is also a time dependent version of (1) with a time derivative term added.

• Mix models: some classes of cases that mix both shared and individual risks are needed for economic
modeling (e.g. for solving the Krussel-Smith problem).
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3 Model

The stylized order book used here is a two-sided one. We start with a simple single-queue model as a base
camp towards the two-sided one that is exposed later.

3.1 A simple single-queue model with anticipations

The purpose of introducing first a single queue model is didactic and does not aim at directly providing
insights on order book modeling. However we believe this single queue is the occasion to introduce some
key concepts, such as endogenous strategic entries of agents that anticipate the future. Consequently, sellers
entering the system are also called players since we locate the modeling approach in the game theoretic
framework (agents perform actions optimizing their respective pay-off).
In particular, when new sellers arrive, they look at the queue size and decide whether to enter the queue or
not (action), after considering their expected pay-off (value function assessment).

The simplified model is the occasion to introduce anticipation behaviors in a very stylized one-sided order
book, where patient sellers arrive at exogenous Poisson rate and where the arrival rate of impatient buyers
increases as soon as the queue size increases. We will finally use it to provide insights on the modeling of
distinct execution protocols, namely process sharing and First In First Out protocol.

The model. The arrival rate of players is continuous and stochastic. In this simplified model, it is
exogenous. As usual, they arrive following a Poisson process with intensity λ.
Impatient buyers arrive at rate µ(x) ≥ 0, a given increasing function of x.
The unit size of an order in the queue is q. The queuing discipline is a process sharing one (with no priority),
i.e. individual service in a queue of size x is worth q/x.
The pay-off gained by a player per unit of order is a nonnegative decreasing function of the queue size: P (x).
Typical cases are P (x) := p > 0 and P (x) = 1/x. On the other hand, there is a cost c of waiting in the
queue.

Now, as usual in game theory, there is a value function u for any player. The value function depends upon
the queue size x. It is the expected Profit & Loss (P&L) of a player entering the queue. Note that we assume
that agents are risk neutral and that their reservation utility is set to 0, which means that an agent decides
to enter the queue as soon as the value function is positive: u(x) > 0.

The value function dynamic comes from an infinitesimal expression of events impacting it:

• a newcomer enters the queue as soon as u(x) > 0 (remember u is the “expected value to pay if you
enter the queue”).

• the queue is consumed by a Poisson process of intensity µ(x). We consider an order already waiting
in the queue, it will be partially executed (according to a prorata rule): its owner will sell q/x shares
for a price P (x). The new expected value for a participant waiting in the queue in this case is thus
q/x · P (x) + (1− q/x) · u(x− q) (i.e. the first part of the expression comes from the sell of q/x shares
and the second one from the expected value of the queue that is now of size x− q).

• in all other cases, the expected value does not change.

• the waiting cost is proportional to q (the size of the orders); it decreases the expected value of u by
c q dt.

Equilibrium : the value function equation. In this paragraph we introduce the equation verified
by the value function at the equilibrium. Below we detail the equilibrium equation for each probability
event.

u(x) = (1− λ1u(x)>0dt− µ(x)dt) · u(x) ← nothing happens(2)

+ λ1{u(x)>0}dt · u(x+ q) ← new queue entrance

+ µ(x)dt ·
( q
x
P (x) + (1− q

x
)u(x− q)

)
← service

− cqdt ← waiting cost

We can perform a Taylor expansion for small q in the discrete equation above. In this way we derive the
following differential equation:

0 =
µ(x)

x
(P (x)− u)−c+ (λ1{u>0}− µ(x))u′ +q

(1

2
(λ1{u>0}−µ(x))u′′+

µ(x)

x
u′
)
,

where the second order term is the last one (blue term).
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First order analysis. Before approximating numerically the solution to (2), we propose to get some
insights on the shape of the solution by doing a first order analysis. More precisely, the solution to the
queuing system described above is characterized by the sign of the value function u. Consequently we are
interested in finding potential sign switching points of u.
The core modeling ingredient is the value of the Poisson arrival rate λ relative to µ(x).
For the first order analysis we look at the first order equation:

0 =
µ(x)

x

(
P (x)− u(x)

)
− c+

(
λ1{u(x)>0} − µ(x)

)
u′(x).(3)

Remark 3.1. Let us remark that equation (3) corresponds to a trivial shared risk Mean Field Game mono-
tone system with N = 1, as described in the previous section. Note that in the framework of this model, the
mean field aspect does not come from the continuum of agents (for every instant, the number of players is
finite), but rather to the stochastic continuous structure of entries and exits of players.

Now we look at the case where the stylized limit order book presented here has an infinite resiliency, meaning
once the orderbook is partially consumed by a marketable order, the remaining liquidity rearranges itself to
fill the gap. Moreover, we will consider the non degenerated case where sellers arrive at rate λ, larger than
the exogenous consuming rate µ(x), for all x. Then the term multiplying the derivative in (3) changes sign
as u does. It is a simple matter to see that this happens for all points x∗ such that:

(4) x∗ = µ(x∗)P (x∗)/c.

In this specific case these points fully characterize the solution.
Equation (4) has a (unique) solution under usual fixed point theorem assumptions, such as continuity and
contraction mapping assumptions. Remark that if P and µ are constant parameters then there is a single
point verifying (4). Also, we notice that these points are sensitive to the granularity ratio µ/c.

An example with anticipation behavior. Assume the arrival rate of buyers has the specificity to
take two values:

• a low value µ1 below a certain queue size threshold S,

• a higher value µ2 ( µ2 > µ1), above the threshold S.

As a function depending upon the queue size variable x, it reads:

µ(x) = µ11x<S + µ21x≥S , 0 ≤ µ1 < µ2.

Here there are at least two points where u changes sign:

(5) x∗1 = µ1P (x∗1)/c and x∗2 = µ2P (x∗2)/c.

Figure 1 shows the plot of the solution (numerical approximation of the solution to equation (2)) for a
certain set of parameters (for P constant). We can see that the first switching point is close to the first
order approximation x∗1, while the last sign switch significantly deviates from the first order approximation
x∗2. It means that higher order terms have a non-negligible effect.
But most importantly, we observe that there is another sign switch strictly below the threshold S. The
existence of such a switching point means that players anticipate the improved service before the threshold
is reached. Indeed, their value function becomes positive meaning that players enter the queue strictly before
the improved service starts. This is why we talk about an anticipation switching point. Consequently, we
can conclude that at the equilibrium, the strategical players adopt an anticipation behavior.

First In First Out model. Finally we want to show that our approach allows to model distinct
execution processes, and how the resulting equilibrium equations are impacted.
To do so, we consider the First In First Out (FIFO) protocol. This is the only change we make in the model.
To consider such a priority protocol, we have to introduce a new variable z denoting the position of a trader
in the queue of size x. Consequently the problem becomes bi-dimensional.
The equation becomes:

u(z, x) = (1− λ1u(x,x)>0dt− µ(x)dt) · u(z, x) ← nothing happens(6)

+ λ1{u(x,x)>0}dt · u(z, x+ q) ← new queue entrance

+ µ(x)dt · u(z − q, x− q) ← execution of the first order

− cqdt ← waiting cost,

in the domain q < z < x, and the boundary condition for z = q is:

u(q, x) = (1− λ1u(x,x)>0dt− µ(x)dt) · u(q, x) ← nothing happens(7)

+ λ1{u(x,x)>0}dt · u(q, x+ q) ← new queue entrance

+ µ(x)dt · P (x) ← execution of the first order

− cqdt ← waiting cost.

System (6-7) can be easily solved numerically.
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Figure 1: Here we notice that there is a point strictly before S where u switches from negative to positive. It
means that players anticipate improved service µ2 and therefore are newly interested in entering the queue.

3.2 The order book model

The matching mechanisms of order books. One of the roles of financial markets is to form prices
according to the balance between offer and demand. In modern markets, this mechanism takes place inside
electronic order books. They implement the following dynamic:

1. buyers and sellers can send electronic messages to a “matching engine”. These messages, called orders,
contain a side (“buy” or “sell”), a limit price and a quantity.

2. The matching engine contains a list of all pending orders it received in its memory. When it receives
a new buy (respectively sell) order, it looks if pending sell (resp. buy) orders at a lower (resp. higher)
price are available.

• If it is the case, it generates transactions between the owner of the incoming order and the owners
of the compatible opposite orders, and removes the corresponding quantities in its list of pending
orders;

• if the incoming order has a remaining quantity, it is inserted in the list of pending orders.

The list of pending orders waiting in the matching engine is called its “order book”.
During the matching process, it is possible that the quantity of an incoming order does not match exactly

the quantity made available at a compatible price (i.e. lower prices for a buy order and higher prices for a
sell order) by opposite orders in the order book. To handle such cases, matching engines need to implement
a priority mechanism. The most used (see [Mendelson and Amihud, 1991] for more details) are:

• time priority : the “oldest” pending orders in the order book are matched first;

• size priority : the largest pending orders are matched first in case of competition between resting orders
at the same price;

• pro rata: pending orders are matched for a fraction of their quantity linear in their relative size.

Each trading platform discloses its matching mechanism in detail to market participants in a rulebook
(like [Euronext, 2006]).

Matching dynamics and trading styles. Market participants thus have to cope with rules of the
matching engine they trade into while fulfilling their day-to-day goals. Recent regulatory discussions raised
questions on the potential negative interactions between the following classes of market participants in the
same order book:

• Institutional investors, that buy and sell large quantities of shares to manage their portfolios on the
long term. They take the decision to buy or sell independently from the immediate state of the order
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book. They are in essence impatient since they interact with other participants in the order book with
the final goal to really buy or sell given quantities before a given deadline. They will not change their
mind during the trading process given the state of the liquidity in the order book.

• High Frequency Traders are far more opportunistic. Even if they do not have all the same behavior
(see [Brogaard et al., 2012] for more details), they have in common the fact that: (1) they send very
small orders to trading platforms, (2) they do it very often (i.e. at high frequency), (3) they have no
other reason to trade than the immediate state of the order book.

Concerns raised focused on the integrity of the price dynamics when so different participants are mixed
in order books. The “Flash Crash” [Kirilenko et al., 2010] has shown that liquidity glitches could cause large
variations of prices formed in electronic order books with no fundamental reasons. Academics studying the
price formation process in order books usually name “temporary market impact” the way prices temporally
deviate from their stable value due to high consumption of liquidity (i.e. of pending orders) in an order book
(see [Almgren et al., 2005], [Gatheral, 2010]).

Recent regulatory changes unexpectedly favored HFTs activity [Burgot et al., 2013] (they are said to
now be part of 70% of transactions in the US, 40% in Europe and 30% in some Asian markets, like Japan).

Dedicating a model to study liquidity games in order books. The way market participants
interact in order books is sophisticated, due to the fact that they continuously try to anticipate actions of
other participants to take an adequate decision. Their classical dilemna is the following: on the one hand
they want to trade as slow as possible to avoid to be detected nor consume liquidity too fast thus moving
the price an unfavorable way (i.e. adverse selection costs). On the other hand they cannot afford to trade
too slow to avoid to be exposed to adverse market moves (i.e. opportunity costs).

A large literature proposes mathematical frameworks for market participant to optimize their trad-
ing kinematics: first mean-variances approaches [Almgren and Chriss, 2000], then stochastic control ones
[Bouchard et al., 2011], and more recently stochastic algorithms have been designed to capture optimally
liquidity at the smallest time scale [Pagès et al., 2012]. In all these approaches, each market participant tries
to optimize her behavior assuming that the aggregation of other players is “martingale” in the sense that it
is submitted to price moves and to some order books characteristics (like the volatility, the market depth,
the intensity of orders reaching the matching engine, etc.) emerging from the activity of other participants
without influencing it (in most cases a market impact function is introduced, exogenously from the activity
of other participants).

The MFG approach presented here takes into account the way strategies of market participants change
the dynamics of the order book. It opens the door to more endogenous models. The previous section is
a simple illustration of this approach: the mean field is the state of the one-sided order book, and since
each player implements an optimal strategy (in the sense that she values the time to wait in the queue and
compares it to an immediate price to pay), it is possible to understand the dynamics of the value function
u shared by all market participants.

In this section we will go one step further: the consuming rate µ(x) of the one-sided order book (say it is
the queue of sellers) of section 3.1 will be linked to the size of the queue x, but in an endogenous way: that
is via optimal strategies followed by participants in the other queue (the one of buyers). The flow consuming
the selling queue is the one of buyers deciding on their side to pay immediately instead of waiting in the
queue (of buyers). It will enable the emergence of coupled dynamics taking into account the states of the
two queues.

To render a market impact effect, we will model the way impatient buy or sell orders consume the
queue of sellers or buyers. For the ease of presentation, in this paper we will consider that at our time
scale the “fair price” (that can be understood as a latent price like in [Robert and Rosenbaum, 2011] or
[Bacry et al., 2012], or as a fundamental price like in [Ho and Stoll, 1983]) does not change significantly. But
the reader can note that extending this model pegging a diffusive behavior on this fair price will do no more
than adding an Ito term to the considered dynamics. Mean Field-inspired models at a largest time scale,
targeting the understanding of the latent price dynamics have been already proposed, but not at the level
of the order books (for instance in [Lehalle et al., 2010], the dynamics of a latent order book is submitted
to an MFG like mechanism, but the realizations of the order book is modeled via a forward only scheme).

Hence, we introduce here a market-impact like relation between the size of the order book queues and
the transaction prices around the fair price P : consuming a quantity q of the queue of pending selling orders
of size Qa will temporally move the price from P to P + δ · q/(Qa − q). Qualitatively, it implies an almost
linear market impact with elasticity δ (i.e. δ can be compared to Kyle’s lambda [Kyle, 1985]). Moreover,
the modelled orderbook will have an infinite resiliency : once liquidity is consumed in a queue, the remaining
quantity will reshape itself to fill the created gap.

The details of the MFG model are exposed in the following sections. In short, it contains these following
ingredients:

• market participants are able to act strategically, anticipating others’ moves;

• the dynamics of the two queues (patient buyers and patient sellers) are coupled thanks to the fact that
the flow consuming each of them is provided by agents of the other side choosing to be impatient (either
because they do not use a smart routing strategy, or because the outcome of their smart strategy is to
send a market order);
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• market impact is introduced dynamically (related to the size of the queues), modifying the premium
to be paid by impatient traders, thus influencing their choices.

Moreover, our order book model needs a priority rule, for simplicity reasons we will use a pro-rata rule
(since it keeps the dimensionality of the model tractable). As it will be seen later, it allows to render enough
complexity to obtain meaningful results.

Rendering different trading styles in an order book model. To understand the features of
our MFG model, we will first study its dynamics when only one class of market participants interacts in one
order book. Since we are in a MFG framework, it will render a continuum of agents, at this stage they share
the same macroscopic parameters:

• the same messaging intensity λ,

• the same size of orders they send q,

• the same waiting cost c.

Beside, we enrich the model with one more feature: the use of SOR (Smart Order Router). A Smart
Order Router (see [Foucault and Menkveld, 2008] for an efficiency study or [Burgot et al., 2013] for a generic
presentation) is a device containing a software dedicated to “smartly route” orders. In our model, only SOR
users will be able to act strategically instead of being blindly impatient.

It can be considered that agents not using a Smart Order Router (SOR) have an infinite waiting cost.
Since institutional investors take decisions independently of the current state of the orderbook, it is reallistic
to consider that a fraction of them will not take time to implement sophisticated microscopic strategies on
some of their orders.

The proportion of market participants using a SOR will be parametrized thanks to a specific flow of
intensity λ−.

Instit. Investors HFT
Order size large small
Speed normal fast
SOR often used always used

Table 1: Qualitative modeling of Institutional Investors and HFT.

In a second stage we will mix two different classes of agents (Table 1):

1. Institutional investors, trading large quantities not using systematically a SOR;

2. HFT (High Frequency Traders), faster than the former participants, using smaller orders, more patient
(in the sense that they bare a lower cost per share waiting in a queue), and all of them using a SOR.

Transaction price. The market price will be centered on a constant P . The market depth is δ, meaning
that no transaction will take place at a price lower than P − δ or higher than P + δ. The (time varying) size
of the bid queue (waiting buy orders) is Qbt and the size of the ask one (waiting sell orders) is Qat .

When a market (buying) order hits the ask queue, the transaction price is pbuy and when the bid queue
is lifted by a market (selling) order, the transaction price is psell. The price takes into account instantaneous
queue size adjustments depending upon the order size q.

(8) pbuy
q (Qat ) := P +

δq

Qat − q
, psell

q (Qbt) := P − δq

Qbt − q

Qualitatively, it means that the market impact is linear. Boundary conditions, to be introduced later, impose
Qat , Q

b
t > q, so that there is no definition problem of the transaction prices

Value functions. The value function for a trader submitting a buy order in the bid queue is v(Qat , Q
b
t)

and the one of a sell order in the ask queue is u(Qat , Q
b
t). In the model agents have risk-neutral preferences,

thus the utility functions coincide with price expectations.

Orders arrival rates. We distinguish between SOR and non-SOR orders. The proportion of these two
types of orders is exogenous, and set as an input of the model.

Buy and sell SOR orders arrive according to two Poisson processes with intensity λbuy and λsell. Several
cases can be considered:

1. Homogeneous Poisson processes:

(9) λbuy = λsell = λ,
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2. Heterogeneous (in space) Poisson processes

λbuy = λf(Qbt), λsell = λf(Qat ),

where f(x) is a decreasing function. Typical instances are f(x) = 1/x, f(x) = 1x≤Q̄ likewise.

However, we will focus in this paper on the homogenous case.
Let us remark that the previous rates could be endogenized and set as the result of an optimization problem
involving the utility functions, consequently depending upon the queue sizes Q•t .

Non-SOR orders (i.e. belonging to very impatient investors or traders) are always liquidity remover, with
arriving rate 2λ− (equally distributed between buyers and sellers).

Market participants decision processes. When a buy (resp. sell) order arrives, its owner has to
make a routing decision:

• if v(Qat , Q
b
t + q) < pbuy(Qat ) (resp. u(Qat + q,Qbt) > psell(Qbt)) it is more valuable to route the order

to the bid (resp. ask) queue (i.e. sending a limit order). In such a case the order will be a Liquidity
Provider (LP). We define symmetrically Liquidity Consumer (LC) orders. This decision is formalized
in the model by setting the variable R⊕buy(v,Qat , Q

b
t + q) to 1 when v(Qat , Q

b
t + q) < pbuy(Qat ), and to

zero otherwise:

R⊕buy(v,Qat , Q
b
t + q) := 1v(Qa

t ,Q
b
t+q)<pbuy(Qa

t ), LP buy order

R⊕sell(u,Q
a
t + q,Qbt) := 1u(Qa

t +q,Qb
t)>psell(Qb

t), LP sell order.
(10)

• otherwise the order goes Liquidity Consumerly to the ask (resp. bid) queue to obtain a trade. It will
be a liquidity remover in this case:

R	buy(Qat, Q
b
t) := 1−R⊕buy(Qat, Q

b
t), LC buy order

R	sell(Q
a
t, Q

b
t) := 1−R⊕sell(Q

a
t, Q

b
t), LC sell order.

The price of such a transaction is pbuy (resp. psell) as defined by equality (8). Note that we omit the
dependence on u, v when it is unnecessary for the understanding of the equations.

We impose the following boundary conditions:

Min liquidity condition : R⊕buy(r,Qbt) = 1, R⊕sell(Q
a
t , r) = 1, ∀r ≤ q,

Technical condition : R⊕buy(Qat , r) = 1, R⊕sell(r,Q
b
t) = 1, ∀r < q.

(11)

In particular, conditions (11) ensure that (Qa0 , Q
b
0) ≥ (q, q)⇒ (Qat , Q

b
t) ≥ (q, q), ∀t > 0.

Matching process. The matching process is close to a pro-rata one [Field and Large, 2008]: in case of
a liquidity removing buy order of size Q to be matched, all market participants having a quantity q resting
in the ask queue will obtain a transaction for a fraction Q · q/Qat of its order is traded at price pbuy(Qat ), the
remaining quantity staying in the orderbook.
At a first glance one may think that this matching process will induce intricate terms in the equations, but
in fact it will not since we only consider utilities by units of good transactions.

• The orderbook shape is assumed to be linear (in the price), meaning that if a newcomer decide to
provide liquidity to the market, her order will be split proportionally to the liquidity already present
in the book: the orderbook will remain linear in price with a higher slope.

• Hence when a Liquidity Consumer order occurs, it will partially fill all Liquidity Provider orders
according to a proportional rule;

4 The PFP (Price Formation Process) dynamics

4.1 Introducing the equations

We characterize an equilibrium via recursive equations of the expected value of future payoffs (value func-
tions).
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u(Qat , Q
b
t) =(12)

(1− λbuydt− λselldt− 2λ−dt) u(Qat , Q
b
t) ← nothing

+ (λsellR
	
sell(u,Q

a
t + q,Qbt) + λ−)dt u(Qat , Q

b
t − q) ← sell order, LC

+ λsellR
⊕
sell(u,Q

a
t + q,Qbt)dt u(Qat + q,Qbt) ← sell order, LP

+ (λbuyR
	
buy(v,Qat , Q

b
t + q) + λ−)dt ·

[
← buy order, LC

q

Qat
pbuy(Qat )︸ ︷︷ ︸

trade part (ask)

+ (1− q

Qat
)u(Qat − q,Qbt)︸ ︷︷ ︸

removing (ask)

]

+ λbuy R
⊕
buy(v,Qat , Q

b
t + q)dt u(Qat , Q

b
t + q) ← buy order, LP

− caq dt. ← cost to maintain inventory

Symmetrically, we have :

v(Qat , Q
b
t) =(13)

(1− λbuydt− λselldt− 2λ−dt) v(Qat , Q
b
t) ← nothing

+ (λbuyR
	
buy(v,Qat , Q

b
t + q) + λ−)dt v(Qat − q,Qbt) ← buy order, LC

+ λbuyR
⊕
buy(v,Qat , Q

b
t + q)dt v(Qat , Q

b
t + q) ← buy order, LP

+ (λsellR
	
sell(u,Q

a
t + q,Qbt) + λ−)dt · [ ← sell order, LC

q

Qbt
psell(Qbt)︸ ︷︷ ︸

trade part (bid)

+ (1− q

Qbt
) v(Qat , Q

b
t − q)︸ ︷︷ ︸

removing (bid)

]

+ λsell R
⊕
sell(u,Q

a
t + q,Qbt)dt v(Qat + q,Qbt) ← sell order, LP

− cbq dt. ← cost to maintain inventory

Remind that Rbuy and Rsell are functionals of Qa and Qb and also implicitly depends on u and v. Of course
the previous principles hold for Qat , Q

b
t > q, which is always the case thanks to conditions (11). In the

equations above, ca and cb are positive constants modeling the cost to maintain inventory per unit, that is
the cost of never being processed once waiting in the queue.

Remark : The model, as described above, involves two standard queues in queueing theory, both have
Poisson arrivals and generalized distributions of service time. The latter are endogenous and result from
agent expectations. Classical results applies provided the mean of the endogenous distributions are known.
From the queueing theory viewpoint, the novel point lies in the coupling of the queues (the service rate of a
given queue depends upon the size of the other queue).

4.2 Symmetric case

In the case where λsell = λbuy = λ, and ca = cb = c, we have the following results.
For the sake of simplicity we will often use new notations for the queue size variables: x and y stand for Qa
and Qb.

Lemma 4.1.
∀(x, y), R⊕sell(u, x, y) = R⊕buy(2P − v, y, x)

This simple symmetry result is useful to get a necessary condition for the solution.

Proposition 4.2. If system (12)-(13) has a unique solution (u, v), then

∀(x, y), u(x, y) + P = P − v(y, x).

That is, u and v are antisymmetric up to the constant P .

Proof. Take Equation (12) then perform the change of variable w(y, x) = 2P − u(x, y), then apply the
previous Lemma, switch the roles of x and y and multiply by −1. Then you get equation (13), hence the
conclusion.
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4.3 Continuous approximation

In this paragraph we formally derive differential equations corresponding to the PFP dynamic discrete
equations (12-13) as presented in the previous section. Hopefully, this will lead us to get easily some
qualitative insights on the solutions u and v.
To do so, we write the Taylor expansion of order 1 at the point (x, y) in system (12-13). After a quick
computation, we get the following system of Partial Differential Equations (PDEs). Note that for the sake
of simplicity we shorten the notations as follows: sell becomes s, buy becomes b, Qa becomes x and Qb

becomes y.

(Ask) 0 = [(λbR
	
b + λ−)

1

x
(pb(x)− u)− ca]

+ [λsR
⊕
s − λbR	b − λ

−] · ∂xu+ [λbR
⊕
b − λsR

	
s − λ−] · ∂yu,

(Bid) 0 = [(λsR
	
s + λ−)

1

y
(ps(y)− v) + cb]

+ [λsR
⊕
s − λbR	b − λ

−] · ∂xv + [λbR
⊕
b − λsR

	
s − λ−] · ∂yv.

Recall that u, v,Rb, Rs are estimated at (x, y) and Rb depends upon v, resp. Rs depends upon u. Conse-
quently, Rb and Rs are the coupling terms in the PDE system (Ask)-(Bid).
The system has to be understood locally in the four regions

R++= {(x, y), R⊕s (x, y) = R⊕b (x, y) = 1}, R−−= {(x, y), R	s (x, y) = R	b (x, y) = 1},

R+−= {(x, y), R⊕s (x, y) = R	b (x, y) = 1}, R−+= {(x, y), R	s (x, y) = R⊕b (x, y) = 1}.

Now we can write the general form of the first order system of coupled PDEs.

0 = γa(u, v, x, y) + α(u, v, x, y)∂xu+ β(u, v, x, y)∂yu(14)

0 = γb(u, v, x, y) + α(u, v, x, y)∂xv + β(u, v, x, y)∂yv,(15)

where γa, γb, α, β have some good symmetry properties to be described later on.

The MFG framework. The model is of course a Mean Field Game. As mentioned in section 2, there
are continuous entries and exits of players (modeled with Poisson processes). Therefore the basis assumptions
are fulfilled: continuum of atomized and anonymous players.
Comparing equations (14)-(15) and (1), it is easy to notice that the equilibrium equations have the same
form as the monotone system characterizing some MFG equilibria.

Second order terms. We kept only the first order terms in the equations. The second order terms to
be added to the equations are:

In (Ask)
q2

2

[
2

x
(λbR

	
b +λ−)∂xu+λ−∆u+(λsR

⊕
s +λbR

	
b )∂xxu+(λsR

	
s +λbR

⊕
b )∂yyu

]
,

In (Bid)
q2

2

[
2

y
(λsR

	
s +λ−)∂yv+λ−∆v +(λsR

⊕
s +λbR

	
b )∂xxv+(λsR

	
s +λbR

⊕
b )∂yyv

]
.

5 Equilibrium analysis

5.1 Change of variables

From now on we focus on the symmetric case where λs = λb = λ and ca = cb = c. First it is convenient to
notice that in this important case, we have the following property:

α = β = [λ(R⊕s (u, x, y)−R	b (v, x, y))− λ−].

We will see later that this property allows to solve the problem thanks to the characteristics method.
There is a very welcome change of variables that we will use throughout this section. We define

(16) ũ = (u− P )/q and ṽ = (v − P )/q.

Then the (Ask)-(Bid) system reads

0 = [(λR̃	b + λ−)
1

x
(

δ

x− q − ũ)− c

q
] + [λR̃⊕s − λR̃	b − λ

−] · (∂xũ+ ∂yũ),

0 = [(λR̃	s + λ−)
1

y
(
−δ
y − q − ṽ) +

c

q
] + [λR̃⊕s − λR̃	b − λ

−] · (∂xṽ + ∂y ṽ).

(17)

Proposition 5.1. Assume that system (17) admits a unique solution (ũ, ṽ), then it is antisymmetric, that
is:

∀(x, y), ṽ(x, y) = −ũ(y, x).
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The general form of the system (17) is as follows:

0 = γ(ũ, ṽ, x, y) + α(ũ, ṽ, x, y)(∂xũ+ ∂yũ)(18)

0 =−γ(ṽ, ũ, y, x) + α(ũ, ṽ, x, y)(∂xṽ + ∂y ṽ).(19)

5.2 First Order Analysis

Here we explore formally some aspects of the first order approximation to the solution.
The key point of the analysis is that in the two equations of system (17), the derivative terms are the same,
so that we conclude that the characteristics satisfy

ẋ = ẏ = α⇒ x = y + k.

Note that the reasoning of this paragraph holds on the region below the diagonal, but can be trivially
extended to the whole domain by symmetry arguments.
We heuristically suppose that for a given k, and along the characteristic line y = x− k, there is a first point
M0 = (x0, y0) where the sellers become Liquidity Consumer, that is M0 is a point at the boundary of the
regions R++ and R−+.
Then there is a second point M1 = (x1, y1), with x1 ≥ x0 and y1 ≥ y0 where the buyers become Liquidity
Consumer, that is M1 is a point at the boundary of the regions R−+ and R−−.
First recall that:

R++ is defined by R⊕s = 1 and R⊕b = 1,

R−+ is defined by R⊕s = 0 and R⊕b = 1,

R−− is defined by R⊕s = 0 and R⊕b = 0.

We can write the differential equations on the three regions mentioned above:

(AR++) 0 =
[λ−
x

(
δ

x− q − ũ)− c

q

]
+ [λ− λ−] · (∂xũ+ ∂yũ),

(BR++) 0 =
[λ−
y

(
−δ
y − q − ṽ) +

c

q

]
+ [λ− λ−] · (∂xṽ + ∂y ṽ),

(AR−+) 0 =
[λ−
x

(
δ

x− q − ũ)− c

q

]
+ [−λ−] · (∂xũ+ ∂yũ),

(BR−+) 0 =
[λ+ λ−

y
(
−δ
y − q − ṽ) +

c

q

]
+ [−λ−] · (∂xṽ + ∂y ṽ),

(AR−−) 0 =
[λ+ λ−

x
(

δ

x− q − ũ)− c

q

]
+ [−λ− λ−] · (∂xũ+ ∂yũ),

(BR−−) 0 =
[λ+ λ−

y
(
−δ
y − q − ṽ) +

c

q

]
+ [−λ− λ−] · (∂xṽ + ∂y ṽ).

The equations are relatively simple in each region. The tricky point is, as always, to stick together the
solutions of each region. First we compute the boundaries of the regions.

Search for M0: first order boundary between R++ and R−+. Looking at equations (AR++)
and (AR−+) we notice that at the boundary there is a jump causing a change of sign of the coefficient
multiplying the derivatives (under the basic assumption λ ≥ λ−). Therefore, at this point we must have

λ−

x0
(

δ

x0 − q
− ũ) =

c

q
.(20)

On the other hand, as the seller’s routing decision R⊕s jumps from 1 to 0, we must have

ũ =
−δ

y0 − q
.(21)

Combining (20) and (21) we get the equality:

ηx0 =
1

x0 − q
+

1

y0 − q
,

where

(22) η :=
c

δqλ−
.

It follows that the diagonal point of the boundary M0 is the point

(23) (x∗0, x
∗
0) = (q +

√
q2 + 8/η)/2

and that the boundary is defined by the parametric equation:

(24) (x0, y0) =
(
x0, l(x0) := q +

(
ηx0 −

1

x0 − q

)−1)
, ∀x0 ≥ x∗0.
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Search for M1: first order boundary between R−+ and R−−. Unfortunately, looking at equa-
tions (BR−+) and (BR−−) we conclude that we cannot adopt the same reasoning since the sign of the
coefficients multiplying the derivative terms does not change.
We use another strategy. We solve ṽ analytically all along the characteristic line y1 = x1 − k, and then
intersect the solution ṽ with δ

x1−q
.

Along the characteristic x = y + k, we introduce the function

f(y) = ṽ(y + k, y).

Looking at equation (17), we get the generic form of the ordinary differential equation (ODE for short)
satisfied by f :

(25) f ′ +
a

y
f +

( b

y(y − q) + d
)

= 0,

where
a = 1 + λ/λ−, b = δ(1 + λ/λ−), d = −δη, on R−+.

We use the variation of constant method to solve equation (25).
The homogeneous solution is f(y) = y−a × constant. Now let the constant varies as a function g(x). We
have f ′ = g′y−a − agy−a−1. Substituting in (25) we obtain:

g′(y) = −b y
a−1

y − q − dy
a.

This function is easy to integrate numerically. However in order to stay working with analytical formulas,
we make the approximation y − q ≈ y for small q (recall that all this analytical part focus on the small q
first order approximation). Now we are in the position to integrate the derivative g′.
We get

f(y) = g(y)y−a = (constant y−a − b

a− 1
y−1 − d

a+ 1
y).

Now we have to compute the constant. Recall that we are working on the line (y + k, y) and on the region
R−+ so that we are solving the ODE with an initial condition on M0, which is known to be (x0, l(x0)).
Consequently we have to look at f as a family (fk) of functions indexed by k ∈ R+. On the characteristic
line starting at x0 − l(x0), the function is given by

(26) fx0−l(x0)(y) = (C(x0) y−a − b

a− 1
y−1 − d

a+ 1
y), ∀y ≥ l(x0).

The core argument to compute the constant parameter C(x0) for the solution on the characteristic (y+k, y),
with k = x0 − l(x0), is to remark that:

fk(y) = ṽ(y + k, y) = −ũ(y, y + k) = −fk(y + k).

Then, the initial condition equality

fx0−l(x0)(l(x0)) = −fx0−l(x0)(x0),

automatically gives the expression of C:

(27) C(x0) = δ
(1 + λ−/λ)[x−1

0 + l(x0)−1]− η
1+λ/λ− [x0 + l(x0)]

x
−(1+λ/λ−)
0 + l(x0)−(1+λ/λ−)

,

where the last equality holds since the equation of ũ on R+− matches the equation of ṽ on R+−.
Consequently, the analytical solution is given by (26)-(27).

Finally we are in the position to compute the parametric curve of the boundary between the two regions
R−+ and R−−.
To do so we look for the point (x1, y1) = (y1 + k, y1) such that ṽ(x1, y1) = δ

x1−q
.

More precisely, M1 is defined by: (y1 + x0 − l(x0), y1), ∀x0 ≥ x∗0, where

y1 verifies fx0−l(x0)(y1) =
δ

y1 + x0 − l(x0)− q .

Figure 2 exhibits an instance of the first order curves. We observe that near the diagonal, there is a region
where several solutions could happen. The first order analysis thus shows the global form of the shape of
the solution (since it is based on the curves M0, M1), and that considering higher order terms is necessary
to understand what happens in the region near the diagonal.
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Figure 2: First order decision curves

5.3 Second Order Equations

According to section 4.3, the general form of the second order equations is:

0 = γ(ũ, ṽ, x, y) + α(ũ, ṽ, x, y)(∂xũ+ ∂yũ)

+ q
(
ρ(ṽ, x, y))∂xũ+ ξ1(ũ, ṽ, x, y)∂xxũ+ ξ2(ũ, ṽ, x, y)∂yyũ

)
,

0 =−γ(ṽ, ũ, y, x) + α(ũ, ṽ, x, y)(∂xṽ + ∂y ṽ)+

+ q
(
ρ(ũ, y, x))∂y ṽ + ξ1(ũ, ṽ, x, y)∂xxṽ + ξ2(ũ, ṽ, x, y)∂yy ṽ

)
,

(28)

where:
ρ = 1

x
(λR	b + λ−), ξ1 = (λ(R⊕s +R	b ) + λ−)/2, and ξ2 = (λ(R	s +R⊕b ) + λ−)/2.

Define Λ = λ+ λ−. Let us now give the local equations on the same four regions.

(AR++) 0 =
[λ−
x

(pb(x)− u)− c
]

+ [λ− λ−](∂xu+ ∂yu) + q
(λ−
x
∂xu+

Λ

2
∆u
)
,

(BR++) 0 =
[λ−
y

(ps(y)− v) + c
]

+ [λ− λ−](∂xv + ∂yv) + q
(λ−
y
∂yv +

Λ

2
∆v
)
,

(AR−+) 0 =
[λ−
x

(pb(x)− u)− c
]

+ [−λ−](∂xu+ ∂yu) + q
(λ−
x
∂xu+

λ−

2
∆u+ λ∂yyu

)
,

(BR−+) 0 =
[Λ

y
(ps(y)− v) + c

]
+ [−λ−](∂xv + ∂yv) + q

(Λ

y
∂yu+

λ−

2
∆u+ λ∂yyv

)
,

(AR+−) 0 =
[Λ

x
(pb(x)− u)− c

]
+ [−λ−](∂xu+ ∂yu) + q

(Λ

x
∂xu+

λ−

2
∆u+ λ∂xxu

)
,

(BR+−) 0 =
[λ−
y

(ps(y)− v) + c
]

+ [−λ−](∂xv + ∂yv) + q
(λ−
y
∂yu+

λ−

2
∆u+ λ∂xxv

)
,

(AR−−) 0 =
[Λ

x
(pb(x)− u)− c

]
+ [−Λ](∂xu+ ∂yu) + q

(Λ

x
∂xu+

Λ

2
∆u
)
,

(BR−−) 0 =
[Λ

y
(ps(y)− v) + c

]
+ [−Λ](∂xv + ∂yv) + q

(Λ

y
∂yv +

Λ

2
∆v
)
.

Remark that both a diffusion term and a drift term appear.

In the next part, we provide several example of markets based on the model.
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6 Applications

This section is dedicated to applications of the MFG model to study the outcome of a combination of
different trading behaviors in the same order book.

The purpose here is not to study how the price discovery operates on the long term, but how microstruc-
ture effects can deviate transaction prices from the fair price. This model will thus explain how the state
of the liquidity can change the dynamics of the price and potentially form an equilibrium price. This equi-
librium can potentially deviate from the latent (or fair) price. The main drivers of these modifications will
be the behavior of trading agents, and specifically the average size of their orders, their speed, their waiting
cost, and how often they use optimized strategies (see Table 1 for a qualitative description of the main
parameters of their strategies).

In this section, we will investigate theoretically and using simulations the reasons why the price deviates
or not from the “fair price” (exogenously fixed). The variables of interest are:

• the asymptotic state of the liquidity offer (i.e. the size of the bid queue and ask queue): are they large
or small? are they balanced?

• The average transaction price: how far away it is from the fair price?

• The average value of the bid-ask spread; in which conditions is it high or low?

Having in mind that each time an agent buys or sells she suffers from market impact, the strategy of each
market participant affects her price. We will thus be able to compute an average price for each class of
market participants, answering the question: do the institutional investors pay more than high frequency
traders?

It will also allow us to compute an effective bid-ask spread being twice the difference between the mid
price and the transaction price; it will not be the same for each market participant.

Definition 6.1 (Effective bid-ask spread). The effective bid ask spread of an agent A is the expected trans-
action price of its liquidity removing buying orders minus the one of its liquidity removing selling orders:

(29) ψe(A) := δ · E
(

q

Qat

∣∣∣∣R	buy(A)

)
+ δ · E

(
q

Qbt

∣∣∣∣R	sell(A)

)
.

The effective spread is higher for an impatient agent if the spread is larger when he consume liquidity than
when he provides liquidity.

Another important tool is the invariant measure, being the probability of having the system in a specific
region of the state space. Our state space is mostly captured by the sizes of the two queues (the bid queue
and the ask queue).
Thanks to the results obtained in the previous sections, we will be able not only to observe discrepancies
between agents’ behaviour and their outcome, but also to explain and understand them in details.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
qii 1 0.25 1 1 1 1
λii 1 1 1 0.5 0.5 0.6
λ−ii 0.2 0.2 0.2 0.5 0.5 0.4

cii · qii 2.5·10−3 2.5·10−3 10−2 2.5·10−3 2.5·10−3 2.5·10−3

qHFT - - - - 0.25 0.25
λHFT - - - - 4 3.6
λ−HFT - - - - 0 0.4

cHFT · qHFT - - - - 10−2 10−2

Table 2: Parameters defining the studied models.

A first subsection is dedicated to applications with models including one class of agents only, to understand
and explain in details the mechanisms that our MFG model can render. In a second subsection we will
use a multi-agent model, allowing to understand the result of putting together more than one class of
market participants. Here we mix Institutional Investors and High Frequency Traders. Section ?? present
a theoretical expansion of Section 3.2 needed to handle more than one agent class. Table 2 summarizes the
different models and their parameters.

6.1 Markets with Institutional Investors only

6.1.1 Modeling Institutional Investors

Since we just want to model one class of market participants, their specification is not very important. It
will become crucial when we mix different agents: the relative speed, the relative sizes of orders, etc., will
play a crucial role in the multi-agent simulations.
With one type of investors only we mainly focus on using realistic values and exploring the sensitivities of
the emerging dynamics to the values of the parameters.
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Note first that some parameters define the framework of the simulation and not the market participant
themselves:

• the fair price P has no impact on the dynamics, it is taken as a constant,

• the market depth δ, playing a role in the expression of the market impact of one trade (at the first order
it is homogenous to Kyle’s lambda). Looking carefully at the market impact expression (8), it can be
read that δ is homogenous to the inverse of a quantity: dividing it by two and multiplying quantities
by two will not change the dynamics but increase the waiting costs (that are proportional to the order
size q).

Other parameters are directly associated with the agent:

• the size of her orders q,

• the intensity λ of the Poisson process governing the arrival rate of smart routed orders;

• the intensity λ− of the Poisson process governing the arrival of not smart routed orders (i.e. blindly
sending market orders);

• the cost of waiting per share c: waiting dt seconds is worth cq dt.

Some simple statistics on equity markets can give reasonable figures for these parameters (see [Burgot et al., 2013]
for more details about evolution of trading behaviors):

• the intensity Λ = λ+ λ− can be roughly estimated by the average number of trades per time unit ;

• the size q has no unit (it will have a role when compared to the size of HFT orders); for the sake of
simplicity we will take it equals to one. For information the table gives the average trade size and the
average size at first limit.

6.1.2 Simulations and results

First we consider the case of a single group of traders all with the same order size q. The elementary
algorithm we use to compute the equilibrium is as follow:

1. Initialize u0 and v0 (e.g. to the constant function equal to P )

2. Step k:
compute uk the solution to equation (12) using the inputs uk−1 and vk−1,
compute vk the solution to equation (13) using the inputs uk and vk−1.

Equilibrium as an invariant measure. Equilibrium visualization is made of the level sets of the
stationary measure of queue sizes. The previous measure is computed from the transition probability de-
pending upon u and v.
More precisely,the transition process at a certain state (Qa, Qb):

(Qa, Qb) → (Qa, Qb) with probability 1− 2λdt− 2λ−dt
(Qa, Qb) → (Qa + q,Qb) with probability λR⊕s dt
(Qa, Qb) → (Qa − q,Qb) with probability λR	b dt+ λ−dt
(Qa, Qb) → (Qa, Qb + q) with probability λR⊕b dt
(Qa, Qb) → (Qa, Qb − q) with probability λR	s dt+ λ−dt.

The resulting process has of course the Markov property.

Test 1: institutional traders with many SOR arrivals (i.e. very few impatient traders).
The first numerical test corresponds to the following set of parameters: q = 1, δ = 2, c = 2, 5× 10−3, λ = 1,
and λ− = 0.2.

We show the results in Figure 3. We observe that the decision regions R++, R−+, R+−, and R−− have
the expected form. We also remark that the second order term selects a particular solution amongst all
order one solutions. This has to be linked to the notion of viscosity solutions.

Below the diagonal, that is for values of Qb smaller than Qa, the region where both sellers and buyers are
Liquidity Provider corresponds to small Qa and Qb, then the sellers turn to be Liquidity Consumer while
the buyers remain liquidity adders, and finally they also turn to be Liquidity Consumer.

The invariant measure is almost concentrated on the points where both sellers and buyers turn to be
Liquidity Consumer, i.e. it is concentrated on the boundary curve M0 describing the frontier between R++

and R−+& R+−. From now on, we refer to this curve as the PC switching curve for Provider to Consumer
switching curve. We symmetrically define the CP switching curve as the frontier between R+− & R−+ and
R−−.

However, the most remarkable point is that the invariant measure shows two bumps, located in the
cavities of the PC switching curve. In the new reference frame after a π/4 axis rotation, the cavities
corresponds to the global minimum points of the PC switching curve.
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(a) Mapping of the decision regions

(b) Corresponding invariant measure

Figure 3: The numerical solution for a single homogeneous specie of traders. The routing decision regions have
the expected form. The invariant measure exhibits two symmetric bumps.
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Figure 4: The real switching curves tries to conciliate the curves analytically computed at order 1.

Here the economic intuition is that there are two symmetric liquidity pools, one on the buy side, where
only buy orders are completed, and conversely for the sell side.

Figure 4 shows the form of the routing decision boundaries versus the first order analytical curves derived
earlier. It is noteworthy to observe that the real switching curves tries to conciliate the curves analytically
computed at order 1. However, it approximates better the PC switching curve than the CP switching curve.

Several visualizations of system trajectories are possible. We display the time evolution (for 600 instants) of
various quantities in Figure 5. In this example there are mainly two distinct regimes: from instant tini to
tswitch = 330, the activity is mainly concentrated on the ask queue. During the second period, most of the
activity holds on the bid side.

The coupled trajectory of queue sizes in the space Qa×Qb is another possible visualization. In the plot,
dots are colored from yellow to red, according to the number of time the queue system passes through the
corresponding size configuration. Here also we see the hange of regime at tswitch where the process goes
through the diagonal, jumping from the ask activity zone to the bid activity one. One more time both
liquidity configurations are visible. Above the diagonal Qa = Qb, red dots are more likely to be horizontally
distributed (meaning that most of transactions hold on the ask side), and symmetrically below the diagonal.

Both visualizations confirm the phenomenon that one could expect after looking at the invariant measure
plot.

Test 2: order size impact. Now we only change the value of q, and take it smaller than in test 1:
q = 0, 25. Figure 6 shows that the real CP switching curve is closer to the 1st order curve, which is natural
since taking q smaller means that the second order term impacts are shrunk.

Test 3: risk aversion impact. Figure 7 shows the impact of a bigger c on the solution. We compare
the results obtained for the set of parameters of Test 1 with the results obtained for the same parameters
exepct the value of the new risk aversion ch = 4 × c = 10−2. We observe mainly two effects. First queue
sizes are shrunk (from about 30 to 10). Second the invariant measure maximum is now on the diagonal.
Therefore, the two antisymmetric liquidity pools progressively disappear.

Test 4: the case with half non-SOR orders. Here we provide a stationary equilibrium instance
in a case where half of the order arrivals are non-SOR. Figure 8 shows that at the equilibrium there are
still two symmetric regions of concentration at the neighborhood of the PC switching curves. Naturally we
observe more density on low queue sizes.

18



Figure 5: Here we show a particular simulation of the order book. We plot the evolution of various quantities
for 600 instants. A sample trajectory of coupled queue sizes is plotted. Dots are colored from yellow (1 visit) to
red (about 15 visits). Note that 3 milestones are introduced. We observe a change of regime at instant tswitch
where the market activity switches from the ask queue to the bid queue.

6.1.3 Possible liquidity imbalance with one class of participant only

First remind that the type of a participant is described by the way she interacts with order books. Hence a
pension fund taking long term positions, a low frequency statistical arbitrageur, and the hedging desk of an
investment bank will have the same type. The important elements being they all:

• take a decision before starting to interact with the order book,

• do not use a smart order router systematically,

• trade with relatively large orders, even once their meta orders have been split thanks to an optimal
trading scheme (like in [Bouchard et al., 2011],[Almgren and Chriss, 2000],[Alfonsi et al., 2009]).

The outcome of the application to one class of investors is that the market can suffer for long and stable
liquidity imbalances. We have seen that is such typical cases the bid and ask queues are in an asymmetric
configuration:

• one of the queues (the ask one, for instance) is significantly shorter than the other,
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(a) The invariant measure has the same form, it is concentrated on smaller values.

(b) The real PC switching curves is closer to the 1st order switching curve.

Figure 6: Comparing with the previous case, we deduce the second order terms impacts.
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(a) ch = 10−2 (b) c = 2.5 × 10−3

Figure 7: The two symmetric bumps vanish and a single bump appears on the diagonal

Figure 8: The case with half SOR and half non-SOR arrivals.

• the flow of buyers considers that the price to pay to wait is too high and accept to pay the market
impact on a small queue,

• the flow of seller notices that they can obtain a fast trade being passive (i.e. going into the bid queue),
since 100% of the buyers are now impatient.

This leads to a stable state of the order book: the invariant measure sees two symmetrical concentrations
of such configurations, dominating states on the diagonal (see Figure 3).

In such a situation, we can say that liquidity calls for liquidity : the conjunction of a high rate of consuming
orders at the smaller queue and of an high arrival rate of liquidity on the same queue feeds an equilibrium.

During such a configuration the transaction price is significantly different from the fair price. Since the model
is stochastic its state will nevertheless evolve to explore other configuration (see Figure 5 for a trajectory
instance). Nevertheless the form of the invariant measure indicates that the fraction of time during which
the model is in such inefficient configurations dominates.
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When the behaviors of participants are so similar that they create liquidity imbalances, it is often proposed
to add a population of market makers (see [Ho and Stoll, 1983]), hoping that it will break these “liquidity
circles” and bring back the invariant measure on the diagonal.

6.2 Introducing High Frequency Traders

6.2.1 Equations and quantities for two groups

The model is such that considering several types of traders is not a big deal. This is good news since our
aim is to get insights on the role of High Frequency Traders in the scope of our model.
We therefore split the agents into two subsets:

• Institutional Investors, with a smaller intensity λ1, but with bigger sizes q1 and risk aversion c1.

• HFTs, with a higher intensity λ2 and smaller sizes q2 and risk aversion c2,

The two groups also differentiate by having specific λ−1 , λ
−
2 and c1, c2. This leads to twice the value functions

we had.
We also have to consider group’s 2 routing decisions R⊕buy(v2, x, y+ q2) := 1

v2(x,y+q)<p
buy
q2

(x)
(symmetrically

R⊕sell).
Now we write the equation for one of sellers’ value functions u1, u2. As before, buyers’ value function
equations can be easily derived by simple symmetry arguments.

k · u1(x, y) =

(λ1R
	
sell(u1, x+ q1, y) + λ−1 )u1(x, y − q1) + λ1R

⊕
sell(u1, x+ q1, y)u1(x+ q1, y)

+ (λ1R
	
buy(v1, x, y + q1) + λ−1 )[

q1
x
pbuy

1 (x) + (1− q1
x

)u1(x− q1, y)]

+ (λ1R
⊕
buy(v1, x, y + q1)u1(x, y + q1)) + (λ2R

⊕
buy(v2, x, y + q2)u1(x, y + q2)

+ (λ2R
	
sell(u2, x+ q2, y) + λ−2 )u1(x, y − q2) + λ2R

⊕
sell(u2, x+ q2, y)u1(x+ q2, y)

+ (λ2R
	
buy(v2, x, y + q2) + λ−2 )[

q2
x
pbuy2 (x) + (1− q2

x
)u1(x− q2, y)]

− c1q1),

(30)

k · u2(x, y) =

(λ1R
	
sell(u1, x+ q1, y) + λ−1 )u2(x, y − q1) + λ1R

⊕
sell(u1, x+ q1, y)u2(x+ q1, y)

+ (λ1R
	
buy(v1, x, y + q1) + λ−1 )[

q1
x
pbuy

1 (x) + (1− q1
x

)u2(x− q1, y)]

+ (λ1R
⊕
buy(v1, x, y + q1)u2(x, y + q1)) + (λ2R

⊕
buy(v2, x, y + q2)u2(x, y + q2))

+ (λ2R
	
sell(u2, x+ q2, y) + λ−2 )u2(x, y − q2) + λ2R

⊕
sell(u2, x+ q2, y)u2(x+ q2, y)

+ (λ2R
	
buy(v2, x, y + q2) + λ−2 )[

q2
x
pbuy2 (x) + (1− q2

x
)u2(x− q2, y)]

− c2q2,

(31)

where k = 2(λ1 + λ2 + λ−1 + λ−2 ).
At this stage, it is important to remark that the only difference in equations (30) and (31) is the term c1q1.
As a consequence, u1 and u2 coincide as soon as c1q1 = c2q2, which is the reference case we study in the
present work.
Note that in this case, a first order resolution can be performed using the methodology of the previous
section.

In this section we will compare equilibria in terms of average transaction prices and spread. Let us detail
the way we define average prices. Before writing down the average price equations, we need to introduce
some notations. For the sake of simplicity we only work with sellers. Buyers notations and equations can
be easily derived by symmetry.

Empirical stationary measure: m̂(Qa, Qb)

Type’s i stationary proportion: γ̂i(Qa, Qb)

As previously, there are several regions defined by the LP or LC behavior of traders. Figure 9 shows an
instance with 9 regions. Two cases may happen, depending upon the relative size of λ−i , λi, i = 1, 2. We do
not want to enter the (technical) details nor review all possible cases, but we would like to mention that a
necessary condition for the existence of several regions is that

∑
λi >

∑
λ−i , that is there is globally more

SOR than non-SOR traders in the system. In the first case, Institutional Investors switch first from LP
to LC. In the second case, HFT switch first (which is the case in Figure 9). Note that the proportion of
traders of type i is constant in each region defined in Figure 9. Consequently we can define the marginal
distribution of traders of type i as:

m̂i(Qa, Qb) := γ̂i(Qa, Qb)m̂(Qa, Qb).
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Figure 9: There are nine regions in terms of trader type (HFT vs Institutional Investor) and trader action (LP
vs LC)

Now, in each region, there is a certain traded quantity ξ. In table 3 we provide the corresponding values of
ξ and γi.

γi ξ

R1 :=(R++
1 , R++

2 ) λi

λ1+λ2
(λ−1 q1/Qa, λ

−
2 q2/Qa)

R2 :=(R++
1 , R−−

2 ) 1i=1 (λ−1 q1/Qa,Λ2q2/Qa)

R3 :=(R−−
1 , R−−

2 ) 0 -

R4 :=(R++
1 , R−+

2 ) 1i=1 (λ−1 q1/Qa, λ
−
2 q2/Qa)

R5 :=(R−+
1 , R+−

2 ) 0 -

R6 :=(R−+
1 , R−−

2 ) 0 -

R7 :=(R++
1 , R+−

2 ) λi

λ1+λ2
(λ−1 q1/Qa,Λ2q2/Qa)

R8 :=(R+−
1 R+−

2 ) λi

λ1+λ2
(Λ1q1/Qa,Λ2q2/Qa)

R9 :=(R+−
1 , R−−

2 ) 1i=1 (Λ1q1/Qa,Λ2q2/Qa)

Table 3: Values of various quantities in each of the 9 regions

The general formula of the average prices are:

• Type’s i LC proportion:

M−s,i :=

∫
(Qa,Qb)∈R−+

i

⋃
R−−

i

Λiqidm̂(Qa, Qb) +

∫
(Qa,Qb)∈R++

i

⋃
R+−

i

λ−i qidm̂(Qa, Qb)

• Type’s i LP proportion:

M+
s,i :=

9∑
i=1

∫
(Qa,Qb)∈Ri

< ξ(Qa, Qb), (1, 1) > dm̂i(Qa, Qb)

• Type’s i price for Liquidity Consumer traders:

p̄−s,i :=
(∫

(Qa,Qb)∈R−+
i

⋃
R−−

i

Λiqip
sell
qi (Qb)dm̂(Qa, Qb) +

∫
(Qa,Qb)∈R++

i

⋃
R+−

i

λ−i qip
sell
qi (Qb)dm̂(Qa, Qb)

)
/M−s,i
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• Type’s i price for Liquidity Provider traders:

p̄+
s,i :=

( 9∑
i=1

∫
(Qa,Qb)∈Ri

< ξ(Qa, Qb), (p
buy
q1 (Qa), pbuy

q2 (Qa)) > dm̂i(Qa, Qb)
)
/M+

s,i

Finally the average price for sellers can be simply deduced:

p̄s,i =
p̄−s,iM

−
s,i + p̄+

s,iM
+
s,i

M−s,i +M+
s,i

.

6.2.2 Numerical tests.

Test 5. Our aim is to model a market opened to HFT, and to observe the effects of the arrival of HFTs.
To do so, we consider the following case:

• HFT order sizes are four times smaller than Institutional Investors orders

• All HFT arbitrate between being Liquidity Providers or Liquidity Consumers while half of Institutional
Investors are Liquidity Consumers anyway

The selected parameters corresponding to such a market are:

• General parameters : δ = 2, P = 100

• Institutional Investors: Λ1 = λ1 + λ−1 = 1
2

+ 1
2
, q1 = 1, c1 = 0.25%

• HFT: Λ2 = λ2 + λ−2 = 4 + 0, q2 = 0.25, c2 = 1%

Note that we have chosen to set c1q1 = c2q2.
Another modeling assumption is that orders are equally split between both types, that is Λ1 = Λ2.

As in section 5.2, we can distinguish several cases depending upon the action type of the traders. This
lead to 9 distinct regions in the Qa ×Qb space, which are depicted in Figure 9. Note that the upper-index
denotes the action (+ stands for Liquidity Provider, − for Liquidity Consumer) and the lower-index denotes
the type of trader.

We can compare the two following situations: the market stationary equilibrium with a single specie of
traders (Institutional Investors), and the market after the arrival of HFTs.
Figure 10 shows the corresponding stationary measure of states (size of ask and bid queues).
We notice that in the case with Institutional Investors only, there are stable liquidity imbalances with two
symmetric configurations (one favorable to buyers, and the other one to sellers). On the other hand, in the
case with both Institutional Investors & HFT, we observe a liquidity stabilization and a concentration on a
single balance equilibrium.

Recall that in the present case with c1q1 = c2q2, the value functions of Inst. Inv. and HFT coincide.
Consequently the existence of nine regions and the stabilizing effect described above are only explained by
market impact heterogeneity. Which is a noteworthy numerical result.

In Table 4 we display the numerical values of the average transaction prices (only for sellers since the prices
for buyers are symmetrical, the fair price being 20).
We remark that HFT trade at better prices than Institutional Investors and that Institutional Investors
average selling price decreases in the market with HFT. Consequently, in this case HFT traders capture the
difference, and even more.

Test 4 Test 5
II only II in the mix HFT in the mix mix

Liquidity Consumers 99.849 99.842 99.938 99.89
Liquidity Providers 100.238 100.103 100.189 100.146

Average 99.876 99.852 99.981 99.916
Spread ψ 0.248 0.296 0.038 0.167

Spread ψ (bps) 25 30 4 17

Table 4: Expected transaction prices and spread in the model

The last row shows the impact on the spread. In the framework of our model we define the expected bid-
ask spread as the difference ψ = E(pbuy) − E(psell). We conclude that the spread increase for Institutional
Investors is 20%, while the global spread decrease of the market is worth 33%. Consequently, the spread
reduction clearly profits to HFTs.
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(a) Institutional Investors only

(b) Institutional Investors and HFT

Figure 10: Comparison of invariant measures, test 5

Test 6. For the sake of completeness we end this section with another example, for other proportions of
SOR and non-SOR traders. Here we take the same parameters as in Test 1 except that Λ1 = λ1 + λ−1 =
90% × 4 + 10% × 4 and Λ2 = λ2 + λ−2 = 60% + 40%. Thus we look at a situation where there are 10
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(a) Institutional Investors only

(b) Institutional Investors and HFT

Figure 11: Comparison of invariant measures, test 6

points more SOR in the Institutional Investor population and 10 points less SOR amongst HFTs. In Figure
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11 we compare the situation between a market with Institutional Investors only and with a mix of both
Institutional Investors and HFTs.
Table 5 shows the corresponding quantities.

Test 4 Test 6
II only II in the mix HFT in the mix mix

Liquidity Consumers 99.898 99.854 99.994 99.924
Liquidity Providers 100.168 100.094 100.157 100.125

Average 99.91 99.864 99.974 99.919
Spread ψ 0.180 0.272 0.052 0.162

Spread ψ (bps) 18 27 5 16

Table 5: Expected transaction prices and spread in the model

7 Conclusion

This paper demonstrates how MFG (Mean Filed Games, [Lasry and Lions, 2007]) can be used to model
orderbook dynamics. At the junction of structural approaches (see [Roşu, 2009] and [Foucault et al., 2005])
and flow driven ones (see [Gareche et al., 2013]), the mean field games render the strategic behaviour of
traders, leading to partial derivative equations that can be numerically solved, and partly reduced to simpler
dynamics.

The application presented here used an stylized orderbook model in which:

• each side of the orderbook (buy or sell) is captured by one variable: its size (i.e. the number of orders
waiting in each queue);

• the “fair” or “latent” price is stable, since we focus on microstructure effects on the traded price;

• the market impact of a trade is close to linear;

• the orderbook has an infinite resiliency, in the sense that its shape does not change through time: when
liquidity is consumed in one queue, its shape readjusts immediately to a linear one (even if its size
changes).

The trading strategies of the investors are described by:

• their arrival rate λ, following an homogenous Poisson process;

• the average size of their orders q;

• their waiting cost c: the larger they are, the more impatient the investor;

• a fraction of the orders of investors have an infinite impatience: we call them “non SOR (Smart
Order Router) users” since they are not patient enough to follow a liquidity-driven microscopic trading
strategy.

Section 4 studies the dynamics of such a model and Section 6.1 shows that such a stylized modelling give
birth to realistic dynamics: with one class only of investors, stable states of liquidity imbalance can appear.
This can be read as a justification for the introduction of the role of market makers.

In a third step of our reasoning, we introduce HFT (High Frequency Traders) with the hope they will
assume this market making role. Consistently with [Menkveld, 2010] and [Brogaard et al., 2012], they are
modelled as: fast, using smaller orders than institutional investors, and taking decisions according to the
immediate state of the orderbook (in our vocabulary, they are “Smart Order Router” users). It is important
to underline that they have not a different impatience (i.e. waiting cost per share) than other investors.

Section 6.2.1 extends the approach developed in Section 4 to a model with two types of investors (to
be applied to institutional ones and HFT). We then study numerically the properties of markets with
institutional investors and HFTs, looking for an answer to regulators and policy makers questions about
the effect of mixing two so different classes of market participants. First note that our results in terms of
invariant measure distribution are consistent with data explorations conducted in [Gareche et al., 2013].

Qualitatively, our conclusions are that the introduction of HFT improves the usual measures of the
efficiency of the price formation process: the stable states of offer and demand are more balanced and the
effective bid-ask spread is smaller than without HFTs. But the observed improvement is at the exclusive
advantage of the HFTs: the effective bid-ask spread paid by institutional investors is largest than before
the introduction of HFT. Of course these conclusions are conditioned to the accuracy of our stylized model;
nevertheless they can explain the disjunction between the claims of institutional investors (that, for them,
the price formation process is more difficult to deal with in presence of HFTs) and the objective improvement
of measurements of the state of liquidity since HFT activity increased.

Hence this paper is not only a contribution to the modelling of orderbook dynamics, showing how a MFG-
approach can conciliate structural and flow-driven approaches. It provides a qualitative analysis of the role of
High Frequency Trading in electronic markets. It also underlines the lack of liquidity measurements adapted
to the current market microstructure.
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