62

Software Frameworks 1in Quantitative

Finance, Part I Fundamental Principles
and Applications to Monte Carlo

Methods

Daniel J. Duffy, Datasim Education BV, dduffy@datasim.nl
Joerg Kienitz, Deutsche Postbank AG, joerg.kienitz@postbank.de

Abstract

We discuss a number of ongoing efforts when developing customizable software sys-
tems and frameworks for problems in Quantitative Finance. In particular, we
examine the interplay between architecture, patterns and modern object-oriented
and generic programming paradigms. In this way, we give some guidelines on how to
develop software components, halfproducts and frameworks that can be modified
and customised by developers. In this article we examine the applications to the

1 Background and Motivation

Saying that software is vitally important for applications in Quantitative
Finance should come as no surprise to most people. The software indus-
try has grown at an amazing pace since the early 1950’s and 1960’s. No
longer do we need to develop applications using punch cards, paper tape
and other devices but since a number of years we have had access to pow-
erful desktop machines and modern software tools. The performance of
hardware has been increasing at a phenomenal rate and this situation is
likely to continue in the coming years. However, we believe that the un-
derlying software paradigms will need to change if we wish to develop
larger, faster and more reliable software systems.

We are witnessing some new and important developments in the re-
lated areas of software and hardware systems for application develop-
ment and they will undoubtedly influence the course of software
development projects in the coming years. First, not only are "sequen-
tial” desktop computers becoming more powerful but in the not-too-dis-
tant future we shall witness the entry of multicore computers in
mainstream application development, that is computers with several
CPUs on one chip. This means that multi-threaded and shared memory
applications are just around the corner as it were. This is a form of fine-

Monte Carlo method and this article extends and generalizes the results in Duffy
2005.

In a future article we shall discuss objectoriented frameworks for the Finite
Difference Method (FDM) and its application to option pricing models including im-
plementation details in C++.

grained parallelism. Second, high performance computing (HPC) methods are
also becoming more popular in mainstream development environ-
ments. Once belonging to the realm of rocket scientists and researchers,
HPC is now becoming an attractive solution for several numerical prob-
lems and applications in Quantitative Finance, for example Monte Carlo
simulation, Finite Difference and Finite Volume methods and high-fre-
quency data acquisition and analysis. In particular, the Message Passing
Interface (MPI) library can be used to implement coarse-grained parallel ap-
plications in languages such as Fortran and C++. Finally — and perhaps
crucially - software engineering is maturing to the stage where we can
design and implement larger systems than in the past. In particular, the
slow acceptance of design and system patterns, architectural styles and
domain architectures seems to imply that developers are attempting to
learn design principles before they start programming.
The advantages for Quantitative Finance are:

e Performance: a multi-threaded or parallel program - if properly de-
signed and implemented - runs faster than a single-processor pro-
gram. For example, a Monte Carlo simulation on a 16-processor
machine is typically 10 times faster than the same program on a sin-
gle processor machine

WILMOTT magazine



TECHNICAL ARTICLE

e Accuracy: this requirement has to do with a program giving desired
or correct results. A parallel program can be designed in such a way
that it produces - or is able to produce - more accurate results than
a sequential machine in a given amount of time. A good example is
the use of domain decomposition techniques for FDM

These advantages come at a cost, however. The definition of " developer’
will need to be deepened and extended. Prediction is difficult (especially
the future) but a precondition for success in this new paradigm is the
emergence of two major job functions; first, the architect who has a good
knowledge of Quantitative Finance and who can translate the problem
domain to a high-level architecture and second - for want of a better
word - the HPC developer who can design, implement and fine-tune a
HPC solution that satisfies all the given requirements.

2 Review of the current Monte Carlo
Solver

In a previous article (see Duffy 2005) we gave an introduction to a small
software system in C++ to price a number of one-factor options, for ex-
ample plain European options, arithmetic Asian calls and certain kinds
of barrier options. We took a number of representative test cases and we
presented our results using C++ to Excel interface drivers. We designed
this system using the well-known design patterns from Eric Gamma
and colleagues (see Gamma 1995). This system is useful as it provides us
with a foundation upon which we can build a more general system (the
source code for this problem is provided on the CD accompanying
Duffy 2006).

In this article we describe our conclusions on the quality of the de-
sign in Duffy 2005 and we examine it from a number of viewpoints,
namely:

1: Its suitability for n-factor derivatives and more complex derivatives

2: The design patterns and techniques used: are they scalable to larger
problems?

3: How we used C++, which paradigms did we use?

4: Implementing the MC Solver in multi-threaded and parallel software
environments

We discuss each of these viewpoints in some detail and we shall see that
our initial design needs to be modified if we wish to have a system that
can evolve as new requirements arise and when modifications must be
carried out on the existing system. To this end, we now mention some of
the issues that need to be addressed and features that need to be realised
in the new version of the software. In the ensuing sections we discuss
how to realise these features using a combination of high-level patterns
and modern programming paradigms in C++.

3 Some new Requirements

The software system that we created for the Monte Carlo engine as de-
scribed in Duffy 2005 was scoped in such a way that we could use it as a
stepping-stone for more complex applications. The experience that we
gained allowed us to discover a number of different viewpoints that are

WILMOTT magazine

related to the overall scope of the problem. To this end, we examine the
following dimensions:

D1: Financial problem: which kinds of derivatives do we wish to model?

D2: Numerical methods: approximating the underlyings and their deriv-
atives

D3: Which software architectural styles and patterns to use?

D4: Which design features of C++ to use during deployment?

D5: The hardware platform on which the new Monte Carlo engine will
run

These dimensions lead to the specification of a problem in a five-dimen-
sional design space. We discuss each of these dimensions in some more de-
tail in the coming sections. In particular, we specify the kinds of
derivative products to model using the Monte Carlo method, the kinds of
numerical approximations to be used and software-related issues such as
the architectural style to be used and whether the software will run on a
stand-alone desktop machine or in a cluster or high-performance net-
work.

4 Derivatives

The Monte Carlo method has been extremely successful as a computa-
tional tool in many areas of science, engineering and of course
Quantitative Finance. The method is easy to understand, design and im-
plement and it has been used to price a wide range of financial products
(see the references Jdckel 2002 and Glasserman 2004 for a discussion).

In general, we are interested in one-factor and n-factor derivatives
such as correlation options, fixed income products and other types such
as convertible bonds and cross-currency options as well as problems in-
volving stochastic volatility. Furthermore, we need to model problems
with early exercise features (the so-called American options). This is prob-
lematic in general because it represents an embedded optimal stopping
optimization problem. Finally, we may wish to find derivative sensitivities
and hedge parameters. One way to calculate delta, gamma and other
Greeks is to perturb the underlying values, run the Monte Carlo simula-
tion again and then apply finite difference methods to compute the sen-
sitivities (Jackel 2002). It is intuitively obvious that the computing time
will increase if we wish to have this feature in a software system.

Having described the range of problems that Monte Carlo methods
can be applied to, we now wish to describe how to represent derivatives
using mathematical models. In contrast to finite difference methods -
where the behaviour of the derivative quantity is described by a partial
differential equation — for a successful application of the Monte Carlo
method we first model the underlying variables (such as stock prices, in-
terest rates and volatility) by stochastic differential equations, or SDE for
short (see Kloeden 1995). An SDE in this context is a first-order equation
containing both a deterministic part and a stochastic part. It describes
the path of the underlying variables in a certain interval of time. The
basic Monte Carlo simulation technique entails simulating the SDE a
number of times up the expiry time, calculating the derivatives price for
each “run’ of the simulation and then taking the average of all prices.
Finally, we discount this averaged price and this then gives the desired
derivatives price.

63



5 Numerical Methods

Having described an underlying quantity by an SDE we then need to find
its solution. In general, it is not possible to find a solution in closed or an-
alytical form (unless the SDE is very simple or has a convenient form) and
we must then resort to numerical approximations. One of the most pop-
ular techniques is the Finite Difference Method (FDM) and we use it to
find stable and accurate approximate solutions to SDEs (Kloeden 1997,
Duffy 2004). In general we must determine which SDE to approximate
and provide it with all necessary parameters before we can commence
with a numerical approximation.

The most popular finite difference schemes that approximate the so-
lution of SDEs at the moment of writing seem to be the explicit Euler and
Milstein schemes. Each scheme has its advantages and disadvantages; for
example, we must take very small time steps if Euler is to produce accu-
rate results while the Milstein method is difficult to extend to multi-fac-
tor SDEs. For this reason, it is important to look for robust and accurate
schemes that are used in other domains. For example, there are a num-
ber of predictor-corrector schemes that are stable, accurate and easy to im-
plement (see Kloeden 1997, Duffy 2004). A specific example is the Heun
method; the predictor step is explicit Euler while the corrector step is a
modified trapezoidal rule. The stability of these schemes is proved by the
application of fixed-point theorems.

There are classes of finite difference schemes that have their origins
in partial differential equation theory and applications (Duffy 2006A),
molecular dynamics and classical mechanics and they can be used as nu-
merical schemes for SDE. Among these are the so-called splitting meth-
ods, for example the Verlet scheme and Strang-Marchuk splitting
methods.

Once we have chosen a finite difference scheme that approximates an
SDE we realise that we must be able to generate random numbers; this is
because the Wiener process (and possibly others such as jump and Levy
processes) is a component of the SDE. In this case we need efficient ran-
dom number generators and to this end we use the inversion method
and this is generally considered to be preferable to older methods such as
Box-Muller and Polar-Marsaglia, for example. In some cases we may wish
to improve the efficiency of the numerical schemes by the use of tech-
niques such as Quasi Monte Carlo using low-discrepancy sequences and
other techniques such as variance reduction methods.

6 High-Level Architectures and
Frameworks

We have described the kinds of derivatives products that we wish to
model and the numerical schemes that we shall use to calculate the price
of such products. Once this has been done we must then create a soft-
ware architecture - consisting of a network of systems and their connec-
tors — that we subsequently design and implement and that satisfies
certain requirements.

In one sense the software systems that we build are similar in style to
how hardware systems are built. For example, a given system consists of
loosely coupled subsystems in which each subsystem has one major re-
sponsibility and it provides services to other subsystems. For example, a

suitable candidate for a subsystem is one that implements the functional-
ity of a stochastic differential equation. It provides the following services:

e The ability to configure and initialise objects that realise an SDE
* Getting the properties of an SDE
* Updating the parameters of the SDE

There are two major attention areas when designing large systems; first,
we find the subsystems and second we specify the system topology that
describes the interconnections between the subsystems (for example, the
topology could be a chain, a tree or a network). Once we know the sub-
systems and their relationships we can then start thinking about the ar-
chitectural style to use (Shaw 1996). An architectural style — in general
terms - is a description of a family of systems in terms of a pattern of
structural organization. It defines a vocabulary of components (computa-
tional units) and the connector types between those components.
Furthermore, the style also defines a set of constraints on how to combine
components and connectors. In short, it states what does and does not
constitute legal bindings between components in much the same way
that your laptop can be connected to an overhead projector or to a power
supply.

There are several major architectural styles, each one suitable for a
particular kind of application:

* Dataflow systems (for example, pipes and filters and batch jobs)

* Data centred systems (for example, Blackboard and traditional data-
bases)

e Layered systems

* Hierarchical systems (for example, the PAC model, see Duffy 2004A)

* Independent systems that communicate by means of events

A given system is usually a combination of the above styles. At the mo-
ment of writing, we have developed a number of systems based on the
Presentation-Abstraction-Control (PAC) model (see for example, Duffy
2004A and Duffy 2006). In fact, the initial software system that the au-
thors developed for the Monte Carlo engine was based on this model. We
gained much experience on the strengths of the model but we have seen
that the Blackboard style - in conjunction with PAC - is useful for soft-
ware development of a Monte Carlo engine.

We give a short overview of Blackboard style and why we think it is
important for applications in Quantitative Finance. More detailed ac-
counts are given in Buschmann 1996 and Jagannathan1989. It is mainly
used for situations in which a problem needs to be solved by a group of
independent and self-motivating experts (that we call knowledge sources or
KS for short). The main components are:

* Blackboard: this is the data structure from the solution space. This
structure is modified by the KSs. Of course, we need synchronization
techniques to ensure that the data is correctly updated

* Knowledge Sources (KS): independent modules and systems that con-
tain specific knowledge. They get their data from the Blackboard but
they may also have a buffer of (private) internal data

* Control Structure: the component that monitors change in the black-
board. It schedules what action to take next and in particular it de-
termines the order in which KSs will operate on the different data in
the Blackboard

WILMOTT magazine



TECHNICAL ARTICLE

Control

Solver

Derivatives SDE FDM

Products

Figure 1: Conceptual Blackboard Model for new Monte Carlo Engine

One of the biggest differences between this style and others is that the
final solution (that represents the system goal) is built incrementally. To
this end, we need to produce partial solutions as well.

A conceptual example is shown in the figure. It is a re-engineered ver-
sion of the UML (Unified Modeling Language) diagram for the Monte
Carlo engine in Duffy 2005.

7 Detailed Design and the Role of C++

C++ is one of the most popular languages for the development of soft-
ware systems for Quantitative Finance. It is more than 25 years old and it
supports the modular paradigm, object-oriented paradigm (OOP) and the
generic paradigm (GP) in the form of C++ template functions and classes.
Most developers are familiar with OOP but a smaller percentage of these
developers use C++ templates to design and implement efficient, portable
and robust software. There are a number of reasons for this situation
some of which are that the syntax of C++ templating can be difficult to
understand and second the idea of designing software components using C++
has not been given full justice in the literature. Using templates to design
components is similar to how hardware is designed. For example, think
about the hardware ports on your laptop; it provides services to other hard-
ware entities and it requires services from other hardware entities. We are
designing the Monte Carlo engine based on similar principles; it consists
of a number of plug and socket components. For example, an SDE compo-
nent provides a set of interfaces for defining and accessing the mathe-
matical description of a stochastic differential equation. It requires data
and parameters from a GUI screen, database system and real-time data
feed systems. Continuing, a component ' FDM’ that approximates the so-
lution of a stochastic differential equation requires the services from SDE
and provides services such as discrete paths and other statistics to other
components, for example an Excel application. In this sense we build

WILMOTT magazine

large applications using interoperable and " pluggable’ building blocks.
This idea is called policy-based design using C++ templates (see
Alexandrescu 2001).

We conclude this section by emphasizing that the object-oriented and
generic programming paradigms can be combined and they should not
necessarily be seen as competitors. The relationship is as follows: we em-
ploy C++ templates to design and specify template-based components. In
other words, we define contracts by specifying the component’s provided
and required interfaces at the meta level. Then we can instantiate the
component’s generic parameters by specifying, for example pointers to
base classes. In this way we combine reliability and robustness at the
meta level with dynamic run-time behaviour at the class level. In short,
we are implementing parametric and subtype polymorphism, respective-
ly. We thus draw a distinction between a type (for example, a template
class) and a class (for example, a instantiated template class). It is the best
of both worlds as it were.

8 On the Horizon: Multi-threading and
High-Performance Computing

Once we have determined how to decompose a system into a set of com-
municating components we then have to decide how to implement these
components. In many cases it may be possible to implement the full sys-
tem on a single desktop machine using C++, Fortran or some other lan-
guage. This approach may be acceptable for small problems but when a
Monte Carlo simulation takes a few days to compute a solution to a pric-
ing problem we will need to consider alternative hardware and software
platforms. To this end, modern desktop computers support multi-thread-
ing, shared memory and we can create networks of computers that per-
form in parallel. In particular, the Message Passing Interface (MPI) library
supports C++ and Fortran bindings and allows developers to create paral-
lel Monte Carlo applications. We expand on this topic in a future article.

9 Summary and Conclusions

We have given an introduction to the issues to be addressed when de-
signing large and customizable software systems for Quantitative
Finance. For these kinds of problems it is necessary to create a high-level
Blackboard architecture - consisting of systems known as knowledge
sources — that is able to support current and future requirements and
which can be customized by developers to suit their needs. We consid-
ered the Monte Carlo as one example of where the architecture can be
used.

We shall elaborate on these general principles in future editions of
Wilmott magazine.

REFERENCES

W Alexandrescu, A. 2001 Modern C++ Design: Generic Programming and Design Patterns
Applied Addison-Wesley

M Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad and M. Stal 1996 Pattern-
Oriented Software Architecture: A System of Patterns, John Wiley and Sons, Chichester,
UK

65



TECHNICAL ARTICLE

66

M Duffy, D. J. 2004 Financial instrument pricing using C++ John Wiley & Sons Chichester
UK

M Duffy, D. J. 2004A Domain Architectures: Models and Architectures for UML
Applications, John Wiley and Sons, Chichester, UK

M Duffy, D.J. and J. Kienitz 2005 Monte Carlo Methods in Quantitative Finance: Generic
and Efficient MC Solver in C++ Wilmott Magazine November

M Duffy, D. J. 2006 An Introduction to C++ for financial engineers An Object-Oriented
Approach John Wiley & Sons Chichester UK

M Duffy, D. J. 2006A Finite difference methods in financial engineering A Partial
Differential Equation Approach John Wiley & Sons Chichester UK

B Gamma, E., R. Helm, R. Johnson and J. Vlissides 1995 Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley Reading MA

M Glasserman, P. 2004 Monte Carlo Methods in Financial Engineering Springer New York
B Jickel, P. 2002 Monte Carlo methods in finance John Wiley & Sons Chichester UK

Bl Jagannathan, V., R. Didhiaewal and L. S. Baum 1989 Blackboard Architectures and
Applications Academic Press Inc.

M Kloeden, P. and E. Platen. 1995 Numerical Solution of Stochastic Differential Equations
Springer Berlin

M Kloeden, P., E. Platen and H. Schurz 1997 Numerical Solution of SDE Through
Computer Experiments Springer Berlin

M Shaw, M. and D. Garlan 1996 Software Architectures Perspectives on an emerging
Discipline Prentice Hall

WILMOTT magazine



