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In this paper, we consider identification of promising robust estimators of scale

in finite samples. This problem has already been addressed in the literature

(Lax 1975, Rousseeuw & Croux 1993, Iglewicz 2000) but primarily by Lax

(1985). The Lax study is a fundamental one, being the only study to survey

the efficiency properties of robust scale estimators, following from Andrews,

Bickel, Hampel, Huber, Rogers & Tukey (1972) and their survey of robust lo-

cation estimators. Since the publication of Lax’s results, new estimators have

been proposed, primarily Rousseeuw & Croux’s (1993) Sn and Qn, and these

need to be subjected to the same analysis. Unfortunately, Lax conducted his

simulation in an era when computing power was much more limited than what

is available today, and as a consequence, his efficiency estimates were very im-

precise, and need to be reassessed in light of modern computing developments.

The contribution of this study is threefold: the simulation study we per-

form dwarfs that of Lax, with the simulation size several orders of magnitude

greater; unlike Lax, we benchmark all estimators’ efficiencies against the op-

timal (maximum likelihood) estimators; and we consider new estimators of

scale in addition to those examined by Lax.

While much is understood of the asymptotic properties of scale estimators,

finite sample performance is still an important consideration. Robust esti-

mators are particularly applicable for financial data, which often feature the

three situations we are protecting against through use of a robust estimator:

occasional rogue values, many small errors (induced by properties of financial

markets such as discrete price intervals and discontinuous trading) and under-

lying non-normality (Rydén, Teräsvirta & Åsbrink 1998, Cont 2001), but also

in other areas, e.g. GPS navigation (Mertikas 1994). In the financial setting,

sample sizes are by necessity small, to allow estimation of evolving scale.
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1 Assessing robust scale estimators

A scale estimator satisfies the condition S(a+bX) = |b|S(X), and consequently

scale estimators are not unique, i.e. if S1(X) is a scale estimator, then so is

kS1(X) for any positive constant k. Due to this constant of proportionality,

evaluating scale estimators requires a non-standard specification for efficiency,

and we discuss two alternative approaches.

The first method is used by Lax (1985). Based on m independent samples, he

estimates efficiency using

êff(S) =
sample variance of ln σ̂1, . . . , ln σ̂m

sample variance of lnS(X1), . . . , lnS(Xm)
(1)

where each sample of n observations is X = (X1, . . . , Xn), σ̂i is the optimum

scale estimate for sample i and S(Xi) is the scale estimate for sample i. The log

transformation reduces the constant of proportionality to an additive constant

which is then eliminated by the variance operation.

The second measure we consider was employed by Rousseeuw & Croux (1993),

and is based on the squared coefficient of variation. Multiplied by sample size

n, this quantity is called the standardised variance, and is given by

n cv(S)2 =
n(sample variance of S(X1), . . . , S(Xm))

(sample mean of S(X1), . . . , S(Xm))2
. (2)

Again, scaling constants are removed through cancellation in the numerator

and denominator. The efficiency based on standardised variances is given by

êff
′
(S) =

(
cv(σ̂)

cv(S)

)2

(3)

where again σ̂ is the optimal estimator. Unlike (1), in which a stabilising log

transformation is used, the variance used in (3) penalises heavily the inefficient

3



scale estimators for heavy-tailed data.

The scale estimators considered in Lax’s study and here, are computed for in-

dependent samples from Tukey’s three corners. The first of these is the normal

corner, consisting of a random sample of size n from the standard normal dis-

tribution. The second corner is the one-wild (also known as 1-wider), where

n − 1 of the observations are independent and identically distributed stan-

dard normal random variables and the remaining observation is also normal

but with standard deviation 10. The final corner is the slash, where the in-

dependent observations are formed by dividing a standard normal random

variable by an independent uniform random variable on the interval [0, 1]. As

our interest is in finite sample performance, rather than asymptotic results

(see Huber (1981) and Hoaglin, Mosteller & Tukey (2000) for discussion of

asymptotic theory), we conduct simulations for samples of 20 observations, as

in Lax (1985).

The normal, one-wild and slash sampling situations used here were considered

by Tukey to reflect the three extreme cases of importance to robust statistics.

The normal distribution is symmetric and has rapidly decaying tails; the one-

wild allows the presence of a single, potentially outlying, but otherwise well

behaved value (in the upper or lower tail with equal probability); and the slash

has very slowly decaying tails, and even an undefined mean. In practice, most

one-wild samples will be highly asymmetric, with the presence of the single

outlier. The scaling factor of 10 most likely was motivated by the possibility

of transcription error, where the decimal point is incorrectly moved one place

to the right.

An estimator’s overall quality was assessed by Lax (1985) using the trieffi-

ciency criterion promoted by Tukey (see also Goodall (2000) and Iglewicz

(2000)). An estimator’s triefficiency is simply the minimum efficiency of the

estimator over the three corners, and the “best” estimator will have the largest
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possible triefficiency. We would expect the triefficiency of this estimator to be

less than 100% since no single estimator can be optimal at all three corners.

Should we have data whose distribution is unknown, but not as “extreme”

as any of the three corners, the triefficient estimator will give us a reliable

estimate of scale for this data, regardless of the actual distribution.

To further enhance the importance of the triefficiency criterion, Yatrakos

(1991) shows that for any convex combination of the three corner distribu-

tions, any estimator will have efficiency at this distribution at least as great

as its triefficiency. If we believe that the corners are indeed the extremes, then

we can be confident in using the estimators that perform well in the simu-

lations that are presented in Section 4. We note that the estimators which

perform well in these simulations will be good general-purpose estimators,

but are unlikely to be optimal in any single sampling situation. Their most

likely use is when a reliable measure of scale is required for some data whose

distribution remains unspecified.

2 The Lax study and triefficiency estimation

In Section 4 we compare our results with those of Lax (1985). The estimators

examined by Lax include those that are well known, and also others which

are not well known. Prominent in the Lax study, and here, is the biweight A-

estimator. The A-estimator for the sample X = (X1, . . . , Xn), with ψ-function

ψ(u) = uw(u) is

sψ(X;M0, S0, c) =




1

n− 1

∑n
i=1w(Ui)

2(Xi −M0)
2

[
1
n

∑n
i=1 ψ

′(Ui)
]2




1

2

(4)

where Ui = (Xi −M0)/(cS0), M0 ≡ M0(X) is an auxiliary estimator of loca-

tion, S0 ≡ S0(X) is an auxiliary estimator of scale, c > 0 is a scaling constant,
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and ψ′(u) = d
du
ψ(u). The A-estimator is a weighted average of the squared

deviations of the data about an auxiliary location estimator, and the most suc-

cessful weighting function identified by Lax is based on the biweight function,

with

w(u) =






(1 − u2)2 |u| ≤ 1

0 |u| > 1.

(5)

This weight function is used in the non-parametric robust smoothing algorithm

loess, developed by Cleveland, Grosse & Shyu (1992). This symmetric weight

function decays relatively slowly about u = 0, but as |u| increases it declines

smoothly to zero, which it attains at u = ±1. Since the biweight function has

zero weight for |u| > 1, it cannot be the maximum likelihood estimator for

any target distribution (Goodall 2000), and consequently it cannot be 100%

efficient for some combination of the three corners.

In Lax’s study, the biweight A-estimator with M0 equal to the sample median,

S0 equal to the median absolute deviation (MAD), and scaling constant c = 9

had the highest triefficiency. Its triefficiency was 85.8% indicating a minimum

efficiency of 85.8% for the three corners and any convex combination of them.

The actual efficiencies reported were 86.7%, 85.8% and 86.1% for the normal,

one-wild and slash corners respectively, and these figures were based on 1000

samples for the normal corner, and 640 samples for the one-wild and slash

corners, each of size n = 20.

Replicating Lax’s efficiencies 100 times for this estimator (based on 1000 sam-

ples) indicates a standard deviation of 3.0%, 2.9% and 2.2% for the normal,

one-wild and slash efficiencies respectively. In an attempt to increase the effec-

tive sample size, Lax used the variance reduction technique of Simon (1976).

While in some cases, an increase in precision was attained (up to that of

roughly four times the number of samples), in many other situations the vari-

ance reduction technique made no gain. Overall, the lack of precision in indi-
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vidual efficiency estimates may have a large influence on the triefficiency.

While the normal efficiency was calculated by Lax relative to the (optimal)

sample standard deviation, both the one-wild and slash efficiencies were simply

calculated relative to the best performing estimator in the study, and hence,

regardless of any precision issues, the triefficiencies are too high.

For the one-wild corner, efficiencies were calculated relative to a trimmed

sample standard deviation with 20% trimming for both the mean and vari-

ance calculations. In the simulations reported in Section 4, we show that this

estimator has an actual efficiency of 71.2%, and hence, each of Lax’s one-

wild efficiencies will be too large by a factor of 1.40 ≈ 1/0.712. Similarly,

Lax’s slash efficiencies were calculated relative to an M-estimator, which is

also not optimal. We find the M-estimator in question has an efficiency of

92.4%, and conclude that Lax’s slash efficiencies are overstated by a factor of

1.08 ≈ 1/0.924. On this basis alone, we might revise Lax’s efficiencies for the

best biweight A-estimator to be 86.7%, 61.1% and 79.6% indicating a much

lower triefficiency of 61.1%.

It follows that every estimator’s one-wild and slash efficiencies are overstated

by the same factors, and consequently that Lax’s triefficiencies have limited

interpretation. Rescaling Lax’s efficiencies indicate that the one-wild corner

will be the smallest for many of the estimators, and hence the one-wild ef-

ficiency will often correspond to the triefficiency. Differences between Lax’s

results and those we obtain cannot be attribued solely to this effect though.

It is clear that while relative efficiencies are interesting when comparing esti-

mators for a single distribution, in order to correctly calculate triefficiencies,

efficiencies at each corner must be correctly benchmarked. In order to achieve

this, maximum likelihood estimators of scale for the one-wild and slash cor-

ners are needed. In the latter case, the maximum likelihood recursions are
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well known (see Kafadar 1982), however these were not used by Lax. Kafadar

(1982) stated that the one-wild sample is not a sample from any particular

distribution, and that no maximum likelihood method is helpful. However the

parameters of a one-wild sample do indeed have maximum likelihood esti-

mates, and the EM algorithm yields these. Details of the recursion equations

can be found in Randal & Thomson (2004).

In the simulation study reported in the following sections, we use maximum

likelihood estimates for each corner in order to correctly calculate the trief-

ficiency statistics. In addition, larger simulation sizes ensure our estimated

efficiencies are much more precise than those given by Lax. As a result of

these two facts, we find considerable differences to the point estimates given

by Lax.

3 Simulation methodology

In this simulation study, we consider independent samples of size n = 20.

Each efficiency estimate is based on m = 20,000 samples from one of the three

corners. In addition, we obtain 100 independent realisations of the efficiency

estimate for each combination of distribution and estimator and report average

efficiencies.

Recall that Lax (1985) used only m = 1000 samples for the normal and

m = 640 for the one-wild and slash corners, with a variance reduction tech-

nique to improve precision. Since the variance reduction technique significantly

increases simulation time, but has no effect on precision for many estimators,

it was not employed in this study. We attain high precision in the reported effi-

ciencies by our larger choice of m, but also by replicating these point estimates

100 times, and reporting the average. The individual efficiencies have standard

deviation approximately equal to 0.55% on average, so the averages we report
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have standard errors equal to approximately 0.055% on average. Application

of the central limit theorem to the average efficiency then facilitates interval

estimates, of width approximately 0.22%.

All simulations were conducted using the statistical software R (R Develop-

ment Core Team 2004), and code is available from the author. Maximum

likelihood estimates for each one-wild and slash sample were computed using

the EM algorithm (Dempster, Laird & Rubin 1977) and the results of Randal

& Thomson (2004).

As in Lax (1985), we evaluate the performance of: the sample standard devia-

tion; trimmed standard deviation with 20% trimming for both the mean and

variance calculations; median absolute deviation about the median (MAD);

M-estimators using the Huber ψ-function, fully iterated with b = 1.4 and 1.7,

and one-step with b = 1.4, 1.7 and 2.0; biweight A-estimators with S0 = MAD

and scaling constants c ∈ {6, 7, 8, 9, 10}; the modified biweight A-estimator

with c = 6; the Andrew’s sine A-estimator with c = 2.1 and the modified

sine with c = 2.1. We also include the interquartile range, and Sn and Qn

(Rousseeuw & Croux 1993).

In addition, we investigate the effect of alternative auxiliary estimators for the

biweight A-estimators. Namely, we analyse the effect of replacing the sam-

ple median by the more efficient one-step biweight M-estimator (see Iglewicz

2000), and the MAD by either Sn or Qn. In the latter cases, scaling constants

were selected based on maximum triefficiency for samples of size n = 20, sub-

ject to a grid search over increments of 0.5 for A-estimators with S0 = Sn and

Qn.

Finally, we introduce an additional estimator based on the t-distribution. The

t-distribution is chosen as a target family of distributions which, when ap-

propriately tuned, may describe a compromise position between the normal
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and slash distributions in particular. An EM algorithm (Dempster et al. 1977)

can be developed to calculate maximum likelihood estimates of location and

scale for a random sample from the t-distribution with ν degrees of freedom.

A tν random variable can be written in the Gaussian compound scale model

framework of Randal & Thomson (2004) as

Xi = µ+ σ
Zi√
Si

where Zi is standard normal, and νSi is an independent χ2
ν random variable.

In this context, we observe only the Xi, and the EM algorithm leads us to

maximise the conditional expected value of a complete likelihood function

which assumes both the Xi and Si are observed. Noting that given Si, the Xi

are independent normal random variables with mean µ and variance σ2S−1
i ,

the complete likelihood function can be formed by evaluating Lc(µ, σ
2) =

∏n
i=1 fXi|Si

(xi|si)fSi
(si). Gathering terms involving µ and σ2, the complete

log-likelihood is given by

lnLc(µ, σ
2) = −n

2
ln σ2 − 1

2σ2

n∑

i=1

Si(Xi − µ)2 + constant.

Since the Xi are independent, E0{lnLc(µ, σ2)|X1, . . . , Xn} is

E0{lnLc(µ, σ2)|X1, . . . , Xn} = −n
2

ln σ2− 1

2σ2

n∑

i=1

E0(Si|Xi)(Xi−µ)2+constant

and maximising this with respect to µ and σ2 yields the iterative equations

for the maximum likelihood estimates

µ̂ =

∑n
i=1E0(Si|Xi)Xi∑n
i=1E0(Si|Xi)

σ̂2 =
1

n

n∑

i=1

E0(Si|Xi)(Xi − µ̂)2 (6)
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where the conditional expectations are evaluated using the previous parameter

estimates.

Randal & Thomson (2004) show that E0(Si|Xi) can be conveniently evaluated

in the case of independent data using

E0(Si|Xi) = − d

dt
lnMi(t)

∣∣∣∣∣
t= 1

2
(Xi−µ̂0)2/σ̂2

0

where Mi(t) =
∫∞
0 e−ts

√
sfSi

(s)ds. In the special case where the Xi are inde-

pendent tν random variables, fSi
(s) = νfχ2

ν
(νs) and

√
sfSi

(s) ∝ s
1

2
(ν+1)−1e−

1

2
νs

and so Mi(t) is the moment generating function of a gamma random variable

with parameters 1
2
(ν + 1) and 1

2
ν, i.e. Mi(t) = (ν/(ν + 2t))

1

2
(ν+1). This yields

E0(Si|Xi) =
ν + 1

ν

(
1 +

(Xi − µ̂0)
2

νσ̂2
0

)−1

which can be inserted into (6) to give a scale estimator based on the shape of

the tν distribution.

Reparameterising this weight function and ignoring multiplicative constants,

we obtain the t-estimator

st(X;M0, S0, c) =

[
1

n

n∑

i=1

(
1

1 + U2
i

)
(Xi −M0)

2

] 1

2

(7)

where Ui = (Xi−M0)/(cS0), M0 ≡M0(X) is an auxiliary location estimator,

S0 ≡ S0(X) is an auxiliary scale estimator, and c > 0 is a scaling constant.

Like the A-estimator, the t-estimator calculates an updated estimate of scale

using an auxiliary estimate, and it has a positive tuning constant.

Since the fully iterated t-estimator is a maximum likelihood estimator, we

can evaluate its asymptotic breakdown point (Huber 1981, pp 109-110). In

11



particular, the χ-function is

χ(x) = −xf
′(x)

f(x)
− 1 =

1
2
(ν + 1)

1 + ν
x2

where f(x) is the density function of the tν random variable . The asymptotic

breakdown point is given by

ǫ∗ =
−χ(0)

χ(∞) − χ(0)
=

2

ν + 3
≤ 1

2

and this quantity attains its upper bound when ν = 1. As ν → ∞, and

the tν approaches the Gaussian distribution, the asymptotic breakdown point

converges to zero as expected. Consequently, as the degrees of freedom pa-

rameter increases, the t-estimator can be expected to have greater exposure

to contamination, and be less robust.

The factor cS0 in the t-estimator implicitly determines the value of the degrees

of freedom parameter corresponding to the optimal scaling constant. As is clear

from the derivation above, the actual form of the EM algorithm uses
√
νσ̂ in

the denominator of Ui, and so if S0/k is a consistent estimator of the scale

parameter σ, then ν = k2c2. Fixing c to be the same for all three corners, it

is impossible to infer a unique choice of ν however, since the factor k depends

on the interaction between the distribution of the data and behaviour of the

estimator S0, and so ν will be different for each corner.

4 Simulation results

4.1 Replicated results

The first results we report are a direct comparison with Lax (1985) and other

published studies. Differences in methodology include much larger simulation
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sizes, correct benchmarking of the efficiencies, and possible beneficial influence

of modern random number generators and numerical routines. The (point)

efficiency estimates are shown in Table 1 along with the historical results. The

majority of these are from Lax (1985), however Iglewicz’s (2000) results for

the fourth spread are compared to ours for the sample interquartile range, and

Rousseeuw & Croux’s (1993) figures for Sn and Qn at the normal distribution

are also included.

Consistent with Lax’s normal efficiencies being correctly benchmarked against

the sample standard deviation, we see that the results for the normal distri-

bution are in close agreement, except for the trimmed standard deviation, the

M-estimators, and the modified sine A-estimator. In contrast, efficiencies for

the one-wild corner have been typically overstated in previous studies, how-

ever, the inflation factors are not constant across estimators. This indicates

incorrect benchmarking is not the only factor, and that the efficiencies cal-

culated in previous studies are possibly erroneous. Similar comments apply

to the slash efficiencies, however the differences are less systematic with both

under and overstatement common.

The estimators in Table 1 can be divided into four groups: the standard devi-

ations, the MAD and its alternatives IQR, Sn and Qn, the M-estimators, and

the A-estimators.

The standard deviations are poor estimators under a triefficiency criterion.

With no trimming, the standard deviation is terribly inefficient for slash data

(the log estimates have infinite variance in theory), and while trimming ade-

quately combats this effect, it results in decreased efficiency for normal data.

As a consequence, both estimators have low triefficiency. No attempt has been

made to optimise the trimmed standard deviation. We do note that decreasing

the amount of trimming will improve efficiency for normal data, but worsen

efficiency for slash data. Consequently, we might expect trimming parameters
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estimator normal one-wild slash

sample standard deviation 100.0 (100.0) 11.4 (10.9)

trimmed sd with p = r = 0.2 65.0 (89.9) 70.8 (100.0) 76.1 (28.1)

median absolute deviation 37.8 (35.3) 40.5 (41.5) 87.3 (91.8)

interquartile range 39.4 (41) 42.4 (47) 84.0 (94)

Sn 56.3 (54.1) 55.9 95.8

Qn 68.3 (68.8) 68.4 94.9

M -Estimators (Huber ψ-function)

b = 1.4 (iterated) 66.4 (48.1) 70.6 (56.8) 92.4 (100.0)

b = 1.7 (iterated) 78.8 (72.3) 82.8 (83.8) 77.8 (83.8)

b = 1.4 (one-step) 47.0 (55.2) 50.2 (68.1) 95.2 (86.8)

b = 1.7 (one-step) 57.3 (60.5) 60.3 (71.8) 88.8 (83.1)

b = 2.0 (one-step) 63.5 (69.8) 65.9 (76.1) 82.2 (75.9)

A-Estimators

biweight with c = 6 67.3 (65.2) 67.8 (77.1) 88.3 (90.1)

biweight with c = 7 75.9 (74.8) 74.1 (82.9) 89.1 (89.3)

biweight with c = 8 81.9 (81.8) 77.5 (85.4) 88.8 (87.6)

biweight with c = 9 86.2 (86.7) 79.1 (85.8) 88.0 (86.1)

biweight with c = 10 89.4 (90.0) 79.2 (84.8) 86.8 (84.6)

modified biweight with c = 6 50.0 (47.5) 53.3 (56.8) 92.5 (96.8)

sine with c = 2.1 78.5 (77.5) 75.5 (83.7) 88.6 (88.4)

modified sine with c = 2.1 78.1 (82.1) 75.3 (89.6) 89.0 (94.5)

Table 1
Comparison of efficiencies with those from published studies, shown in parentheses.
Results for the interquartile range are compared to results given in Iglewicz (2000)
for the fourth spread, the results for Sn and Qn based on standardised variances
to those given in Rousseeuw & Croux (1993), and all others to those given in Lax
(1985). The efficiencies stated are averages based on 100 individual values, each
from 20,000 samples of size 20.

less than 0.2 to give the best performance for this class of estimators, with a

triefficiency approximately equal to 70% (roughly the average of the current

normal and slash efficiencies).

With the exception of the iterated Huber M-estimator with b = 1.7, the
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M-estimators considered by Lax perform poorly here. The iterated estimator

with b = 1.7 attains the best efficiency for one-wild data of those estimators

reported in Table 1, but does not do as well for either of the other two corners.

Due to computational difficulties, i.e. convergence concerns discussed by Lax,

the M-estimators were not considered further in this study.

4.2 Evaluating alternatives to the MAD

The MAD is often used as an auxiliary scale estimator (see Cleveland et al.

(1992) for example) but we see in Table 1 that while highly efficient for slash

data, the MAD is a relatively inefficient estimator for normal and one-wild

data. The interquartile range (IQR) does not do as well as MAD for slash

samples, but is more efficient than the MAD for both normal and one-wild

data, and consequently has higher triefficiency. Thus, under the triefficiency

criterion, the IQR should be preferred to the MAD, which is a surprising

conclusion given the IQR’s relative simplicity, and the MAD’s popularity.

Table 1 also indicates that Rousseeuw & Croux’s (1993) “alternatives to the

MAD” Sn and Qn perform well, with both of them dominating each of the

MAD and the IQR, due to higher efficiencies at every corner. Sn is marginally

better than Qn at the slash corner, but Qn has a higher efficiency at both

normal and one-wild corners, and consequently a higher triefficiency. We con-

clude that Qn is the best of these four estimators, with a triefficiency almost

double that of the MAD. As indicated by Rousseeuw & Croux, Sn and Qn are

both superior scale estimators to the MAD.

These conclusions are unchanged by using the alternative measure of efficiency

(3). The rankings for the estimators are unchanged for each corner, and both

Qn and Sn still dominate each of the MAD and IQR. Actual efficiencies in-

crease in each instance for normal and one-wild data, while slash efficiencies
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decrease. Since the triefficiencies are always based on the normal corner, these

also are slightly higher under this measure.

Due to the result of Yatrakos (1991), use of Qn generally is likely to guarantee

the user an efficiency of at least 66.9%, based on the efficiency measure (1). We

note that the best trimmed standard deviation is likely to have a triefficiency

higher than this, but it will not offer the same high efficiency for slash data.

4.3 Tuning the biweight A-estimator

A simultaneous virtue and vice of A-estimation is the degree of flexibility

these estimators have. The user can not only freely specify the form of the

ψ-function, but also the auxiliary location estimator M0, the auxiliary scale

estimator S0, and the scaling constant c. This can be regarded a virtue due

to the fact that there are so many ways in which to potentially improve the

performance of this class of estimator, however, with no theoretical basis on

which to appraise our choices, it can be difficult to optimise performance.

In this study, we have eliminated the choice of ψ-function by focusing atten-

tion on the biweight ψ-function, possibly at the expense of failing to identify

better estimators. We select the biweight on the basis of popularity and also

the success of this estimator in the Lax study. The median is chosen as the

auxiliary location estimator in each case due to its simplicity and its rea-

sonable efficiency at each of the three corners. Randal & Thomson (2004)

calculate efficiencies for the sample median to be 67.5%, 67.3% and 83.7% for

the normal, one-wild and slash respectively, using the same methodology as

this simulation. We investigate the effect of this choice in two cases, and the

results of this particular experiment are reported later in this section.

Having fixed the ψ-function and M0 for the A-estimator, we investigate in

detail the choice of S0 and c. These two “parameters” are inextricably linked,
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since the A-estimator depends on these only through the product cS0. We

consider the MAD, and Sn and Qn of Rousseeuw & Croux (1993) for S0, and

use a grid search for the best choice of c for each of these estimators. For

the normal corner, MAD is known to (asymptotically) estimate 0.6745σ and

Rousseeuw & Croux report (asymptotic) biases for Sn and Qn, however these

are inappropriate for both the one-wild and slash samples and we lose any

intuition on the product cS0 when we shift focus from the normal corner. In

the smoothing algorithm loess (Cleveland et al. 1992), c = 6 is the default,

and observations approximately four standard deviations from the centre of

the data are given zero weight, provided the normal distribution is assumed,

i.e. the multiple four is no longer appropriate for non-Gaussian data generating

processes.

Table 2 lists results for various A-estimators for both choices of efficiency.

Unlike the one-wild efficiencies for the MAD, IQR, Sn and Qn, the one-wild

efficiencies for the A-estimators typically decrease when shifting from efficiency

based on (1) to (3); however, efficiencies increase for normal samples, and

decrease for slash samples. The three blocks in the table correspond to three

alternative choices for S0: the MAD, Sn and Qn respectively.

For each auxiliary scale estimator, the choice of scaling constant depends on

the evaluation criterion, and in each case, the best scaling constant under Lax’s

efficiency measure (1) is greater than that using the coefficient of variation-

based measure (3). A systematic feature of the results is that the estimators

perform best for the normal samples, with average efficiencies close to 90%.

In most instances, the triefficiencies are attained at the one-wild corner, and

typically, the scaling constant c has been chosen to maximise the one-wild

efficiency. The one-wild efficiencies average approximately 80%, indicating the

estimators will have at least 80% efficiency for a range of sampling situations.

This is an improvement on the triefficiency of Qn which was approximately
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efficiency using (1) efficiency using (3)

biweight-A with: normal one-wild slash trieff normal one-wild slash trieff

MAD and c = 9 86.2 79.1 88.0 79.1 87.9 79.2 84.2 79.2

MAD and c = 10 89.4 79.2 86.8 79.2 90.5 78.6 82.6 78.6

MAD and c = 11 91.7 78.2 85.5 78.2 92.5 77.1 81.0 77.1

Sn and c = 6.5 86.8 80.8 86.9 80.8 88.1 80.7 82.2 80.7

Sn and c = 7 89.0 81.1 85.8 81.1 90.1 80.6 80.8 80.4

Sn and c = 7.5 90.8 80.8 84.6 80.8 91.6 79.9 79.5 79.3

Qn and c = 10.5 88.0 82.1 83.9 82.1 88.8 81.7 77.9 77.9

Qn and c = 11 89.4 82.2 82.9 82.1 90.1 81.6 76.9 76.9

Qn and c = 11.5 90.6 82.1 82.0 81.7 91.2 81.2 75.9 75.9

Table 2
Average efficiencies for selected A-estimators, based on 100 realisations of the effi-
ciencies, each estimated from 20,000 samples of size 20. Efficiency is computed using
(1) and (3) as indicated.

67%.

Using efficiency based on (1), the best choice of auxiliary estimator is Qn with

a scaling constant of c = 11 and a triefficiency of 82.1%, while using efficiency

based on (3), the best choice of auxiliary estimator is Sn with a scaling constant

of c = 6.5 and an efficiency of 80.7%. We note that while these are the best

of these estimators under the competing efficiency measures, any of the three

auxiliary scale estimators used in the A-estimator with an appropriate scaling

constant will give almost the same triefficiency. While statistically significant

gains are made using Qn and c = 11 over MAD and c = 10 (or indeed MAD

and c = 9 promoted by Lax), the actual benefits in practice may be limited.

There is conflicting evidence whether using a more triefficient auxiliary esti-

mator of location improves overall triefficiency. Using efficiency based on (1),

and replacing the sample median by a one-step M-estimator, and using Qn

and c = 11, triefficiency remains constant, although efficiencies for the normal

and one-wild corners increase. This behaviour is not completely consistent
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with the relative performances of the median and M-estimator documented

by Randal & Thomson (2004), where the M-estimator was more efficient for

all three corners (although its absolute improvement was smallest for slash).

When MAD and c = 9 are chosen, a higher slash efficiency allows the one-wild

corner to dominate, and triefficiency to increase. Clearly, there are complex in-

teractions between the tuning choices we make, with simulation and trial and

error the only way to draw firm conclusions. Optimisation of scaling constants

and other choices of M0 are not pursued here.

4.4 Estimators based on the t-distribution

The t-distribution is one which may be used to motivate a general-purpose

scale estimator by regarding the t-distribution as a compromise distribution

for the three corners. It is also a choice which, by using the form of the EM

algorithm, yields a weighting function which can be used as the basis for a

simple one-step estimator defined in (7).

Efficiencies for the t-estimator are shown in Table 3. In each case, the sample

median is used as the auxiliary location estimate, and we consider MAD,

Sn and Qn for the auxiliary scale estimator. The results indicate that while

the t-estimator has not led to significant gains in efficiency, the simplicity of

this estimator implies it may be a useful choice in practice. Unlike the A-

estimators using the biweight ψ-function, the t-estimator has a differentiable

weight function 1
n
(1 + U2

i )
−1, which will be non-zero (albeit very small for

extreme data) for all observations in practice.

Comparison of Tables 2 and 3 indicates that unlike the A-estimators, the

t-estimators are very sensitive to the choice of auxiliary scale estimator. In

particular, the one-wild efficiencies are much higher when Qn is used than

when either MAD or Sn are used, and again the one-wild corner typically
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efficiency using (1) efficiency using (3)

t-estimator with: normal one-wild slash trieff normal one-wild slash trieff

MAD and c = 4 78.9 69.1 90.8 69.1 79.9 69.4 87.4 69.4

MAD and c = 4.25 80.8 69.3 89.7 69.3 81.8 69.3 86.2 69.3

MAD and c = 4.5 82.6 69.1 88.5 69.1 83.5 69.0 85.0 69.0

Sn and c = 2.75 83.1 76.6 89.8 76.6 83.8 76.7 85.8 76.7

Sn and c = 3 85.3 76.6 87.9 76.6 85.9 76.6 83.9 76.6

Sn and c = 3.25 87.3 76.2 86.0 76.2 87.7 76.1 82.0 76.1

Qn and c = 4 85.7 81.7 86.2 81.7 86.2 82.0 80.9 80.9

Qn and c = 4.25 86.9 81.8 85.0 81.8 87.4 82.0 79.6 79.6

Qn and c = 4.5 88.1 81.7 83.7 81.7 88.5 81.8 78.4 78.4

Table 3
Average efficiencies for selected t-estimators, defined in (7), based on 100 realisa-
tions of the efficiencies, each estimated from 20,000 samples of size 20. Efficiency is
computed using (1) and (3) as indicated.

determines the triefficiency. Using Lax’s measure of efficiency, the t-estimator

with Qn and c = 4.25 is the best estimator of this class, with triefficiency

81.8%, which is marginally smaller than the best biweight A-estimator. Using

the efficiency measure favoured by Rousseeuw & Croux (1993), we retain Qn

but reduce the scaling constant to c = 4, yielding a triefficiency of 80.9%. This

is higher than the best A-estimator, and is the estimator with the highest

triefficiency using (3).

5 Summary and conclusions

Results from an extensive simulation study of robust scale estimators have

been summarised for selected estimators in Section 4. The analysis focused

on two primary issues: the triefficiency of simple estimators, MAD, IQR, Sn

and Qn; and the triefficiency of weighted average-based estimators relying on

auxiliary estimates, the A- and t-estimators. Simulation sizes reflect modern

computing power, and new theoretical results for Tukey’s corners (Randal &
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Thomson 2004), and results indicate flaws in the most comprehensive pub-

lished study of this type, Lax (1985).

We are able to recommend use of the IQR in place of the MAD, but note that

further improvement can be attained through use of either Sn or Qn. These

estimators are useful as scale estimators in their own right, but triefficiency

gains may be made by using them as auxiliary estimators in a biweight A-

estimator, or an estimator motivated by the t-distribution.

Under one of the two efficiency criteria used in this study, the t-estimator with

appropriate tuning provides the best triefficiency of the estimators considered,

however the more complicated A-estimators achieve triefficiency only slightly

less.

We do not claim to have identified the best general purpose scale estimator,

however this is the first study to correctly benchmark efficiencies for Tukey’s

triefficiency. The biweight A-estimators remain strong contenders, however

the t-estimators provide a simpler alternative which is competitive under the

triefficiency criterion.
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