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You’ve learned numerical measures of center, spread, and
outliers, but what about measures of shape? The histogram
can give you a general idea of the shape, but two numerical
measures of shape give a more precise evaluation: skewness
tells you the amount and direction of skew (departure
from horizontal symmetry), and kurtosis tells you how tall
and sharp the central peak is, relative to a standard bell
curve.

Why do we care? One application is testing for
normality: many statistics inferences require that a
distribution be normal or nearly normal. A normal distribution
has skewness and excess kurtosis of 0, so if your distribution is
close to those values then it is probably close to normal.

MATH200B Program — Extra Statistics Utilities for TI-83/84
has a program to download to your TI-83 or TI-84. Among
other things, the program computes all the skewness and
kurtosis measures in this document, except confidence interval
of skewness and the D’Agostino-Pearson test.
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Skewness

The first thing you usually notice about a distribution’s shape is whether it has
one mode (peak) or more than one. If it’s unimodal (has just one peak), like
most data sets, the next thing you notice is whether it’s symmetric or
skewed to one side. If the bulk of the data is at the left and the right tail is
longer, we say that the distribution is skewed right or positively skewed;
if the peak is toward the right and the left tail is longer, we say that the
distribution is skewed left or negatively skewed.

Look at the two graphs below. They both have μ = 0.6923 and σ = 0.1685,
but their shapes are different.

Beta(α=4.5, β=2) 
skewness = −0.5370

1.3846 − Beta(α=4.5, β=2) 
skewness = +0.5370

The first one is moderately skewed left: the left tail is longer and most of the
distribution is at the right. By contrast, the second distribution is moderately
skewed right: its right tail is longer and most of the distribution is at the left.

You can get a general impression of skewness by drawing a histogram

http://www.tc3.edu/instruct/sbrown/stat/shape.htm#KurtosisCompute
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Kurt_Infer
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Normal
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Example2
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#WhatsNew
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(MATH200A part 1), but there are also some common numerical measures of
skewness. Some authors favor one, some favor another. This Web page
presents one of them. In fact, these are the same formulas that Excel uses in
its “Descriptive Statistics” tool in Analysis Toolpak.

You may remember that the mean and standard deviation have the same
units as the original data, and the variance has the square of those units.
However, the skewness has no units: it’s a pure number, like a z-score.

Computing

The moment coefficient of skewness of a data set is
skewness: g1 = m3 / m2

3/2

where
m3 = ∑(x−x̄)3 / n   and   m2 = ∑(x−x̄)2 / n

x̄ is the mean and n is the sample size, as usual. m3 is called the third
moment of the data set. m2 is the variance, the square of the standard
deviation.

You’ll remember that you have to choose one of two different measures of
standard deviation, depending on whether you have data for the whole
population or just a sample. The same is true of skewness. If you have the
whole population, then g1 above is the measure of skewness. But if you have
just a sample, you need the sample skewness:

sample skewness: 

source: D. N. Joanes and C. A. Gill. “Comparing Measures of Sample
Skewness and Kurtosis”. The Statistician 47(1):183–189.

Excel doesn’t concern itself with whether you have a sample or a population:
its measure of skewness is always G1.

Example 1: College Menʼs Heights

http://www.tc3.edu/instruct/sbrown/ti83/math200a.htm#MenuHistogram
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Height
(inches)

Class
Mark, x

Frequ-
ency, f

59.5–62.5 61 5

62.5–65.5 64 18

65.5–68.5 67 42

68.5–71.5 70 27

71.5–74.5 73 8

Here are grouped data for heights of 100
randomly selected male students, adapted
from Spiegel & Stephens, Theory and
Problems of Statistics 3/e (McGraw-Hill,
1999), page 68.

A histogram shows that the data are
skewed left, not symmetric.

But how highly skewed are they, compared to other data sets? To answer
this question, you have to compute the skewness.

Begin with the sample size and sample mean. (The sample size was given, but
it never hurts to check.)

n = 5+18+42+27+8 = 100
x̄ = (61×5 + 64×18 + 67×42 + 70×27 + 73×8) ÷ 100
x̄ = 9305 + 1152 + 2814 + 1890 + 584) ÷ 100
x̄ = 6745÷100 = 67.45

Now, with the mean in hand, you can compute the skewness. (Of course in
real life you’d probably use Excel or a statistics package, but it’s good to know
where the numbers come from.)

Class Mark, x Frequency, f xf (x−x̄x̄) (x−x̄x)̄²f (x−x̄x)̄³f

61 5 305 -6.45 208.01 -1341.68

64 18 1152 -3.45 214.25 -739.15

67 42 2814 -0.45 8.51 -3.83

70 27 1890 2.55 175.57 447.70

73 8 584 5.55 246.42 1367.63
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∑ 6745 n/a 852.75 −269.33

x̄x̄, m2, m3 67.45 n/a 8.5275 −2.6933

Finally, the skewness is
g1 = m3 / m2

3/2 = −2.6933 / 8.52753/2 = −0.1082

But wait, there’s more! That would be the skewness if the you had data for the
whole population. But obviously there are more than 100 male students in the
world, or even in almost any school, so what you have here is a sample, not
the population. You must compute the sample skewness:

 = [√(100×99) / 98] [−2.6933 / 8.52753/2] = −0.1098

Interpreting

If skewness is positive, the data are positively skewed or skewed right,
meaning that the right tail of the distribution is longer than the left. If
skewness is negative, the data are negatively skewed or skewed left, meaning
that the left tail is longer.

If skewness = 0, the data are perfectly symmetrical. But a skewness of
exactly zero is quite unlikely for real-world data, so how can you interpret
the skewness number? Bulmer, M. G., Principles of Statistics (Dover,
1979) — a classic — suggests this rule of thumb:

If skewness is less than −1 or greater than +1, the distribution is
highly skewed.
If skewness is between −1 and −½ or between +½ and +1, the
distribution is moderately skewed.
If skewness is between −½ and +½, the distribution is
approximately symmetric.

With a skewness of −0.1098, the sample data for student heights are
approximately symmetric.

Caution: This is an interpretation of the data you actually have. When
you have data for the whole population, that’s fine. But when you have a
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sample, the sample skewness doesn’t necessarily apply to the whole
population. In that case the question is, from the sample skewness, can you
conclude anything about the population skewness? To answer that question,
see the next section.

Inferring

Your data set is just one sample drawn from a population. Maybe, from
ordinary sample variability, your sample is skewed even though the
population is symmetric. But if the sample is skewed too much for random
chance to be the explanation, then you can conclude that there is skewness in
the population.

But what do I mean by “too much for random chance to be the
explanation”? To answer that, you need to divide the sample skewness G1 by
the standard error of skewness (SES) to get the test statistic, which
measures how many standard errors separate the sample skewness from zero:

test statistic: Zg1 = G1/SES  where  

This formula is adapted from page 85 of Cramer, Duncan, Basic Statistics for
Social Research (Routledge, 1997). (Some authors suggest √(6/n), but for
small samples that’s a poor approximation. And anyway, we’ve all got
calculators, so you may as well do it right.)

The critical value of Zg1 is approximately 2. (This is a two-tailed test of
skewness ≠ 0 at roughly the 0.05 significance level.)

If Zg1 < −2, the population is very likely skewed negatively (though
you don’t know by how much).
If Zg1 is between −2 and +2, you can’t reach any conclusion about
the skewness of the population: it might be symmetric, or it might be
skewed in either direction.
If Zg1 > 2, the population is very likely skewed positively (though
you don’t know by how much).

Don’t mix up the meanings of this test statistic and the amount of skewness.
The amount of skewness tells you how highly skewed your sample is: the
bigger the number, the bigger the skew. The test statistic tells you whether the

http://www.tc3.edu/instruct/sbrown/stat/shape.htm#SkewLevel
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whole population is probably skewed, but not by how much: the bigger the
number, the higher the probability.

Estimating

GraphPad suggests a confidence interval for skewness:
95% confidence interval of population skewness = G1 ± 2 SES

I’m not so sure about that. Joanes and Gill point out that sample
skewness is an unbiased estimator of population skewness for normal
distributions, but not others. So I would say, compute that confidence interval,
but take it with several grains of salt — and the further the sample skewness is
from zero, the more skeptical you should be.

For the college men’s heights, recall that the sample skewness was
G1 = −0.1098. The sample size was n = 100 and therefore the standard error
of skewness is

SES = √[ (600×99) / (98×101×103) ] = 0.2414
The test statistic is

Zg1 = G1/SES = −0.1098 / 0.2414 = −0.45
This is quite small, so it’s impossible to say whether the population is
symmetric or skewed. Since the sample skewness is small, a confidence
interval is probably reasonable:

G1 ± 2 SES = −.1098 ± 2×.2414 = −.1098±.4828 = −0.5926 to
+0.3730.

You can give a 95% confidence interval of skewness as about −0.59 to +0.37,
more or less.

Kurtosis

If a distribution is symmetric, the next question is about the central peak: is it
high and sharp, or short and broad? You can get some idea of this from the

http://www.graphpad.com/faq/viewfaq.cfm?faq=1577
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Joanes
http://mathworld.wolfram.com/UnbiasedEstimator.html
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Example1
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Ex1_SampleSkew
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histogram, but a numerical measure is more precise.
The height and sharpness of the peak relative to the rest of the data

are measured by a number called kurtosis. Higher values indicate a
higher, sharper peak; lower values indicate a lower, less distinct
peak. This occurs because, as Wikipedia’s article on kurtosis explains, higher
kurtosis means more of the variability is due to a few extreme differences
from the mean, rather than a lot of modest differences from the mean.

Balanda and MacGillivray say the same thing in another way: increasing
kurtosis is associated with the “movement of probability mass from
the shoulders of a distribution into its center and tails.” (Kevin P.
Balanda and H.L. MacGillivray. “Kurtosis: A Critical Review”. The American
Statistician 42:2 [May 1988], pp 111–119, drawn to my attention by Karl Ove
Hufthammer)

You may remember that the mean and standard deviation have the same
units as the original data, and the variance has the square of those units.
However, the kurtosis has no units: it’s a pure number, like a z-score.

The reference standard is a normal distribution, which has a kurtosis of 3. In
token of this, often the excess kurtosis is presented: excess kurtosis is
simply kurtosis−3. For example, the “kurtosis” reported by Excel is actually
the excess kurtosis.

A normal distribution has kurtosis exactly 3 (excess kurtosis exactly
0). Any distribution with kurtosis ≈3 (excess ≈0) is called
mesokurtic.
A distribution with kurtosis <3 (excess kurtosis <0) is called
platykurtic. Compared to a normal distribution, its central peak is
lower and broader, and its tails are shorter and thinner.
A distribution with kurtosis >3 (excess kurtosis >0) is called
leptokurtic. Compared to a normal distribution, its central peak is
higher and sharper, and its tails are longer and fatter.

Visualizing

Kurtosis is unfortunately harder to picture than skewness, but these
illustrations, suggested by Wikipedia, should help. All three of these
distributions have mean of 0, standard deviation of 1, and skewness of 0, and

http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Kurtosis
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all are plotted on the same horizontal and vertical scale. Look at the
progression from left to right, as kurtosis increases.

Uniform(min=−√3,
max=√3) 

kurtosis = 1.8, excess =
−1.2

Normal(μ=0, σ=1) 
kurtosis = 3, excess = 0

Logistic(α=0,
β=0.55153) 

kurtosis = 4.2, excess =
1.2

Moving from the illustrated uniform distribution to a normal distribution, you
see that the “shoulders” have transferred some of their mass to the center and
the tails. In other words, the intermediate values have become less likely and
the central and extreme values have become more likely. The kurtosis
increases while the standard deviation stays the same, because more of the
variation is due to extreme values.

Moving from the normal distribution to the illustrated logistic
distribution, the trend continues. There is even less in the shoulders and even
more in the tails, and the central peak is higher and narrower.

How far can this go? What are the smallest and largest possible values
of kurtosis? The smallest possible kurtosis is 1 (excess kurtosis −2), and the
largest is ∞, as shown here:
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Discrete: equally likely values 
kurtosis = 1, excess = −2

Student’s t (df=4) 
kurtosis = ∞, excess = ∞

A discrete distribution with two equally likely outcomes, such as winning or
losing on the flip of a coin, has the lowest possible kurtosis. It has no
central peak and no real tails, and you could say that it’s “all shoulder” — it’s
as platykurtic as a distribution can be. At the other extreme, Student’s t
distribution with four degrees of freedom has infinite kurtosis. A
distribution can’t be any more leptokurtic than this.

Computing

The moment coefficient of kurtosis of a data set is computed almost the
same way as the coefficient of skewness: just change the exponent 3 to 4 in
the formulas:

kurtosis: a4 = m4 / m2
2   and   excess kurtosis: g2 = a4−3

where
m4 = ∑(x−x̄)4 / n   and   m2 = ∑(x−x̄)2 / n

Again, the excess kurtosis is generally used because the excess kurtosis of a
normal distribution is 0. x̄ is the mean and n is the sample size, as usual. m4
is called the fourth moment of the data set. m2 is the variance, the square
of the standard deviation.

Just as with variance, standard deviation, and kurtosis, the above is the final
computation if you have data for the whole population. But if you have data
for only a sample, you have to compute the sample excess kurtosis using
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this formula, which comes from Joanes and Gill:

sample excess kurtosis: 

Excel doesn’t concern itself with whether you have a sample or a population:
its measure of kurtosis is always G2.

Example: Let’s continue with the example of the college men’s heights, and
compute the kurtosis of the data set. n = 100, x̄ = 67.45 inches, and the
variance m2 = 8.5275 in² were computed earlier.

Class Mark, x Frequency, f x−x̄x̄ (x−x̄x̄)4f

61 5 -6.45 8653.84

64 18 -3.45 2550.05

67 42 -0.45 1.72

70 27 2.55 1141.63

73 8 5.55 7590.35

∑ n/a 19937.60

m4 n/a 199.3760

Finally, the kurtosis is
a4 = m4 / m2² = 199.3760/8.5275² = 2.7418

and the excess kurtosis is
g2 = 2.7418−3 = −0.2582

But this is a sample, not the population, so you have to compute the sample
excess kurtosis:

G2 = [99/(98×97)] [101×(−0.2582)+6)] = −0.2091
This sample is slightly platykurtic: its peak is just a bit shallower than the
peak of a normal distribution.

http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Joanes
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Example1
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Inferring

Your data set is just one sample drawn from a population. How far must the
excess kurtosis be from 0, before you can say that the population also has
nonzero excess kurtosis?

The answer comes in a similar way to the similar question about
skewness. You divide the sample excess kurtosis by the standard error of
kurtosis (SEK) to get the test statistic, which tells you how many standard
errors the sample excess kurtosis is from zero:

test statistic: Zg2 = G2 / SEK  where  

The formula is adapted from page 89 of Duncan Cramer’s Basic Statistics for
Social Research (Routledge, 1997). (Some authors suggest √(24/n), but for
small samples that’s a poor approximation. And anyway, we’ve all got
calculators, so you may as well do it right.)

The critical value of Zg2 is approximately 2. (This is a two-tailed test of excess
kurtosis ≠ 0 at approximately the 0.05 significance level.)

If Zg2 < −2, the population very likely has negative excess kurtosis
(kurtosis <3, platykurtic), though you don’t know how much.
If Zg2 is between −2 and +2, you can’t reach any conclusion about
the kurtosis: excess kurtosis might be positive, negative, or zero.
If Zg2 > +2, the population very likely has positive excess kurtosis
(kurtosis >3, leptokurtic), though you don’t know how much.

For the sample college men’s heights (n=100), you found excess kurtosis of
G2 = −0.2091. The sample is platykurtic, but is this enough to let you say that
the whole population is platykurtic (has lower kurtosis than the bell curve)?

First compute the standard error of kurtosis:
SEK = 2 × SES × √[ (n²−1) / ((n−3)(n+5)) ]

n = 100, and the SES was previously computed as 0.2414.
SEK = 2 × 0.2414 × √[ (100²−1) / (97×105) ] = 0.4784

The test statistic is
Zg2 = G2/SEK = −0.2091 / 0.4784 = −0.44

You can’t say whether the kurtosis of the population is the same as or
different from the kurtosis of a normal distribution.

http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Skew_Infer
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#KurtCollege
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Assessing Normality

There are many ways to assess normality, and unfortunately none of them are
without problems. Graphical methods are a good start, such as plotting a
histogram and making a quantile plot. (You can find a TI-83 program to do
those at MATH200A Program — Statistics Utilities for TI-83/84.)

The University of Surrey has a good survey or problems with normality
tests, at How do I test the normality of a variable’s distribution? That page
recommends using the test statistics individually.

One test is the D'Agostino-Pearson omnibus test, so called because it
uses the test statistics for both skewness and kurtosis to come up with a single
p-value. The test statistic is

DP = Zg1² + Zg2² follows χ² with df=2
You can look up the p-value in a table, or use χ²cdf  on a TI-83 or TI-84.

Caution: The D’Agostino-Pearson test has a tendency to err on the side of
rejecting normality, particularly with small sample sizes. David Moriarty, in
his StatCat utility, recommends that you don’t use D’Agostino-Pearson
for sample sizes below 20.

For college students’ heights you had test statistics Zg1 = −0.45 for skewness
and Zg2 = 0.44 for kurtosis. The omnibus test statistic is

DP = Zg1² + Zg2² = 0.45² + 0.44² = 0.3961
and the p-value for χ²(2 df) > 0.3961, from a table or a statistics calculator, is
0.8203. You cannot reject the assumption of normality. (Remember, you
never accept the null hypothesis, so you can’t say from this test that the
distribution is normal.) The histogram suggests normality, and this test gives
you no reason to reject that impression.

Example 2: Size of Rat Litters

http://www.tc3.edu/instruct/sbrown/ti83/math200a.htm
http://www.psy.surrey.ac.uk/cfs/p8.htm
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Skew_Infer
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Kurt_Infer
http://www.csupomona.edu/~djmoriarty/b211/index.html#statcat
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Ex1_Zg1
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Ex1_Zg2
http://www.tc3.edu/instruct/sbrown/stat/htconcl.htm#Fail
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Ex1_Histo


6/29/11 9:46 PMMeasures of Shape: Skewness and Kurtosis — MATH200 (TC3, Brown)

Page 14 of 16http://www.tc3.edu/instruct/sbrown/stat/shape.htm

For a second illustration of inferences about skewness and kurtosis of a
population, I’ll use an example from Bulmer’s Principles of Statistics:

Frequency distribution of litter size in rats, n=815

Litter size 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 7 33 58 116 125 126 121 107 56 37 25 4

I’ll spare you the detailed calculations, but you should be able to verify them
by following equation (1) and equation (2):

n = 815, x̄ = 6.1252, m2 = 5.1721, m3 = 2.0316
skewness g1 = 0.1727 and sample skewness G1 = 0.1730

The sample is roughly symmetric but slightly skewed
right, which looks about right from the histogram. The
standard error of skewness is

SES = √[ (6×815×814) / (813×816×818) ] =
0.0856

Dividing the skewness by the SES, you get the test
statistic

Zg1 = 0.1730 / 0.0856 = 2.02
Since this is greater than 2, you can say that there is some positive
skewness in the population. Again, “some positive skewness” just means a
figure greater than zero; it doesn’t tell us anything more about the magnitude
of the skewness.

If you go on to compute a 95% confidence interval of skewness from
equation (4), you get 0.1730±2×0.0856 = 0.00 to 0.34.

What about the kurtosis? You should be able to follow equation (5) and
compute a fourth moment of m4 = 67.3948. You already have m2 = 5.1721,
and therefore

kurtosis a4 = m4 / m2² = 67.3948 / 5.1721² = 2.5194
excess kurtosis g2 = 2.5194−3 = −0.4806
sample excess kurtosis G2 = [814/(813×812)] [816×(−0.4806+6) =

−0.4762

http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Eq1
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Eq2
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Eq4
http://www.tc3.edu/instruct/sbrown/stat/shape.htm#Eq5
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So the sample is moderately less peaked than a normal distribution. Again,
this matches the histogram, where you can see the higher “shoulders”.

What if anything can you say about the population? For this you need
equation (7). Begin by computing the standard error of kurtosis, using n = 815
and the previously computed SES of 0.0.0856:

SEK = 2 × SES × √[ (n²−1) / ((n−3)(n+5)) ]
SEK = 2 × 0.0856 × √[ (815²−1) / (812×820) ] = 0.1711

and divide:
Zg2 = G2/SEK = −0.4762 / 0.1711 = −2.78

Since Zg2 is comfortably below −2, you can say that the distribution of all
litter sizes is platykurtic, less sharply peaked than the normal distribution.
But be careful: you know that it is platykurtic, but you don’t know by how
much.

You already know the population is not normal, but let’s apply the
D’Agostino-Pearson test anyway:

DP = 2.02² + 2.78² = 11.8088
p-value = P( χ²(2) > 11.8088 ) = 0.0027

The test agrees with the separate tests of skewness and kurtosis: sizes of rat
litters, for the entire population of rats, is not normally distributed.

Whatʼs New

26 Apr 2011: identify the t(4) distribution and the beta distributions in
their captions
20 Dec 2010: update citations to textbooks
23 Oct 2010: restore a missing minus sign, thanks to Edward B. Taylor
(intervening changes suppressed)
13 Dec 2008: new document 
This page uses some material from the old Skewness and Kurtosis on the
TI-83/84, which was first created 12 Jan 2008 and replaced 7 Dec 2008 by
MATH200B Program part 1; but there are new examples and pictures and
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considerable new or rewritten material.

This page is used in instruction at Tompkins Cortland Community College in Dryden,
New York; it’s not an official statement of the College. Please visit
www.tc3.edu/instruct/sbrown/ to report errors or ask to copy it.

For updates and new info, go to http://www.tc3.edu/instruct/sbrown/stat/
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