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Liquidity Cycles and Make/Take Fees in
Electronic Markets

THIERRY FOUCAULT, OHAD KADAN, and EUGENE KANDEL∗

ABSTRACT

We develop a model in which the speed of reaction to trading opportunities is en-
dogenous. Traders face a trade-off between the benefit of being first to seize a profit
opportunity and the cost of attention required to be first to seize this opportunity. The
model provides an explanation for maker/taker pricing, and has implications for the
effects of algorithmic trading on liquidity, volume, and welfare. Liquidity suppliers’
and liquidity demanders’ trading intensities reinforce each other, highlighting a new
form of liquidity externalities. Data on durations between trades and quotes could be
used to identify these externalities.

THE SPEED AT WHICH investors respond to trading opportunities is important for
asset price dynamics. For example, Duffie (2010) demonstrates that the price
impact of supply and demand shocks is more persistent when new capital re-
sponds slowly to these shocks. This effect manifests itself at various time scales,
including the high frequency.1 In recent years, firms specializing in high fre-
quency trading have made massive investments in hardware and algorithms to
accelerate their response time to trading opportunities. The effects of this evo-
lution are not yet fully understood, and high frequency trading is the subject of
heated debates associated with controversial practices such as maker/taker
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1 For instance, Duffie (2010, p. 1237) observes that: “The arrival of new capital to an investment
opportunity can be delayed by fractions of a second in some markets, for example an electronic
limit-order-book market for equities, or by months in other markets [ . . . ].”
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pricing, latency arbitrage, and events such as the “flash crash” of May
2010.2

In practice, traders do not instantaneously react to a change in the state
of the market because obtaining, processing, and acting upon new informa-
tion takes time. High frequency traders refer to this delay as “latency” (see
Hasbrouck and Saar (2010)). For human traders, reducing latency is costly as
it requires attention. Algorithmic trading, that is, using computers to make
trading decisions, considerably relaxes the cost of attention, but it does not
eliminate this cost completely. Indeed, even computers have limited process-
ing capacity that needs to be allocated among multiple tasks such as parallel
trading in hundreds of securities within fractions of seconds. Traders therefore
face a trade-off between the benefit and the cost of monitoring the market. This
paper studies this trade-off, endogenizes latencies, and analyzes the effects of
drastic reductions in the cost of monitoring associated with algorithmic trad-
ing. In this way, we shed light on several important issues regarding current
market structures, in particular, the widespread adoption of the maker/taker
pricing model and the consequences of algorithmic trading.3

In electronic markets, fleeting trading opportunities often arise from the
trading process itself. Indeed, large market orders consume the liquidity avail-
able at the best quotes and widen the bid-ask spread. This drop in liquidity
creates a profit opportunity for liquidity suppliers who react by posting new
quotes, which in turn create a new trading opportunity for liquidity deman-
ders. This process gives rise to “liquidity cycles” consisting of two phases: a
“make liquidity” phase during which, after a trade, liquidity suppliers com-
pete to provide liquidity and a “take liquidity” phase during which liquidity
demanders compete to consume liquidity.4 In this second phase, transactions
deplete the market of its liquidity and ignite a new make/take cycle. The speed
at which these cycles take place determines the rate at which gains from trade
are realized.

Our model is designed to analyze the determinants of this rate when market
monitoring is costly. It features a trading platform with two types of traders:
“market makers,” who post quotes, and “market takers,” who hit quotes. A
profit opportunity for market makers arises after each trade as the bid-ask
spread becomes momentarily large, while a profit opportunity for market takers
arises when a market maker posts a new offer. Each opportunity is short-
lived as it disappears as soon as a trader exploits it. Thus, traders monitor
the market to react faster than their competitors to profit opportunities. In

2 See for example Jonathan Spicer and Herbert Lash “Who’s afraid of high-frequency
trading?”, Reuters.com, December 2, 2009, available at http://www.reuters.com/article/
idUSN173583920091202.

3 Other theoretical and empirical analyses of algorithmic trading include Biais, Hombert, and
Weill (2010), Broogard (2010), Chaboud et al. (2010), Foucault and Menkveld (2008), Hasbrouck
and Saar (2010), Hendershott, Jones, and Menkveld (2011), Hendershott and Riordan (2009), and
Hendershott and Moulton (2011).

4 These cycles are studied empirically in Biais, Hillion, and Spatt (1995), Coopejans, Domowitz,
and Madhavan (2001), Degryse et al. (2005), and Large (2007).

http://www.reuters.com/article/elax penalty -@M idUSN173583920091202
http://www.reuters.com/article/elax penalty -@M idUSN173583920091202
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Table I
Make and Take Fees

This table provides trading fees (in cents per 100 shares) for limit orders (make fee) and market
orders (take fee) on different U.S. trading platforms and for various categories of stocks as of
August 2009. A minus sign indicates a rebate. Source: Traders Magazine, August 2009.

Tape A: NYSE Stocks Tape B: Other Stocks
Tape C: NASDAQ

Stocks

Make Fee Take Fee Make Fee Take Fee Make Fee Take Fee

NYSE Arca −23 30 −22 30 −23 30
Nasdaq −20 30 −20 30 −20 30
BATS −24 25 −24 25 −24 25
EDGX −25 30 −30 30 −25 30
LavaFlow −24 27 −24 27 −24 27

choosing their monitoring intensity, market participants trade off the benefit
from a higher likelihood of being first to detect an opportunity with the cost
of monitoring. In this model, durations between quotes and trades depend on
traders’ monitoring decisions and are ultimately determined by the parameters
driving these decisions, in particular, the trading fees.

As in practice, the platform can charge distinct fees to market makers and
market takers. Table I gives the make/take fees charged by major U.S. equity
trading platforms as of August 2009. All these platforms use the so-called
“maker/taker pricing” model: when a trade takes place, they charge a take fee
to market takers and rebate part of this fee to market makers. For instance,
consider a trade for 100 shares on NYSE-Arca for a stock listed on the NYSE
(Tape A). The trader submitting the market order triggering this transaction
(the market taker) pays a fee of 30 cents, while her counterparty (the market
maker), whose limit order is being executed, receives a rebate of 23 cents. The
net revenue to NYSE-Arca is seven cents. This pricing policy is also used by
several European exchanges, and has been recently adopted by option markets
in the United States.

To our knowledge, there is no theory explaining why the breakdown of the
total fee earned by a platform between makers and takers matters.5 Yet,
maker/taker pricing is very controversial as it results in significant monetary
transfers between market participants. For example, the average monthly vol-
ume on NYSE-Arca during 2009 was about 32 billion shares.6 A net fee of
seven cents per round lot generates an approximate annual revenue of $270
million to the exchange. Further, compared to an equal breakdown of the fee

5 Colliard and Foucault (2012) develop a model of limit order trading in which trading platforms
can charge make and take fees. In their model, the make/take fee breakdown is neutral: Any
make/take fee breakdown is optimal for the trading platform. Thus, their model does not explain
why differentiating fees between makers and takers matters.

6 We estimated the NYSE-Arca volume by combining volume data published on nyse.com and
batstrading.com.
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between the two sides, the maker/taker model results in an approximate an-
nual wealth transfer of $1.0 billion from market takers to market makers on
NYSE-Arca alone.7 Hence, not surprisingly, some high frequency firms follow
rebate-capture strategies and strongly support maker/taker pricing.8 Other
market participants have claimed that maker/taker pricing results in exces-
sive fees for takers, leading the SEC to cap take fees in equity markets at
30 cents per round lot.9

Our model yields several new insights. First, it provides an explanation for
why the make/take fee breakdown matters. We show that differentiating make
and take fees is a way for the trading platform to maximize the trading rate and
therefore its expected profit. Suppose that market takers’ aggregate monitoring
intensity is much higher than market makers’ aggregate monitoring intensity.
In this case, the speed at which new liquidity is supplied after a trade is
smaller than the speed at which liquidity is consumed. This imbalance slows
down the trading process since trades happen only when offers are available.
The trading platform can then increase the trading rate, without changing its
revenue per trade, by reducing its make fee while increasing its take fee by
the same amount. Indeed, such a shift in the make/take fee breakdown raises
the value of being first to reinject liquidity after a trade. Thus, it incentivizes
market makers to monitor the market more intensively and as a result the
trading rate is higher. Building on this intuition, we show that rebates to
market makers are optimal for the trading platform when (i) the ratio of the
number of market makers to the number of market takers, or (ii) the ratio
of market takers’ monitoring cost to market makers’ monitoring cost are low
enough.

Angel, Harris, and Spatt (2011) argue that the make/take fee breakdown is
irrelevant since traders can neutralize its effects by adjusting the price at which
they trade. This is not the case in our model because quotes must be expressed
as multiples of a minimum monetary unit, the “tick size,” as in reality. For this
reason, traders cannot fully neutralize make/take fees and the make/take fee
breakdown matters.

Second, the model has implications for the effects of algorithmic trading on
liquidity, volume, and welfare. We analyze these effects by considering the im-
pact of a reduction in monitoring costs for traders since algorithmic trading
considerably reduces these costs. The model implies a strong positive relation-
ship between algorithmic trading and the trading rate. For instance, consider a

7 In 2009, trading volume on NYSE-Arca accounted for about 14% of all volume in U.S. equity
markets. See batstrading.com for detailed national trading data.

8 The liquidity rebate can constitute an important fraction of high-frequency market-makers’
profit. For instance, Menkveld (2010) estimates the trading profits for a high-frequency market-
maker active in Dutch stocks. He finds that the liquidity rebate accounts for about 15% of the net
spread per trade earned by the market-maker (see his Table 4, Panel C).

9 As an example of the controversies raised by these fees, see the petition for rulemaking re-
garding access fees by Citadel at http://www.sec.gov/rules/petitions/2008/petn4-562.pdf. In this
petition, Citadel advocates a cap on access fees. For an opposite viewpoint see the comments
sent by the high-frequency trading firm GETCO to the SEC at: http://www.getcollc.com/index.php/
getco/commentletters/Schedule of Fees and Charges.pdf.

http://www.sec.gov/rules/petitions/2008/petn4-562.pdf
http://www.getcollc.com/index.php/elax penalty -@M getco/commentletters/Schedule
http://www.getcollc.com/index.php/elax penalty -@M getco/commentletters/Schedule
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decrease in the monitoring cost for market takers. This decrease leads market
takers to hit good prices more quickly, which in itself contributes to a higher
trading rate. However, as liquidity is consumed more quickly, market mak-
ers react by supplying liquidity more quickly as well. This externality further
increases the trading rate.

The model also implies that the impact of algorithmic trading on the time-
weighted bid-ask spread is ambiguous. It depends on whether the reduction
in the cost of monitoring mainly affects market makers or market takers. For
instance, as just explained, a decrease in market takers’ monitoring cost in-
creases the speed of reaction to changes in the state of the market for both
sides. But this increase is stronger for the market takers. Thus, when market
takers’ monitoring cost declines, the rate at which liquidity is consumed in-
creases relative to the rate at which liquidity is supplied. As a consequence,
the time-weighted bid-ask spread increases. In contrast, when market makers’
monitoring cost falls, the time-weighted bid-ask spread declines. These predic-
tions are in line with empirical findings in Hendershott and Moulton (2011)
and Hendershott, Jones, and Menkveld (2011).

In our model, traders never achieve the maximum possible trading rate
because they monitor the market imperfectly. A decrease in monitoring costs
always leads to a higher trading rate because it alleviates this friction. For
this reason, algorithmic trading increases traders’ aggregate welfare in our
model. Algorithmic trading, however, is not necessarily a Pareto improvement.
First, a reduction in monitoring cost for one trader has a negative effect on his
competitors’ expected profits. Further, when the platform optimally chooses the
make/take fee breakdown, a reduction in the monitoring cost for one side can
make this side worse off. For instance, consider a technological improvement
reducing market makers’ monitoring costs. In this case, the trading platform
optimally raises its make fee and reduces its take fee. Thus, the reduction
in market makers’ monitoring costs unambiguously improves market takers’
welfare, but it can, paradoxically, render market makers worse off.

Finally, our model uncovers a new form of liquidity externality. Suppose that
an exogenous shock (e.g., a decrease in monitoring costs) induces market takers
to monitor a security more intensively. The immediate effect is to accelerate
the speed at which takers hit offers. Thus, trading opportunities for makers
are more frequent, increasing their marginal return on monitoring. Conse-
quently, they monitor the market more frequently, and liquidity is provided
more quickly. Similarly, an increase in makers’ monitoring intensity exerts a
positive externality on takers, and triggers an increase in the speed at which
liquidity is consumed. Thus, liquidity demand begets liquidity supply and vice
versa. This “cross-side” externality is new to our paper. Indeed, other theories
of liquidity externalities (e.g., Admati and Pfleiderer (1988), Pagano (1989),
Hendershott and Mendelson (2000), or Dow (2004)) do not distinguish between
makers and takers.

Liquidity externalities are of paramount importance to our understanding of
variations in trading activity across markets or over time (see Biais, Glosten,
and Spatt (2005)). However, identifying such externalities empirically is
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challenging (see Barclay and Hendershott (2004)). Our model suggests a new
approach towards this end that is based on durations between quotes and
trades. We show that exogenous shifts in the number of market makers or
their monitoring costs could be used as instruments to identify these external-
ities empirically.

Several papers (e.g., Goettler, Parlour, and Rajan (2005), Foucault, Kadan,
and Kandel (2005), Roşu (2009, 2010)) study how the limit order book replen-
ishes after a trade, ignoring monitoring issues and trading fees. In contrast,
we do not analyze how liquidity gradually builds up after a trade. Instead, we
focus on the effect of monitoring decisions and trading fees on the speed at
which liquidity cycles are completed. Foucault, Roëll, and Sandås (2003) and
Liu (2009) provide theoretical and empirical analyses of market-making with
costly monitoring. The effects in these models are driven by market makers’
exposure to the risk of being picked off, which is absent from our model. Our
paper also relates to the literature on payment for order flow (e.g., Kandel and
Marx (1999) or Parlour and Rajan (2003)). However, this literature focuses on
why rebates for liquidity takers, rather than liquidity makers, can be opti-
mal. Finally, our model contributes to the burgeoning literature on “two-sided
markets,” where transaction volume depends on the allocation of fees between
end-users (see Rochet and Tirole (2006) for a survey).

Section I describes the model. In Section II, we study the equilibrium when
make/take fees are fixed. We derive the optimal make/take fees in Section III,
and we discuss the empirical implications of the model in Section IV. In Section
V, we present extensions of the baseline model. Section VI concludes. The proofs
of the main results are in the Appendix. Proofs of other results as well as some
additional auxiliary results are collected in an Internet Appendix.10

I. Model

A. Overview

Before describing the model formally, it is worth outlining the basic economic
trade-offs present in this model. We study a model of trading with market
makers and market takers. Market makers post quotes for an asset while
market takers hit market makers’ quotes. Trades occur on a trading platform,
which charges a fee each time a trade happens. The platform splits this fee
between market makers and market takers.

A new quote is a trading opportunity for market takers as they can trade at
this quote. A transaction gives rise to a profit opportunity for market makers
as it frees a slot for a new offer. In order to exploit an opportunity, traders must
be first to react to this opportunity. By monitoring the market more intensively,
a trader increases his likelihood of being first to grab an opportunity, but he
must pay a higher monitoring cost. Ultimately, the trading rate is determined

10 An Internet Appendix for this article is available online in the “Supplements and Datasets”
section at http://www.afajof.org/supplements.asp.

http://www.afajof.org/supplements.asp
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by the variables affecting this trade-off, namely, the make/take fees and the
costs of monitoring. As each side generates trading opportunities for the other
side, the model features a cross-side externality: an increase in market makers’
monitoring intensity makes market takers better-off and vice versa.

In this setting, as shown below, it is optimal for the trading platform to charge
a lower fee on the side that has the lowest aggregate monitoring intensity. In
this way, the platform maximizes the trading rate by optimally balancing the
rates at which liquidity is consumed and supplied. For instance, subsidizing
market makers is optimal when they are outnumbered by market takers or
when their monitoring cost is large. Indeed, they will monitor the market more
closely to capture the rebate and as a result new liquidity is supplied faster
after each trade.

We now turn to formalizing these ideas.

B. Market Participants and Cycles

B.1. Market Participants

This is an infinite horizon model of trading in the market for a security, with
a continuous time line. There are two types of participants in this market: M
market makers and N market takers. All participants are risk neutral.

The expected payoff of the security is v0. Market takers value the security at
v0 + �, with � > 0, while market makers value the security at v0. Heterogene-
ity in traders’ valuation creates gains from trade (as, for instance, in Duffie,
Gârleanu, and Pedersen (2005)). As market takers have a higher valuation,
they buy the security from market makers.11

Market makers and market takers meet on a trading platform. Market mak-
ers post the price at which market takers can trade. This price must be on a
grid with a tick size equal to � > 0, where � = �

�
> 0 is an integer. Let

P ≡ {v0 + s · � : s is an integer} , (1)

denote this grid, and assume that � ≥ 2, so that the grid includes at least one
price in between v0 and v0 + �. The trading price is a = v0 + s · � ∈ P for some
integer s. To convey the main insights of the model, we find it useful to first fix
a (i.e., s) exogenously. In Section V, we endogenize a.

We view the market makers as firms that specialize in high frequency liq-
uidity provision (e.g., Global Electronic Trading Company (GETCO), Optiver,
and Timberhill). Thus, M can also be interpreted as the number of computer
servers or the amount of capital devoted to high frequency market-making. The
market-taking side represents buy-side institutions or their brokers who break
their large orders and feed them piecemeal when the bid-ask spread is tight
to minimize their trading costs. Thus, N is a measure of agency algorithmic
trading.

11 In a more complex model, market-takers could have either high or low valuations relative to
market-makers, so that they could be either buyers or sellers. This adds mathematical complexity
but no additional insight.
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Both types of traders increasingly use highly automated algorithms to detect
and exploit trading opportunities (see Hasbrouck and Saar (2010) and Hender-
shott, Jones, and Menkveld (2011)).12 For instance, Hendershott, Jones, and
Menkveld (2011) write (p. 1) “There are many different algorithms, used by
many different types of market participants. Some hedge funds and broker-
dealers supply liquidity using algorithms [ . . . ] For assets that trade on multi-
ple venues, liquidity demanders often use smart routers to determine where to
send an order [ . . . ].”

In reality, the divide between the market-making side and the market-taking
side is not as rigid. For instance, high frequency market makers sometimes use
market orders to unwind their positions, and smart routers use a mix of market
and limit orders. Yet, some specialization is evident, as high frequency market
makers account for a large fraction of liquidity supply in electronic markets.13

Our model captures this feature.
The trading platform charges make/take fees each time a trade occurs be-

tween a market maker and a market taker. The make fee per share, paid by
the market maker, is denoted by cm, whereas the take fee, paid by the mar-
ket taker, is denoted by ct. Negative fees are allowed. We normalize the cost
of processing trades for the trading platform to zero so that, per transaction,
the platform earns a profit of c̄ ≡ cm + ct. Consequently, for each transaction,
the gain from trade (�) is split between the parties to the transaction and the
trading platform as follows: the market taker obtains

πt = v0 + � − a − ct, (2)

the market maker obtains

πm = a − v0 − cm, (3)

and the platform obtains c̄. We assume that 0 ≤ c̄ ≤ � since otherwise at least
one side loses money on each trade and would therefore choose not to partici-
pate.

B.2. Racing to Be First

One key driver of algorithmic trading in reality is the need to be first to
react to a change in the state of the market in order to exploit it. For instance,
a brochure from IBM describes algorithmic trading as “The ability to reduce
latency (the time it takes to react to changes in the market [ . . . ]) to an absolute
minimum. Speed is an advantage [ . . . ] because usually the first mover gets the
best price” (see “Tackling latency: the algorithmic arms race,” IBM, 2008). In

12 Algorithmic trading is also used to implement other trading strategies. For instance, pro-
prietary trading desks and hedge funds use algorithms for statistical arbitrage, to anticipate the
direction of future order flow, or to react to news arrivals. The analysis of these aspects of algorith-
mic trading is beyond the scope of our paper.

13 For instance, Menkveld (2010) reports that the high-frequency market-maker studied in his
paper executes 78% of his trades with limit orders (see Table 4 in Menkveld (2010)).
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the same spirit, an article from Traders Magazine observes that “The reality is,
that order is only there for one person. So if you react faster, you fill the order”
(see “The Race to Zero,” Traders Magazine, 2009, p. 38).

To model this race in the simplest possible way, we normalize the number of
shares that can be offered at price a to one. This constraint creates competition
among traders for being first to react to a trading opportunity on their side.
Indeed, when there is no quote at a, there is a profit opportunity, worth πm,
for a market maker. But a market maker can exploit this opportunity only if
she is first to submit an offer at a since no more than one share can be offered
at price a. In a symmetric way, when there is an offer at a, there is a profit
opportunity, worth πt, for a market taker. The market taker needs to be first to
react in order to grab this opportunity since the number of shares supplied at
price a is limited.14 Thus, at each point in time the market can be in one of two
states:

(i) State E (for Empty): there is a profit opportunity for makers because no
offer is posted at a.

(ii) State F (for Full): there is a profit opportunity for takers because an offer
is posted at a.

The market moves from state F to state E when a market taker hits the best
offer. The market then remains in state E until a market maker posts a new
offer, at which time the market moves from state E to state F and the process
starts over. We call the flow of events from the moment the market gets into
state E until it returns into this state a “make/take cycle” or for brevity just a
“cycle.” Figure 1 illustrates the flow of events in a cycle.

C. Market Monitoring

Traders monitor the market to be the first to detect a profit opportunity.
Market makers are looking for periods when liquidity is “scarce” (no offer is
posted at price a) and market takers are looking for periods when liquidity
is “abundant” (an offer is posted at price a). Market monitoring includes ob-
taining information on the state of the market, processing this information,
and making decisions based on this information. We model it as follows. Each
market maker i = 1, . . . , M inspects the market according to a Poisson process
with parameter μi ≥ 0, characterizing her monitoring intensity. As a result,
the time between two inspections by market maker i is distributed exponen-
tially with an average interinspection time of 1

μi
. Similarly, each market taker

j = 1, . . . , N inspects the market according to a Poisson process with parameter

14 This limit could arise endogenously from exposure to the risk of being picked off for liquidity
suppliers (as in Glosten (1994) or Sandås (2001)). We take a simpler approach for tractability.
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Market taker submits
a market order. Trade
takes place. Bid-ask
spread widens.
Market moves to
State E.

Market maker
submits a limit
order. Bid-ask
spread narrows.
Market moves to
State F.
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Figure 1. Flow of events in a cycle. The figure plots the timeline of events in a cycle. A cycle
begins with a market taker submitting a market order, widening the spread. A cycle continues
with a market maker submitting a limit order, narrowing the spread. The cycle ends when another
market taker hits the limit order, widening the spread again, beginning a new cycle.

τ j ≥ 0.15 The aggregate monitoring level of the market-making side is

μ̄ ≡ μ1 + · · · + μM, (4)

and the aggregate monitoring level of the market-taking side is

τ̄ ≡ τ1 + · · · + τN. (5)

When a market maker inspects the market, she learns whether it is in state
E or F. If the market is in state E, then she posts an offer at a. If instead the
market is in state F, the market maker stays put until her next inspection.
Similarly, a market taker submits a market order when, upon inspection, he
observes an offer at price a, and stays put until the next inspection otherwise.
Thus, each cycle has two phases: a “make phase” (state E to state F) and a “take
phase” (state F to state E). The duration of the make phase is exponentially
distributed with parameter μ̄, and the duration of the take phase is exponen-
tially distributed with parameter τ̄ . As monitoring levels are endogenous (see
below), the distributions of interevent durations in the model are endogenous

15 This approach rules out deterministic monitoring such as inspecting the market exactly once
every certain number of seconds. In reality, many unforeseen events can capture the attention of
a market-maker or a market-taker, be it human or a machine. For humans, the need to monitor
several securities as well as perform other tasks precludes evenly spaced inspections. Computers
face similar constraints as periods of high transaction volume, and unexpectedly high traffic on
communication lines, prevent monitoring at exact points in time.
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as well. We denote by Dm ≡ 1/μ̄ the expected duration from the time an offer
is taken until a new offer is made, and by Dt ≡ 1/τ̄ the expected duration from
the time an offer is made until it is taken.

On average, the duration between two trades is

D (μ̄, τ̄ ) ≡ Dm + Dt = 1
μ̄

+ 1
τ̄

= μ̄ + τ̄

μ̄ · τ̄
, (6)

and the trading rate, that is, the average number of transactions per unit of
time, is

R (μ̄, τ̄ ) ≡ 1
D (μ̄, τ̄ )

= μ̄ · τ̄

μ̄ + τ̄
. (7)

The trading rate increases when either μ̄ or τ̄ increases.
In reality, as explained in the introduction, traders do not instantaneously

react to a change in the state of the market, including the execution of their
own orders, because market monitoring is costly. To account for this cost, we
assume that, over a time interval of length T , a market maker choosing a
monitoring intensity μi bears a monitoring cost

Cm(μi) ≡ 1
2

βμ2
i T for i = 1, . . . , M. (8)

Similarly, the cost of monitoring for market taker j over an interval of time of
length T is

Ct(τ j) ≡ 1
2

γ τ 2
j T for j = 1, . . . , N. (9)

Algorithmic trading reduces monitoring costs. We therefore analyze the effect
of algorithmic trading by considering the effect of a reduction in β and γ .
Parameters γ and β must remain strictly positive, but they can be very small,
which may well be the case for high frequency traders. Traders’ monitoring
intensities and therefore their speed of reaction to changes in the state of the
market can be arbitrarily high if γ and β are small enough (see below).

D. Objective Functions, Timing, and Externalities

D.1. Objective Functions

Each player chooses her action to maximize her steady-state payoff per unit of
time. Consider a market maker first. Each time a make/take cycle is completed
a transaction occurs. The probability that market maker i is active in this
transaction is the probability that she is first to post an offer at price a after
the market entered state E. Given our assumptions on the monitoring process,
this probability is μi

μ1+···+μM
= μi

μ̄
. Thus, in each cycle, the expected profit gross

of monitoring costs for market maker i is μi
μ̄

· πm. Using this remark, we show
in the Appendix that market maker i’s expected profit per unit of time, net of
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monitoring costs, is

	im = μi

μ̄
· πm · R (μ̄, τ̄ ) − 1

2
βμ2

i . (10)

This is intuitive: the expected profit of a market maker per unit of time is
her expected profit per cycle (μi

μ̄
· πm) times the number of cycles per unit of

time, less the monitoring cost. Similarly, the expected profit per unit of time of
market taker j is

	 jt = τ j

τ̄
· πt · R (μ̄, τ̄ ) − 1

2
γ τ 2

j , (11)

while the expected profit of the trading platform per unit of time is:

	e ≡ c̄ · R (μ̄, τ̄ ) = (cm + ct) · R (μ̄, τ̄ ) , (12)

since in each cycle, it earns a fee c̄.

D.2. Timing and Equilibrium

The trading game unfolds in three stages as follows:

Stage 1: The trading platform chooses its make/take fees cm and ct.
Stage 2: Market makers and market takers simultaneously choose their mon-

itoring intensities μi and τ j (i = 1, . . . , M and j = 1, . . . , N).
Stage 3: From this point onward, the game is played on a continuous time line

indefinitely, with the monitoring intensities and fees determined in
Stages 1 and 2.

We solve the model backwards. First, for given fees, we look for Nash equi-
libria in monitoring intensities in Stage 2. A Nash equilibrium in this stage
is a vector of monitoring intensities (μ∗

1, . . . , μ
∗
M, τ ∗

1 , . . . , τ ∗
N) such that for all

i = 1, . . . , M, μ∗
i maximizes market maker i’s expected profit per unit of time

(given by (10)), and for all j = 1, . . . , N, τ ∗
j maximizes market taker j’s expected

profit per unit of time (given by (11)), taking the monitoring intensities of all
other traders as given. Second, given a Nash equilibrium in the monitoring
intensities, we solve for the make/take fees (c∗

m, c∗
t ) that maximize the trading

platform’s expected profit (given by (12)).

D.3. Liquidity Externalities and Cross-Side Complementarities

An increase in one trader’s monitoring level hurts the traders who are on his
side. That is, ∂	im

∂μ j
< 0 and ∂	it

∂τ j
< 0 (for j �= i). This effect captures the horse race

to be first to detect a trading opportunity in our model. In contrast, an increase
in the aggregate monitoring level of one side exerts a positive externality on
the other side since ∂	im

∂τ̄
> 0 and ∂	 jt

∂μ̄
> 0. For instance, an increase in market

makers’ aggregate monitoring increases the likelihood that market takers will
find a trading opportunity, which makes the latter better off. Further, the
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marginal benefit of monitoring for traders on one side increases in the aggregate
monitoring level of traders on the other side since ∂2	im

∂τ̄∂μi
> 0 and ∂2	 jt

∂μ̄∂τ j
> 0.16 For

this reason, market makers (resp., market takers) check the state of the market
more frequently when they expect market takers (resp., market makers) to
check the state of the market more frequently. Thus, there is a cross-side
complementarity in monitoring decisions: the monitoring intensities of traders
on different sides reinforce each other.

E. Discussion

Our model is clearly stylized. First, we assume that orders are for one share
and that market makers cannot queue at or behind the best price. As explained
previously, these constraints create competition among traders for being first
to react to a trading opportunity. They considerably simplify the analysis as
allowing market makers to queue at a given price in our model is very difficult.
Our results, however, should be robust in more complex environments as long
as there is a benefit to being first to react to a trading opportunity. In reality,
market makers naturally benefit from being first because early limit orders
have time priority. Hence, a limit order at the front of the queue at a given
price has a greater expected profit than other limit orders in the queue since
its execution probability is higher. In addition, market takers benefit from being
first because the number of shares available at the best quote is limited.

Second, we assume that, after a trade, market takers immediately receive a
new buy order for one share to execute. That is, the intensity at which market
takers receive a new buy order after each trade is infinite. In Section V, we
consider the less extreme case in which this intensity is finite. In this case, the
model becomes intractable unless N = M = 1. Analysis of this case, however,
shows that the insights of the baseline model are robust even when market
takers receive new buy orders at a finite rate. Indeed, the rate at which market
takers receive new buy orders sets the maximum possible trading rate for
the security, but it does not affect imperfect monitoring, that is, the friction
preventing traders from achieving this maximum in our model.

For tractability, we also assume that the value of the asset (v0) is fixed and
there is no arrival of information regarding this value. Thus, there is no role for
news monitoring in our model. In reality, traders monitor both changes in the
state of the market and the flow of information, either to get protection against
the risk of being picked off or to pick off stale quotes (as in Foucault, Roëll, and
Sandås (2003), for instance). The trade-offs present in our model would still
play a role in a more general model with both news and market monitoring.
An increase in the risk of being picked off reduces market makers’ expected
profits, other things being equal. Hence, the logic of our model suggests that the
make fee should decrease when this risk increases so as to strengthen market
makers’ incentive to monitor the market.

16 For instance, ∂2	im
∂τ∂μi

= μ̄
∑

j �=i μ j+τ̄ (μ̄+μi )

(μ̄+τ̄ )3
> 0.
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II. Equilibria with Fixed Fees

In this section we study the equilibrium monitoring intensities for given fees
(cm, ct). For all parameter values, the model has two equilibria: one equilibrium
with no trade and one equilibrium with trade.

Consider first how the no-trade equilibrium arises. If market makers believe
that market takers will not monitor the trading platform, then they optimally
choose not to monitor as well since monitoring is costly. Symmetrically, if mar-
ket takers expect market makers to pay no attention to the trading platform,
then they optimally choose to be inactive. Thus, traders’ beliefs that the other
side will not be active are self-fulfilling.

PROPOSITION 1: There exists an equilibrium in which traders do not monitor:
μ∗

i = τ ∗
j = 0 for all i ∈ {1, . . . , M} and j ∈ {1, . . . , N}. The trading rate in this

equilibrium is zero.

The second equilibrium does involve monitoring and trade. To describe it let
r ≡ γ /β and

z ≡ πm

πt

γ

β
= πm

πt
· r. (13)

When z > 1 (resp., z < 1), the ratio of profits to costs per cycle is higher for
market makers (resp., market takers).

PROPOSITION 2: There exists a unique equilibrium with trade. In this equilib-
rium, traders’ monitoring intensities are given by

μ∗
i = M + (M − 1)V∗

(1 + V∗)2 · πm

Mβ
i = 1, . . . , M (14)

τ ∗
j = V∗ ((1 + V∗) N − 1)

(1 + V∗)2 · πt

Nγ
j = 1, . . . , N, (15)

where V∗ is the unique positive solution to the cubic equation

V3 N + (N − 1)V2 − (M − 1) zV − Mz = 0. (16)

In addition, in equilibrium, μ̄∗
τ̄ ∗ = V∗.

The ratio V∗ = μ̄∗
τ̄ ∗ = Dt

Dm
measures the speed of reaction of the market-making

side ( 1
Dm

) relative to the market-taking side ( 1
Dt

) in equilibrium. We call it the
velocity ratio.

As an illustration of Propositions 1 and 2, consider the case M = N = 1.

Figure 2 plots traders’ best response functions, denoted by ρm(τ1) and ρt(μ1),
when πm = πt = 0.5, β = γ = 0.5. For instance, ρm(τ1) is the optimal monitoring
level of the market maker given that the market taker’s monitoring level is τ1.
The two best response functions meet at (0, 0) and (0.25, 0.25), which are the
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Figure 2. Equilibria with low and high trading rates. The market maker’s best-response
function, ρm(·), is plotted as a function of the market taker’s monitoring intensity (τ1), whereas
the market taker’s best-response function, ρt(·), is plotted as a function of the market makers
monitoring intensity (μ1).

two equilibria corresponding to Propositions 1 and 2. Due to the cross-side
complementarities, the slope of both reaction functions is positive: an increase
in the monitoring intensity of one side triggers an increase in the monitoring
intensity of the other side. Further, it can be checked that these slopes are
infinite at zero. Thus, the no-trade equilibrium is unstable: in this situation,
an infinitesimal increase in, say, the market maker’s monitoring intensity, μ1,
triggers a relatively large increase in the market taker’s monitoring intensity,
τ1, which in turn triggers even more attention by the market maker and so
on. Along this off-equilibrium path, illustrated by the arrows in the figure,
the trading rate gets higher and higher since it increases with monitoring
levels on either side. This process ends when monitoring intensities reach their
equilibrium level in Proposition 2.

From now on we focus our attention on the equilibrium with trade. An impli-
cation of the cross-side complementarity is that a change in the cost and benefit
of monitoring for one side triggers a change in the monitoring intensities on
both sides in equilibrium, as highlighted by the next corollary (proved in the
Internet Appendix).

COROLLARY 1: In the unique equilibrium with trade,

(i) The aggregate monitoring level of both sides increases in the number of
participants on either side, and decreases in monitoring costs and in the fee
charged on either side.
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(ii) The trading rate decreases in the monitoring costs and trading fees, and
increases in the number of participants on either side.

To understand the first part of the corollary, consider an increase in mar-
ket makers’ monitoring cost. This increase reduces their individual monitor-
ing levels, other things being equal. The marginal benefit of monitoring for
market takers is then smaller as they are less likely to find a good price
when they inspect the market. Consequently, market takers monitor the mar-
ket less intensively, even though their own monitoring cost has not changed.
The same reasoning applies for an increase in the trading fee or the num-
ber of participants on one side.17 The second part of the corollary follows
from the first part, since any change in the aggregate monitoring intensi-
ties μ̄∗ and τ̄ ∗ translates into a change in the same direction for the trading
rate.

COROLLARY 2: In equilibrium, for fixed fees, the market-making side monitors
the market more intensively than the market-taking side (μ̄∗ > τ̄ ∗) if and only if
z(2M−1)

2N−1 ≥ 1.

This corollary implies that the velocity ratio, V∗ = μ̄∗
τ̄ ∗ , is different from one in

equilibrium, unless z(2M−1)
(2N−1) = 1. A velocity ratio greater (less) than one means

that liquidity is consumed by market takers relatively less (more) quickly than
it is supplied by market makers. For instance, if M = N and z > 1, the market-
making side reacts more quickly than the market-taking side because mar-
ket makers’ cost of missing a trading opportunity is relatively higher and,
as a result, V∗ > 1. A situation in which the velocity ratio differs too much
from one is suboptimal for the platform. Indeed, it means that one side is
very quick in taking advantage of trading opportunities, but this velocity does
not translate into a high trading rate since the other side is relatively slow.
In this situation it is optimal for the platform to adjust its fees so as to re-
duce the imbalance between the speed at which liquidity is consumed and
the speed at which it is supplied (see the next section). The next corollary
shows how the velocity ratio changes when trading fees or other parameters
change.

COROLLARY 3: The velocity ratio increases in the take fee, ct, and decreases in
the make fee, cm. In addition, it increases with the relative size of the market-
making side, q ≡ M

N , and the relative monitoring cost for the market-taking side,
r ≡ γ

β
.

Thus, the platform controls the velocity ratio with its fees. For instance, the
platform can reduce the velocity ratio without changing its revenue per trade
by increasing the make fee while reducing the take fee.

17 When the number of participants on one side increases, the individual monitoring levels on
this side may decrease since the likelihood of being first to grab a profit opportunity declines. This
is in contrast to the aggregate level of monitoring, which goes up.
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In general we do not have an explicit solution for traders’ monitoring levels
because we cannot solve for V∗ (the unique positive root of equation (16)) in
closed form. However, there are a few cases in which a closed-form solution can
be obtained. One insightful case is when the number of participants on both
sides becomes very large but the size of the market-making side relative to the
size of the market-taking side, q ≡ M

N , remains fixed.18 We refer to this as “the
thick market case.” In this case, we have19

V∞ ≡ lim
M→∞

V∗ = (zq)
1
2 . (17)

Using this observation and Proposition 2, the next corollary provides closed-
form expressions for traders’ monitoring levels when the market is thick.

COROLLARY 4: Fix q > 0 and assume N = M
q . Then, the monitoring levels when

the market is thick are

μ∞
i ≡ lim

M→∞
μ∗

i = 1

1 + (zq)
1
2

· πm

β
i = 1, 2, 3, . . . (18)

τ∞
j ≡ lim

M→∞
τ ∗

j = 1

1 + (zq)−
1
2

· πt

γ
j = 1, 2, 3, . . . (19)

III. Optimal Make/Take Fees

We now study the fees set by the trading platform given the monitoring
strategies derived in the previous section.

A. Determinants of Make/Take Fees

The platform’s optimization problem can be decomposed into two steps: (i)
choose the optimal make/take fees for a given c̄; and (ii) choose the optimal c̄.
As we are interested in the optimal breakdown of the total fee between market
makers and market takers, we focus on the first step. That is, we take the total
fee, c̄, as given throughout. In the Internet Appendix, we solve for the optimal
total fee when the market is thick and show that our conclusions are not
affected when this fee is endogenous.20 We refer to the differential between the
take fee and the make fee, ct − cm, as the take/make spread.

18 Another case is when M = N = 1. See the Internet Appendix for a detailed analysis of this
case.

19 To see this, note that equation (16) implies z = V∗3 M
q +( M

q −1)V∗2

(M−1)V∗+M . Equation (17) follows by taking
the limit as M → ∞.

20 As shown below, the optimal make/take fees, (c∗
m, c∗

t ) increase in c̄. Consequently, in choosing
its total fee, the trading platform faces the standard price-quantity trade-off: by raising c̄, the
trading platform gets a larger revenue per trade but it decreases the rate at which trades occur
since the trading rate decreases in both the make fee and the take fee (Corollary 1).
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The optimal fees depend on the price at which market makers and market
takers agree to trade. We thus denote by (c∗

ms, c∗
ts) the optimal make and take

fees for the platform when the makers’ spread, a − v0, equals s · �. For a given
total fee c̄, the optimal make/take fees are the solution of

max
cm,ct

	e = (cm + ct)R(μ̄∗, τ̄ ∗)

s.t: cm + ct = c̄,
(20)

where μ̄∗ = Mμ∗
i , τ̄ ∗ = Nτ ∗

j , and μ∗
i and τ ∗

j are given by Proposition 2. Trading
fees affect traders’ monitoring decisions and thereby the trading rate (Corollary
1). The first-order conditions for this problem impose that

∂R(μ̄∗, τ̄ ∗)
∂cm

= ∂R(μ̄∗, τ̄ ∗)
∂ct

. (21)

That is, the trading platform chooses its fee structure so as to equalize the
marginal negative impact of an increase in each fee on the trading rate.

To gain insight on the optimal make/take fee breakdown, we first solve for
the optimal make/take fees when the market is thick (see Corollary 4). As the
market becomes thick, traders’ aggregate monitoring levels and the trading
rate explode. Yet the fee structure that maximizes the trading rate converges
to a well defined limit, as shown in our next proposition.

PROPOSITION 3: Suppose that a = v0 + s · �. In the thick market case, the trad-
ing platform optimally allocates its fee c̄ between the market-making side and
the market-taking side as follows

c∗
ms = s · � − � − c̄

1 + (qr)
1
3

and c∗
ts = c̄ − c∗

ms. (22)

Thus, in general, it is optimal for the trading platform to differentiate its
make and take fees. To understand this point, it is useful to first analyze
how the optimal make and take fees depend on the exogenous parameters, q
and r.

COROLLARY 5: In the thick market case, the take fee decreases and the make
fee increases with the relative size of the market-making side, q, and the rela-
tive monitoring cost for the market-taking side, r. Thus, the take/make spread
decreases with these parameters.

Evidently, the optimal pricing policy follows a simple principle: when a
change in parameters raises market makers’ aggregate monitoring intensity,
the platform allocates a greater fraction of the total fee to the market mak-
ers. For instance, an increase in the relative size of the market-making side,
q, or a decrease in its relative monitoring cost, r, results in a higher aggre-
gate monitoring intensity for market makers relative to market takers, other
things equal (Corollary 1). As a result, a new offer is posted very quickly
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after a trade but market takers are relatively slow to hit this offer. Therefore,
it is optimal for the platform to lower its fee on market takers to accelerate
their response to market makers’ offers, and compensate the loss in revenue
by increasing its fee on market makers since they are relatively fast anyway.
Hence, fee differentiation is a way for the trading platform to increase the
trading rate by better balancing the speeds at which liquidity is consumed and
supplied.

Corollary 5 suggests that the optimal take/make spread depends on stock
characteristics as q is likely to vary across stocks. Proposition 3 also shows
that the trading platform is more likely to subsidize market makers (c∗

ms < 0)
when the makers’ spread, a − v0, is small relative to the gains from trade,
� − c̄. Indeed, in this case market makers’ aggregate monitoring intensity is
low since they obtain a small fraction of gains from trade. A rebate is thus a
way to incentivize market makers to monitor the market more intensively. By
symmetry, if the makers’ spread is large relative to the gains from trade, then
the trading platform is more likely to subsidize the market takers. We show
in Section V.C that this reasoning remains valid even when the price at which
investors choose to trade is endogenous.

Proposition 3 and Corollary 5 hold when the market is thick. In the other
polar case, when M = N = 1, the expressions for the optimal fees are very sim-
ilar and Corollary 5 is still valid (see the Internet Appendix). For intermediate
values of M and N, we cannot obtain a closed-form solution for the optimal fees.
However, we can numerically solve for these fees using the characterization of
traders’ monitoring levels in Proposition 2. Applying this approach, we check
through extensive numerical simulations that Corollary 5 is robust.21

B. Example: Uniform, Optimal, and Capped Make/Take Fees

Achieving the optimal make/take fee breakdown can have a first-order effect
on a platform’s revenue. To see this point, consider the following numerical ex-
ample. Assume M = 10, N = 20, � = 20, v0 = 250, and c̄ = 1/10 (all monetary
amounts in cents).22 We arbitrarily set the time unit as one second, and we
choose β = 0.4 and γ = 0.1 so that the trading rate per second in our example
does not exceed that for NYSE stocks.23 Finally, the tick size is set at one cent,

21 Matlab code for the simulations is provided in the Internet Appendix.
22 In our example, the total gains from trade represent 8% (20/250) of the total value of the

asset. This specification is based on Hollifield et al. (2006). Using data from the Vancouver Stock
Exchange, they estimate that gains from trade in a limit order market vary between 6% and 9% of
the common value of the asset (see their Table X, on p. 2790).

23 Chordia, Roll, and Subrahmanyam (2011) report that the average value-weighted daily num-
ber of trades on the NYSE in 2008 was about 90,000, or about 230 trades per minute (assuming
250 trading days and 6.5 trading hours per day). They also report that the average trade size in
2008 was about $10,000. Given an average share price of $87 in January 2008 (from CRSP), this
implies an average trade size of 115 shares. Thus, the average number of shares traded per minute
on NYSE during 2008 was about 230 × 115 = 26,450, which is equivalent to about 440 shares per
second.
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� = 1, as in U.S. equity markets, and we consider three possible values for the
makers’ spread, a − v0, namely, 5, 10, or 15 ticks.

For each value of the makers’ spread, Table II reports the optimal make
and take fees for the platform and its annualized revenue, assuming that
2,000 stocks trade on the platform (slightly below the number of stocks listed
on the NYSE in 2008) and that there are 250 trading days of 6.5 hours per
year. Further, to show the importance of optimally differentiating make and
take fees for the platform, we compare its revenue when make and take fees
are set optimally to its revenue under two benchmark scenarios: (i) “Uniform
Fees,” where the platform follows a “naive” pricing strategy, dividing its fee
equally between makers and takers; and (ii) “Capped Fees,” where the platform
chooses its fees optimally under the constraint that the take fee does not exceed
0.3 cents per share, the maximum allowed by Regulation NMS in the United
States.

Consider first the case in which the makers’ spread is equal to five ticks. In
this case, with the uniform pricing scheme, market makers’ aggregate mon-
itoring intensity is relatively small because (i) they obtain a relatively small
fraction (about 25%) of the gains from trade since the spread is tight, (ii) they
have relatively large monitoring costs (β > γ ), and (iii) they are fewer than
market takers (M < N). Hence, as implied by Proposition 3, the trading plat-
form can increase its trading rate by reducing its make fee while increasing its
take fee. In fact, the optimal pricing policy in this case requires that market
makers be subsidized. This results in a trading rate of about 143 trades per
second, which is much higher than the trading rate achieved by the platform
with uniform pricing (84 trades per second). For this reason, the difference in
annual revenue when the platform chooses the optimal make/take fees and
when it does not is large ($621 million).

As market makers’ spread increases from 5 to 10 or 15 ticks, they obtain a
higher fraction of gains from trade, the make/take fees being fixed. Hence, their
incentive to monitor the market increases. Accordingly, the trading platform
optimally charges a higher make fee and reduces its take fee. In fact, when the
makers’ spread is equal to 15 ticks, it is optimal for the platform to subsidize
market takers rather than market makers.

When the take fee is capped at 0.3 cents, the platform cannot offer a rebate
greater than 0.2 cents to the makers since its total trading fee is fixed at 0.1
cents per share. When the makers’ spread is relatively small (5 or 10 ticks),
this constraint is binding. Thus, the trading rate when the take fee is capped
is smaller than when the platform can choose its fees freely, but greater than
in the uniform pricing case.

Table II also shows that the optimal make and take fees can become large
when they are unconstrained. In reality, one would expect that market makers’
offers would neutralize large variations in the make/take fees. For example,
if market makers receive a large subsidy, they may bid more aggressively. We
address this issue in Section V, where we show that, even when market makers’
offer prices are endogenous, differentiating make/take fees remains optimal for
the platform, as long as the tick size is positive.
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C. Welfare, Algorithmic Trading, and Make/Take Fees

Algorithmic trading is often portrayed as socially useless.24 In contrast, our
model captures one social benefit of algorithmic trading: by reducing monitor-
ing costs, it increases the speed at which traders are matched and gains from
trade are realized. To see this, let W be the aggregate welfare of all market
participants, including the platform. Using equations (10), (11), and (12), we
have

W(γ, β, cm, ct, M, N) = R (
μ̄∗, τ̄ ∗) · � − M · Cm(μ∗

1) − N · Ct(τ ∗
1 ). (23)

Other things being equal, aggregate welfare increases in the trading rate.
Corollary 1 shows that a decrease in traders’ monitoring costs on either side
results in a higher trading rate. For this reason, for fixed trading fees, a de-
crease in monitoring costs for one side is a Pareto improvement: it makes all
participants better off and therefore also increases total welfare. We provide a
formal proof of this intuitive result in the Internet Appendix.

More surprisingly, this conclusion does not necessarily hold when we account
for the effects of the reduction in monitoring costs on the optimal make/take
fee breakdown. Indeed, in this case, the side with declining monitoring costs
can sometimes be worse off. To see this point, suppose, for example, that mar-
ket makers’ monitoring cost, β, decreases. As discussed previously, the trading
platform optimally reacts to this decline by increasing the make fee and de-
creasing the take fee. As the total fee is unchanged and the take fee is smaller,
market takers are clearly better off. In contrast, the change in market makers’
welfare is ambiguous. On the one hand they incur lower monitoring costs but
on the other hand they pay higher fees. The net effect on their expected profit
can be either positive or negative.

As an example, suppose that M = N = 1. In this case, in equilibrium, the
market maker’s expected profit per unit of time when fees are set optimally
is25

	im(β, γ ) = β
1
4 × (� − c)2

(
β

1
4 + 2γ

1
4
)

4
(
β

1
4 + γ

1
4
)6 . (24)

The market maker’s expected profit decreases in γ . That is, a reduction in the
market taker’s monitoring cost always benefits the market maker. In contrast,
the market maker’s expected profit vanishes as her monitoring cost goes to
zero since the platform reacts to this decline by charging a higher make fee.
This example underscores the importance of accounting for changes in trading
platforms’ pricing policies in analyzing welfare effects of algorithmic trading.

24 See, for instance, Paul Krugman, “Rewarding bad actors,” New York Times, August 2, 2009.
25 The expression for market-makers’ expected profit does not depend on market-makers’ spread

because the division of gains from trade does not depend on this spread when make/take fees are
set optimally by the platform.
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Figure 3. Algorithmic trading and the trading rate. The figure plots the equilibrium trading
rate as a function of the reciprocal of market makers’ monitoring costs, 1/β. Parameter values
are v0 = 300 (expected payoff), a = 304 (ask price), M = 10 (number of market makers), N = 20
(number of market takers), � = 25 (gains from trade), � = 1 (tick size), γ = 0.5 (market takers’
monitoring costs), cm = −0.2 (make fee), and ct = 0.3 (take fee). All monetary values are in cents.
The solid curve depicts the equilibrium trading rate. The dotted curve shows the trading rate for
a fixed aggregate monitoring level of the market takers (fixed at its level when 1/β = 0.25).

IV. Empirical Implications

A. Algorithmic Trading, Volume, and Liquidity

Corollary 1 shows that a decrease in the monitoring cost for market mak-
ers or market takers triggers an increase in the trading rate. Thus, algorith-
mic trading should be associated with an increase in the trading rate. This
association can be particularly strong because it is amplified by the comple-
mentarity in monitoring decisions between market makers and market takers.
That is, algorithmic trading causes an increase in the trading rate via a direct
channel, the reduction in monitoring costs, and an indirect channel, liquidity
externalities.

To see this point, consider Figure 3. This figure illustrates how a reduction
in monitoring costs for market makers (β) affects the trading rate R for fixed
values of the other parameters: v0 = 300, a = 304, M = 10, N = 20, � = 25,

� = 1, γ = 0.5 , cm = −0.2, and ct = 0.3 (all monetary values are in cents). The
solid curve depicts the equilibrium trading rate when 1/β increases from 0.2 to
four (β decreases from 5 to 0.25). It accounts for both the direct and the indirect
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channels. That is, a decrease in market makers’ monitoring costs leads to
more monitoring by market makers, which prompts market takers to monitor
more and therefore amplifies the initial effect through a chain reaction. In
contrast, the dotted curve shows the evolution of the trading rate when market
makers’ monitoring cost decreases for a fixed aggregate monitoring level of the
market takers (fixed at its level when β = 4). Hence, the dotted curve shows
the evolution of the trading rate when liquidity externalities are turned off.

In both cases, the trading rate increases when market makers’ monitoring
cost decreases. However, in equilibrium (solid curve), the trading rate increases
at a much faster rate because of the complementarity in market makers’ and
market takers’ monitoring decisions.26 This could explain why the rate of in-
crease in trading volume has been so steep in recent years. For instance, from
2005 to 2007, the number of shares traded on the NYSE rose by 111% despite
the fact that NYSE market share has declined over the same period. This evo-
lution is mainly driven by an increase in the trading rate since the size of trades
has steadily declined in recent years (see Chordia, Roll, and Subrahmanyam
(2011)).

Brogaard (2010) finds cross-sectional variations in the proportion of time
high frequency traders set the inside quote on NASDAQ. Our model can shed
light on the determinants of this proportion. To see this, let â ≥ v0 + � be the
offer posted in the market when there is no offer posted at price a. Offers
at â can be seen as being posted by non-high-frequency market makers (e.g.,
human traders) for whom the cost of providing liquidity is higher than for
market makers in our model.27 Thus, they post offers that are not attractive
for market takers.

Between trades, the offer price is a for an average duration of Dt and â for
an average duration of Dm. The fraction of time during which market makers
set the inside quote is therefore

φ ≡ Dt

Dm + Dt
= V∗

1 + V∗ . (25)

Clearly, φ increases in the velocity ratio, V∗ = Dt
Dm

= μ̄∗
τ̄ ∗ , and can therefore serve

as a proxy for this ratio. Corollary 3 implies that, for fixed fees, the velocity
ratio should increase in q = M/N and r = γ /β. Hence, a decrease in market
takers’ relative monitoring cost, r = γ /β, reduces the fraction of time market
makers set the inside quote in equilibrium. Similarly, a decrease in q implies
that the market spends less time in this state. Thus, other things being equal,
high frequency market makers should set the inside spread less frequently

26 In this discussion, we take the make/take fees as fixed. The effect of algorithmic trading on the
trading rate is even stronger when fees are set optimally. The reason is that the trading platform
adjusts its fees so as to maximize the trading rate, contributing even further to the surge in volume
when monitoring costs decline.

27 For NYSE stocks, Hendershott, Jones, and Menkveld (2011) find evidence consistent with the
fact that algorithmic liquidity suppliers have a competitive cost advantage over more traditional
liquidity suppliers (like the specialist).



Liquidity Cycles and Make/Take Fees 323

in stocks in which their number is small relative to liquidity demand.28 This
observation implies that the effect of algorithmic trading on the time-weighted
average bid-ask spread is ambiguous. Indeed, the time-weighted average half
bid-ask spread (denoted ES) is

ES = φa + (1 − φ)â − v0 = â − v0 − φ(â − a), (26)

which decreases with φ. As we just explained, a reduction in market makers’
monitoring cost increases φ while a reduction in market takers’ monitoring
cost reduces φ. Thus, investments in algorithmic trading technologies by the
market-making side lower the time-weighted bid-ask spread. In contrast, in-
vestments in algorithmic trading by the market-taking side increase the time-
weighted bid-ask spread.

Hendershott, Jones, and Menkveld (2011) study a change in NYSE market
structure (“Autoquote”) that reduces the cost of monitoring for algorithmic
liquidity suppliers. They write (p. 13): “Autoquote allowed algorithmic liquidity
suppliers to, say, quickly notice an abnormally wide inside quote and provide
liquidity accordingly via a limit order.” This change is similar to a reduction in
the cost of monitoring for market makers, β, in our model. Hendershott, Jones,
and Menkveld (2011) find empirically that this change reduced the average bid-
ask spread, as predicted by our model. In contrast, Hendershott and Moulton
(2011) study a change in the organization of the NYSE that increases the speed
at which liquidity demanders can react to new quotes. They find an increase
in the average bid-ask spread following this event, which again is in line with
the logic of the model.

B. Liquidity Externalities and Time

B.1. Identifying Liquidity Externalities

As explained previously, our model features a new type of liquidity external-
ity: the monitoring decisions of the market-making side and the market-taking
side reinforce each other. As stressed by Barclay and Hendershott (2004), the
empirical identification of liquidity externalities is nontrivial. In our frame-
work, the challenge is to establish that a greater monitoring intensity by one
side has a positive causal effect on the monitoring intensity of the other side.
To identify this relation one needs to find exogenous shocks that directly affect
the monitoring intensity of one side without affecting the other side.

Monitoring intensities are not directly observable. However, the average
durations of make and take phases can serve as proxies for these intensities,
since Dm = 1

μ̄∗ and Dt = 1
τ̄ ∗ . That is, one can test for the presence of cross-side

externalities by checking whether an increase in the average duration of the
make phase, Dm, has a positive causal effect on the average duration of the
take phase, Dt, and vice versa.29 Our model suggests several variables that

28 This implication also holds when fees are set at their optimal level.
29 Coopejans, Domowitz, and Madhavan (2001) capture cross-side complementarities using a
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could serve as instruments for this test. To see this, it is useful to express the
average duration of the make phase as a function of the average duration of
the take phase and vice versa.

PROPOSITION 4: When traders choose their monitoring levels optimally, there
exist two functions f (·) and g(·) such that we can write Dm = f (Dt; β, M, cm) and
Dt = g(Dm; γ, N, ct). Furthermore,

(i) The function f (·; β, M, cm) is increasing in Dt and the function g(·; γ, N, ct)
is increasing in Dm.

(ii) The function f (Dt; ·) increases in market makers’ monitoring cost and the
make fee while it decreases in the number of market makers. The function
g(Dm; ·) increases in market takers’ monitoring cost and the take fee while it
decreases in the number of market takers.

The second part of the proposition shows that parameters cm, β, and M can
be used as instruments to identify the effect of the duration of the make phase
on the duration of the take phase: changes in these variables directly affect Dm
without directly affecting Dt. In a symmetric way, the parameters ct, γ, and
N can be used as instruments to identify the effect of the duration of the take
phase, Dt, on the duration of the make phase, Dm.

The number of market-making firms in a stock, especially high frequency
market makers, is a natural proxy for M in our model. Exogenous shocks to
this number could be used to test whether the speed of reaction of the market-
making side (Dm) has a positive effect on the speed of reaction of the market-
taking side (Dt). For instance, Chaboud et al. (2010) study algorithmic trading
on EBS (an electronic market for currencies) and exploit observable exogenous
changes in the number of algorithmic market makers on this platform to mea-
sure the effects of algorithmic trading on volatility. Their data could also be
used to perform the test we just described.

Another approach involves using technological changes that reduce the cost
of monitoring for market makers or market takers. As mentioned previously,
Hendershott, Jones, and Menkveld (2011) study the liquidity effects of a tech-
nological change on the NYSE that is similar to a reduction in the cost of
monitoring for market makers, β, in our model. Hence, this change could also
be used to test whether an increase in market makers’ speed of reaction trig-
gers an increase in market takers’ speed of reaction. Similarly, improvements
in smart routing technologies (a reduction in γ ) could be used to identify the
impact of an increase in market takers’ speed of reaction on market makers’
speed of reaction.

In reality, fluctuations in interevent durations are also driven by other fac-
tors, such as changes in asset values. This source of fluctuation is not captured
by our model since we take the asset value as given.

VAR model for depth on both sides of the limit order book. Here, we propose to quantify cross-side
complementarities using interevent durations.
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B.2. Explaining Duration Clustering

Modeling time between events is very important for the empirical analysis
of high frequency data (see Engle (2000)). As a result, this topic has generated
a voluminous literature in financial econometrics (see Pacurar (2006) for a
survey). One challenge for research in this area is to explain the clustering
in durations that is pervasive in trade and quote data (see Engle and Russell
(1998)). That is, long (short) durations between orders and trades tend to be
followed by long (short) durations between the same events.

Duration clustering is usually interpreted through the lens of information-
based models, in particular, Easley and O’Hara (1992). In this model, the trad-
ing rate is higher when there is an information event. One implication is that
short durations between trades signal the presence of informed investors, lead-
ing to an inverse relationship between price impacts and durations between
trades. However, Engle and Russell (1998) find that short durations have
no effect on price impacts when the bid-ask spread is small. They conclude
(p. 1158): “this suggests that both liquidity- and information-based clustering
of transaction rates occur.”

In line with this finding, our model suggests a liquidity-based explanation for
duration clustering. To see this, consider a positive shock on the “demand for
trading” from the market taking side (an increase in N). The direct effect of this
shock is to increase market takers’ aggregate monitoring level, which reduces
the average duration from a quote to a trade, Dt. In turn, market makers
monitor the market more intensively since they expect market takers to hit
their quotes more quickly. Thus, there is also a decline in the duration from a
trade to a quote, Dm. More generally, any change in a factor that directly affects
the monitoring intensity of one side without directly affecting the other side
induces a change in interevent durations (Dt and Dm) in the same direction (see
Proposition 4). Thus, time-series fluctuations in these factors (e.g., the number
of market takers) induce a positive correlation between interevent durations
and therefore a clustering in durations between trades.

V. Robustness and Extensions

In this section we check whether the main results of the baseline model are
robust to relaxing some of the simplifying assumptions.30

A. Finite Arrival Rate for Market Takers’ Trading Needs

In the baseline model we assume that, after a trade, market takers im-
mediately receive a new buy order to execute. In this section we relax this
assumption. That is, we assume that, after a trade, a market taker receives
a new buy order for one share after a waiting time, which is exponentially
distributed with intensity κ > 0. The baseline model is then the special case

30 We are grateful to the anonymous referee for motivating much of the analysis in this section.
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in which κ = ∞. Unfortunately, when κ < ∞, the model becomes intractable
when either M > 1 or N > 1.31 Hence, in this section, we must restrict our
attention to the case in which there is one market maker and one market taker
(M = N = 1).

Suppose that a trade just took place. It takes on average 1
κ

units of time
before the market taker has a new need to buy the security and 1

μ1
+ 1

τ1
units of

time for this order to execute. Therefore, the average duration of a cycle is now

D (μ1, τ1, κ) = 1
μ1

+ 1
τ1

+ 1
κ

, (27)

and the trading rate is

R (μ1, τ1, κ) = 1
1
μ1

+ 1
τ1

+ 1
κ

. (28)

For fixed monitoring levels, the trading rate increases in κ and is bounded
by κ: market makers and market takers cannot be matched faster than the
rate at which trading needs occur. In general, they are matched at a smaller
rate because traders’ monitoring levels are finite. This is the main source of
inefficiency in the model, and it is precisely this inefficiency that make/take
fees help to alleviate since the platform chooses its make/take fee breakdown
to maximize the trading rate. As expected, when κ goes to infinity, the trading
rate converges to its value in the baseline model (equation (7)).

The objective functions of the market maker and the market taker are as
given in the baseline model, except that the expression for the trading rate is
now given by equation (28). In contrast to the baseline case, we cannot solve for
traders’ monitoring levels in closed form.32 However, we show analytically in
the Internet Appendix that our comparative statics regarding traders’ monitor-
ing levels (Corollary 1) are valid for all values of κ. The next proposition (proved
in the Internet Appendix) characterizes the optimal pricing policy of the plat-
form for all values of κ and shows that this policy has the same properties as
those obtained in the baseline case.

PROPOSITION 5: Assume M = N = 1. The optimal make/take fee breakdown
does not depend on κ. In addition, when a − v0 = s · �, the optimal make and

31 To see this, recall that a market taker’s expected profit per cycle depends on his probability
of being first to hit an offer when he has a buy order to execute. When N = 1, this probability is
equal to one. In contrast, when N > 1, this probability depends on the number of other market
takers with a buy order to execute. This number is random, preventing us from writing down in
a simple way the objective function of a market taker when κ < ∞ unless N = 1. This problem
does not arise in the baseline model (κ = ∞) because, after a trade, a market taker immediately
receives a new buy order. Thus, at any point in time, the number of market takers with a share to
buy is N. When N = 1 and M > 1 the model is also not tractable since we cannot solve for traders’
monitoring intensities as in Proposition 2.

32 The closed-form solutions for the monitoring intensities in the baseline model when M = N =
1 is given in the Internet Appendix.
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Figure 4. Monitoring costs and welfare. The figure plots the market maker’s expected profit
(solid line) and the market taker’s expected profit (dashed line) in equilibrium as a function of the
maker’s monitoring cost (β). Parameter values are v0 = 300 (expected payoff), a = 304 (ask price),
� = 25 (gains from trade), � = 1 (tick size), c = 0.1 (total fee), γ = 0.5 (market taker’s monitoring
cost), and κ = 2 (arrival rate of trading needs). All monetary values are in cents.

take fees are

c∗
ms = s · � − � − c̄

1 + r
1
4

and c∗
t = c̄ − c∗

m. (29)

As in the baseline model and for the same reason, the optimal make fee de-
clines in the relative monitoring cost of the market-taking side (r). An increase
in κ increases the incentive to monitor the market for both market makers and
market takers. For this reason, a change in κ does not alter the velocity ratio
and the optimal make/take fee breakdown does not depend on κ.

In the baseline model (κ = ∞), a decrease in monitoring cost does not neces-
sarily result in a Pareto improvement when fees are set optimally (see Section
III.C). Figure 4 shows that this result continues to hold when κ < ∞. The figure
plots the evolution of the market maker’s expected profit (solid line) and the
market taker’s expected profit (dashed line) in equilibrium as a function of the
maker’s monitoring cost (β). Parameter values are v0 = 300, a = 304, � = 25,

� = 1, c̄ = 0.1, γ = 0.5, and κ = 2 (M = N = 1 and all monetary values are in
cents). As can be seen, the market maker’s expected profit peaks for a strictly
positive value of β. Thus, for small values of β, the market maker is worse off
when its monitoring cost declines. Indeed, as in the baseline case, the platform
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reacts to this decline by charging a higher make fee and this effect more than
offsets the benefit of a smaller monitoring cost for the market maker.

B. Fast and Slow Traders

In the baseline model we assume that all traders on one side have identical
monitoring costs. Hence, in equilibrium, they react with the same latency to
a profit opportunity. In reality, latencies often differ across market makers
because some have a technological edge over others. What are the effects of
asymmetries in market makers’ speed of access to the market?

To address this question, we consider the effect of reducing the monitoring
cost of market maker 1 relative to other market makers (i.e., β1 < β j , for j �= 1).
When market makers’ monitoring costs are heterogeneous, we cannot solve
for equilibrium monitoring intensities in closed form. However, we can obtain
a numerical solution for these intensities when the total number of traders
M +N is not too large.33

Consider the following numerical example. There are two market mak-
ers (M = 2) and one market taker (N = 1). Furthermore v0 = 300, a = 304,

� = 25,� = 1, cm = −0.2, and ct = 0.3 (all monetary values are in cents). In
Figure 5, we show the effect of decreasing the monitoring cost of market maker
1 (increasing 1/β1) on the equilibrium monitoring intensities of each trader
(Figure 5A), the trading rate (Figure 5B), and the market share of each market
maker (Figure 5C).34 For this analysis we fix the monitoring costs of the other
traders (β2 = 0.5 and γ1 = 0.5).

Not surprisingly, as market maker 1’s monitoring cost declines, she moni-
tors the market more intensively. More interestingly, as explained in Section
I.D, this effect reduces the marginal expected return on monitoring for her
competitor. For this reason, market maker 2’s monitoring intensity becomes
smaller as market maker 1’s monitoring cost declines (Figure 5A). Accordingly,
the market share of the fast market maker increases at the expense of the slow
market maker who is progressively crowded out of the market (Figure 5C). Yet,
the aggregate monitoring intensity of the market making side increases. This
effect exerts a positive externality on the market taker who reacts by increas-
ing his monitoring intensity, and ultimately the trading rate becomes higher
(Figure 5B).

Thus, as high frequency market makers become increasingly fast, we should
observe a simultaneous increase in the trading rate and an increase in the
market share of high frequency market makers. In line with these predictions,
many analysts have noticed that high frequency traders are responsible for

33 Traders’ equilibrium monitoring intensities solve a system of M + N nonlinear equations
corresponding to the first order conditions of the problem. In general, we cannot solve this system
analytically, unless, as in the baseline model, all traders operating on one side have identical
monitoring costs. Indeed in this case, the system of M + N equations boils down to just two
equations (see the proof of Proposition 2).

34 The market share of each market-maker (the average fraction of trades in which she partici-
pates) is given by μi

μ1+μ2
, i = 1, 2.
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Figure 5. The effect of heterogeneous monitoring costs on monitoring, the trading rate,
and market shares. Parameter values are: M = 2 (number of market makers), N = 1 (number
of market takers), v0 = 300 (expected payoff), a = 304 (ask price), � = 25 (gains from trade), � = 1
(tick size), cm = −0.2 (make fee), ct = 0.3 (take fee). All monetary values are in cents. The horizontal
axis is the reciprocal of the monitoring costs of market maker 1 (1/β1).

an increasing fraction of trading volume (73% according to “SEC run eye over
high-speed trading,” Financial Times, July 29, 2009).

C. Endogenous Transaction Prices

So far we have fixed exogenously the price at which market makers trade
with market takers. We now endogenize this price. In this way, we can study
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whether the results hold when transaction prices adjust following a change
in fees.

As market makers inspect the market at stochastic points in time, one may
first make an offer at one price, which is subsequently improved by another
market maker, and so on. Modeling this auction is beyond the scope of this
paper. We take a simpler approach to model how gains from trade are divided
between market makers and market takers. In particular, we assume that
this division is given by the Nash bargaining solution in which market takers’
market power is measured by θ ∈ (0, 1), under the constraint that the price at
which market makers and market takers trade belongs to the grid of feasible
prices P (see (1)). That is, the transaction price now solves

max
a∈P

O(a, cm, θ ) ≡ πt(a, cm)θπm(a, cm)1−θ , (30)

where πm(a, cm) = a − v0 − cm and πt(a, cm) = v0 + � − a − c + cm are the per
trade profits of makers and takers, respectively. We denote by a∗(cm, θ ) the
solution to (30), that is, the transaction price at which the traders agree to
trade given the value of the make fee.

For fixed values of the fees, all the findings regarding traders’ monitoring
decisions (see Section II) are still valid. In particular, traders’ monitoring deci-
sions depend on their profit per trade, that is, πm(a∗(cm, θ ), cm) or πt(a∗(cm, θ ), cm),
as in equations (14) and (15) in the baseline model.

We now turn our attention to the optimal fees set by the trading platform.
As a benchmark, it is useful to first consider the polar case in which the tick
size is zero. In this case the solution to equation (30) is

a∗(cm, θ ) = v0 + cm + (1 − θ )(� − c), (31)

and the division of gains from trade, � − c, between makers and takers is

πm(a∗(cm, θ ), cm) = (1 − θ )(� − c), (32)

πt(a∗(cm, θ ), cm) = θ (� − c). (33)

The platform controls the ask price at which market makers and mar-
ket takers trade, since there is a one-to-one mapping between the ask price
and the make fee (equation (31)). However, when the tick size is zero, the
make fee does not affect the share of the gains from trade (� − c̄) captured by
the market makers, which only depends on their relative market power, 1 − θ

(see equation (32)). Indeed, when the tick size is zero, traders fully neutral-
ize the effect of a change in the make fee on the division of gains from trade
by a one-for-one adjustment in the transaction price. For example, a one cent
decrease in the make fee combined with a one cent increase in the take fee
is fully neutralized by a one cent decrease in the ask price (so that, cum
fee, the price paid by takers is unchanged). Accordingly, the platform can-
not affect traders’ monitoring decisions and the trading rate using its make
and take fees. Hence, the make/take fee breakdown is neutral, as claimed by
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Angel, Harris, and Spatt (2011). We state this irrelevance result in the next
proposition.

PROPOSITION 6: [Benchmark] When the tick size is zero, the make/take fee
breakdown has no effect on monitoring decisions or the trading rate.

This is unfortunate since, in general, the division of gains from trade achieved
by traders when the tick size is zero does not maximize the trading rate: the
side capturing a small share of the gains from trade relative to its monitoring
cost tends to react too slowly to trading opportunities. By allocating a higher
share of gains from trade to the relatively slow side, one could increase the
speed at which transactions get executed.

This irrelevance result breaks down, however, when the tick size is strictly
positive. Indeed, in this case, the ask price must be a multiple of the tick size.
This prevents traders from fully neutralizing a change in make/take fees by
adjusting the price at which they trade. Therefore, the platform can influence
traders’ monitoring decisions with its fees and raise the trading rate relative
to the case in which the tick size is zero. Proposition 7 below (proved in the
Internet Appendix) characterizes the optimal pricing policy of the platform for
any value of the tick size. As in the baseline model, we fix the total fee at c̄ and
we focus on the breakdown of this fee between makers and takers. For given
values of the parameters (�, r, and q), we denote the optimal make and take
fees by c∗

m(�, r, q) and c∗
t (�, r, q), respectively. Recall that � = �

�
and that c∗

ms is
the optimal make fee from the baseline model in Section III.

PROPOSITION 7: For each s ∈ {1, 2, . . . , � − 1},
(i) There exists a unique make fee ĉms such that, for all cm ∈ [ĉms, ĉms + �],

trades take place at a∗(cm, θ ) = v0 + s · �.35

(ii) The following pricing policy is such that trade takes place at price v0 + s · �,

and is optimal for the trading platform:

c∗
m(�, r, q) =

⎧⎪⎪⎨
⎪⎪⎩

ĉms if c∗
ms ≤ ĉms

c∗
ms if ĉms < c∗

ms < ĉms + �

ĉms + � if c∗
ms ≥ ĉms + �

and c∗
t (�, r, q) = c̄ − c∗

m(�, r, q).

In contrast to the case with zero tick size, the price at which makers and
takers choose to trade on the grid does not increase one-for-one in the make fee
(first part of the proposition). Indeed, suppose that the make fee is such that
traders choose to trade at price v0 + s · �. If the platform increases its make
fee by, say, one tick, then traders neutralize the effect of this increase on the
division of gains from trade by trading at a price one tick higher, that is, at
v0 + (s + 1) · �. However, traders cannot neutralize the change in the make fee

35 For each value of s, the threshold ĉms is a function of θ (see the proof of Proposition 7 in the
Internet Appendix). We do not make this relationship explicit to simplify notations.
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if this change is small enough relative to the tick size as this would require
trading at a price that is not on the grid. For this reason, the ask price at
which traders choose to trade is increasing stepwise in the make fee rather
than continuously.

To understand the second part of the proposition, suppose that the platform
decides to induce makers and takers to trade at v0 + s · �. Then, in choosing
its make/take fees, the platform solves the same problem as in the baseline
case with one additional constraint: the make fee must be in the interval [ĉms,

ĉms + �], as otherwise traders will choose to trade at another price (first part
of the proposition). This constraint is not binding if the make fee chosen in the
baseline case when the market makers’ spread is s · �, that is, c∗

ms is already in
the interval [ĉms, ĉms + �]. Thus, in this case the platform chooses the same fee
as in the baseline case. Otherwise, the constraint is binding and the platform
chooses the appropriate corner solution (either ĉms or ĉms + �).

The maximum trading rate that the platform can achieve does not depend on
the price, a∗(cm, θ ), resulting from the choice of its make fee. Indeed, suppose
that c∗

m is an optimal make fee. If the platform increases or decreases this
fee by one tick, then traders will neutralize this shift by adjusting upward or
downward by one tick the price at which they choose to trade. As a result,
the division of gains from trade and therefore the trading rate are the same
whether the platform sets its make fee at c∗

m, c∗
m + �, or c∗

m − �. Thus, the
optimal pricing policy for the platform is defined up to one tick. In reality,
trading platforms may have a preference for displaying small bid-ask spreads.
Such a preference would pin down the optimal make fee uniquely in our model:
for instance, if the platform wants a maker’s spread equal to one tick then it
must choose its optimal make fee in [ĉm1, ĉm1 + �].

As in the baseline case, differentiating the make and take fees is optimal
for the platform since, in general, c∗

m(�, r, q) �= c
2 . When the market is thick,

c∗
ms is given explicitly by Proposition 3, and Proposition 7 yields a closed-form

characterization of the optimal make/take fees. Furthermore, as ĉms does not
depend on q and r, the following result is immediate.

COROLLARY 6: In the thick market case, the optimal make fee for the platform
(c∗

m(�, r, q)) weakly increases with the relative size of the market-making side,
q, and the relative monitoring cost for the market-taking side, r.

Thus, our baseline results regarding the effects of a change in r and q
on the optimal take/make spread in the thick market case are robust when
the makers’ spread is endogenous.36 As in the baseline case, when the mar-
ket is not thick, we cannot obtain a closed-form solution for the optimal
make/take fees for arbitrary values of M and N. However, numerical simula-
tions show that the results of Corollary 6 are valid even when the market is not
thick.

36 A reduction in the tick size, �, affects the optimal make/take fee breakdown, but the direction
of the effect can be positive or negative depending on parameter values.
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Table III
Trading Rate, Welfare, and Fee Revenue for Different Tick Sizes

This table reports the trading rate, the expected welfare of each category of participants per second
(the platform, the makers, and the takers), the sum of makers and takers’ welfare, the total welfare
(the sum of all participants’ welfare per second), and the annualized revenue of the platform for
three different levels of the tick size and two scenarios for make/take fees: (i) “uniform”: the total fee
is equally split between makers and takers, and (ii) “optimal”: the make and take fees are optimally
chosen by the platform. Annualized revenues are computed assuming that there are 2,000 stocks
traded on the platform, with 250 trading days per year, each consisting of 6.5 trading hours.
Parameter values are M = 10, N = 20, � = 50, v0 = 600, β = 0.4, γ = 0.1, � = 1, and c = 0.1.

Tick Size = $1/8 Tick Size = $1/16 Tick Size = $1/100

Uniform Optimal Uniform Optimal Uniform Optimal
Pricing Pricing Pricing Pricing Pricing Pricing

Trading Rate (shares/second) 330.6 355.7 330.6 346.4 330.6 333.4
Platform’s Profits ($/second) 0.3306 0.3557 0.3306 0.3464 0.3306 0.3334
Makers’ Welfare (per second) 42.3 57.2 42.3 49.9 42.3 43.5
Takers’ Welfare (per second) 42.8 34.4 42.8 39.2 42.8 42.3
Makers and Takers Welfare

(per second)
85.1 91.6 85.1 89.1 85.1 85.8

Total Welfare (per second) 85.4 92.0 85.4 89.5 85.4 86.1
Estimated Annual Platform 3,868 4,162 3,868 4,053 3,868 3,901
Fee Revenue ($ in millions)

To sum up, as long as the tick size is not zero, the make/take pricing model has
true economic consequences: it affects monitoring intensities, the trading rate,
and market participants’ welfare. We illustrate this point with a numerical
example. Assume that M = 10, N = 20; β = 0.4, γ = 0.1, θ = 0.5, � = 50, v0 =
600, and c̄ = 1/10 (all monetary amounts in cents). Table III provides the
aggregate welfare per unit of time of each market participant and the sum
of these welfares (“Total Welfare”) for various values of the tick size. As in
Table II, the time unit is one second, and we annualize trading revenues for
the platform using the same assumptions as in Section III.B. For each value
of the tick size, we compare the case in which there is no differentiation of
make/take fees (“uniform pricing”) and the case in which make/take fees are
chosen optimally by the platform (“optimal pricing”).

The parameters for Table III are such that, with uniform pricing, market
makers’ aggregate monitoring intensity is smaller than market takers’ moni-
toring intensity. Indeed, both sides have equal market power but market mak-
ers bear a higher monitoring cost and they are fewer. It is therefore optimal
for the platform to lower the make fee while increasing the take fee rela-
tive to the case in which there is no differentiation in make and take fees.
In this way, the platform increases the trading rate by reducing the gap in
the aggregate monitoring intensities of both sides. For this reason, in Table
III market makers’ welfare is higher when the platform sets its fees opti-
mally compared to the case with uniform pricing. In contrast, market takers’
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welfare is smaller since they end up paying a higher fraction of the total fee.
However, market makers’ welfare gains more than offsets market takers’ wel-
fare loss. Thus, the change in the make/take fee breakdown is not just a re-
distribution of gains from trade from takers to makers. It raises aggregate
welfare by increasing the rate at which takers are matched with makers.
Thus, restricting trading platforms’ ability to differentiate their make and
take fees by, for instance, capping the take fee can impair investors’ aggregate
welfare.

Table III further shows that the differentiation of make/take fees has greater
welfare effects when the tick size is large. For instance, for the trading platform,
the difference in annualized revenue between the optimal pricing policy and
the uniform pricing policy is largest ($294 million per year) when the tick size
is $1/8, even though it remains significant ($33 million per year) when the tick
size is one penny. Intuitively, as the tick size declines, the ability of the platform
to affect the trading rate is reduced since a variation in the make fee cannot
affect the division of gains from trade by more than one tick per trade. Hence,
the platform has a preference for a coarse price grid. In practice, however, the
tick size is set by regulators rather than by trading platforms. For instance,
in U.S. equity markets, the SEC imposed a one penny tick size for all stocks
trading above one dollar in 2001.

VI. Conclusion

We have proposed an explanation for the maker/taker pricing model and show
how this pricing scheme interacts with algorithmic trading. Our theory yields
a rich set of empirical implications regarding the factors affecting make/take
fees and the effects of algorithmic trading on liquidity, volume, and traders’
welfare.

The model could be extended in many directions. In our model, traders do
not choose the side on which they are active. An interesting extension would be
to endogenize the number of makers and takers by allowing traders to choose
their side. Furthermore, we focus on a single trading platform. In reality, se-
curities often trade on multiple platforms. The economic forces analyzed in
our paper should still hold in a multi-market environment as long as monitor-
ing is costly. In particular, the make/take fees charged by a platform should
still affect its trading rate as they will affect makers and takers’ incentives
to monitor the market. Yet, intermarket competition may add other consider-
ations to the choice of make/take fees. Last, the joint CFTC-SEC task force
on the flash crash of May 2010 has recently advocated varying make and
take fees in real time in order to attract liquidity suppliers when the mar-
ket momentarily lacks liquidity (see “Summary report of the joint CFTC-SEC
Advisory Committee on Emerging Regulatory issues,” p. 937). Our model of-
fers a starting point to analyze how make and take fees could be used to this
end.

37 Available at http://www.sec.gov/spotlight/sec-cftcjointcommittee/021811-report.pdf.
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Appendix

Derivation of Traders’ Payoffs

Let ñT be the number of completed transactions (cycles) until time T . The
expected payoff to market maker i until time T , net of monitoring costs, is

	i(T ) = EñT

(
ñT∑

k=1

μi

μ̄
πm

)
− 1

2
βμ2

i T . (A1)

Thus, the steady-state expected profit of market maker i per unit of time is

	im ≡ lim
T →∞

	i(T )
T

= lim
T →∞

EñT

(∑ñT
k=1

μi
μ̄

πm
)

T
− 1

2
βμ2

i . (A2)

A standard theorem from the theory of stochastic processes (the “Renewal
Reward Theorem,” see Ross (1996), p. 133) implies that

lim
T →∞

EñT (
∑ñT

k=1
μi
μ̄

πm)

T
=

μi
μ̄

· πm

D (μ̄, τ̄ )
= μi

μ̄
· πm · R (μ̄, τ̄ ) . (A3)

We conclude from Equation (A2) that

	im = μi

μ̄
· πm · R (μ̄, τ̄ ) − 1

2
βμ2

i , (A4)

as claimed in the text. Expressions for the expected profit per unit of time for
market takers and the trading platform are obtained in a similar way.

Proof of Proposition 1: Direct from the argument in the text. Q.E.D.

Proof of Proposition 2: Using equations (7) and (10), the first-order condition
for market maker i is

τ̄ (τ̄ + μ̄ − μi)

(μ̄ + τ̄ )2

πm

β
= μi. (A5)

Summing over all i = 1, . . . M, we obtain

τ̄ ((τ̄ + μ̄) M − μ̄)

(μ̄ + τ̄ )2

πm

β
= μ̄. (A6)

Similarly for market takers we obtain,

μ̄ ((τ̄ + μ̄) N − τ̄ )

(μ̄ + τ̄ )2

πt

γ
= τ̄ . (A7)
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Let V ≡ μ̄

τ̄
. Using (A6) and (A7), we obtain

M + (M − 1)V
(1 + V)2

πm

β
= μ̄, (A8)

V ((1 + V) N − 1)

(1 + V)2

πt

γ
= τ̄ . (A9)

Dividing these two equations gives

(M + (M − 1)V)
V2 ((1 + V) N − 1)

z = 1, (A10)

or equivalently,

V3 N + (N − 1)V2 − (M − 1) zV − Mz = 0. (A11)

This equation is equivalent to V = h(V, M, N, z), where the function h(·) is
defined by

h(V, M, N, z) = (M − 1)z
VN

+ Mz
NV2 − N − 1

N
. (A12)

The function h(·, M, N, z) decreases in V. It tends to plus infinity as V goes
to zero, and to − N−1

N as V goes to infinity. Thus, equation (A11) has a unique
positive root that we denote by V∗. We obtain μ̄∗ and τ̄ ∗ by inserting V∗ into
(A8) and (A9). Note that μ∗

1 = . . . = μ∗
M and τ ∗

1 = . . . = τ ∗
N. Hence, μ∗

i = μ̄∗M and
τ ∗

j = τ̄ ∗38 N for all i, j. This completes the proof. Q.E.D.

Proof of Corollary 2: Recall that μ̄∗
τ̄ ∗ = V∗. Using equation (16), it is readily

checked that V∗ = 1 if and only if z = 2N−1
2M−1 . Thus, μ̄∗ = τ̄ ∗ if and only if z = 2N−1

2M−1 .
Moreover, as shown in the proof of Corollary 1 (in the Internet Appendix), V∗

increases in z. Hence, μ̄∗ > τ̄ ∗ iff z > 2N−1
2M−1 . Q.E.D.

Proof of Corollary 3: Recall that V∗ ≡ Dt
Dm

= μ̄∗
τ̄ ∗ . We know from the proof of

Corollary 1 (in the Internet Appendix) that V∗ increases in z and M and de-
creases in N. The corollary is then immediate from equation (13). Q.E.D.

38 Indeed, suppose for example that μ∗
1 > μ∗

2. Then, from equation (A5),

τ̄ ∗ (τ̄ ∗ + μ̄∗ − μ∗
1

)
(μ̄∗ + τ̄ ∗)2

πm

β
>

τ̄ ∗ (τ̄ ∗ + μ̄∗ − μ∗
2

)
(μ̄∗ + τ̄ ∗)2

πm

β
,

which simplifies to μ∗
1 < μ∗

2—a contradiction.
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Proof of Corollary 4: Using Proposition 2, we deduce that

μ∞
i ≡ lim

M→∞
μ∗

i = lim
M→∞

(
M + (M − 1)V∗

M (1 + V∗)2

)(
πm

β

)

= lim
M→∞

(
1 + M−1

M V∗

(1 + V∗)2

)(
πm

β

)

= 1
1 + V∞

(
πm

β

)
= 1

1 + (zq)
1
2

πm

β
(using equation (17)).

A similar argument is used to derive τ∞
j . Q.E.D.

Proof of Proposition 3: We fix q > 0, and let N = M
q . Note that there is a

one-to-one mapping between the fees charged by the platform and the trading
profits πm and πt. Thus, instead of using cm and ct as the decision variables of
the platform, we can use πm and πt. It turns out that this is easier. We also
know that

R(μ̄∗, τ̄ ∗) = μ̄∗τ̄ ∗

μ̄∗ + τ̄ ∗ = μ̄∗

1 + V∗ . (A13)

Moreover, as πm = � − c̄ − πt, we can express the trading rate, R(μ̄∗, τ̄ ∗), as a
function of πt only. Thus, for a fixed c̄, we rewrite the platform’s problem as

Maxπt

μ̄∗

1 + V∗ . (A14)

The first-order condition with respect to πt gives

∂μ̄∗

∂πt
= R(μ̄∗, τ̄ ∗)

∂V∗

∂πt
. (A15)

Since μ̄∗ = Mμ∗
1, we can divide both sides by M and obtain

∂μ∗
1

∂πt
= R(μ̄∗, τ̄ ∗)

M
∂V∗

∂πt
. (A16)

As the first order condition holds for any M, we can take limits on both sides
to obtain

lim
M→∞

∂μ∗
1

∂πt
= lim

M→∞
R(μ̄∗, τ̄ ∗)

M
· lim

M→∞
∂V∗

∂πt
. (A17)

Straightforward calculations show that

lim
M→∞

∂V∗

∂πt
= dV∞

dπt
= − q

2V∞
� − c
π2

t

γ

β
, and (A18)

lim
M→∞

∂μ∗
1

∂πt
= − 1

β (1 + V∞)
− 1

(1 + V∞)2 · ∂V∞

∂πt
· � − c̄ − πt

β
, (A19)
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where V∞ is given by equation (17). Furthermore, it is direct from
equation (A13) that

lim
M→∞

R(μ̄∗, τ̄ ∗)
M

= μ∞
1

1 + V∞ , (A20)

where μ∞
1 is given by (18). Using (A18), (A19), and (A20), we obtain that

equation (A17) is equivalent to

πt

� − c̄
= V∞

1 + V∞ . (A21)

Denote

w ≡ πt

� − c̄
. (A22)

Equation (A21) imposes

w = V∞

1 + V∞ = 1

1 + (zq)
1
2

. (A23)

Now, observe that z = r( 1−w
w

). Thus, we can rewrite equation (A23) as

w = 1

1 + (
e 1−w

w

)−0.5
(rq)−0.5

. (A24)

It is immediate that the unique solution of equation (A24) is

w∗ = (rq)
1
3

1 + (rq)
1
3

. (A25)

Accordingly, from equation (A22) we obtain

πt = � − c̄

1 + (rq)−
1
3

, (A26)

which implies

πm = � − c̄ − πt = � − c̄

1 + (rq)
1
3

. (A27)

As, by definition, πm = a − v0 − cm, we deduce from equation (A27) that, when
a − v0 = s · �, the optimal make fee in the thick market case is

c∗
ms = s · � − πm = s · � − � − c̄

1 + (qr)
1
3

(A28)

and the optimal take fee follows from the fact that c∗
ms + c∗

ts = c̄. Q.E.D.

Proof of Corollary 5: The result follows directly from equation (22). Q.E.D.
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Proof of Proposition 4: Using equation (A8) in the proof of Proposition 2, we
deduce that, for a fixed τ̄ , market makers’ aggregate monitoring level, μ̄, solves

F(μ̄; τ̄ , β, cm, M) = 0, (A29)

where

F(μ̄; τ̄ , β, cm, M) ≡ M + (M − 1)πmμ̄

τ̄
− βμ̄

(
1 + μ̄

τ̄

)2

. (A30)

It is easily shown that, for all parameter values, equation (A29) has a unique
positive solution μ̄. Let μ̄ = ϕ(τ̄ ; β, cm, M) be this solution. Using the implicit
function theorem,

dϕ

dτ̄
= −

∂F
∂τ̄

|μ̄=ϕ(τ̄ ;β,cm,M)
∂F
∂μ̄

|μ̄=ϕ(τ̄ ;β,cm,M)
. (A31)

Using the expression for F(·), we obtain ∂F
∂τ̄

|μ̄=ϕ(τ̄ ;β,cm,M)> 0 and ∂F
∂μ̄

|μ̄=ϕ(τ̄ ;β,cm,M)<

0. Hence, dϕ

dτ̄
> 0. Now, since we have μ̄ = ϕ(τ̄ ; β, cm, M), we deduce that

Dm = f (Dt; β, M, cm), (A32)

with f (Dt; β, M, cm) = 1
ϕ( 1

Dt
;β,cm,M)

. Then, since dϕ

dτ̄
> 0 we have that ∂ f

∂Dt
> 0. In

a similar way, we can show that there exists a function g(·) such that Dm =
g(Dt; γ, N, ct) and ∂g

∂Dm
> 0. This completes the first part of the proposition. The

second part is obtained using similar arguments (again applying the implicit
function theorem). We omit the details for brevity. Q.E.D.

Proof of Proposition 6: See the discussion before the proposition.
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