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Noisy Prices and Inference Regarding Returns

ELENA ASPAROUHOVA, HENDRIK BESSEMBINDER, and IVALINA KALCHEVA∗

ABSTRACT

Temporary deviations of trade prices from fundamental values impart bias to esti-
mates of mean returns to individual securities, to differences in mean returns across
portfolios, and to parameters estimated in return regressions. We consider a number
of corrections, and show them to be effective under reasonable assumptions. In an
application to the Center for Research in Security Prices monthly returns, the correc-
tions indicate significant biases in uncorrected return premium estimates associated
with an array of firm characteristics. The bias can be large in economic terms, for
example, equal to 50% or more of the corrected estimate for firm size and share price.

SOME OF THE MOST frequently studied research questions in the field of Finance
invoke comparisons of mean rates of return across securities and portfolios.
Such comparisons lie at the heart of the vast empirical asset pricing literature,
and are central to the estimation of firms’ cost of capital. Beyond formal asset
pricing tests, researchers have assessed relations between mean returns and
a diverse array of firm attributes, such as the quality of corporate governance
(Gompers, Ishii, and Metrick (2003)), aggregate short selling and institutional
ownership (e.g., Asquith, Pathak, and Ritter (2005)), media coverage (Fang
and Peress (2009)), success of customer firms (Cohen and Frazzini (2008)), and
credit ratings (Avramov et al. (2007)), to name just a few. Studies that compare
returns on stocks of interest to those of designated “benchmark” securities, as
in Barber and Lyon (1997) and Lakonishok and Lee (2001), also measure mean
returns.

However, it is broadly recognized that the price data used to compute secu-
rity returns contain noise attributable to market imperfections. Noise arises
from microstructure frictions such as bid-ask spreads, nonsynchronous trad-
ing, discrete price grids, and the temporary price impacts of order imbalances.
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Noise can also arise due to changes in investor sentiment or other behavioral
factors, in combination with limits to arbitrage. In this paper, we use the term
noise to refer to any temporary deviation of price from underlying value. We
discuss the economics of noisy prices more fully in Section I.

The effects of noisy prices on empirical estimates of return volatility have
been studied extensively in the realized volatility literature.1 In contrast, the
effects on estimates of mean returns and return premia have received less at-
tention. The most prominent exception is Blume and Stambaugh (1983), who
show that zero-mean noise in prices leads to strictly positive bias in individual
securities’ mean returns, with the magnitude of the bias in each security’s mean
return approximately equal to the variance of the noise in the security’s prices.
Blume and Stambaugh (1983) also show that cross-sectional mean returns to
equal-weighted (EW) portfolios are upward biased by the cross-sectional aver-
age of the individual security biases. This implies that a comparison of mean
returns across EW portfolios can be misleading. If portfolios are created by
sorting on a variable correlated with the variance of noise, then the upward
bias will be greater for the portfolio containing noisier securities, and the dif-
ference in mean returns across portfolios is biased. Biases attributable to noisy
prices also arise in regression analyses. In particular, Asparouhova, Bessem-
binder, and Kalcheva (2010) show that noisy prices lead to biases in intercept
and slope coefficients obtained in any ordinary least squares (OLS) regression
using rates of return as the dependent variable.

Many researchers who study security returns make no allowance for the
potential effects of noisy prices. For example, examining papers published in
only two premier outlets, The Journal of Finance and The Journal of Financial
Economics, over a recent 5-year (2005 to 2009) interval, we are able to identify
24 papers that report EW mean returns and compare them across portfolios.2

In addition, dozens, if not hundreds, of published studies report results of
OLS regressions using security or portfolio returns as the dependent variable,
including cross-sectional Fama–MacBeth (1973) regressions and time-series
factor model regressions. The implicit assumption in these studies is that any
effects of noise in prices are small enough to be safely ignored. In part this may
reflect a perception that noise-induced biases are likely to be important only
in daily (or higher frequency) returns, and not in the monthly returns that are
most frequently studied.

This paper assesses the effects of noisy prices on inferences regarding mean
returns to individual securities and portfolios, and regarding return premia
associated with stock characteristics. To illustrate the potential importance of
the issue, we study monthly Center for Research in Security Prices (CRSP)
returns from 1966 to 2009, and obtain uncorrected return premia estimates

1 See, for example, Aı̈t-Sahalia, Mykland, and Zhang (2005), Bandi and Russell (2006), Engle
and Sun (2007), and Andersen, Bollerslev, and Meddahi (2011).

2 While equal-weighting is likely the most common example of a weighting method leading to
biased mean portfolio returns, other weighting methods, including fundamental weights (based
on cash flows, earnings, dividends, etc.) also give biased portfolio means, as discussed further in
Section II.
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associated with a representative set of firm characteristics, including trad-
ing volume, share price, illiquidity, market-to-book ratio, and firm size. We
then compare these estimates to those obtained after correcting for the effects
of noisy prices. We consider several possible corrections, including the buy-
and-hold method implemented by Blume and Stambaugh (1983) and Conrad
and Kaul (1993), among others, and the gross-return-weighting method imple-
mented in Asparouhova, Bessembinder, and Kalcheva (2010). We also assess
the effects of value-weighting returns, when weights are based on prior-month
market values and (since researchers often form value-weighted [VW] portfo-
lios on an annual basis) on prior-December market values.

As discussed more fully in Section II, each of these corrections equates to
computing weighted average portfolio returns or estimating regression pa-
rameters by weighted least squares (WLS). The methods are distinguished by
the weighting variable used, and the potential effectiveness of each method
stems from the use of the lagged observed price in constructing weights. For
brevity, and as explained in more detail in Section II, we refer to the buy-and-
hold method implemented by Blume and Stambaugh (1983) as the initial-
equal-weighted (IEW) method. We refer to the correction implemented by
Asparouhova, Bessembinder, and Kalcheva (2010) as the return-weighted (RW)
method, and to weighting by the prior-period market capitalization as the VW
method. Finally, we refer to weighting by prior-December market value as the
annual-value-weighted (AVW) method.

Blume and Stambaugh (1983) assume that the noise in security prices is
independent across periods, that is, the noise in the period t price is on average
dissipated by period t + 1. Asparouhova (2010) follow, and also assume that the
noise in prices is independent across securities in their consistency proof. Here
we assess, by theory and simulation, the effect of relaxing these assumptions.
The results show that the corrected estimates are not necessarily consistent
when the noise in prices is dependent over time or across securities. However,
for any reasonable range of parameters, corrected estimates are strictly less
biased than uncorrected (EW or OLS) estimates. That is, the effect of imple-
menting the corrections considered is always to reduce the bias attributable
to noisy prices. Furthermore, for moderate violations of the independence as-
sumption that are in line with the empirical estimates provided by Brennan
and Wang (2010) and Hendershott et al. (2011), the remaining bias in the
corrected estimates is minimal.

In terms of effectiveness in mitigating biases in portfolio mean return esti-
mates, the analysis provides little reason to prefer VW over RW, or vice versa.
Although each is effective in mitigating bias, the former places greater weight
on large firms whereas the latter places essentially equal weight on each se-
curity in the sample. The final choice may therefore depend on researchers’
preferences for weighting the information contained in the small versus large
firms in the sample. In contrast, the VW method strictly dominates the AVW
method in terms of mitigating the bias, which reflects that the AVW method
does not correct for bias in months other than the first month after portfolio
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formation.3 Furthermore, for realistic parameters, the RW method contains
less bias than the IEW method when estimating mean portfolio returns. Ap-
plied to the estimation of slope coefficients in regressions with returns as the
dependent variable, we find for reasonable parameter estimates that the VW,
RW, and IEW methods are all effective in mitigating the bias, and that the
differences across corrected estimates are small.

Empirically, comparisons of uncorrected (EW or OLS) return premium esti-
mates to estimates corrected by any of the weighting methods indicate statis-
tically significant bias for all five firm characteristics considered, as well as for
market Beta. However, the magnitude of the estimated bias varies consider-
ably across characteristics. The RW and IEW estimates of the return premium
associated with the book-to-market ratio differ by less than 10% from the un-
corrected estimates, indicating modest bias. In contrast, the estimated biases
in the return premia associated with firm size, share price, trading activity, and
illiquidity are more substantial, equalling over 50% of the corrected estimates.
While we focus here on return premia associated with five representative firm
characteristics, similar biases potentially affect any variable used to explain
average returns.

We delve further into the sources and economic interpretation of noise in
prices in Section I. In Section II, we assess the properties of the RW, IEW, and
VW corrections, by theory as well as simulations. The empirical methodology
and explanatory variables used are introduced in Section III. Empirical results
are reported in Section IV, and Section V concludes.

I. The Economics of Noisy Prices

Numerous researchers have noted that the prices at which security trades
take place can differ from underlying security values. We follow Blume and
Stambaugh (1983) in referring to the underlying security value as the “true”
price, and for simplicity of exposition we refer to the divergence of observed
trade prices from true prices as “noise.” True prices have also been referred to as
implicit or efficient prices, or fundamental values. The divergence of observed
prices from true prices has also been referred to as mispricing, particularly
when considering situations in which the divergence is potentially larger than
some traders’ costs of transacting. Regardless of whether one prefers the label
noise or mispricing, if observed trade prices differ from true prices, then rates
of return computed from observed prices differ from returns based on true
prices. While some researchers may indeed want to make inferences regarding
the characteristics of observed returns, we argue here that in many cases
researchers will want to make inferences with regard to true returns, and we
evaluate the properties of alternate methods of doing so.

3 The AVW method does reduce bias considerably as compared to equal-weighting, but the effect
is primarily attributable to placing greater weight on large capitalization firms that tend to have
less noisy prices.
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A. Sources of Noise in Prices

In the discussion that follows, we highlight the distinguishing characteristic
of noise in transaction prices: noise is temporary, and is reversed over time.
We interpret noise as any temporary deviation of transaction prices from true
prices.

Scholes and Williams (1977), Blume and Stambaugh (1983), and Ball and
Chordia (2001), among others, emphasize microstructure-based frictions such
as bid-ask spreads, nonsynchronous trading, and a discrete price grid as sources
of noise in observed prices. Other authors focus on the potentially important
role of large orders or accumulated order imbalances. Grossman and Miller
(1988) show that orders submitted by those who demand liquidity lead to
price changes that are subsequently reversed on average, with the reversal
compensating market makers for supplying immediate execution. Admati and
Pfleiderer (1991) extend the Grossman and Miller model to allow outside spec-
ulators with fixed market participation costs to act as de facto market makers,
who enter the market in response to large price movements caused by order
imbalances. Bertsimas and Lo (1998) observe that short-term demand for even
the most actively traded securities is not perfectly elastic, and develop a model
of optimal execution strategies for large traders when their orders have both
permanent and temporary effects on prices. Hasbrouck (2007, chapter 15) ex-
tends the analysis to allow for slowly decaying temporary price effects, where
the transient price effects of order imbalances spill over into periods subsequent
to order execution.

The microstructure-based literature implies that prices will generally con-
tain noise even if all traders are fully rational. However, noise can also arise
due to the presence of irrational traders. Black (1986) notes that noise traders
include those with immediate liquidity needs, as well as traders who think they
are informed but are not. The vast behavioral finance literature (see, e.g., the
Barberis and Thaler (2003) survey) posits that some or all traders are not fully
rational, for example, because they do not update beliefs correctly, resulting
in market prices that deviate from fundamental values. Models in which all
traders exhibit behavioral biases or where barriers to arbitrage are sufficiently
large can imply that prices are permanently altered, as compared to those im-
plied by models of rational traders operating in frictionless markets. However,
permanent deviations of price from value are likely not detectable by econo-
metricians, and in any case impart no bias to either corrected or uncorrected
return premium estimates, as shown in Section II.4

The empirical evidence generally confirms that order imbalances can tem-
porarily push price away from value. Chordia and Subrahmanyam (2004)
study individual New York Stock Exchange (NYSE) securities, and report that
price changes are positively related to contemporaneous order imbalances but

4 Another possibility is the existence of mispricing that includes both permanent and temporary
components. In this case, the issues we address would still apply, and the corrections proposed
would still be effective, for the effects on return premia estimates of temporary deviations around
the “true value + permanent mispricing” benchmark.
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negatively related to order imbalances over the four prior days. Andrade,
Chang, and Seasholes (2008) study Taiwanese stocks, and also find a negative
relation between price changes and prior-day order imbalances. In a study po-
tentially important to researchers who focus on security prices measured at the
monthly interval, Hendershott et al. (2011) estimate that a quarter of the vari-
ance in monthly returns to NYSE stocks is due to transitory price changes that
are themselves partially explained by cumulative order imbalances and mea-
sures of market-makers’ inventories. Jegadeesh (1990) and Lehmann (1990)
each document significant reversals of price changes for CRSP common stocks,
the former at a 1-month horizon and the latter at a weekly horizon, also con-
sistent with the notion that transaction prices contain significant noise.

Collectively, the literature implies that prices can differ from fundamental
values because cumulative order imbalances move prices if short-run liquidity
supply is not perfectly elastic, and because not all traders are necessarily fully
rational. If barriers are not too large the resulting divergence of observed from
true prices can create opportunities for additional de facto liquidity providers
to enter the market. The mechanism is well described by Harris (2003, p. 414),
who observes that “Large orders and cumulative order imbalances created by
uninformed traders also cause prices to move from their fundamental values.
The price changes reverse when value traders or arbitrageurs recognize that
prices differ from fundamental values. Their trades then push prices back.”
With regard to the horizon over which noise is reversed, Harris (2003, p. 414)
notes that “The price impacts of large orders and order imbalances generated
by uninformed traders may cause negative price change serial correlations
measured over minutes, hours, days, or even months.”

As noted, we interpret any temporary deviation of transaction prices from
true prices as noise. However, not all temporary components in prices neces-
sarily reflect noise. Poterba and Summers (1988), among others, observe that
time variation in required returns can induce a transitory component in prices.
In the Internet Appendix to this paper, we assess whether the properties of
the proposed corrections for noise are adversely affected by time variation in
discount rates, and conclude that the effect on the corrections is minuscule for
any reasonable parameterization.5

B. Noisy Prices and Inference Regarding Price Appreciation

Let the observed period t price for any given stock be Po
t = Pt(1 + δt), where

Pt denotes the true price. Ignoring dividends for simplicity, the true and ob-
served (gross) period t returns are simply Rt = Pt/Pt−1 and Ro

t = Po
t /Po

t−1, re-
spectively. We follow Brennan and Wang (2010) in relaxing the independence
assumption to allow the noise component of the prices, denoted δt, to follow
an AR(1) process. In Appendix A, we show that the generalized version of the
Blume and Stambaugh (1983) result regarding the expected return to any given

5 The Internet Appendix may be found in the online version of this article.
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security is

E(Ro
t ) ∼= E(Rt)(1 + σ 2(1 − ρ)), (1)

where σ 2 and ρ are the variance and first-order autocorrelation of δt, respec-
tively. The mean observed return is larger than the mean true return as long
as ρ < 1, that is, if the deviations of observed prices from true prices are indeed
temporary. As in Blume and Stambaugh (1983), the differential between the
mean observed and true returns increases with σ 2.

To illustrate the existence and implications of noise-induced bias in mean
observed returns, consider the following simple example. There are two securi-
ties, each of which has a constant true price equal to $10. However, transaction
prices for each security are affected by zero-mean noise. In particular, security
1 trades at a price of either $9.9 or $10.1, with equal probabilities. Security 2
is subject to more noise, and trades at either $9.8 or $10.2, again with equal
probabilities. The possible returns observed for security 1 are 2.02% (25% prob-
ability), −1.98% (25% probability), or zero (50% probability). For security 2, the
possible observed returns are 4.08% (25% probability), −3.92% (25% probabil-
ity), or zero (50% probability). In a large sample, the average return observed
for security 1 will be 0.01%, whereas that observed for security 2 will be 0.04%.6

Notice that in this example neither the true price nor the expected observed
price drifts upward over time. Nevertheless, positive mean returns are observed
for both securities, and the mean is larger for the security with more noisy
prices. The outcome that the average observed return overstates the rate of
increase in prices is not specific to this example. The intuition remains intact
when the true price, Pt, follows a random process (with or without drift) and for
more complex noise distributions, as long as the noise is zero-mean. Consider,
for simplicity, the case in which true returns do not depend on past prices (as
when true prices follow a martingale process), which implies that the expected
true gross return at time t is the ratio of expected prices at time t and time t − 1.7

Also, given zero-mean noise, we have E(Po
t ) = E(Pt) for any t. In combination,

we can write

E
(
Po

t

)
E

(
Po

t−1

) = E
(
Pt

)
E

(
Pt−1

) = E(Rt) ≤ E
(
Ro

t

) = E
(

Po
t

Po
t−1

)
, (2)

where the inequality results from expression (1).
Expression (2) implies that the growth rate in expected prices (true or ob-

served) is strictly smaller than the expected observed return when prices con-
tain noise.8 The fact that the mean observed return overstates the rate at
which prices trend upward over time is a key reason that many researchers

6 Notably, there would be no upward bias in the average log return. However, see Ferson and
Korajczyk (1995), who articulate several reasons that it may not be appropriate to use continu-
ously compounded returns when testing discrete-time asset pricing models. In any case, the large
majority of empirical analyses focuses on simple rather than log returns.

7 In general, E(Rt) = E(Pt)
E(Pt−1) − cov(Rt,Pt−1)

E(Pt−1) . Setting the covariance to zero gives the result.
8 Note the distinction between this observation and the well-known fact that the arithmetic
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will want to adjust observed returns for the effects of noisy prices. From expres-
sion (1), the divergence between the expected observed return and the growth
in expected prices increases with the variance of the noise.

Note also that the value of investor holdings (aggregated across all agents
in the economy) in any given firm is simply the number of shares outstanding
times the price per share. The rate of growth in expected aggregate shareholder
value is, for every firm, the same as the rate of growth in the expected share
price. The implication is that researchers who are interested in studying the
growth in expected shareholder value should focus on the expected true return.

C. Mean Observed Returns and Active Trading

The preceding discussion highlights what mean observed returns do not mea-
sure: the rate of growth in expected prices or aggregate shareholder wealth.
We now turn to what mean observed returns do measure: returns to a hypo-
thetical active trading strategy potentially used by a nonrepresentative subset
of investors.

Researchers who are interested in studying outcomes from active trading
strategies will want to study observed prices and returns (while making ap-
propriate allowances for trading costs and other implementation issues). A
focus on active trading can be motivated by the fact that some investors can
potentially improve their returns by trading successfully on noise. As a case in
point, Hsu (2006) shows that periodically rebalancing a portfolio to maintain
equal weights can increase average portfolio returns relative to those earned
on a VW portfolio. His computations pertain in particular to an investor who
succeeds in selling at prices that have increased (relative to other securities in
the same portfolio), and vice versa, to reestablish equal weights. The strategy
improves returns if the price changes that precipitated the trades are reversed
on average, that is, if prices contain noise. To the extent that the noise in prices
reflects liquidity demand on the part of impatient traders, the posited rebal-
ancing strategy is one of liquidity provision, and the improved returns can be
interpreted as compensation for supplying liquidity.

However, if one investor sells (buys) at a price containing positive (negative)
noise, another necessarily takes the opposite side of the trade. Gains and losses
from active trading are zero-sum across all agents in the economy. The broader
implication is that an EW cross-sectional mean of observed returns should be
interpreted as pertaining to a hypothetical subset of investors who successfully
execute an active rebalancing strategy. Similarly, the EW time-series mean
observed return for an individual stock should be interpreted as pertaining
to the hypothetical subset of investors who succeed in selling at prices that
have increased and buying at prices that have decreased, so as to maintain
constant dollar investment over time. In either case, the experience of these

mean return exceeds the geometric mean return, unless the variance of returns is zero. In contrast,
the expected observed return exceeds the expected true return only if prices contain noise, that is
temporary deviations of price from underlying value.
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hypothetical active investors does not reflect the experience of shareholders in
the aggregate.

While our discussion up to this point has focused on mean returns, the issues
carry over to cross-sectional regressions with observed returns as the depen-
dent variable. Models such as the Capital Asset Pricing Model (CAPM) or the
Arbitrage Pricing Theory (APT) predict equilibrium pricing relationships, and
do not explicitly allow for noise in prices. They therefore provide no explicit
guidance as to whether researchers should use cross-sectional regressions to
estimate parameters of the true or the observed return distribution.

We argue that the key cross-sectional implication of the CAPM and similar
models is that positions taken in high-risk (appropriately measured) securities
should be associated with growth over time in the expected value of the position,
relative to positions in low risk securities. In terms of the simple two-asset
example in the prior subsection, suppose that security 2 has more risk than
security 1. Should the larger mean observed return for security 2 then be
viewed as supportive of a positive risk-return tradeoff? Or, should the fact that
expected prices for both securities are constant over time be interpreted to
indicate the absence of return premia? We believe the latter interpretation is
appropriate.

We summarize this discussion as follows. Researchers who are interested in
studying growth in the aggregate value of all shareholdings in a given stock or
group of stocks should conduct statistical inference with respect to the proper-
ties of true returns. In contrast, researchers who are interested in studying the
potential profitability of specific active trading strategies will want to study
observed prices and returns, while allowing for implementation issues. Re-
searchers who report the EW mean observed return on individual stocks or
portfolios, or coefficients estimated by OLS return regressions, are implicitly
studying returns (before implementation costs) to active strategies potentially
used by subsets of investors.

II. Return Estimators in the Presence of Noisy Prices

Researchers who wish to study the properties of true returns must still
make their inferences on the basis of the noisy return data that are observable.
In this section, we discuss alternative methods of correcting cross-sectional
parameter estimates for the effects of noisy prices. We then assess the large
sample properties of those estimators, by theory and simulations.

A. The Weighted Estimators

We consider three main potential methods of correcting observed mean re-
turns and return regression slope coefficients for the effects of noisy prices. The
common thread across the three methods is that each involves weighting the
observed time t return by a variable proportional to the time t − 1 observed
price. The intuition for the effectiveness of all three methods is conveyed by ex-
pression (13) in Blume and Stambaugh (1983), who show that the expectation
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of a weighted portfolio return depends on expected weights, expected returns,
and covariances between weights and returns. Expected observed returns are
upward biased, as noted. A necessary condition for a weighting method to off-
set this bias is negative covariation between weights and observed returns.
The use of a weighting variable proportional to the time t − 1 observed price
induces the requisite negative covariation: if the t − 1 observed price contains
positive noise, then the weight is increased and the time t return is decreased,
on average, and vice versa.

Weighting methods (including equal weighting and other constant-weight
methods) that do not induce the requisite negative covariation will not elimi-
nate the bias. In particular, mean returns to portfolios constructed on the basis
of “fundamental” weighting (e.g., based on cash flows, dividends, or earnings)
are, like EW portfolios, upward biased.

A.1. The Initial-Equal-Weighted Method

Blume and Stambaugh (1983) focus on cross-sectional mean portfolio re-
turns, and introduce the buy-and-hold portfolio as a correction for noisy prices.
The essential feature of a buy-and-hold portfolio is that the number of shares of
each security is held fixed for some period of time. However, portfolio weights
(the proportion of total investment in each security) depend on both share posi-
tions and prices. The weights in a buy-and-hold portfolio will therefore change
over time as relative prices change. Conversely, to maintain constant portfolio
weights requires changes in the number of shares held to offset changes in
share prices, highlighting that EW portfolios as well as other constant-weight
portfolios imply active trading.

Blume and Stambaugh’s theoretical motivation considered price-weighted
portfolios, while their empirical analysis studied portfolios that are EW at the
beginning of each calendar year, with share positions held constant over the
subsequent year, before rebalancing to equal weights at year-end. We refer to
their empirical implementation as IEW. Conrad and Kaul (1993) rely on the
same method, but rebalance after 3 years.

The IEW method implies portfolio weights that evolve over time as a function
of observed returns. In particular, if EW portfolios are formed at time zero, then
the time t portfolio weighting variable for each stock n is wnt = P0

nt−1

P0
n0

, which

reflects that securities with greater price appreciation subsequently receive
greater weights in a non-rebalanced portfolio. Note, though, that the IEW
method assigns equal weights to each security in the first period (t = 1) after
the portfolio is formed, implying the absence of any correction for the effects of
noise in the first period.

A.2. The Return-Weighted Method

Asparouhova, Bessembinder, and Kalcheva (2010) focus on cross-sectional
return regressions, and implement a correction that involves WLS estimation,
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with the prior-period gross return used as the weighting variable. Applied to
estimating portfolio returns, this correction simplifies to computing a weighted
mean return, where the weighting variable is the prior-period gross return.9

We denote this method RW.

Unlike IEW, the RW method does not have a buy-and-hold interpretation.
The criterion that is assessed here is the ability of a method to provide consis-
tent estimates of parameters of the true return distribution. Under assump-
tions to be clarified, the RW method can provide a consistent estimate of the
mean true return on a single security, or of the mean true return to a portfolio
of securities. The mean true return to an EW portfolio potentially differs (in
particular if true returns are related to value) from the mean true return to a
VW portfolio. A researcher may well be interested in estimating the former, for
example, because VW portfolios can be dominated by a few large capitalization
stocks. Furthermore, when estimating cross-sectional parameters, for example,
the return premium associated with beta or market capitalization, the infor-
mation contained in the returns of a small capitalization stock is potentially
as informative as that contained in the returns of a large capitalization stock,
and the researcher may not want to weigh it less. Though it does not have a
buy-and-hold interpretation, the RW method provides bias-corrected estimates
of true mean returns and of true cross-sectional pricing parameters.

The RW method relies on the weighting variable wnt = R0
nt−1. To assess

the relation between the RW method and the IEW method, consider a gen-
eralization where weighting is based on the prior s-period gross return:
wnt = R0

nt−1−s . . . R0
nt−1 = P0

nt−1

P0
nt−1−s

, which we refer to as RW(s). Note that RW(s)

coincides with IEW when the relation between s and t (the number of periods
since IEW portfolio formation) is t − s = 1. Thus, the IEW method equates to
RW(1) in t = 2, to RW(2) in t = 3, etc. In their empirical analysis Blume and
Stambaugh compute weighted returns up to time t = 12, when the portfolio is
once again rebalanced to equal weights. Estimates are averaged across months,
and therefore are equivalent to the average across RW(0) to RW(11).

A.3. The Value-Weighted Method

As noted, Blume and Stambaugh’s theoretical analysis focuses on price-
weighted portfolios. Although researchers rarely study price-weighted port-
folios, they often study VW portfolios. We consider VW when weights are based
on prior-period market values, wnt = SnP0

nt−1, where Sn is the number of shares
outstanding for firm n. Note that, ignoring dividends, VW portfolios also reflect
a buy-and-hold strategy. In addition, since researchers commonly form VW
portfolios on an annual basis, we consider the properties of an AVW method
that relies on prior-December market values. Note, however, that, unlike IEW,

9 Fisher and Weaver (1992) independently develop a method for correcting returns to EW stock
indices for noisy prices. Their method focuses on the ratio of two-period to one-period index returns,
but is equivalent to weighting by prior-period gross returns.
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RW, and VW, the AVW method does not rely on the time t − 1 price, except for
the first period after portfolio formation.

B. The Framework

We next provide a formal assessment of the large sample properties of uncor-
rected and corrected estimates of both mean returns and cross-sectional regres-
sion slope coefficients. The true (gross) return for each security n ∈ {1, 2, . . . , N}
at time t ∈ {1, 2, . . . , T } is assumed to be a linear function of observable vari-
ables,

Rnt = 1 + α + X
′
ntβ + εnt, (3)

where α is a scalar, β is a K − 1-dimensional vector of parameters, εnt is a
white noise random error term, and Xnt is a K − 1-dimensional vector of firm
parameters or market-wide factors.10

If X̃t = (1, Xt), where 1 is an N-dimensional vector of ones, Xt =
(X1t, X2t, . . . , XNt)′, and β̃ = (1 + α, β ′)′, we can write the system of equations
for the returns of firms 1 to N as

Rt = X̃tβ̃ = (1 + α)1 + Xtβ + εt. (4)

In what follows, unless otherwise noted the expectation and covariance oper-
ators are applied cross-sectionally. Let μt denote the time t true cross-sectional
mean (gross) return, that is, μt = 1 + α + E(X

′
ntβ). Observed prices, P0

nt, deviate
from true prices, Pnt: P0

nt = Pnt(1 + δnt), where δnt = σnδ
0
nt and δ0

nt has zero mean
and is independent of (Xmτ , σ 2

n , σ 2
m) for any n �= m or t �= τ. We also assume

that the noise variance parameters σ 2
n are draws from a common distribution

across stocks, that is, σ 2
n ∼ (σ 2, �) for all n = 1, 2, . . . , N.

In the most general specification considered, we allow

δ0
nt = ρδ0

nt−1 +
√

1 − ρ2
(√

cθt + √
1 − cξnt

)
, (5)

where E(ξnt) = E(ξ3
nt) = 0, var(ξnt) = var(θt) = 1, and E(θt) = E(θ3

t ) = 0. This
specification allows for potential serial correlation in noise through the ρ pa-
rameter, and allows for a potential common market-wide component in noise
through the c parameter, while ensuring that the total variance of noise, σ 2

n ,
remains constant across ρ and c. If c = 0 the noise in prices is completely
idiosyncratic, whereas if c = 1 there is no idiosyncratic component in the noise.

The observed (gross) return for stock n at time t is

R0
nt = Rnt

1 + δnt

1 + δnt−1
= Rnt Dnt, (6)

where Dnt = 1+δnt
1+δnt−1

.

10 In particular, some elements of Xnt can be identical across n, allowing for commonality in
returns.
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We evaluate the properties of WLS estimators of the parameters β̃ of
the linear specification (4) and of the time-t cross-sectional mean return μt.

With slight abuse of notation, E(xnt) represents plimN→∞ 1
N

∑N
n=1 xnt for the

random variable xt. Similarly, cov(xnt, ynt) is the plimN→∞ of 1
N

∑N
n=1 xnt ynt −

( 1
N

∑N
n=1 xnt)( 1

N

∑N
n=1 ynt). We delineate the few cases in which we refer to a

time-series parameter by placing a bar over the relevant operator.
When estimating the cross-sectional mean (in the time t cross-section), the

weighting scheme implies that μW LS,t =
∑N

n=1 wnt R0
nt∑N

n=1 wnt
, which is equal to E(wnt R0

nt)
E(wnt)

in the limit. In a regression setting, when the weights wnt are used in a
WLS estimation of expression (4), the resulting (vector) parameter estimate
is β̃WLS,t = [X̃′

tWt~Xt]−1X̃′
tWtR0

t . Here, Wt is a N × N diagonal matrix, with the
weights wnt on the diagonal. We are interested in the asymptotic properties of
the estimator, or in plimN→∞β̃WLS,t = [E(X̃′

ntX̃ntwnt)]−1E(X̃′
ntwnt R0

nt) and in how
it compares to the estimator obtained from an OLS regression.

C. Properties of the Cross-Sectional Estimators

We assess the asymptotic properties of estimators that rely on these weight-
ing methods under a set of simplifying assumptions that allow for closed-form
solutions. While the simplifying assumptions are somewhat restrictive, they
convey the key intuition regarding the methods’ effectiveness. We subsequently
assess the effect of relaxing the simplifying assumptions by means of simula-
tions. We initially focus on the case in which the noise outcomes are indepen-
dent across securities but potentially dependent over time. We then allow for
cross-sectional commonality in noise realizations. All proofs regarding cross-
sectional estimators are provided in Appendix B.

C.1. The Estimators When Noise is Independent across Securities: c = 0

Mean Estimates

PROPOSITION 1: If σ 2
n and X̃nt are independent and cov(Rnt, Rnt−1) = 0, then

weighted cross-sectional averaging (in period t) yields estimates with the fol-
lowing properties (the approximations result from second-order Taylor series
expansions):

• plimN→∞ μEW ,t ≈ μt + μtσ
2(1 − ρ),

• plimN→∞ μRW ,t ≈ μt + μt
σ 2(1−ρ)ρ

1+σ 2(1−ρ) ,

• plimN→∞ μRW (s),t ≈ μt + μt
σ 2(1−ρ)ρs

1+σ 2(1−ρs) , and

• plimN→∞ μV W ,t = E(Pnt Sn)
E(Pnt−1 Sn) .

Proof : See Appendix B. Q.E.D.

Note that cov(Rnt, Rnt−1) would be zero if either β̃ = 0 or X̃nt does not vary
across n, either of which implies that expected returns are equal across n.
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Proposition 1 shows that the EW cross-sectional mean observed return is
strictly upward biased, with the bias increasing in σ 2 and decreasing in ρ.

The RW(s) estimator of the cross-sectional mean is consistent if ρ = 0, but
is upward biased if ρ > 0. Importantly, however, the RW(s) bias is strictly
smaller than the OLS bias for any s and ρ. Furthermore, the bias in the RW(s)
estimator is decreasing in s.

If Sn is independent of prices, then plimN→∞ μV W = E(Pnt)
E(Pnt−1) and the VW

estimate’s bias depends on cov(Rnt, Pnt−1). However, under the assumption of
cov(Rnt, Rnt−1) = 0, it follows that cov(Rnt, Pnt−1) = 0 as well. Consistency of the
VW estimate follows from the expression E(Rnt) = E(Pnt)

E(Pnt−1) − cov(Rnt,Pnt−1)
E(Pnt−1) .

Regression Estimates

PROPOSITION 2: If σ 2
n and X̃nt are independent, then application of WLS cross-

sectional regression estimation (in period t) provides estimators with the prop-
erties:

• plimN→∞β̃OLS,t ≈ β̃ + σ 2(1 − ρ)β̃,

• plimN→∞β̃RW ,t ≈ β̃ + σ 2(1−ρ)ρ
1+σ 2(1−ρ) β̃,

• plimN→∞β̃RW (s),t ≈ β̃ + σ 2(1−ρ)ρs

1+σ 2(1−ρs) β̃, and

• plimN→∞β̃V W ,t = β̃.

Proof : See Appendix B. Q.E.D.

Proposition 2 shows that OLS regression coefficients are strictly biased in the
same direction as the true coefficients, with the bias increasing in σ 2 and de-
creasing in ρ. The RW(s) regression coefficient estimator is consistent if ρ = 0,
but is biased in the same direction as the OLS estimators if ρ > 0. Impor-
tantly, however, the RW(s) bias is strictly smaller than the OLS bias for any s
and ρ. With respect to ρ, RW(s) achieves maximum bias at ρ close to s

s+1 . The
VW estimator is consistent for any ρ. Thus, under these assumptions all of
the weighted estimators perform better than the OLS estimator, and the VW
estimator performs best.

C.2. Allowing for Cross-Sectional Commonality in Noise

We now consider the effect of allowing for c > 0, when the noise in prices is
specified as in expression (5). We continue to assume that σn is independent of
X̃nt for all n and all t. We further assume that the multivariate process X̃nt is
stationary (e.g., E(X̃′

ntX̃nt) does not depend on t). Note that the period t estimator
is conditional on the period t outcome on the common component of noise, θt,
and thus need not be consistent. We therefore assess for each estimator the
unconditional expectation (which we denote by Ē) of the time t cross-sectional
plimN→∞. Thus, Ē denotes the probability limit, plimT →∞, of the time-series
average of the cross-sectional plim’s. Because the estimates are functions of
stationary random variables, unbiasedness of the cross-sectional plim’s implies



Noisy Prices and Inference Regarding Returns 679

sequential consistency of estimators obtained by time-series averaging of the
cross-sectional estimates.11 Also, let μ = Ē(μt).12

Mean Estimates

PROPOSITION 3: If cov(Rnt, Rnt−1) = 0 for all t, and Sn is independent of prices,
then the application of weighted cross-sectional averaging leads to estimates
with the following properties:

• Ē(plimN→∞ μEW ,t) ≈ μ + μσ 2(1 − ρ),
• Ē(plimN→∞ μRW ,t) ≈ μ + μσ 2(1 − ρ)(ρ + c(1 − ρ)),
• Ē(plimN→∞ μRW (s),t) ≈ μ + μσ 2((1 − ρ)ρs + c(1 − 2ρs + ρs+1)), and
• Ē(plimN→∞ μV W ,t) = μ + μσ 2c(1 − ρ).

Proof : See Appendix B. Q.E.D.

Proposition 3 shows that the bias in the EW cross-sectional mean return
remains positive, and is unaffected by the degree of commonality in noise. All
of the weighted estimators are adversely affected by commonality in noise, and
none is consistent when c > 0. Blume and Stambaugh (1983) observe that their
proposed correction is effective due to diversification of noise. The result here
confirms this intuition, and shows that it applies to each of the corrections.

Importantly, the bias in the RW estimator of the cross-sectional mean return
is strictly smaller than that of the OLS estimate as long as |c + ρ − cρ| < 1.

Focusing on the economically relevant cases in which c and ρ range from zero
to one, the RW estimator converges to the OLS estimate when either c = 1 (the
noise is perfectly correlated across securities) or ρ = 1 (the noise in prices is
permanent), but is otherwise strictly less biased than the OLS estimate. Under
these assumptions, the magnitude of the VW bias is always smaller than the
RW(s) bias.

Regression Estimates

PROPOSITION 4: If cov(Rnt, Rnt−1) = 0, then application of WLS regression leads
to estimators with the following properties:

• Ē(plimN→∞β̃OLS,t) = β̃ + σ 2(1 − ρ)β̃,
• Ē(plimN→∞β̃RW,t) = β̃ + σ 2(1 − ρ)(ρ + c(1 − ρ))β̃
• Ē(plimN→∞β̃RW(s),t) = β̃ + σ 2((1 − ρ)ρs + c(1 − 2ρ2 + ρs+1))β̃, and
• Ē(plimN→∞β̃VW,t) = β̃ + σ 2(1 − ρ)cβ̃.

Proof : See Appendix B. Q.E.D.

The properties of the regression parameters echo those of the cross-sectional
means. In particular, OLS estimates of the regression parameters remain

11 In a sample where both N and T are assumed large, sequential consistency is consistency
established when first N goes to infinity and only then T does.

12 Note that the sequential consistency applied here would also apply in the previous subsection
for the case of c = 0.
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biased, and are unaffected by commonality in the noise. The time-series av-
erages of the weighted regression estimators are adversely affected by com-
monality in noise, and all are sequentially inconsistent when c > 0. The VW
is again less biased than the OLS and RW(s) estimators. The RW estimator is
less biased than the OLS estimator as long as |c + ρ − cρ| < 1.

D. Relaxing the Restrictive Assumptions: Simulation-Based Evidence

The theoretical results reported in the previous section rely on restrictive
assumptions, including an absence of cross-sectional variation in mean re-
turns and independence of the variance of noise from regression explanatory
variables. We therefore assess the magnitude of potential biases and compare
the performance of the proposed estimators using a simulation analysis that
relaxes these assumptions to incorporate realistic parameters.

D.1. Calibration of the Simulation

Two of the most important parameters in terms of determining the mag-
nitude of the biases attributable to noisy prices and the effectiveness of the
proposed correction are the cross-sectional average noise standard deviation,
σ , and the magnitude of cross-sectional variation in mean returns. With regard
to the former, we rely on Brennan and Wang (2010), who provide what appears
to be the most relevant evidence available to date. They study monthly returns
to CRSP common stocks, and estimate σ = 0.06 (Brennan and Wang (2010, ta-
ble 2)). We assign a σn to each stock from a uniform distribution on [0, 0.12].13

We also accommodate dependence between σn and regression explanatory vari-
ables, again relying on estimates provided by Brennan and Wang. In particular,
we choose parameters such that the correlation between σn and firm value is
−0.235.14

We construct simulated true monthly returns according to

Rnt − 1 = α + βn(Rmt − 1) + γilliq In + γvVnt−1 + εnt, (7)

where Rm − 1 is the net market return, with mean equal to 1% and standard
deviation of 5.5%; In is a (demeaned) measure of illiquidity, set equal to (σn − σ );

13 Note that this implies a cross-sectional standard deviation for σn of 0.035. This is less than
the corresponding estimate reported by Brennan and Wang, which is 0.056. Clearly, the esti-
mated distribution of sigma is right-skewed. By not accommodating this skewness, we are being
conservative—accommodating the right skewness would increase the bias in unadjusted estimates.
See equation (4) in Asparouhova, Bessembinder, and Kalcheva (2010).

14 This estimate is also based on results from Brennan and Wang. They report an (adjusted) R2 of
0.055, implying a correlation of ±0.235, in a cross-sectional regressions of σn on firm characteristics.
Although the authors use an array of explanatory variables, for simplicity we load the correlation
on firm value only. Brennan and Wang also report that empirical estimates of ρ are negatively
related to firm size. However, the R2 is only 0.01. We assessed the effect of accommodating a
corresponding negative correlation between ρ and firm size in the simulations, and found results
to be wholly unaffected.
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and Vn is the (demeaned) market value of firm n. That is, we accommodate a
market return premium as implied by the CAPM, as well as the empirical
regularities that returns are related to illiquidity and firm size. The standard
deviation of firm-specific returns, εnt, is set to 0.045.

Parameters are selected so that the standard deviation, across stocks, of the
expected true monthly return is 1%. This parameter is potentially important, as
the theoretical results above rely on the simplifying assumption that the cross-
sectional covariance cov(Rnt, Rnt−1) is zero.15 Relaxation of this assumption
potentially harms the properties of the WLS estimators. We believe that a
cross-sectional expected return standard deviation of 1% is on the high end
of the range that could be considered realistic, as the two-standard-deviation
range of expected returns varies from −1% to 3% per month.16

Given these parameters, we construct simulated true returns for each of the
N = 1,000 stocks, for periods t = 0 to 12, which accommodates evaluation of the
IEW method with rebalancing after 12 months. For each true return, Rnt, we
compute an observed return according to (6), when noise is specified according
to expression (5). We iterate across values of ρ and c ranging from zero to 0.9.

Having created simulated observed returns for periods t = 1 to 12, we esti-
mate the cross-sectional mean return for each period based on the EW, IEW,
RW, and VW methods, and cross-sectional slope parameters by regressing the
simulated observed returns on the market return, illiq, and lagged firm value
by OLS, as well as by WLS using the IEW, RW, and VW weights. Mean returns
and slope coefficients are averaged across the 12 periods and saved. The entire
simulation is repeated 30,000 times, and we report averages across the 30,000
repetitions.

The properties of the OLS, RW, and VW methods are time-invariant, but
IEW properties are not. As noted, IEW is equivalent to equal-weighting in
t = 1, and is equivalent to the RW(t − 1) method in subsequent periods. We
report IEW results as the average across t = 1 to t = 12, and also when period
1 is excluded.

D.2. Simulation Results

The key insight gained from the simulations is that the properties of the
various estimators are generally consistent with the theoretical results de-
rived above, despite the relaxation of various simplifying assumptions. We

15 Cross-sectional variation in expected returns is at odds with this assumption, since such
variation implies that securities with returns higher than the cross-sectional mean in period t − 1
tend to also have high returns in period t. Conrad and Kaul (1998) also observe that the cross-
sectional covariance between current and lagged returns depends on cross-sectional variation in
mean returns, and demonstrate that a significant proportion of observed “momentum” profits are
attributable to variation in unconditional mean returns.

16 Note that in a CAPM framework the cross-sectional standard deviation of expected return is
the average market return times the cross-sectional standard deviation of beta. Given an expected
market return of 1%, a cross-sectional standard deviation of beta equal to 1.0 would be required to
induce a cross-sectional standard deviation of expected returns as large as 1%.
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first discuss the properties of the regression slope coefficients estimated from
the simulated observed returns. We focus our discussion on the estimation of
βilliq, as this coefficient is most directly affected by the noise in prices. Figure
1 displays the average difference between the slope coefficient estimated by
different weighting methods and the true coefficient estimate, for ρ (the AR1
coefficient in the noise) ranging from 0 to 0.9.

Panel A considers the case in which c (the common component in noise) is
fixed at zero. We observe that the bias in the coefficient estimated by OLS
is largest (over 0.12, compared to a true coefficient of 0.15) when ρ = 0, and
declines as ρ increases. The most important result observed in Panel A is that
all three weighting methods provide estimates that are much less biased than
OLS, for any ρ. In fact, the VW estimate is consistent in this case. The relative
performance of the RW and IEW methods depends on the inclusion of period
t =1. With the first period included, the IEW slope coefficient contains slightly
more bias than RW. If the first period is excluded, the IEW slope contains
slightly less bias (Figure 1(b)).

We note that the RW estimate of the slope coefficient is consistent when ρ = 0,
but otherwise contains a small bias that achieves its maximum at ρ = 0.5.

Importantly, however, even at the maximum the bias in the RW estimate is
less than one tenth as large as the unadjusted (OLS) estimate.

Panel B of Figure 1 presents estimated slope coefficients for ρ (the AR1
coefficient in noise) ranging from 0 to 0.9 and for c (the weight on the common
component in noise) also ranging from 0 to 0.9. The results confirm that (i) the
bias in the OLS slope coefficient is invariant to c, and (ii) all of the weighted
estimates become more biased as c increases. Importantly, all of the weighted
estimates remain strictly less biased than the OLS estimates for any set of
parameters.

Comparing across methods, we observe that the VW method generally con-
tains the least bias. The relative performance between RW and IEW depends
on the inclusion of period 1 estimates in the IEW average. For completeness,
Panel C presents differences between the VW and IEW estimators and the
RW estimator. We note that differences across the corrected estimates are al-
ways small relative to the difference between the uncorrected (OLS) and the
corrected estimates.

In summary, the simulations demonstrate that all three weighting methods
provide large improvements over the OLS estimation method when estimating
regression slope coefficients. There is little meaningful economic difference
across the corrected estimates, particularly if the first month is excluded from
the IEW estimation.

We turn next to simulation results with regard to estimation of the cross-
sectional mean return, displayed in Figure 2. We observe that the VW method
provides downward biased estimates when c = 0 (Figure 2, Panel A). This
indicates that the true returns incorporate a size effect, whereby larger firms
have lower expected returns. The RW method in this case gives estimates that
are only slightly upward biased, and performs best overall. The IEW estimate
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Figure 1. Simulation results: Distance between the estimated slope coefficient on illiq-
uidity and the true value of 0.15.
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Figure 2. Simulation results: Distance between the estimated cross-sectional mean re-
turn and the true mean of 0.01.
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of the cross-sectional mean return contains more bias than the RW method,
even when period t = 1 is excluded (see Figure 2(b)).17

As is the case for regression slope coefficients, the bias in any of the cor-
rected estimates of the cross-sectional mean return grows with c. Still, all of
the corrected methods provide dramatic improvement over the EW estimation
(except for when both ρ and c are close to one). Also, as shown in Figures 2(c)
and 2(d), differences between the RW, VW, and IEW estimates are generally
not economically meaningful.

The available empirical evidence indicates that the degree of persistence in
the noise in prices is modest. Evaluating monthly returns to CRSP common
stocks, Brennan and Wang (2010) report a cross-sectional mean ρ estimate
equal to 0.07, while Hendershott et al. (2011) study monthly returns to NYSE
stocks and report a mean estimate of 0.15. Given c = 0, the biases in the cor-
rected estimates are small, and are very close to zero for ρ in this range. We
conclude from this analysis that the corrected measures (VW, RW, and IEW)
are in this case robust to the potential existence of autocorrelation in the noise
contained in prices, and provide estimates that are essentially free of bias.

In contrast, commonality in noise, c > 0, potentially affects the corrected
estimates more substantively. Unfortunately, we are not aware of any direct
empirical estimates of the degree of commonality across stocks in the noise
component of prices.18 This analysis supports the conclusion that uncorrected
(EW or OLS) return premium estimates contain substantial biases that can
be mitigated by the corrections discussed here. However, if the noise in prices
contains a substantial common component, then the methods considered here
only partially correct for the biases.

III. Data Description and Anticipated Effects of Noise

To assess the empirical relevance of biases attributable to noisy prices and
the effect of implementing the proposed corrections, we study five firm-level
explanatory variables that are broadly representative of those examined in
the empirical asset pricing literature: firm size, trading volume, illiquidity,
share price, and the book-to-market ratio. This analysis illustrates that the
potential biases attributable to noisy prices are large enough to matter. The
effects of implementing the corrections in other empirical applications are yet
to be assessed. We study monthly returns in excess of the Treasury interest

17 This reflects that the cross-sectional covariance cov(Rnt, Rnt−s) grows larger with s when there
is cross-sectional variation in mean returns, and that the IEW method weights by longer horizon
returns as compared to the RW method.

18 There is some evidence concerning the degree of commonality in measures of illiquidity.
Chordia, Roll, and Subrahmanyam (2001) report adjusted R2 statistics for cross-sectional regres-
sions at the firm level on market-wide illiquidity measures that are uniformly less than 2%.
Similarly, Hasbrouck and Seppi (2001) report that the first principal component explains less than
8% of the variation in signed order flow across stocks. While these estimates indicate that the
degree of commonality in particular contributors to noisy prices is not high, they do not comprise
direct evidence on commonality in noise.
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rate for U.S. equities using CRSP data and the Compustat Industrial North
America files. The sample spans the period July 1963 through December 2009,
and consists of common stock (CRSP shrcd=10, 11, and 12) of NYSE, Amex,
and NASDAQ listed companies (CRSP exchcd = 1, 2, and 3). The analysis of
monthly returns considers the period January 1966 to December 2009, as the
earliest sample months are used to construct systematic risk estimates.

A. Anticipated Direction of Bias

Asparouhova, Bessembinder, and Kalcheva (2010) show that the key deter-
minant of the direction of the bias in uncorrected estimates of return premia is
the sign of the cross-sectional covariation between the variance of the noise in
prices, σn, and the firm attribute considered. To the extent that researchers can
estimate or form conjectures regarding the sign of this covariance, the direction
of the return premium bias can be anticipated.

Blume and Stambaugh (1983) show that biases attributable to noisy prices
impart downward bias to the empirically negative relation between firm size
and returns. This result is anticipated if the prices of small firms contain more
noise, on average. Black (1986) conjectures that low share prices will be asso-
ciated with substantially more noisy prices. If so, we predict a positive bias in
estimates of the relation between returns and inverse share price. Empirical
measures of illiquidity are likely to be strongly positively related to the vari-
ance of noise in prices, implying upward bias in associated return premium
estimates. Trading volume is often interpreted as a measure of liquidity, and
should therefore be negatively correlated across stocks with the variance of
noise in prices. We conjecture that both market value of equity and book value
of equity are negatively correlated across stocks with the variance of noise in
prices. We therefore do not offer a prediction as to the sign of the covariance
between the market-to-book ratio and noise, or of the possible bias in estimates
of the value premium.

B. Variable Construction

We consider five firm-level explanatory variables that are broadly represen-
tative of those examined in the empirical asset pricing literature. The following
variables are constructed:

• Size: the natural logarithm of the market value of equity as of the end of
the second-to-last month.

• log(BM): the natural logarithm of the ratio of the book value of equity plus
deferred taxes to the market value of equity, using the end of the previous
year’s market and book values.19

19 The book-to-market ratio is defined as the sum of fiscal year-end book equity (Compustat
item #60) and balance sheet deferred taxes (Compustat item #74), divided by the CRSP market
capitalization in December of the corresponding year. As in Fama and French (1992), the value of
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• Dvol: the natural logarithm of the dollar volume of trading in the security
in the second-to-last month.20

• InvPrice: the natural logarithm of the reciprocal of the share price as re-
ported at the end of the second-to-last month.

• Illiq: the Amihud (2002) illiquidity measure, computed as the ratio of the
daily absolute return to daily dollar volume multiplied by 1,000,000, and
averaged over all days with nonzero volume in the previous year. Illiq and
Dvol are standardized as per equations (3) and (4) in Amihud (2002).

We include in the sample for a given month those stocks that satisfy the
following criteria: (i) return data for the most recent December and in 24 of
the previous 60 months are available on CRSP, and (ii) data are available to
calculate market capitalization, share price, and dollar volume as of the pre-
vious month. Following Fama and French (1992), we exclude financial firms
from our sample. NASDAQ stocks generally enter the sample in 1983, due to
the requirement that trading volume data be available. Firms are assigned to
portfolios based on attributes measured as of the end of the prior July. Fol-
lowing Brennan, Chordia, and Subrahmanyam (1998), firm-level explanatory
variables are expressed as deviations from their monthly cross-sectional mean.
We also include market Beta as a measure of risk in our regression analysis.21

Panel A of Table I reports the time-series averages of the cross-sectional
means, medians, and standard deviations for a number of key empirical vari-
ables, before log transformations, for the full sample. The mean monthly return
is 0.827%. The mean market capitalization for the sample stocks is $1.182 bil-
lion. Firm size, share price, illiquidity, and trading volume exhibit positive
skewness, as evidenced by means that substantially exceed medians.

Panel B of Table I reports time-series averages of the monthly cross-sectional
correlations. The largest correlations are between Size and Dvol (0.886) and
Size and InvPrice (−0.783). The correlation of Illiq with Size and Dvol is −0.323
and −0.339, respectively. Firm size and the book-to-market ratio exhibit a
substantial negative average correlation (−0.287), implying that firms that are
small in absolute market capitalization tend to also be small relative to the
book value of their assets.

BM for July of year t to June of year t + 1 is computed using accounting data at the end of year
t − 1, and book-to-market ratio values greater than the 0.995 fractile or less than the 0.005 fractile
are set equal to the 0.995 and 0.005 fractile values, respectively. The book value of common equity
(Compustat data 60) is not generally available prior to 1962; see Fama and French (1992, p.429).

20 Given that the interpretation of trading volume potentially differs across markets, in the
regression-based analyses we use indicator variables to allow for separate slope coefficients on
trading volume (and the illiquidity measure) for NYSE/Amex and NASDAQ listed stocks.

21 Beta is estimated every December for all stocks with at least 24 return observations over the
prior 60 months, with the qualification that, since the factor estimation begins in July 1963, the
factor loadings in the first month of the regression period (January 1966) were estimated from 30
observations. The Dimson (1979) procedure with one lag is implemented to allow for potential thin
trading.
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Table I
Summary Statistics and Correlations

Panel A presents the time-series averages of monthly cross-sectional means for a sample that
averages 3,762 stocks, over 528 months from January 1966 to December 2009. Monthly returns
are in excess of the Treasury interest rate. Firm size is in billions. Book-to-market ratio (BM) is
winsorized at the 0.005 and the 0.995 fractiles of the full sample by setting the outlying values
to the 0.005 and 0.995 fractiles, respectively. Share price is in dollars. Volume is in $ millions per
month. Volume for NASDAQ stocks is available after 1983. Illiq is the Amihud (2002) illiquidity
measure. Panel B presents time-series of monthly cross-sectional correlations (Illiq and Dvol are
standardized as per equations 3 and 4 in Amihud (2002)) between firm characteristics.

Panel A: Summary Statistics

Variable Mean Median St. Dev.

Return 0.827 0.976 6.066
Firm size 1.182 0.559 1.157
BM 0.931 0.836 0.378
Share price 25.551 22.217 10.305
Volume 142.299 32.284 223.229
Illiq 7.285 5.235 6.968

Panel B: Correlation Matrix of Transformed Firm Characteristics

Variable Return Size log(BM) InvPrice Dvol

Return 1 – – – –
Size −0.010 1 – – –
log(BM) 0.029 −0.287 1 – –
InvPrice 0.004 −0.783 0.213 1 –
Dvol −0.017 0.886 −0.327 −0.691 1
Illiq 0.019 −0.323 0.148 0.353 −0.339

IV. Empirical Results

A. Returns to Attribute-Sorted Portfolios

In this subsection, we assess the effect of noisy prices on return pre-
mium estimates obtained by the common method of comparing mean returns
across attribute-sorted portfolios. The portfolio returns are weighted based
on the variables discussed previously. Table II reports mean returns to the
first and 10th decile portfolios, and to the hedge portfolio that is long the
10th portfolio and short the first portfolio, for the five firm-level explanatory
variables.

We focus on univariate portfolio sorts because it is possible to form reason-
ably strong conjectures as to the likely correlation, and hence the direction of
noise-induced bias, between the variance of the noise in prices and individual
explanatory variables. We subsequently report univariate and multivariate re-
gression results that include various combinations of firm characteristics as
regressors.
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A.1. Equal-Weighted Portfolio Returns

Mean portfolio returns obtained when security returns are weighted equally
are consistent with the findings of previous studies. Focusing on the column
labeled 10 − 1 for the mean returns to hedge portfolios, we observe the well-
documented size effect (mean hedge portfolio return is 1.425% per month with
an associated t-statistic of 4.43) and value premium (mean hedge portfolio
return of 1.369% with associated t-statistic of 6.03). For illiquidity-sorted port-
folios, the hedge portfolio return is 1.139% per month, with t-statistic of 3.95.
Consistent with the regression-based results reported by Brennan, Chordia,
and Subrahmanyam (1998), we observe a strong share price effect, as returns
to the hedge portfolio (low share price decile less high share price decile) are
positive and significant (1.252% per month, t-statistic = 3.27). Also consistent
with their results, we observe a trading volume effect, as the mean return to
the hedge portfolio that is long high-volume stocks and short low-volume stocks
is −1.198% per month, with a t-statistic of −4.52.

A.2. Adjusting for Biases Due to Noise in Prices

The main focus of this paper is on correcting empirical estimates for the
effects of noisy prices through the use of appropriate weighting methods. Since
hedge portfolio returns provide evidence as to whether a given attribute is
associated with cross-sectional variation in mean returns, we mainly discuss
the difference in hedge portfolio returns across weighting methods, and present
the results in a matrix in the center columns of each panel of Table II. For
each variable of interest, we compute the differential in mean hedge portfolio
returns across all pairs of weighting variables. For example, in Panel A of
Table II, the value −0.463% in the column labeled RW and row labeled EW
is the difference in the hedge portfolio return obtained by the RW method
(−0.961%) and that obtained by the EW method (−1.425%). A corresponding
hedge portfolio differential is reported for each pair of weighting methods, along
with associated t-statistics for the hypothesis that the associated differential
is zero.

The key finding that can be observed in Table II is that every return pre-
mium estimated on the basis of EW portfolio returns is larger (in absolute
magnitude) than any of the corrected estimates of the corresponding premium.
The differentials in the estimated premia obtained by EW as compared to any
of the corrected estimates are, with but a single exception, uniformly highly
statistically significant, as evidenced by the t-statistics in the rows labeled EW
on the right side of Table II.22 Of particular interest are differentials across EW
and RW, since each pertain to EW mean returns, the former uncorrected and
the latter corrected for bias. t-statistics for the EW − RW differential range in
absolute value from 2.21 (for book-to-market ratio) to 15.04 (for inverse share

22 The lone exception is the differential between the EW mean and the IEW mean book-to-market
premium, for which the t-statistic is 1.34.
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price). t-statistics for the EW − VW differential are also large, but it should
be noted that this differential reflects both the effect of removing bias and the
shift to placing more weight on larger stocks.

The economic relevance of the bias attributable to noisy prices varies sub-
stantially across explanatory variables. The bias is quite relevant for firm size,
share price, trading volume, and illiquidity. The bias is least relevant for the
book-to-market ratio. Focusing in particular on the differential between EW
and RW mean returns, Panel A shows that noise in prices explains about one-
third of the apparent size effect in monthly returns, as the estimated bias is
−0.46% per month (t-statistic = −13.52), compared to an EW hedge portfolio
return of −1.43% per month. In contrast, results reported in Panel B indicate
only a modest upward bias in the EW estimate of the value premium. While
the t-statistic for the EW less RW hedge portfolio return is significant, the eco-
nomic magnitude of the bias estimate, 0.09% per month, is small relative to
the estimated premium of 1.37% per month.

Panel C shows that noise in prices is particularly relevant for the apparent
return premium associated with share price, as the bias (EW − RW) is esti-
mated to be 0.61% per month (t-statistic = 15.04), half as large as the apparent
return premium of 1.25% per month. Share prices are not randomly distributed
across stocks, but are influenced by managers’ strategic choices, including IPO
offer prices and stock split policy. It would therefore represent something of
a puzzle if return premia were related to share prices (as implied by the EW
t-statistic of 3.27), as it would suggest that firms could reduce the return pre-
mium and their cost of capital by altering share price. We observe that none
of the bias-adjusted estimates support the existence of a return premium asso-
ciated with share price, as the bias-corrected hedge portfolio t-statistics range
from 0.40 (VW) to 1.74 (RW).

The results in Panel D indicate that the apparent relation between returns
and trading activity is also partially attributable to noise in prices. The bias,
based on the EW − RW differential, is estimated at −0.35% per month, which
comprises about a third of the uncorrected estimated premium associated with
trading activity. Finally, Panel E shows that the magnitude of the upward
bias in the estimate of the return premium for Illiq is considerable, as RW
hedge portfolio returns exceed EW hedge portfolio returns by 0.36% per month
(t-statistic = 12.77).

Weighting by t − 1 Value. As noted, shifting from EW to VW entails two distinct
effects: the removal of bias due to noisy prices, and the shift to weighting
large stocks more heavily. The EW − VW differential in mean returns can be
decomposed into the EW − RW differential, which entails only the removal of
bias, and the V W − RW differential, which is an estimate of the effect of the
shift in weights alone. Focusing, for example, on the estimated return premium
associated with firm size, the EW − VW return differential of −0.91% per month
can be decomposed into the EW − RW differential (removal of bias) of −0.46%
and the V W − RW (firm-size weighting effect) of −0.45% per month. Similar
conclusions apply for all five firm characteristics, in that the effect of removing
bias (the EW − RW differential) is always significant (absolute t-statistics range



Noisy Prices and Inference Regarding Returns 693

from 2.21 for the book-to-market ratio to 15.04 for inverse share price), whereas
the pure weighting effect (the VW − RW differential) is also always significant
(absolute t-statistics range from 2.05 for the book-to-market ratio to 5.14 for
firm size.)

Return premia estimates obtained by the IEW method are broadly similar to
those obtained by the RW method. The IEW and RW hedge portfolio returns are
uniformly smaller in absolute magnitude as compared to the unadjusted EW
estimates, indicating that both methods are largely effective in mitigating the
bias due to noisy prices. The IEW and RW hedge portfolio returns are uniformly
larger than the VW estimate, which suggests that IEW and RW both estimate
the true EW, rather than VW, mean return.

Annual Value-Weighting. Finally, the differential between VW and AVW hedge
portfolio returns is of interest. The VW and AVW methods both weight large
capitalization securities more heavily. To the extent that large firms tend to
have less noisy prices, the effect will be to mitigate the bias attributable to
noise. However, as noted, the key to eliminating the bias due to noisy prices
is to use a weighting variable that includes the time t − 1 share price. The
VW, RW, and IEW methods do so. The AVW method does so only for January
returns.

Comparing mean returns across the VW and AVW methods as reported in
Table II, we see that the differential is minimal in the case of large firms (size
portfolio 10), high share price firms (inverse price portfolio 1), high trading
volume firms (volume portfolio 10), and liquid firms (illiquidity portfolio 1). In
contrast, substantial differentials in mean returns are observed across the VW
and AVW methods for small, low-priced, illiquid, and low-volume portfolios. For
example, the mean VW return for size portfolio 1 is 0.89%, whereas the mean
AVW return for the same portfolio is 1.24%. Since the estimates are based on
the same stocks over the same time intervals, and each places greater weight
on large firms, we conclude that the return differential is attributable to the
failure of the AVW method to eliminate bias attributable to noisy prices in
months other than January.

Since the AVW method allows bias to remain in the mean return to the least
liquid (or lowest priced) portfolio, the hedge portfolio return estimated using
AVW remains biased. Although the VW − AVW hedge portfolio differential is
not statistically significant for the illiquidity ratio (t-statistic = −0.98) and is
only marginally significant for the book-to-market ratio (t-statistic = 1.73), the
differential is significant in the case of firm size (t-statistic = 5.40), inverse price
(t-statistic = −2.03), and trading volume (t-statistic = 4.09). The implication is
that researchers who wish to eliminate the effect of noisy prices by use of value-
weighting should weight returns by time t − 1 value, not by value measured at
an earlier date when portfolios are formed.

A.3 Further Analysis and Robustness

The Effect of Excluding Low-Priced Securities. Some authors, including Je-
gadeesh and Titman (2001), Amihud (2002), and Pástor and Stambaugh (2003),
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mitigate the effects of noisy prices by excluding relatively illiquid securities (in
particular, those with low share prices) from their analyses. In Table III, we
report portfolio mean returns after excluding stocks with share price less than
$5 as of the end of the preceding month.

The results indicate that eliminating low-priced securities is very effective in
reducing the bias attributable to noisy prices. Comparing EW hedge portfolio
mean returns across Tables II and III, we observe that the elimination of
low-priced stocks always reduces the absolute magnitude of the EW hedge
portfolio return, and that the reduction is always statistically significant. The
magnitude of the reduction in bias is large. For example, for firm size the
EW − RW hedge portfolio return differential is reduced from 0.46% per month
without the price filter to 0.06% per month with the price filter. Similarly, for
inverse share price, the EW − RW hedge portfolio return differential is reduced
by the price filter from 0.61% per month to 0.06% per month. However, despite
the reduction, return premia estimated by EW remain biased away from zero
for every explanatory variable except the book-to-market ratio. Absolute t-
statistics for the EW − RW hedge portfolio differential in Table III range from
4.97 for illiquidity to 6.31 for firm size.

While the results reported on Table III support the conclusion that elimi-
nating low-priced stocks from the sample substantially reduces the bias in EW
estimates attributable to noisy prices, they also indicate a hidden cost of doing
so. In particular, inference regarding the existence, magnitude, and functional
form of return premia is substantially affected. Bias-adjusted hedge portfolio
returns reported in Table III are uniformly smaller in absolute magnitude as
compared to corresponding estimates in Table II, and the differentials across
tables are often statistically significant. For example, the RW hedge portfolio
return associated with firm size reported in Panel A of Table II is −0.96% per
month with an associated t-statistic of −3.07, compared to a corresponding
estimate of −0.29% per month with a t-statistic of −1.62 in Table III. Similar
effects are observed in Panel D with respect to the bias-adjusted (RW) esti-
mates of the hedge portfolio return for trading volume, which are −0.85% per
month (t-statistic = −3.28) without the price filter versus −0.38% per month
(t-statistic = −2.09) with the price filter.

We conclude that a hidden cost of reducing noise-related bias by excluding
low-priced stocks is the loss of valuable information regarding the actual return
premium contained in those stocks. Furthermore, the lost information includes
indications that the return premia are not linear in the attributes, as evidenced
by substantial reductions in the absolute magnitude of the hedge portfolio
returns, not just reductions in statistical significance due to a smaller sample
size.

Bias Adjustment and the Carhart–Fama–French Four-Factor Model. Em-
pirical results reported up to this point have focused on raw returns (in
excess of Treasury interest rates), and thus have not made any allowance
for known sensitivities of returns to market-wide risk factors. We next es-
timate for each decile portfolio “alphas” (intercepts), when portfolio returns
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are computed on an EW, RW, and VW basis, by regressing portfolio returns
on the Carhart–Fama–French factors (Carhart (1997)). This analysis allows
examination of two issues. First, we can assess whether key results with re-
gard to the effects of adjusting for noisy prices are sensitive to allowances for
return sensitivity to the four factors. Second, we can assess whether security
returns that have been adjusted for biases attributable to noisy prices are
consistent with the implications of the four-factor model.

Table IV reports alphas for portfolios 1, 10, and the 10 − 1 hedge portfo-
lio. The results indicate that adjusting portfolio returns for sensitivity to the
Carhart–Fama–French four factors has essentially no effect on the magnitude
of the various biases attributable to noise in prices. In particular, the bias es-
timates and associated t-statistics for the EW − RW differential are uniformly
little altered when focusing on alphas as compared to mean returns reported
in Table II.

The adjustment of returns for sensitivity to the Carhart–Fama–French fac-
tors does reduce the magnitude of some return regularities that survive the
correction for noise in prices. Focusing on the bias-corrected results (RW) in
the column labeled 10 − 1, we observe that alphas are meaningfully closer to
zero as compared to mean returns in the case of firm size, book-to-market ra-
tio, and trading volume. In the case of inverse share price and illiquidity ratio,
the alpha estimate is statistically indistinguishable from zero, indicating that
the combination of the bias adjustment and allowance for sensitivity to the
Carhart–Fama–French factors has eliminated the apparent return premium
contained in the 10 − 1 hedge portfolio.

To provide a more rigorous test of the hypothesis that the Fama–
French–Carhart four-factor model explains the cross-section of bias-adjusted
returns, we also report the p-value obtained when implementing the F-test of
Gibbons, Ross, and Shanken (1989). This statistic pertains to the hypothesis
that the regression intercepts for all 10 attribute-sorted portfolios are simulta-
neously zero.

The resulting p-values indicate rejection of the four-factor model for all five
firm attributes, both when portfolios are EW and when they are RW. The
former indicates that the four-factor model fails to fully explain EW portfolio
returns. The latter indicates that the existence of noise-related bias in the EW
returns is not the sole explanation, as the data continue to reject the model
even when the EW returns are adjusted for bias attributable to noisy prices.
Notably, however, the p-values do not indicate rejection of the four-factor model
for any of the five attributes when firms are weighted by prior-period value.
We conclude that the four-factor model can explain bias-adjusted returns to
attribute-sorted portfolios, but only when the information contained in returns
to smaller stocks is deemphasized by means of value-weighting.

January versus Non-January Months. Numerous studies document return
anomalies and/or strengthened empirical relations in the month of January.
For example, Eleswarapu and Reinganum (1993) find a statistically significant
relation between average return and bid-ask spread for NYSE stocks only in



696 The Journal of Finance R©

T
ab

le
II

I
M

ea
n

R
et

u
rn

s
to

A
tt

ri
b

u
te

-S
or

te
d

P
or

tf
ol

io
,J

an
u

ar
y

19
66

to
D

ec
em

b
er

20
09

,w
it

h
P

ri
ce

F
il

te
r

T
h

e
ta

bl
e

re
pl

ic
at

es
Ta

bl
e

II
,

ex
ce

pt
th

at
st

oc
ks

w
it

h
pr

ic
e

pe
r

sh
ar

e
le

ss
th

an
$5

as
of

th
e

en
d

of
th

e
pr

ev
io

u
s

m
on

th
ar

e
ex

cl
u

de
d.

T
h

e
ta

bl
e

re
po

rt
s

ti
m

e-
se

ri
es

m
ea

n
s

of
m

on
th

ly
re

tu
rn

s
to

th
e

ex
tr

em
e

of
th

e
10

at
tr

ib
u

te
-s

or
te

d
po

rt
fo

li
os

an
d

to
th

e
co

rr
es

po
n

di
n

g
h

ed
ge

po
rt

fo
li

o.
P

or
tf

ol
io

re
tu

rn
s

fo
r

m
on

th
ta

re
m

ea
su

re
d

on
an

eq
u

al
-w

ei
gh

te
d

(E
W

),
re

tu
rn

-w
ei

gh
te

d
(R

W
,w

ei
gh

t
is

pe
ri

od
t−

1
gr

os
s

re
tu

rn
),

eq
u

al
-i

n
it

ia
l-

w
ei

gh
te

d
(I

E
W

,
w

ei
gh

t
is

cu
m

u
la

ti
ve

gr
os

s
re

tu
rn

fr
om

po
rt

fo
li

o
fo

rm
at

io
n

th
ro

u
gh

m
on

th
t−

1)
,

pr
io

r-
m

on
th

-v
al

u
e-

w
ei

gh
te

d
(V

W
,

w
ei

gh
t

is
m

on
th

t−
1

m
ar

ke
t

ca
pi

ta
li

za
ti

on
),

an
d

an
n

u
al

-v
al

u
e-

w
ei

gh
te

d
(A

V
W

,w
ei

gh
t

is
pr

ev
io

u
s

D
ec

em
be

r
m

ar
ke

t
ca

pi
ta

li
za

ti
on

)
ba

si
s.

F
ir

m
s

ar
e

as
si

gn
ed

to
po

rt
fo

li
os

ba
se

d
on

at
tr

ib
u

te
s

m
ea

su
re

d
in

Ju
ly

.t
-s

ta
ti

st
ic

s
ar

e
re

po
rt

ed
in

pa
re

n
th

es
es

.∗
in

di
ca

te
s

th
at

th
e

es
ti

m
at

e
in

th
e

ta
bl

e
di

ff
er

s
si

gn
ifi

ca
n

tl
y

(p
-v

al
u

e
<

0.
05

)
fr

om
th

e
co

rr
es

po
n

di
n

g
es

ti
m

at
e

re
po

rt
ed

in
Ta

bl
e

II
.

E
xt

re
m

e
D

ec
il

es
an

d
H

ed
ge

P
or

tf
ol

io
H

ed
ge

P
or

tf
ol

io
D

if
fe

re
n

ti
al

10
1

10
-1

(t
-s

ta
ts

)
E

st
im

at
es

(t
-s

ta
ts

)

P
an

el
A

:S
iz

e

E
W

0.
43

7
0.

79
2∗

−0
.3

55
∗

(−
1.

97
)

R
W

IE
W

V
W

AV
W

R
W

IE
W

V
W

AV
W

R
W

0.
42

4
0.

71
6∗

−0
.2

91
∗

(−
1.

62
)

E
W

−0
.0

64
∗

−0
.0

17
∗

0.
02

2∗
−0

.0
06

∗
E

W
(−

6.
31

)
(−

0.
65

)
(0

.4
0)

(−
0.

12
)

IE
W

0.
42

8
0.

76
6∗

−0
.3

38
∗

(−
1.

91
)

R
W

–
0.

04
6∗

0.
08

6∗
0.

05
7

R
W

–
(1

.9
2)

(1
.5

7)
(1

.0
5)

V
W

0.
36

2
0.

74
0

−0
.3

78
(−

2.
02

)
IE

W
–

–
0.

04
0∗

0.
01

0
IE

W
–

–
(0

.8
3)

(0
.2

1)
AV

W
0.

35
2

0.
70

1∗
−0

.3
49

∗
(−

1.
86

)
V

W
–

–
–

−0
.0

29
∗

V
W

–
–

–
(−

1.
24

)

P
an

el
B

:B
oo

k-
to

-M
ar

ke
t

E
W

0.
89

2∗
0.

09
0

0.
80

2∗
(4

.0
2)

R
W

IE
W

V
W

D
V

W
R

W
IE

W
V

W
AV

W
R

W
0.

84
2∗

0.
04

2
0.

80
0∗

(3
.9

9)
E

W
0.

00
2∗

0.
02

8
0.

18
2∗

0.
22

4∗
E

W
(0

.1
4)

(0
.7

9)
(0

.9
8)

(1
.2

0)
IE

W
0.

88
3∗

0.
10

9
0.

77
3∗

(3
.8

3)
R

W
–

0.
02

6
0.

18
0∗

0.
22

2∗
R

W
–

(0
.8

9)
(0

.9
5)

(1
.1

7)
V

W
0.

83
0

0.
21

1
0.

61
9

(2
.6

5)
IE

W
–

–
0.

15
4∗

0.
19

6∗
IE

W
–

–
(0

.8
0)

(1
.0

1)
D

V
W

0.
81

1
0.

23
4

0.
57

7
(2

.4
8)

V
W

–
–

–
0.

04
2

V
W

–
–

–
(1

.3
3)

P
an

el
C

:I
n

ve
rs

e
P

ri
ce

E
W

0.
48

0∗
0.

56
5

−0
.0

84
∗

(−
0.

45
)

R
W

IE
W

V
W

AV
W

R
W

IE
W

V
W

AV
W

R
W

0.
41

0∗
0.

55
7

−0
.1

47
∗

(−
0.

79
)

E
W

0.
06

2∗
0.

01
5∗

0.
09

7∗
0.

08
4∗

E
W

(5
.4

5)
(0

.4
8)

(0
.7

1)
(0

.5
7)

IE
W

0.
46

9∗
0.

56
9

−0
.1

00
∗

(−
0.

54
)

R
W

–
−0

.0
46

∗
0.

03
5∗

0.
02

2
R

W
–

(−
1.

54
)

(0
.2

6)
(0

.1
5)

V
W

0.
21

9
0.

40
1

−0
.1

82
(−

0.
75

)
IE

W
–

–
0.

08
1

0.
06

8
IE

W
–

–
(0

.6
1)

(0
.4

7)
AV

W
0.

21
5

0.
38

5
−0

.1
69

(−
0.

68
)

V
W

–
–

–
−0

.0
12

∗
V

W
–

–
–

(−
0.

33
)

(C
on

ti
n

u
ed

)



Noisy Prices and Inference Regarding Returns 697

T
ab

le
II

I—
C

on
ti

n
u

ed

E
xt

re
m

e
D

ec
il

es
an

d
H

ed
ge

P
or

tf
ol

io
H

ed
ge

P
or

tf
ol

io
D

if
fe

re
n

ti
al

10
1

10
-1

(t
-s

ta
ts

)
E

st
im

at
es

(t
-s

ta
ts

)

P
an

el
D

:V
ol

u
m

e

E
W

0.
36

1∗
0.

80
0∗

−0
.4

39
∗

(−
2.

40
)

R
W

IE
W

V
W

AV
W

R
W

IE
W

V
W

AV
W

R
W

0.
36

0
0.

74
0∗

−0
.3

80
∗

(−
2.

09
)

E
W

−0
.0

59
∗
−0

.0
54

∗
−0

.1
50

∗
−0

.1
28

∗
E

W
(−

5.
03

)
(−

1.
65

)
(−

1.
56

)
(−

1.
32

)
IE

W
0.

38
4

0.
77

0
−0

.3
85

(−
2.

17
)

R
W

–
0.

00
5∗

−0
.0

91
∗

−0
.0

68
∗

R
W

–
(0

.1
7)

(−
0.

96
)

(−
0.

72
)

V
W

0.
34

2
0.

63
1

−0
.2

88
(−

1.
78

)
IE

W
–

–
−0

.0
96

∗
−0

.0
73

IE
W

–
–

(−
1.

03
)

(−
0.

77
)

AV
W

0.
32

5∗
0.

63
7

−0
.3

11
(−

1.
91

)
V

W
–

–
–

0.
02

2∗
V

W
–

–
–

(1
.2

3)

P
an

el
E

:I
ll

iq
u

id
it

y
R

at
io

E
W

0.
89

2∗
0.

40
7

0.
48

4∗
(2

.8
1)

R
W

IE
W

V
W

AV
W

R
W

IE
W

V
W

AV
W

R
W

0.
82

8∗
0.

39
9

0.
42

9∗
(2

.5
0)

E
W

0.
05

4∗
0.

00
1∗

0.
06

7∗
0.

07
9∗

E
W

(4
.9

7)
(0

.0
4)

(0
.7

6)
(0

.9
1)

IE
W

0.
88

3
0.

39
9

0.
48

3
(2

.8
8)

R
W

–
−0

.0
53

∗
0.

01
2∗

0.
02

4∗
R

W
–

(−
2.

34
)

(0
.1

4)
(0

.2
8)

V
W

0.
76

4
0.

34
7

0.
41

7
(2

.4
7)

IE
W

–
–

0.
06

6∗
0.

07
8

IE
W

–
–

(0
.8

1)
(0

.9
4)

AV
W

0.
74

3
0.

33
8

0.
40

5
(2

.3
8)

V
W

–
–

–
0.

01
1

V
W

–
–

–
(0

.5
0)



698 The Journal of Finance R©
T

ab
le

IV
A

lp
h

as
to

A
tt

ri
b

u
te

-S
or

te
d

P
or

tf
ol

io
s,

J
an

u
ar

y
19

66
to

D
ec

em
b

er
20

09
T

h
e

ta
bl

e
re

po
rt

s
al

ph
as

fo
r

th
e

ex
tr

em
e

at
tr

ib
u

te
-s

or
te

d
po

rt
fo

li
os

an
d

th
e

co
rr

es
po

n
di

n
g

h
ed

ge
po

rt
fo

li
o,

es
ti

m
at

ed
as

in
te

rc
ep

ts
in

ti
m

e-
se

ri
es

re
gr

es
si

on
s

of
m

on
th

ly
po

rt
fo

li
o

re
tu

rn
s

on
a

fo
u

r-
fa

ct
or

as
se

t
pr

ic
in

g
m

od
el

.
W

e
al

so
re

po
rt

al
ph

as
ob

ta
in

ed
w

h
en

th
e

de
pe

n
de

n
t

va
ri

ab
le

is
th

e
di

ff
er

en
ce

in
di

ff
er

en
ce

s:
R

W
(1

0
−

1)
le

ss
V

W
(1

0
−

1)
,

R
W

(1
0

−
1)

le
ss

V
W

(1
0

−
1)

,
an

d
E

W
(1

0
−

1)
le

ss
V

W
(1

0
−

1)
.

P
or

tf
ol

io
re

tu
rn

s
fo

r
m

on
th

t
ar

e
m

ea
su

re
d

on
an

eq
u

al
-w

ei
gh

te
d

(E
W

),
re

tu
rn

-w
ei

gh
te

d
(R

W
,w

ei
gh

t
is

pe
ri

od
t−

1
gr

os
s

re
tu

rn
),

an
d

pr
io

r-
m

on
th

-v
al

u
e-

w
ei

gh
te

d
(V

W
,w

ei
gh

t
is

m
on

th
t−

1
m

ar
ke

t
ca

pi
ta

li
za

ti
on

)b
as

is
.F

ir
m

s
ar

e
as

si
gn

ed
to

po
rt

fo
li

os
ba

se
d

on
at

tr
ib

u
te

s
m

ea
su

re
d

in
Ju

ly
.p

(G
R

S
)i

s
th

e
p-

va
lu

e
of

th
e

F
-s

ta
ti

st
ic

of
G

ib
bo

n
s,

R
os

s,
an

d
S

h
an

ke
n

(1
98

9)
,a

n
d

pe
rt

ai
n

s
to

th
e

h
yp

ot
h

es
is

th
at

in
te

rc
ep

ts
fo

r
al

l
10

at
tr

ib
u

te
-s

or
te

d
po

rt
fo

li
os

ar
e

si
m

u
lt

an
eo

u
sl

y
eq

u
al

to
ze

ro
.t

-s
ta

ti
st

ic
s

ar
e

re
po

rt
ed

in
pa

re
n

th
es

es
.

E
xt

re
m

e
D

ec
il

es
an

d
H

ed
ge

P
or

tf
ol

io
H

ed
ge

P
or

tf
ol

io
D

if
fe

re
n

ti
al

10
1

10
−

1
(t

-s
ta

ts
)

p(
G

R
S

)
E

st
im

at
es

(t
-s

ta
ts

)

P
an

el
A

:S
iz

e

E
W

0.
10

2
1.

22
8

−1
.1

26
(−

4.
33

)
0.

00
R

W
V

W
R

W
V

W
R

W
0.

08
4

0.
73

7
−0

.6
53

(−
2.

66
)

0.
00

E
W

−0
.4

73
−1

.0
11

E
W

(−
10

.4
6)

(−
9.

40
)

V
W

0.
04

0
0.

15
6

−0
.1

15
(−

0.
57

)
0.

22
R

W
–

−0
.5

38
R

W
–

(−
6.

05
)

P
an

el
B

:B
oo

k-
to

-M
ar

ke
t

E
W

0.
78

7
0.

01
5

0.
77

2
(3

.8
4)

0.
00

R
W

V
W

R
W

V
W

R
W

0.
55

3
−0

.1
15

0.
66

9
(3

.5
8)

0.
00

E
W

0.
10

2
0.

79
3

E
W

(1
.9

8)
(3

.0
5)

V
W

0.
14

6
0.

16
8

−0
.0

21
(−

0.
13

)
0.

85
R

W
–

0.
69

0
R

W
–

(2
.8

0)

P
an

el
C

:I
n

ve
rs

e
P

ri
ce

E
W

1.
20

1
0.

16
9

1.
03

1
(2

.9
8)

0.
00

R
W

V
W

R
W

V
W

R
W

0.
55

9
0.

15
6

0.
40

2
(1

.2
5)

0.
00

E
W

0.
62

8
1.

23
4

E
W

(1
1.

10
)

(5
.2

7)
V

W
−0

.1
21

0.
08

1
−0

.2
03

(−
0.

56
)

0.
15

R
W

–
0.

60
6

R
W

–
(2

.7
4)

P
an

el
D

:V
ol

u
m

e

E
W

0.
05

8
0.

95
5

−0
.8

96
(−

4.
22

)
0.

00
R

W
V

W
R

W
V

W
R

W
0.

04
2

0.
58

6
−0

.5
43

(−
2.

64
)

0.
01

E
W

−0
.3

52
−0

.8
50

E
W

(−
9.

67
)

(−
6.

21
)

V
W

0.
03

0
0.

07
6

−0
.0

46
(−

0.
34

)
0.

48
R

W
–

−0
.4

97
R

W
–

(−
3.

72
)

P
an

el
E

:I
ll

iq
u

id
it

y
R

at
io

E
W

0.
80

5
0.

11
2

0.
69

2
(3

.2
1)

0.
00

R
W

V
W

R
W

V
W

R
W

0.
42

9
0.

09
7

0.
33

1
(1

.6
0)

0.
02

E
W

0.
36

1
0.

89
8

E
W

(1
0.

27
)

(7
.2

8)
V

W
−0

.1
66

0.
03

9
−0

.2
05

(−
1.

11
)

0.
32

R
W

–
0.

53
7

R
W

–
(4

.5
9)



Noisy Prices and Inference Regarding Returns 699

January, whereas Keim (1983) shows that the return premium associated with
firm size is much stronger in January than in other months. Table V reports
mean returns to attribute-sorted portfolios on an EW, RW, and VW basis,
separately for the month of January and for non-January months.

The broadest observation regarding the mean return differentials reported
in Table V is that every empirical relation is stronger in January than in other
months. In particular, the biases contained in EW returns attributable to noisy
prices are uniformly larger in January. In the case of firm size, for example,
the bias (estimated by the EW − RW hedge portfolio differential) is −1.36% in
January versus −0.38% in non-January months. The larger bias in January
months could reflect that prices contain more noise in January, or that the
cross-sectional correlation between noise and firm attributes is increased in
January. However, the bias due to noisy prices is not confined to January. With
the exception of portfolios sorted on the basis of book-to-market, statistically
significant bias attributable to noisy prices is observed in non-January months
as well, as t-statistics for the EW − RW hedge portfolio differential range in
absolute value from 10.75 (for trading volume) to 15.06 (for inverse share
price).

These results indicate that it is particularly important to control for noise
in prices when studying January return data. This insight is relevant to re-
searchers who consider implementing the IEW method. As noted, the IEW
method does not correct for bias in the first period after portfolio formation.
Blume and Stambaugh (1983) form portfolios as of the end of each Decem-
ber, but implement their correction in daily data. Although the effect of failing
to correct returns for a single day is likely to be minuscule, researchers im-
plementing the IEW method in monthly return data will likely want to form
portfolios at a date other than the end of December. A practical approach might
be to form EW portfolios at the end of each November, skip December, and study
IEW returns during the following year.23

Finally, it is noteworthy that, with the exception of the market-to-book ra-
tio, the EW hedge portfolio return differential is insignificant in non-January
months, indicating that the data do not support the existence of reliable re-
turn premia outside January for firm size, share price, trading volume, or
illiquidy, even without correction for biases. At the same time, the difference
in EW versus RW hedge portfolio returns remains significant, indicating that
the non-January mean returns are biased, even when they are statistically
indistinguishable from zero.

B. Fama–MacBeth Regression and Subperiod Results

We next report in Table VI the results of estimating the return premia as-
sociated with the five firm-specific characteristics by means of Fama–MacBeth
regressions of observed returns on each of the characteristics in turn, while

23 As noted, the IEW results reported in Tables II and III of this paper are based on portfolios
formed at the end of each July.
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Table VI
Univariate Fama–MacBeth Regressions, January 1966 to December

2009
Reported are results of implementing cross-sectional Fama–MacBeth regressions of monthly stock
returns, relying on NYSE-Amex stocks from 1966 to 2009 and including NASDAQ stocks from
1983 to 2009. Panels A through E report results for the different firm-specific characteristics. The
coefficients reported in column OLS are the time-series means of the monthly cross-sectional OLS
regression estimates, while coefficients reported in column RW are the time-series means of the
monthly cross-sectional WLS regression estimates, where the weighting variable is one plus the
previous month’s return. The coefficients reported in column DIF are the time-series means of
the difference between the OLS and WLS coefficients. t-statistics are reported in parentheses and
adjusted for autocorrelation as in footnote 13 in Cooper, Gulen, and Schill (2008).

Period OLS (t-stat) RW (t-stat) DIF (t-stat)

Panel A Size 1966–2009 −0.186 (−3.80) −0.125 (−2.61) −0.060 (−11.50)
1966–1982 −0.243 (−2.75) −0.203 (−2.33) −0.040 (−7.55)
1983–2000 −0.105 (−1.39) −0.024 (−0.32) −0.081 (−8.73)
2001–2009 −0.238 (−2.53) −0.180 (−2.03) −0.057 (−4.20)

Beta 1966–2009 0.015 (0.12) −0.040 (−0.34) 0.055 (7.26)
1966–1982 −0.076 (−0.40) −0.112 (−0.60) 0.036 (5.05)
1983–2000 −0.067 (−0.38) −0.136 (−0.80) 0.068 (4.86)
2001–2009 0.355 (1.01) 0.287 (0.84) 0.067 (2.92)

Panel B log(BM) 1966–2009 0.463 (5.58) 0.446 (5.41) 0.017 (2.30)
1966–1982 0.499 (3.24) 0.453 (3.01) 0.045 (5.15)
1983–2000 0.413 (5.00) 0.412 (4.88) 0.001 (0.086)
2001–2009 0.500 (2.01) 0.504 (2.00) −0.003 (−0.14)

Beta 1966–2009 0.132 (0.94) 0.051 (0.39) 0.081 (3.86)
1966–1982 0.120 (0.53) 0.045 (0.20) 0.074 (6.69)
1983–2000 −0.055 (−0.33) −0.116 (−0.71) 0.061 (5.43)
2001–2009 0.558 (1.18) 0.420 (1.10) 0.137 (1.30)

Panel C InvPrice 1966–2009 0.312 (2.84) 0.160 (1.49) 0.152 (13.33)
1966–1982 0.385 (1.87) 0.273 (1.35) 0.112 (9.21)
1983–2000 0.141 (0.88) −0.053 (−0.33) 0.194 (10.68)
2001–2009 0.516 (2.21) 0.373 (1.75) 0.143 (4.16)

Beta 1966–2009 −0.007 (−0.06) −0.037 (−0.33) 0.029 (4.47)
1966–1982 −0.038 (−0.20) −0.060 (−0.32) 0.022 (3.82)
1983–2000 −0.058 (−0.36) −0.101 (−0.64) 0.0427 (3.21)
2001–2009 0.152 (0.52) 0.134 (0.46) 0.018 (1.08)

Panel D NYdvol 1966–2009 −0.093 (−1.89) −0.057 (−1.14) −0.035 (−5.36)
1966–1982 −0.022 (−0.55) −0.024 (−0.64) 0.002 (0.56)
1983–2000 −0.071 (−0.73) −0.025 (−0.25) −0.045 (−4.50)
2001–2009 −0.269 (−1.89) −0.181 (−1.30) −0.088 (−4.08)

NAdvol 1983–2009 −0.241 (−2.90) −0.151 (−1.87) −0.089 (−7.34)
1983–2000 −0.132 (−1.79) −0.054 (−0.76) −0.078 (−6.59)
2001–2009 −0.460 (−2.17) −0.347 (−1.69) −0.113 (−3.94)

Beta 1966–2009 0.104 (0.81) 0.024 (0.19) 0.080 (9.04)
1966–1982 0.038 (0.17) −0.021 (−0.09) 0.059 (6.72)
1983–2000 −0.017 (−0.10) −0.112 (−0.67) 0.094 (6.45)
2001–2009 0.474 (1.31) 0.384 (1.09) 0.090 (3.09)

(Continued)
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Table VI—Continued

Period OLS (t-stat) RW (t-stat) DIF (t-stat)

Panel E NYilliq 1966–2009 0.116 (4.02) 0.070 (2.74) 0.045 (6.38)
1966–1982 0.110 (2.35) 0.078 (1.77) 0.031 (6.43)
1983–2000 0.153 (2.86) 0.083 (1.81) 0.069 (4.32)
2001–2009 0.055 (1.89) 0.030 (1.15) 0.024 (2.96)

NAilliq 1983–2009 0.062 (4.38) 0.045 (3.20) 0.017 (6.77)
1983–2000 0.060 (2.96) 0.042 (2.11) 0.017 (5.48)
2001–2009 0.065 (2.92) 0.050 (2.38) 0.015 (4.22)

Beta 1966–2009 0.071 (0.54) 0.001 (0.01) 0.070 (8.56)
1966–1982 0.039 (0.18) −0.019 (−0.09) 0.059 (6.22)
1983–2000 −0.080 (−0.44) −0.151 (−0.85) 0.071 (5.56)
2001–2009 0.436 (1.19) 0.347 (0.98) 0.088 (3.21)

controlling for risk as measured by market Beta. We report these results be-
cause such cross-sectional regressions are widely used in the empirical liter-
ature. Furthermore, inferences supported by the cross-sectional regressions
potentially differ from those obtained when comparing portfolio mean returns,
both because of imposition of a specific functional form, and because the anal-
ysis is conducted at the level of individual securities rather than portfolios.24

Since researchers most often estimate cross-sectional regressions by OLS,
thereby placing equal weight on each observation, we limit this analysis to
OLS estimation and RW estimation, where we estimate the regression by WLS,
using the prior-period gross return as the weighting variable. As noted earlier,
weighting by prior-period gross returns corrects for the biases introduced by
noisy prices, while continuing to give essentially the same weight to the in-
formation contained in large versus small firm returns. Each cross-sectional
regression is estimated on a monthly basis by OLS and RW. We record each es-
timate, and also the difference between the two estimates. The final coefficient
estimate is the time-series means of the monthly estimates. The associated t-
statistic is adjusted for autocorrelation in the monthly estimates as in Cooper,
Gulen, and Schill (2008).25

We report empirical results for the full (1966 to 2009) sample, and for three
subsamples comprising 1966 to 1982, 1983 to 2000, and 2001 to 2009. The first
subperiod consists of NYSE-Amex stocks, wheras NASDAQ stocks enter for
the second subperiod. The final subperiod mainly consists of data following the
2001 introduction of decimal pricing, which led to substantial reductions in
bid-ask spreads. Comparisons across subperiods allow evaluation of whether

24 Ang, Liu, and Schwarz (2010) show theoretically and empirically that individual-stock re-
gressions have better large-sample statistical properties than portfolio-based regressions.

25 Autocorrelations in monthly return premia estimates are modest. Across the seven full-sample
return premium estimates in Table VI (including separate NASDAQ and NYSE coefficients for
trading volume and illiquidity), the average first-order autocorrelation in the OLS return premium
estimates is 0.076, whereas the first-order autocorrelation in the RW return premium estimates
averages 0.083.
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asset pricing anomalies survive their initial discovery. Furthermore, results
for the final subperiod allow evaluation of whether biases due to noisy prices
remain relevant after the 2001 decimalization of the U.S. stock markets.

The full-sample cross-sectional regressions support conclusions similar to
those obtained on the basis of portfolio return comparisons and the existing
literature. In particular, OLS regression estimates support the existence of
return premia related to firm size (OLS t-statistic = −3.80), book-to market
ratio (OLS t-statistic = 5.58), inverse share price (OLS t-statistic = −2.84),
dollar trading volume (OLS t-statistic = −1.80 for NYSE stocks and −2.90 for
NASDAQ stocks), and illiquidity (OLS t-statistic = 4.02 for NYSE stocks and
4.38 for NASDAQ stocks).

With regard to the central issue addressed in this paper, biases in esti-
mated return premia attributable to noisy prices, the evidence in Table VI
indicates that the biases are strong and pervasive when estimating return pre-
mia by means of cross-sectional OLS Fama–MacBeth regressions. Full-sample
t-statistics for the difference between the OLS and RW estimates range in ab-
solute value from 2.30 for the book-to-market ratio to 13.33 for inverse share
price. And, with only two exceptions, the t-statistic for the bias (difference be-
tween OLS and RW estimates) is statistically significant for each explanatory
variable in each subperiod.26

We note that the estimated absolute magnitude of noise-induced biases has
not uniformly decreased across subperiods. Focusing on firm size, for exam-
ple, point estimates of the bias are −0.040, −0.081, and −0.057 for the three
subperiods, and each is statistically significant. That the bias remains signif-
icant in the postdecimalization period provides indirect but strong evidence
that the noise in security prices is attributable to sources in addition to bid-ask
spreads, such as temporary price pressure attributable to accumulated order
imbalances.

Horowitz, Loughran, and Savin (2000) document that the empirical relevance
of firm size has diminished substantially in the years since papers describing
the empirical size effect were first published. Consistent with their findings,
we observe that the slope coefficient on firm size estimated by OLS decreases
in absolute value from −0.243 during the 1966 to 1982 subperiod to −0.105
in the 1983 to 2000 subperiod. However, the estimated OLS coefficient for the
most recent subperiod, 2001 to 2009, has again increased in absolute magni-
tude, to −0.238. Both the OLS and RW coefficient estimates for the size effect
are statistically significant in the most recent period, and each is similar in
magnitude to the corresponding estimate from the 1966 to 1982 subperiod.
Hence, we conclude that reports of the demise of the size effect in returns may
be premature.

Finally, we note that, even though the return premium associated with Beta
is statistically insignificant for all regression specifications in Table VI, we
detect significant bias in the estimated return premium associated with beta.

26 The two exceptions are for the book-to-market ratio in the 2001 to 2009 period and dollar
volume for NYSE stocks during the 1966 to 1982 period.
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The mean differences between OLS and RW estimates of the beta premium
reported in the column labeled DIF are uniformly positive and statistically
different from zero, with only the exceptions in the final subperiod for results
in Panels B and C. The ability to detect a statistically significant bias in the
OLS − RW premium differential even while the OLS and RW estimates are
insignificant indicates that there is relatively little time-series variation in the
monthly estimates of the bias.

C. Multivariate Fama–MacBeth Regressions

A key advantage of the univariate analyses reported in the preceding sections
is that it is possible to form reasonably strong conjectures as to the likely sign
of the cross-sectional correlation, and hence the direction of noise-induced bias,
between levels of unobservable noise and individual explanatory variables.
However, empirical asset pricing studies using the Fama–MacBeth framework
typically include several explanatory variables. Asparouhova, Bessembinder,
and Kalcheva (2010) show that the direction of the bias in the individual OLS
slope coefficients estimated in multivariate return regressions depends on the
partial correlations between the variance of noise and the regression explana-
tory variables. Such partial correlations will depend on the combination of
explanatory variables included in the multiple regression, and will likely be
quite difficult to anticipate a priori.

Table VII reports results obtained in multivariate Fama–MacBeth regres-
sions of monthly returns on various combinations of the explanatory vari-
ables. In general, conclusions as to which explanatory variables are reliably
associated with returns after correcting for the effects of noise are sensitive
to the set of explanatory variables included in the regression. Conclusions
as to the direction of the bias in regression slope coefficients attributable to
noise are similarly sensitive. Such sensitivity is to be expected given that a
number of the explanatory variables are significantly correlated with each
other.

While the univariate evidence indicates that noise in prices is associated
with significant bias for all explanatory variables examined here, the mean dif-
ference between the OLS and RW estimates in the multivariate specifications
is not always significant. With the full set of explanatory variables included
(specification (6)), we detect significant noise-induced bias in OLS coefficients
on inverse share price, book-to-market ratio, and market beta, but not on firm
size, trading volume, or illiquidity. Furthermore, conclusions as to which ex-
planatory variables are significantly affected by the correction for biases differs
depending on the set of explanatory variables included in the regression. For
example, the bias in the estimated coefficient on firm size is highly significant
in specifications (1), (2), (3), and (5) but not in specifications (4) and (6). Fur-
thermore, the DIF coefficient for firm size is positive in specification (2) and
negative in specifications (1), (3), and (5). The main implication of this mixed
pattern of significance is that the likely effect of adjusting OLS coefficient es-
timates obtained in multivariate return regressions for biases attributable to
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noisy prices will be very difficult to ascertain a priori, and will typically need
to be assessed empirically.

Finally, and perhaps most importantly, we note that inference as to whether
particular explanatory variables have a significant effect on mean stock re-
turns is altered by the correction for noise in some, but not all, specifications.
For example, in specification (5) the negative coefficient on firm size is sta-
tistically significant when estimated by OLS, but the coefficient is overstated
by 40% relative to the corresponding bias-corrected (RW) estimate, which is
not significant (t-statistic = −1.28). Here too, it would be very difficult to an-
ticipate which coefficient estimates will potentially be rendered significant or
insignificant by the correction for noise-induced bias. In a nutshell, the effect of
correcting for noise in prices can be substantial, can alter statistical inference,
and must be assessed empirically.

V. Conclusion

Researchers seek to understand the determinants of variation in mean re-
turns across assets. Most empirical studies either compare returns across port-
folios constructed by sorting on attributes of interest, or estimate regressions of
returns on attributes or risk factors. However, if security prices contain noise,
then return premium estimates obtained by comparison of EW mean returns
across portfolios or by OLS return regressions are biased estimates of the true
return differentials. The bias is relevant because mean true returns, not mean
observed returns, determine the rate of growth over time in expected prices
and shareholder value.

This paper has two main goals. The first is to assess, by theory and simu-
lation, the properties of a set of possible corrections for noisy security prices
under broader assumptions than allowed for in previous papers, including the
possibility that the noise in prices may be serially correlated and/or contain
a common component across stocks. The second goal is to provide illustrative
examples of the potential importance of biases in estimated return premia by
comparing unadjusted estimates (EW portfolio returns and OLS return re-
gression parameter estimates) to corresponding estimates that are adjusted to
mitigate the effects of noisy prices.

With regard to the first goal, we assess the properties of several return-
weighting methods, including equal weighting (EW), prior gross return weight-
ing (RW), initial equal weighting (IEW), prior firm value weighting (VW), and
annual value weighting (AVW). We demonstrate that EW estimates are always
biased in the presence of noisy prices. When the noise in prices is autocorrelated
and/or contains a common component across stocks, the alternative methods
may also be biased, but generally will be less so than the EW estimates. For
plausible parameter estimates, the remaining bias in RW or VW estimates is
minimal.

Our analysis gives little reason to prefer RW over VW, or vice versa. However,
the former provides a bias-corrected estimate that places equal weight on the
information contained in each security, whereas the latter corrects for bias



Noisy Prices and Inference Regarding Returns 707

while weighting large firms more heavily. A researcher’s choice between RW
and VW methods may therefore depend on the desired weight to be given to
the information contained in small versus large capitalization securities.

The analysis also indicates that the RW method performs slightly better than
the IEW method, particularly when estimating cross-sectional mean returns,
and that the VW method dominates the AVW method. The former result sug-
gests in part that the IEW method does not correct for the effects of noisy prices
in the first period after portfolios are formed, whereas the latter suggests that
the AVW method corrects for the effects of noisy prices only in the first period
after portfolios are formed.

With regard to the second goal, comparisons of returns across attribute-
sorted decile portfolios as well as univariate Fama–MacBeth regressions reveal
statistically significant biases in estimated return premia associated with every
attribute considered, including firm size, market-to-book ratio, trading volume,
share price, and illiquidity. However, the economic magnitude of the bias varies
considerably, and is minimal in the case of the market-to-book ratio. In contrast,
the bias attributable to noisy prices in return premia estimates associated with
firm size, share price, trading volume, and illiquidity can be substantial, equal
to 50% or more of the corrected estimate.

The findings reported here indicate that correcting for the effects of noise in
prices has significant effects on return premia estimates obtained from monthly
return data. For the corrections to have substantial effects, the variance of the
noise in prices must be substantial. Our findings therefore provide indirect
support for the Hendershott et al. (2011) finding that order imbalances lead
to substantial noise in prices, and to transitory volatility in returns measured
at the monthly horizon. One possibility is that the month-end prices used to
compute calendar-month returns may contain more noise than other days of
the month. Such a phenomenon could arise, for example, from trading used to
move month-end prices strategically, along the lines documented by Carhart
et al. (2002).

The empirical analysis presented here focuses on monthly returns, and on
five selected firm characteristics. Significant biases may well arise in other
empirical applications. Any explanatory variable that is cross-sectionally cor-
related with the variance of the noise in prices is likely to be susceptible to bias
in estimates of associated return premia. Also, the biases attributable to noisy
prices will likely be more important in studies that consider returns measured
over horizons shorter than the 1-month interval considered here. We leave
the assessment of biases obtained with alternative explanatory variables and
shorter return horizons to future research.

Our analyses allow for nonzero correlation between the variance of noise
and firm attributes and for possible dependence in noise realizations over
time and across securities. However, like Brennan and Wang (2010) we rely
on the simplifying assumption that individual noise realizations in period t
are independent of the random components of true returns in the same pe-
riod. This assumption could be violated in some circumstances, for example, if



708 The Journal of Finance R©

investors systematically over- or underreact to contemporaneous firm-specific
information arrivals. Assessing the effects of relaxing these assumptions on es-
timates of parameters of the noise distribution and on the effectiveness of the
corrections considered here comprises a potentially interesting direction for
future research.

Initial submission: August 28, 2010; Final version received: April 26, 2012
Editor: Campbell Harvey

Appendix A: Time-Series Implementation

We first assess the effect of estimation by the various weighting methods in
the simplest scenario, namely, when estimating the mean and the regression
coefficients for a single firm in a time-series setting. For this analysis, we drop
the subscript n from the return equation to get Rt = 1 + α + Xtβ + εt = X̃tβ̃ + εt.

Also, with some abuse of notation, let μ denote the time-series mean of Rt.

The observed returns are R0
t = Rt

1+δt
1+δt−1

= Rt Dt, where δt = σδ0
t and δ0

t = ρδ0
t−1 +√

1 − ρ2ξt, with ξt being a zero-mean unit-variance i.i.d. random variable. Also,
E(ξ3

t ) = 0. We use Dt,s to denote 1+δt
1+δt−s

.

The following lemma will be used to prove the propositions concerning the
time-series properties of the proposed estimators.

LEMMA A1:

1. E(δt|X) = 0,
2. E(Dt|X) ≈ 1 + σ 2(1 − ρ),
3. E(Dt,s|X) ≈ 1 + σ 2 − σ 2ρs.

Proof : See the Internet Appendix. Q.E.D.

Mean Estimates

PROPOSITION A1:

• plimT →∞ μEW ≈ μ(1 + σ 2(1 − ρ)),
• plimT →∞ μRW ≈ E(Rt−1 Rt)

E(Rt−1) (1 + σ 2(1 − ρ)ρ),

• plimT →∞ μRW (s) ≈ E(Rt−1,s Rt)
E(Rt−1,s)

(1 + σ 2(1 − ρ)ρs),

• plimT →∞ μV W = E(Pt S)
E(Pt−1 S) = E(Pt)

E(Pt−1) .

Proof : Immediate consequence from Lemma A1. Q.E.D.

When estimating the means, the comparison between methods depends on
the time-series properties of the prices (and therefore returns). If returns are
independent over time, which would be the case if prices follow a martingale
process, then both RW and RW(s) provide estimates closer to the true mean
returns than OLS does, with RW(s)’s bias in the limit being smaller than that
of RW. The VW estimator is consistent under the restriction of prices following
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a martingale (see footnote 6 as well). Generally, the VW bias would depend on
cov(Rt, Pt−1). The comparison between the magnitudes of the VW and RW(s)
biases in the general case would depend on the time-series properties of the
returns.

Regression Estimates

PROPOSITION A2:

• plimT →∞β̃EW ≈ β̃ + σ 2(1 − ρ)β̃,
• plimT →∞β̃RW ≈ β̃ + σ 2(1 − ρ)ρβ̃,
• plimT →∞β̃RW (s) ≈ β̃ + σ 2(1 − ρ)ρsβ̃,
• plimT →∞β̃VW = β̃.

Proof : Immediate consequence from Lemma A1. Q.E.D.

The VW weighting scheme provides consistent parameter estimates. Also, it
is easy to see that the magnitude of the bias (in the limit) is the largest with
OLS estimation, followed by the lagged return weighting method (RW), and
then by the s-period lagged return scheme (RW(s)).

Appendix B: Cross-Sectional Implementation

Using the notation and definitions introduced in Section II.B, in addition to
introducing Dnt,s to denote 1+δnt

1+δnt−s
, we can write the expressions for the proba-

bility limit of each (time t) cross-sectional estimator as follows:

A. Ordinary Least Squares, EW: wnt = 1
N .

• plimN→∞ μEW ,t = E(R0
nt) = E(Rnt Dnt) = E(Rnt E(Dnt|X, n)),

• plimN→∞β̃EW ,t

= [E(X̃′
ntX̃nt)]−1E(X̃′

nt Rnt Dnt) = [E(X̃′
ntX̃nt)]−1E(X̃′

ntX̃ntE(Dnt|X, n))β̃.

B. Weighting by the prior period’s (gross) return, RW: wnt = R0
nt−1.

• plimN→∞ μRW ,t = E(Rnt−1 Rnt Dnt Dnt−1)
E(Rnt−1 Dnt−1) = E(Rnt−1 RntE(Dnt Dnt−1|X,n))

E(X̃nt−1β̃E(Dnt−1|X,n))
,

• plimN→∞β̃RW ,t = [E(X̃′
ntX̃nt R0

nt−1)]−1E(X̃′
nt R0

nt−1 R0
nt)

= [E(X̃′
ntX̃nt Rnt−1E(Dnt−1|X, n))]−1E(X̃′

ntX̃nt Rnt−1E(Dnt−1 Dnt|X, n))β̃.

C. Weighting by the prior s periods’ cumulative (gross) return, RW (s):
wnt = R0

nt−1,s = R0
t−1 R0

t−2...R
0
t−1−s.

As Dnt,s = 1+δnt
1+δnt−s

(thus, Dnt,1 = Dnt), then R0
nt−1,s = Rnt−1,s Dnt−1,s and

• plimN→∞ μRW (s),t = E(Rnt−1,s Rnt Dnt Dnt−1,s)
E(Rnt−1,s Dnt−1,s)

= E(Rnt−1,s RntE(Dnt,s+1|X,n))
E(Rnt−1,sE(Dnt−1,s|X,n)) ,
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• plimN→∞β̃RW (s),t = [E(X̃′
ntX̃nt Rnt−1,s Dnt−1,s)]−1E(X̃′

nt Rnt−1,s Rnt Dnt−1,s Dnt)

= [E(X̃′
ntX̃nt Rnt−1,sE(Dnt−1,s|X, n))]−1E(X̃′

ntX̃nt Rnt−1,sE(Dnt,s+1|X, n))β̃.

D. Weighting by the prior period’s firm value, VW: wnt = SnP0
nt−1.

• plimN→∞ μV W ,t = E(Pnt−1 Rnt(1+δnt)Sn)
E(Pnt−1(1+δnt−1)Sn) = E(PntE(Sn(1+δnt)|X,n))

E(Pnt−1E(Sn(1+δnt−1)|X,n)) ,

• plimN→∞β̃V W ,t

= [E(X̃′
ntX̃nt Pnt−1(1 + δnt−1)Sn)]−1E(X̃′

nt Pnt−1(1 + δnt−1)SnRnt Dnt)

= [E(X̃′
ntX̃nt Pnt−1E(1 + δnt−1|X, n)Sn)]−1E(X̃′

ntX̃nt Pnt−1E(1 + δnt|X, n)Sn)β̃.

When c = 0 the following expressions, organized in a lemma (with a proof
provided in the Internet Appendix), can be easily derived (using second-order
Taylor approximations):

LEMMA B1:

1. E(δnt|X, n) = 0,
2. E(Dnt|X, n) ≈ 1 + σ 2

n (1 − ρ),
3. E(Dnt Dnt−1|X, n) ≈ 1 + σ 2

n (1 − ρ2),
4. E(Dnt,s|X, n) ≈ 1 + σ 2

n − σ 2
n ρs.

Proof : See the Internet Appendix. Q.E.D.

Proof of Proposition 1:

plimN→∞ μEW ,t = E(RntE(Dnt|X, n)) ≈ E
(
Rnt

(
1 + σ 2

n (1 − ρ)
))

.

plimN→∞ μRW ,t = E(Rnt−1 RntE(Dnt Dnt−1|X, n))
E(Rnt−1E(Dnt−1|X, n))

≈ E
(
Rnt−1 Rnt

(
1 + σ 2

n (1 − ρ2)
))

E
(
Rnt−1

(
1 + σ 2

n (1 − ρ)
)) .

plimN→∞ μRW (s),t

= E(Rnt−1,s RntE(Dnt,s+1|X, n))
E(Rnt−1,sE(Dnt−1,s|X, n))

≈ E
(
Rnt−1,s Rnt

(
1 + σ 2

n − σ 2
n ρs+1

))
E

(
Rnt−1,s

(
1 + σ 2

n − σ 2
n ρs

)) .

plimN→∞ μVW,t = E(PntE(Sn(1 + δnt)|X, n))
E(Pnt−1E(Sn(1 + δnt−1)|X, n))

= E(PntSn)
E(Pnt−1Sn)

.

Under the conditions of Proposition 1, the expressions in the propositions are
a direct consequence of the expressions developed in Lemma B1. Q.E.D.
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Proof of Proposition 2:

plimN→∞β̃EW ,t

= [E(X̃′
ntX̃nt)]−1E(X̃′

ntX̃ntE(Dnt|X, n))β̃

≈ [E(X̃′
ntX̃nt)]−1E(X̃′

ntX̃nt(1 + σ 2
n (1 − ρ)))β̃.

plimN→∞β̃RW ,t

= [E(X̃′
ntX̃nt Rnt−1E(Dnt−1|X, n))]−1E(X̃′

ntX̃nt Rnt−1E(Dnt−1 Dnt|X, n))β̃

≈ [E(X̃′
ntX̃nt Rnt−1(1 + σ 2

n (1 − ρ)))]−1E(X̃′
ntX̃nt Rnt−1(1 + σ 2

n (1 − ρ2)))β̃.

plimN→∞β̃RW (s),t

= [E(X̃′
ntX̃nt Rnt−1,sE(Dnt−1,s|X, n))]−1E(X̃′

ntX̃nt Rnt−1,sE(Dnt,s+1|X, n))β̃

≈ [E(X̃′
ntX̃nt Rnt−1,s(1 + σ 2

n − σ 2
n ρs))]−1E(X̃′

ntX̃nt Rnt−1,s(1 + σ 2
n − σ 2

n ρs+1))β̃.

plimN→∞β̃V W ,t

= [E(X̃′
ntX̃nt Pnt−1E(1 + δnt−1|X, n)Sn)]−1E(X̃′

ntX̃nt Pnt−1E(1 + δnt|X, n)Sn)β̃

= [E(X̃′
ntX̃nt Pnt−1Sn)]−1E(X̃′

ntX̃nt Pnt−1Sn)β̃ = β̃.

Under the conditions of Proposition 2 the expressions in the propositions
are a direct consequence of the expressions above and those developed in
Lemma B1. Q.E.D.

The following expressions, organized in a lemma, will be used to prove Propo-
sitions 3 and 4.

LEMMA B2:

1. Ē( E(1+δnt)
E(1+δnt−1) ) = 1 + σ 2c(1 − ρ),

2. Ē(E(Dnt)) ≈ Ē(E(1 + δnt − δnt−1 − δntδnt−1 + δ2
nt−1 + δntδ

2
nt−1)) = 1 + σ 2(1 −

ρ),
3. Ē( E(Dnt−1 Dnt)

E(Dnt−1) ) = 1 + σ 2(1 − ρ)(ρ − cρ + c),

4. Ē( E(Dnt−s Dnt)
E(Dnt−1) ) = 1 + σ 2(1 − ρ)ρs−1 + σ 2c(1 − 2ρs−1 + ρs).

Proof: See the Internet Appendix. Q.E.D.

Proof of Proposition 3: Substitute the expressions from Lemma B2 into the
expressions below to get the expressions in the proposition.

Ē(plimN→∞ μEW ,t) = Ē(E(R0
nt)) = Ē(E(Rnt Dnt)) = Ē(E(RntE(Dnt|X, n))).

Ē(plimN→∞ μRW ,t) = Ē
(

E(Rnt−1 Rnt Dnt Dnt−1)
E(Rnt−1 Dnt−1)

)
= E(Rnt−1 Rnt)

E(Rnt−1)
Ē

E(Dnt Dnt−1)
E(Dnt−1)

.
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Ē(plimN→∞ μRW (s),t) = Ē
(

E(Rnt−1,s Rnt Dnt Dnt−1,s)
E(Rnt−1,s Dnt−1,s)

)

= E(Rnt−1,s Rnt)
E(Rnt−1,s)

Ē
E(Dnt Dnt−1,s)

E(Dnt−1,s)
.

Ē(plimN→∞ μV W , t) = Ē
(

E(Pnt−1 Rnt(1 + δnt)Sn)
E(Pnt−1(1 + δnt−1)Sn)

)

= E(Pnt−1 RntSn)
E(Pnt−1Sn)

Ē
(

E(1 + δnt)
E(1 + δnt−1)

)
.

Q.E.D.

Proof of Proposition 4:

Ē(plimN→∞β̃EW ,t)

= Ē([E(X̃′
ntX̃nt)]−1E(X̃′

ntX̃nt Dnt)β̃) = [E(X̃′
ntX̃nt)]−1Ē(E(X̃′

ntX̃nt Dnt)β̃)

= [E(X̃′
ntX̃nt)]−1E(X̃′

ntX̃ntĒ(Dnt)β̃) = [E(X̃′
ntX̃nt)]−1E(X̃′

ntX̃nt(1 + σ 2
n (1 − ρ))β̃).

Ē(plimN→∞β̃RW ,t)
= Ē{[E(X̃′

ntX̃nt(X̃nt−1β̃)Dnt−1)]−1E(X̃′
ntX̃nt(X̃nt−1β̃)Dnt−1 Dnt)β̃}

= [E(X̃′
ntX̃nt(X̃nt−1β̃))]−1E(X̃′

ntX̃nt(X̃nt−1β̃))β̃}Ē
(

E(Dnt−1 Dnt)
E(Dnt−1)

)

= β̃Ē
(

E(Dnt−1 Dnt)
E(Dnt−1)

)
.

Ē(plimN→∞β̃RW (s),t) ≈ β̃Ē
(

E(Dnt−1,s Dnt)
E(Dnt−1,s)

)
.

Ē(plimN→∞β̃V W ,t) ≈ β̃Ē
(

E(1 + δnt)
E(1 + δnt−1)

)
.

Q.E.D.
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Pástor, L̆ubos̆, and Robert F. Stambaugh, 2003, Liquidity risk and expected stock returns, Journal

of Political Economy 111, 642–685.
Poterba, James M., and Lawrence H. Summers, 1988, Mean reversion in stock prices: Evidence

and implications, Journal of Financial Economics 22, 27–59.
Scholes, Myron, and Joseph Williams, 1977, Estimating betas from nonsynchronous data, Journal

of Financial Economics 5, 309–327.

Supporting Information

Additional Supporting Information may be found in the online version of this
article at the publisher’s web site:

Appendix S1: Internet Appendix

http://dx.doi.org/10.1111/j.1540-6261.2009.01493.x
http://dx.doi.org/10.1111/j.1540-6261.2009.01493.x
http://dx.doi.org/10.1086/296667
http://dx.doi.org/10.2307/1913625
http://dx.doi.org/10.1162/00335530360535162
http://dx.doi.org/10.1111/j.1540-6261.1988.tb04594.x
http://dx.doi.org/10.1111/j.1540-6261.1988.tb04594.x
http://dx.doi.org/10.1016/S0304-405X(00)00091-X
http://dx.doi.org/10.1006/reec.1999.0207
http://dx.doi.org/10.1006/reec.1999.0207
http://dx.doi.org/10.1111/j.1540-6261.1990.tb05110.x
http://dx.doi.org/10.1111/j.1540-6261.1990.tb05110.x
http://dx.doi.org/10.1111/0022-1082.00342
http://dx.doi.org/10.1016/0304-405X(83)90025-9
http://dx.doi.org/10.1093/rfs/14.1.79
http://dx.doi.org/10.1093/rfs/14.1.79
http://dx.doi.org/10.2307/2937816
http://dx.doi.org/10.2307/2937816
http://dx.doi.org/10.1086/374184
http://dx.doi.org/10.1086/374184
http://dx.doi.org/10.1016/0304-405X(88)90021-9
http://dx.doi.org/10.1016/0304-405X(77)90041-1
http://dx.doi.org/10.1016/0304-405X(77)90041-1

