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Abstract

Informed trading can take two forms: (i) trading on more accurate information

or (ii) trading on public information faster than other investors. The latter is

increasingly important due to technological advances. To disentangle the effects of

accuracy and speed, we derive the optimal dynamic trading strategy of an informed

investor when he reacts to news (i) at the same speed or (ii) faster than other market

participants, holding information precision constant. With a speed advantage, the

informed investor’s order flow is much more volatile, accounts for a much bigger

fraction of trading volume, and forecasts very short run price changes. We use the

model to analyze the effects of high frequency traders on news (HFTNs) on liquidity,

volatility, price discovery and provide empirical predictions about the determinants

of their activity.
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1 Introduction

The effect of news arrival on trades and prices in securities markets is of central interest.

For instance, informational efficiency is often measured by the speed at which prices

incorporate public information and many researchers have studied trading volume and

prices around news (e.g., Patell and Wolfson (1984), Kim and Verrecchia (1991, 1994),

Busse and Green (2001), Vega (2006), or Tetlock (2010)). A new breed of market partic-

ipants, “high frequency traders on news” (HFTNs), now use the power of computers to

collect, process and exploit news faster than other market participants (see “Computers

that trade on the news”, the New York Times, May 2012).1 Hence, the impact of news

in today’s securities markets depends on the behavior of these traders. Can we rely on

traditional models of informed trading to understand this behavior and its effects? Is

trading faster on public information the same thing as trading on more accurate private

information?

To address these questions, we consider a model in which an informed investor con-

tinuously receives news about the payoff of a risky security. He has both a greater

information processing capacity and a higher speed of reaction to news than market

makers. The information processing advantage enables the informed investor to form a

more precise forecast of the fundamental value of the asset while the speed advantage

enables him to forecast quote updates due to news arrival. Models of informed trading

focus on the former type of advantage (accuracy) but not on the latter (speed).2

Our central finding is that the optimal trading strategy of the informed investor

is very different when he has a speed advantage versus when he does not, holding the

precision of his private information constant. In particular, a small speed advantage

1News exploited by these traders are very diverse and include market events (quote updates, trades,
orders), blog posts, news headlines, discussions in social forums etc. For instance, Brogaard, Hender-
shott, and Riordan (2012) show that high frequency traders in their data react to information contained
in macro-economic announcements, limit order book updates, and market-wide returns. Data vendors
such as Bloomberg, Dow-Jones or Thomson Reuters have started providing pre-processed real-time news
feed to high frequency traders. For instance, in their on-line advertisement for real-time data processing
tools, Dow Jones states: “Timing is everything and to make lucrative, well-timed trades, institutional
and electronic traders need accurate real-time news available, including company financials, earnings,
economic indicators, taxation and regulation shifts. Dow Jones is the leader in providing high-frequency
trading professionals with elementized news and ultra low-latency news feeds for algorithmic trading.”
See http://www.dowjones.com/info/HighFrequencyTrading.asp.

2This is also the case for models that specifically analyze informed trading around news releases.
For instance, Kim and Verrecchia (1994) assume that when news are released about the payoff of an
asset, some traders (“information processors”) are better able to interpret their informational content
than market makers. As a result these traders have more accurate forecasts than market makers but
receive news at the same time as other traders.
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for the informed investor makes his optimal portfolio much more volatile, that is, the

informed investor trades much more when he can react to news faster than market

makers.

In our set-up, the informed investor has two motivations for trading. First, his

forecast of the asset liquidation value is more precise than that of market makers. Sec-

ond, by receiving news a split second before market makers, the informed investor can

forecast market makers’ quote updates due to public information arrival, that is, price

changes in the very short run. The investor’s optimal position in the risky asset reflects

these two motivations: (i) its drift is proportional to market makers’ forecast error (the

difference between the informed investor’s and market makers’ estimates of the asset

payoff) while (ii) its instantaneous variance is proportional to news. The second com-

ponent (henceforth the news trading component) arises only if the informed investor has

a speed advantage.3 The investor’s position is therefore much more volatile in this case.

Figure 1 illustrates this claim for one particular realization of news in our model.

This finding has several important and new implications. For instance, the informed

investor’s share of trading volume is much higher when he has a speed advantage. Indeed,

the volatility of his order flow is of the same order of magnitude as the volatility of noise

traders’ order flow. Moreover, with a speed advantage, the informed investor’s order

flow at the high frequency (over a very short interval) has a positive correlation with

subsequent returns, because the informed investor’s trades are mainly driven by news

arrivals, at high frequency. These features fit well with some stylized facts about high

frequency traders: (a) their trades account for a large fraction of the trading volume (see

Hendershott, Jones, and Menkveld (2011), Brogaard (2011), Brogaard, Hendershott,

and Riordan (2012) or Chaboud, Chiquoine, Hjalmarsson, and Vega (2009)) and (b)

their aggressive orders (i.e., marketable orders) anticipate very short run price changes

(see Kirilenko, Kyle, Samadi, and Tuzun (2011) or Brogaard, Hendershott, and Riordan

(2012)).4 In contrast, we show that the model in which the informed investor has more

accurate information, but no speed advantage, cannot explain these facts.

Moreover, the effect of the precision of public information (that is, the news received

3In contrast, the drift of the investor’s position is proportional to market makers’ forecast error even
when the investor has no speed advantage, as in the continuous time version of Kyle (1985) or extensions
of this model such as Back (1992), Back and Pedersen (1998), Back, Cao, and Willard (2000) or Chau
and Vayanos (2007).

4For instance, Kirilenko, Kyle, Samadi, and Tuzun (2011) note (page 21) that “possibly due to their
speed advantage or superior ability to predict price changes, HFTs are able to buy right as the prices are
about to increase.”
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Figure 1: Informed participation rate at various trading frequencies. The
figure plots the evolution of the informed investor’s position (upper panel) and the
change in this position-the informed investor’s trade- (lower panel) when the informed
investor has a speed advantage (plain line) and when he has no speed advantage (dashed
line) using the characterization of the optimal trading strategy for the investor in each
case.
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by market makers) differs from that obtained in other models of trading around news,

such as Kim and Verrecchia (1994). Usually, more precise public information is associ-

ated with greater market liquidity (lower price impact) but lower trading volume (see

Kim and Verrecchia (1994) for instance). In contrast, in our model, it is associated with

both an increase in liquidity (as market makers are less exposed to adverse selection),

more trading volume, and a greater participation rate of the informed investor. Indeed,

an increase in the precision of public information enables the informed investor to better

forecast short run quote updates by market makers, which induces him to trade more

aggressively on news. As a result, the volatility of his position increases, which means

that both the trading volume and the fraction of this trading volume due to the in-

formed investor increases. These effects imply that market makers are more exposed to

adverse selection due to news trading but this effect is second order relative to the fact

that they can better forecast the final payoff of the asset, so that they are less at risk of

accumulating a long position when the asset liquidation value is low or vice versa. As

a result, liquidity improves when public news are more precise, even though informed

trading is more intense.5

The informed investor’s ability to forecast quote updates also implies that short run

returns are positively related to his contemporaneous order flow. This is indeed what

Brogaard, Hendershott and Riordan (2012) find empirically for the aggressive trades of

high frequency traders. In addition, they find that the same order flow of high frequency

traders is negatively correlated with pricing errors. This is also the case in our model,

as the informed investor sells on average when the price is above his estimate of the

fundamental value and buys otherwise. But in our model, this behavior arises from the

informed trader having market power. Indeed, the order flow of the informed trader

moves the price by less than the innovation in asset value (the news), and thus his order

flow has a negative contemporaneous correlation with the pricing error.

Last, we use the model to analyze the effects of speed on liquidity, price discovery,

and volatility. This is of interest since speed is often viewed as the distinctive advantage

of high frequency traders and the debate on high frequency trading revolves around

5This finding suggests that controlling for the precision of public information is important in analyz-
ing the impact of high frequency news trading activity on liquidity. Indeed, when public information is
more precise, both the informed investor’s share of trading volume and liquidity improves. Thus, varia-
tions in the precision of public information across stocks or over time should work to create a positive
association between liquidity and measures of high frequency news traders activity. Yet, this association
is spurious since as explained below granting a speed advantage to the informed investor always impairs
liquidity in our model.
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the question of what is the effect of speed on measures of market performance (see

for instance SEC (2010) or Gai, Yao, and Ye (2012)). To speak to this debate, we

compare standard measures of market performance when the informed investor has a

speed advantage (the new environment with HFTNs) and when he has not (the old

environment without HFTNs) in our model.

Illiquidity (price impact of trades) is higher when the informed investor has a speed

advantage because the ability of the informed investor to react faster to news is an

additional source of adverse selection for market makers.6 Less obviously, this speed

advantage also affects the nature of price discovery: price changes over short horizon

are more correlated with innovations in the asset value (as found empirically in Brogaard,

Hendershott, and Riordan (2012) but less correlated with the long run estimate of this

value by the informed investor. The first effect improves price discovery while the second

impairs price discovery. In equilibrium, they exactly cancel out so that the average

pricing error (the difference between the transaction price and the informed investor’s

estimate of the asset value) is the same whether the informed investor has a speed

advantage or not. Similarly, high frequency news trading alters the relative influences

of trades and news arrivals on short run volatility. Trades move market makers’ price

more when the investor has a speed advantage because they are more informative about

imminent news. But precisely for this reason, market makers’ quotes are less sensitive to

news because news have been partly revealed through trading. Therefore, the magnitude

of quote revisions after news is smaller when the informed investor has a speed advantage,

which dampens volatility. These two effect exactly offset each other so that overall high

frequency news trading has no effect on volatility.

High frequency traders’ strategies are heterogeneous (see SEC (2010)). Accordingly,

they do not necessarily have all the same effects on market quality. In particular, some

HFTs implicitly act as market makers (see Brogaard, Hendershott and Riordan (2012)

or Menkveld (2012)). Market makers may use speed to protect themselves against better

informed traders (e.g., by cancelling their limit orders just before news arrival) and pro-

vide liquidity at lower cost (see Jovanovic and Menkveld (2011)). This type of strategy

is not captured by our model, which restricts the informed investor to submit market

orders, as in Kyle (1985). This assumption is reasonable since Brogaard, Hendershott

6In line with this prediction, Hendershott and Moulton (2011) find that a reduction in the speed of
execution for market orders submitted to the NYSE in 2006 is associated with larger bid-ask spreads,
due to an increase in adverse selection.
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and Riordan (2012) show empirically that only aggressive orders (i.e., market orders)

submitted by high frequency traders are a source of adverse selection. However, it limits

the scope of our implications. Accordingly, we do not claim that these implications are

valid for all activities by high frequency traders.7

Our paper is related to the growing theoretical literature on high frequency trad-

ing.8 Our analysis is most related to Biais, Foucault, Moinas (2011) and Jovanovic and

Menkveld (2011) who also build upon the idea that high frequency traders have a speed

advantage in getting access to information. These models are static. Therefore they

do not analyze the optimal dynamic trading strategy of an investor with fast access to

news, while this analysis is central to our paper. Our approach is helpful to understand

dynamic relationships between returns and the order flow of high frequency traders. Our

framework does not lend itself to welfare analysis since it relies on the existence of noise

traders. For a paper that discusses welfare issues and the social value of high frequency

trading, see Biais, Foucault, and Moinas (2011).

Technically, our model is related to Back and Pedersen (1998) (BP(1998)), Chau

and Vayanos (2008) (CV(2008)), and Martinez and Roşu (2012) (MR(2012)). As in

BP(1998), one investor receives a continuous flow of information (“news”) on the final

payoff of an asset (its fundamental value) and optimally trades with market makers. As

in CV(2008), market makers receives news continuously as well, but not as precisely as

the investor.9 In contrast to both models, we assume that the informed investor observes

news an infinitesimal amount of time before market makers. This feature implies that

the instantaneous variance of the informed investor’s position becomes strictly positive.

MR(2012) obtains a similar finding for a different reason. In their model, market makers

receive no news. In this particular case, the news trading component would disappear

in our model. This is not the case in MR(2012) because the informed investor dislikes

speculating on the long run value of the asset because of ambiguity aversion.

The paper is organized as follows. Section 2 describes our two models: the bench-

7This caveat is important for the interpretation of empirical findings in light of our predictions. For
instance, Hasbrouck and Saar (2012) find a negative effect of their proxy for high frequency trading on
volatility and a positive effect on liquidity while our model predicts respectively no effect and a negative
effect of HFTNs on these variables. However, Hasbrouck and Saar (2012)’s proxy does not specifically
capture the high frequency trades triggered by the arrival of news. Thus, it may be a noisy proxy for
the trades of HFTNs.

8See, for instance, Cvitanic and Kirilenko (2011), Jovanovic and Menkveld (2011), Biais, Foucault,
and Moinas (2011), Pagnotta and Philippon (2011), Cartea and Penalva (2012), or Hoffmann (2012).

9We take the greater precision of information for the investor as given. As in Kim and Verrecchia
(1994), it could stem from greater processing ability for the informed investor.
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mark model, and the fast model. Section 3 describes the resulting equilibrium price

process and trading strategies, and compares the various coefficients involved. Section 4

discusses empirical implications of the model. Section 5 concludes. All proofs are in

Appendix A. The model is set in continuous time, but in Appendix B we analyze the

corresponding discrete time version. The goal of this analysis is to show that that the

continuous time model captures the effects obtained in a discrete time model in which

news and trading decisions are very frequent.

2 Model

Trading for a risky asset occurs over the time interval [0, 1]. The liquidation value of

the asset at time 1 is v1. The risk-free rate is taken to be zero. Over the time interval

[0, 1], a single informed trader (“he”) and uninformed noise traders submit market orders

to a competitive market maker (“she”), who sets the price at which the trading takes

place. The informed trader learns about the asset liquidation value, v1, over time. His

expectation of v1 conditional on his information available until time t is denoted vt. We

refer to this estimate as the fundamental value of the asset at date t. This value follows

a Gaussian process given by

vt = v0 +

∫ t

0
dvτ , with dvt = σv dBv

t , (1)

where v0 is normally distributed with mean 0 and variance Σ0, and Bv
t is a Brownian

motion.10 The informed trader observes v0 at time 0, and observes dvt during each time

interval (t, t + dt], t ∈ (0, 1). We refer to this innovation in asset value as the news

received by the informed trader at t.

The position of the informed trader in the risky asset at t is denoted by xt. As the

informed trader is risk-neutral, he chooses xt (his “trading strategy”) to maximize his

10This assumption can be justified as follows. First, define the asset value vt as the full information
price of the asset, i.e., the price that would prevail at t if all information until t were to become
public. Then, vt moves any time there is news, which should be interpreted not just as information from
newswires, but more broadly as changes in other correlated prices or economic variables such as trades in
other securities etc. For example, Brogaard, Hendershott, and Riordan (2012), Jovanovic and Menkveld
(2011) and Zhang (2012) show that the order flow of HFTs is correlated with changes in market-wide
prices. Under this interpretation, vt changes at a very high frequency, and can be assumed to be a
continuous martingale, thus can be represented as an integral with respect to a Brownian motion (see
the martingale representation theorem 3.4.2 in Karatzas and Shreve (1991)). Our representation (1) is
then a simple particular case, with zero drift and constant volatility.
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expected profit at t = 0 given by

U0 = E

[∫ 1

0
(v1 − pt+dt) dxt

]
= E

[∫ 1

0
(v1 − pt − dpt) dxt

]
, (2)

where pt+dt = pt+dpt is the price at which the informed trader’s order dxt is executed.11

The aggregate position of the noise traders at t is denoted by ut. It follows an

exogenous Gaussian process given by

ut = u0 +

∫ t

0
duτ , with dut = σv dBu

t , (3)

where Bu
t is a Brownian motion independent from Bv

t .

The market maker also learns about the asset value from (a) public information and

(b) trades. During (t, t+ dt], she receives a noisy signal of the innovation in asset value:

dzt = dvt + det, with det = σe dBe
t , (4)

where Be
t is a Brownian motion independent from all the others. We refer to dzt as the

flow of news received by the market maker at date t. Furthermore, the market maker

learns information from the aggregate order flow:

dyt = dut + dxt, (5)

because dxt will reflect the information possessed by the informed trader (see below).

We denote by qt the market maker’s expectation of the asset liquidation value just before

she observes the aggregate order flow dyt. As the market maker is competitive and risk-

neutral, she executes the order flow at a price equal to her expectation of the asset value

just after she receives the order flow (as in Kyle (1985), BP (1998) or CV(2007)). We

denote this transaction price by pt+dt. As in Kyle (1985), one can interpret qt as the

bid-ask midpoint just before the transaction over (t, t+ dt].12

If σe > 0, the news received by the market maker are less precise than those received

by the informed trader. Thus, one advantage of the informed investor over the market

11Because the optimal trading strategy of the informed trader might have a stochastic component,
we cannot set E(dptdxt) = 0 as, e.g., in the Kyle (1985) model.

12This interpretation is correct if the price impact is increasing in the signed order flow and a zero
order flow has zero price impact. These conditions are satisfied in the linear equilibrium we consider in
Section 3.
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Figure 2: Timing of events during (t, t + dt] in the benchmark and the fast
model
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maker is that he can form a more precise forecast of the asset payoff than the market

maker, at any point in time. As in Kim and Verrecchia (1994), this advantage could

stem from the fact that the informed investor is better able to process news than the

market makers.

Our focus here is on the second advantage for the informed investor: the possibility

to trade on news faster than the market maker. To analyze this speed advantage and

isolate its effects, we consider two different models: the benchmark model and the fast

model. They differ in the timing with which the informed investor and the market maker

receive news. The sequence of information arrival, quotes and trades in each model is

summarized in Figure 2.

In the benchmark model, the order of events during the time interval (t, t+ dt] is as

follows. First, the informed trader observes dvt and the market maker receives the signal

dzt. The market maker sets her quote qt based on her information set It ∪ dzt, where

It ≡ {zτ}τ≤t ∪ {yτ}τ≤t, which comprises the order flow and the market maker’s signals

until time t, and the news just received in the interval (t, t + dt]. Then, the informed

trader and the noise traders submit their market orders and the aggregate order flow,

dyt = dxt + dut is realized. The information set of the market maker when she sets the

execution price pt+dt is therefore It ∪ dzt ∪ dyt. That is, pt+dt differs from qt because it

reflects the information contained in the order flow at date t+ dt.

In the fast model, the informed trader can trade on news faster than the market

maker. Namely, when the market maker executes the order flow dyt, she does not yet

observe the news dzt while the informed investor has already observed the innovation in

the asset value, dvt. More specifically, over the interval (t, t + dt], the informed trader

10



first observes dvt, submits his market order dxt along with the noise traders’ orders dut

and the market maker executes the aggregate order flow at price pt+dt, which is her

conditional expectation of the asset payoff on the information set It∪ dyt. After trading

has taken place and before the next trade, the market maker receives the signal dzt and

updates her estimate of the asset payoff based on the information set It∪dzt∪dyt. Thus,

the mid-quote qt+dt at the beginning of the next trading round is the market maker’s

expectation of the asset payoff conditional on It ∪ dzt ∪ dyt.

To sum up, in the benchmark model:

qt = E [v1 | It ∪ dzt] and pt+dt = E [v1 | It ∪ dzt ∪ dyt] , (6)

while in the fast model:

qt = E [v1 | It] and pt+dt = E [v1 | It ∪ dyt] . (7)

Thus, in the benchmark model, the market maker and the informed investor observe

news (innovations in the asset value) at the same speed but not with the same precision

(unless σe = 0). This information structure is standard in models of informed trading

following Kyle (1985) and also in empirical applications (see Hasbrouck (1991a)). By

contrast, in the fast model, the informed trader observes news a split second before

the market maker. Thus, he also has a speed advantage relative to the market maker.

Otherwise the benchmark model and the fast model are identical. Hence, by contrasting

the properties of the benchmark model and the fast model, we can isolate the effects

of high frequency traders’ ability to react to news relatively faster than other market

participants.

3 Optimal News Trading

In this section, we first derive the equilibrium of the benchmark model and the fast

model. We then use the characterization of the equilibrium in each case to compare the

properties of the informed investor’s trades in each case.
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3.1 Equilibrium

The equilibrium concept is similar to that of Kyle (1985) or Back and Pedersen (1998).

That is, (a) the informed investor’s trading strategy is optimal given market makers’

pricing policy and (b) market makers’ pricing policy follows equations (6) or (7) (de-

pending on the model) with dyt = dut + dx∗t where dx∗t is the optimal trading strategy

for the informed investor. As usual in the literature using the framework of Kyle (1985),

we look for equilibria in which prices are linear functions of the order flow and the

informed investor’s optimal trading strategy at date t (dxt) is a linear function of his

forecast of the asset value and the news he receives at date t.

More specifically, in the benchmark model, we look for an equilibrium in which the

market maker’s quote revision is linear in the public information she receives while the

price impact is linear in the order flow. That is,

qt = pt + µBt dzt and pt+dt = qt + λBt dyt, (8)

where index B denotes a coefficient in the Benchmark case. In the fast model, we look

for an equilibrium in which the transaction price, pt+dt, is linear in the order flow as in

equation (8) and the subsequent quote revision is linear in the unexpected part of the

market maker’s news. That is,

pt+dt = qt + λFt dyt and qt+dt = pt+dt + µFt (dzt − ρFt dyt), (9)

where ρFt dyt is the market maker’s expectation of the public information arriving over

(t, t+ dt] conditional on the order flow over this period and index F refers to the value

of a coefficient in the Fast model. In the fast model, ρFt > 0 because, as shown below,

the informed investor’s optimal trade at date t depends on the news received at this

date (dvt). Thus, the market maker can forecast news from the order flow.

In both the benchmark and the fast model, we look for an equilibrium in which the

informed investor’s trading strategy is of the form

dxt = βkt (vt − qt)dt+ γkt dvt for k ∈ {B,F}. (10)

That is, we solve for βkt and γkt so that the strategy defined in equation (10) maximizes

the informed trader’s expected profit (2). More generally, one may look for linear equi-
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libria in which dxt =
∫ t

0 γ
k
j dvj + αt. However, we show in Appendix B that the optimal

trading strategy for the informed investor in the discrete time version of our model is

necessarily as in equation (10) when the market maker’s pricing rule is linear. It is

therefore natural to restrict our attention to this type of strategy in the continuous time

version of the model.

The trading strategy of the informed investor at, say, date t has two components.

The first component (βt(vt − pt)dt) is proportional to the market maker’s forecast er-

ror, i.e., the difference between the forecast of the asset value by the informed investor

and the forecast of this value by the market maker prior to the trade over (t, t + dt].

Intuitively, the informed investor buys when the market maker underestimates the fun-

damental value and sells otherwise. This component is standard in models of trading

with asymmetric information such as Kyle (1985), Back and Pedersen (1998), Back,

Cao, and Willard (2000), etc. In what follows, we refer to this component as being the

forecast error component.

The second component of the informed investor’s trading strategy is proportional to

the news he receives at date t. We call it the news trading component. The next theorem

shows that, in equilibrium, the news trading component is zero in the benchmark case

(γBt = 0) while it is strictly positive in the case in which the informed investor has

a speed advantage in reacting to news (γFt = 0). As explained in details below (see

section 3.2), this difference implies that the informed investor’s trades have very different

properties when he is fast and when he is not. More generally, Theorem 1 provides a

characterization of the equilibrium (coefficients µkt , λ
k
t , ρ

F
t , βkt , and γkt ) in both the

benchmark and the fast cases.

Theorem 1. In the benchmark model there is a unique linear equilibrium, of the form

dxt = βBt (vt − pt)dt+ γBdvt, (11)

dpt = µBdzt + λBdyt, (12)

13



with coefficients given by
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In the fast model there is a unique linear equilibrium, of the form:13

dxt = βFt (vt − qt)dt+ γFdvt, (17)

dqt = λFdyt + µF (dzt − ρFdyt), (18)

with coefficients given by

βFt =
1

1− t
σu

(Σ0 + σ2
v)

1/2

1(
1 + σ2

e
σ2
v
g
)1/2

1 +
(1− g)σ2

v

Σ0

1 + σ2
e
σ2
v

+ σ2
e
σ2
v
g

2 + σ2
e
σ2
v

+ σ2
e
σ2
v
g

 , (19)

γF =
σu
σv

g1/2 =
σu

(Σ0 + σ2
v)

1/2

(
1 + σ2

e
σ2
v
g
)1/2

(1 + g)

2 + σ2
e
σ2
v

+ σ2
e
σ2
v
g

, (20)

λF =
(Σ0 + σ2

v)
1/2

σu

1(
1 + σ2

e
σ2
v
g
)1/2

(1 + g)
, (21)

µF =
1 + g

2 + σ2
e
σ2
v

+ σ2
e
σ2
v
g
, (22)

ρF =
σv
σu

g1/2

1 + g
=

σ2
v

σu(Σ0 + σ2
v)

1/2

(1 + σ2
e
σ2
v
g)1/2

2 + σ2
e
σ2
v

+ σ2
e
σ2
v
g
, (23)

and g is the unique root in (0, 1) of the cubic equation

g =

(
1 + σ2

e
σ2
v
g
)
(1 + g)2(

2 + σ2
e
σ2
v

+ σ2
e
σ2
v
g
)2 σ2

v

σ2
v + Σ0

. (24)

In both models, when σv → 0, the equilibrium converges to the unique linear equilibrium

in the continuous time version of Kyle (1985).

13Note that the forecast error component in (17) has qt instead of pt. This is the same formula,
since (9) implies (pt − qt)dt = 0. We use qt as a state variable, because pt is not an Itô process.
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The news trading component of the informed investor is non zero only if he has a

speed advantage (and σe < +∞ and σv > 0; see below). The reason for this important

difference between the fast model and the benchmark model is as follows. In the fast

model, the informed investor observes news an instant before the market maker. Thus,

as long as σe < +∞, he can forecast how the market maker will adjust her quotes in the

very short run (equation (9) describes this adjustment) and trades on this knowledge,

that is, buy just before an increase in price due to good news (dvt > 0) or sell just

before a decrease in prices due to bad news (dvt < 0). As a result, γF > 0 if σe < +∞.

In contrast, in the benchmark case, the market maker incorporates news in her quotes

before executing the informed investor’s trade. As a result, the latter cannot exploit

any very short-run predictability in prices and, for this reason, γB = 0.

Whether he is fast or not, the informed investor can form a forecast of the long run

value of the asset, v1, that is more precise than that of the market maker both because

he starts with an informational advantage (he knows v0) and because he receives more

informative news (if σe > 0). The informed investor therefore also exploits the market

maker’s pricing (or forecast) error, vt − qt. As usual, the trading strategy exploiting

this advantage is to buy the asset when the market maker’s pricing error is positive:

vt − qt > 0 and to sell it otherwise. For this reason, the forecast error component of the

strategy is strictly present whether the informed investor has a speed advantage or not

(βkt > 0 for k ∈ {B,F}).

Interestingly, the two components of the strategy can dictate trades in opposite di-

rections. For instance, the forecast error component may call for additional purchases of

the asset (because vt− qt > 0) when the news trading component calls for selling it (be-

cause dvt < 0). The net direction of the informed investor’s trade is determined by the

sum of these two desired trades. Moreover, if the investor delegates the implementation

of the two components of his trading strategy to two different agents (trading desks),

one may see trades in opposite directions for these agents. Yet, they are part of an

optimal trading strategy. Also, the two strategies cannot be considered independently

in the sense that the sensitivity of the investor’s trading strategy to the market maker’s

forecast error is optimally smaller when he has a speed advantage, as shown by the next

proposition.

Proposition 1. For all values of the parameters and at each date: βFt < βBt .
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Thus, in the fast model, the informed investor always exploits less aggressively the

market maker’s pricing error than in the benchmark case. In a sense, he substitutes

profits from this source with profits from trading on news. The intuition for this sub-

stitution effect is that trading more on news now reduces future profits from trading on

the market maker’s forecast error. Therefore, the informed investor optimally reduces

the size of the trade exploiting the market maker’s forecast error when he starts trading

on news. As explained in Section 4, this substitution effect has an impact on the nature

of price discovery. The next proposition describes how the sensitivities of the informed

investor’s trades to the market maker’s forecast error and news vary with the exogenous

parameters of the model.

Proposition 2. In the benchmark equilibrium and the fast equilibrium, βBt and βFt are

increasing in σv, σu, σe, and decreasing in Σ0. Moreover, in the fast equilibrium, γF is

increasing in σu, and decreasing in σe, Σ0.

An increase in σv or σu increases the informed investor’s informational advantage.

In the first case because news are more important (innovations in the asset value have a

larger size) and in the second case because the order flow is noisier, other things equal.

Thus, the informed investor reacts to an increase in these parameters by trading more

aggressively on the market maker’s forecast error.14

An increase in σe implies that the market maker receives noisier news. Accordingly,

it becomes more difficult for the informed investor to forecast very short run price

changes by the market maker. Hence, γF decreases with σe and goes to zero when σe

goes to infinity. Thus, there is no news trading if the market makers do not receive

news. Moreover, as the informed investor trades less aggressively on news, his trades

become more sensitive to the market maker’s forecast error (βFt increases) because of a

substitution effect.15

When σe goes to +∞, everything is as if the market maker never receives public

information, as in Back and Pedersen (1998), since news for the market maker becomes

uninformative. The equilibrium of the benchmark model in this case is identical to that

obtained in Back and Pedersen (1998). If furthermore σv = 0, the informed investor

14The dependence on γF on σv is ambiguous, as when σv increases, γF first increases and then
decreases, reflecting the fact that the price impact coefficient λF also increases with σv, which tempers
the aggressiveness of the informed trader.

15Proposition 11 shows that the informed investor trades so that the total price informativeness is
the same in both models.
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receives no news and the benchmark case is then identical to the continuous time version

of the Kyle (1985) model. In either case, the equilibrium of the fast model is identical

to that of the benchmark case. In particular, even if the informed investor receives news

faster than the market maker, his trading strategy will not feature a news trading com-

ponent if the market maker does not receive news (γF goes to zero when σe goes to +∞).

Another polar case is the case in which σe = 0. In this case, the information contained

in news is very short-lived for the informed investor. As implied by Proposition 2, the

informed investor then trades very aggressively on news (γF is maximal when σe = 0).

3.2 The Trades of HFTNs

We now show that the behavior of the informed investor’s order flow better coincides

with stylized facts about high frequency traders when he has a speed advantage than

when he has not.

The position of the informed investor, xt, is a stochastic process. The drift of this

process is equal to the forecast error component, while the volatility component of

this process is determined by the news trading component. As the latter is zero in

the benchmark case, the informed investor’s trades at the high frequency (that is, the

instantaneous change in the informed investor’s position) are negligible relative to those

of noise traders (they are of the order of dt while noise traders’ trades are of the order

of (dt)1/2). In contrast, in the fast model, the informed investor’s trades are of the

same order of magnitude as those of noise traders, even at the high frequency. Thus, as

shown on Figure 1, the position of the informed investor is much more volatile than in

the benchmark case. Accordingly, over a short time interval, the fraction of total trading

volume due to the informed investor is much higher when he has a speed advantage. To

see this formally, let the Informed Participation Rate (IPRt) be the contribution of the

informed trader to total trading volume over an infinitesimal time interval (t, t+ dt],

IPRt =
Var(dxt)

Var(dyt)
=

Var(dxt)

Var(dut) + Var(dxt)
(25)

Proposition 3. The informed participation rate is zero when the informed trader has

no speed advantage, while it is strictly positive when he has a speed advantage:

IPRB = 0, IPRF =
g

1 + g
, (26)
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where g is defined in Theorem 1.

The direction of the market maker’s forecast error persists over time because the

informed investor slowly exploits his private information (as in Kyle (1985) or Back and

Pedersen (1998)). As a result, the forecast error component of the informed investor’s

trading strategy commands trades in the same direction for a relatively long period

of time. This feature is a source of positive autocorrelation in the informed investor’s

order flow. However, when the informed investor has a speed advantage, over short

time interval, trades exploiting the market maker’s forecast error are negligible relative

to those exploiting the short-run predictability in prices due to news arrival. As these

trades have no serial correlation (since the innovations in asset value are not serially

correlated), the autocorrelation of the informed order investor’s order flow is smaller in

the fast model. In fact the next result shows that over infinitesimal time intervals this

autocorrelation is zero.

Proposition 4. Over short time intervals, the autocorrelation of the informed order

flow is strictly positive when the informed investor has no speed advantage, and zero

when the he has a speed advantage. For τ ∈ (0, 1− t),

Corr(dxBt ,dx
B
t+τ ) =

(
1− t− τ

1− t

)λBβB0 − 1
2

> 0,

Corr(dxFt ,dx
F
t+τ ) = 0.

(27)

Proposition 3 and 4 hold when the order flow of the informed investor is measured

over an infinitesimal time interval. Econometricians often work with aggregated trades

over some time interval (e.g., 10 seconds), due to limited data availability or by choice,

to make data analysis more manageable.16 In Appendix C, we show that the previous

results are still qualitatively valid when the informed investor’s trades are aggregated

over time interval of arbitrary length (in this case, the informed investor’s order flow

over a given time interval is the sum of all of his trades over this time interval). In

particular it is still the case that the informed investor’s participation rate is higher

while the autocorrelation of his order flow is smaller when he has a speed advantage.

The only difference is that as flows are measured over longer time interval, the informed

investor’s participation rate in the benchmark as well as the autocorrelation of his trades

16For instance, Zhang (2012) aggregates the trades by HFTs in her sample over intervals of 10 seconds.
However, trades in her sample happen at a higher frequency.
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Figure 3: Informed participation rate at various sampling frequencies. The
figure plots the fraction of the trading volume due to the informed trader when data
are sampled over time intervals of various lengths (1 second, 1 minute, 1 hour, 1 day, 1
month) in (a) the benchmark model, marked with “∗”; and (b) the fast model, marked
with “◦”. The parameters used are σu = σv = σe = Σ0 = 1 (see Theorem 1). The
liquidation date t = 1 corresponds to 10 calendar years.
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in the fast model both increase above zero. Indeed, the trades that the informed investor

conducts to exploit the market maker’s forecast error are positively autocorrelated and

therefore account for an increasing fraction of his net order flow over longer time in-

tervals. However, at relatively high sampling frequencies (e.g. daily), the participation

rate of the informed investor remains low when he has no speed advantage, as shown on

Figure 3. Thus, the model in which the informed investor has no speed advantage does

not explain well why high frequency traders account for a large fraction of the trading

volume.

Using US stock trading data aggregated across twenty-six HFTs, Brogaard (2011)

finds a positive autocorrelation of the aggregate HFT order flow, which is consistent

both with the benchmark model and the model in which the informed investor has a

speed advantage, provided the sampling frequency is not too high. In addition, our

model implies that this autocorrelation should decrease with the sampling frequency

in the fast model (see Proposition 13 in Appendix C). In contrast, Menkveld (2011)

using data on a single HFT in the European stock market, and Kirilenko, Kyle, Samadi,

and Tuzun (2011) using data on the Flash Crash of May 2010, find evidence of mean

reverting positions for HFTs. One possibility is that HFTNs face inventory constraints
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due to risk management concerns. While this feature is absent from our model, such

constraints would naturally lead to mean reversion in the informed investor’s trades.

Alternatively, these empirical studies may describe the behavior of a different category

of high frequency traders we do not model, namely the high frequency market makers.

Menkveld (2011) shows that the high frequency trader in his dataset behaves very much

as a market maker rather than an informed investor.

Some empirical papers also find that aggressive orders by HFTs (that is, marketable

orders) have a very short run positive correlation with subsequent returns (see Brogaard,

Hendershott and Riordan (2012) and Kirilenko, Kyle, Samadi, and Tuzun (2011)). This

finding is consistent with our model when the informed investor has a speed advantage

but not otherwise. To see this, let AT t (which stands for Anticipatory Trading) be the

correlation between the informed order flow at a given date and the next instant return,

that is:

AT t = Corr(dxt, qt+dt − pt+dt), (28)

where we recall that pt+dt is the price at which the trade dxt is executed, and qt+dt

is the next quote posted by the market maker after she receives additional news (see

Figure 2).

Proposition 5. Anticipatory trading is zero when the informed investor has no speed

advantage, while it is strictly positive when he has a speed advantage:

ATB = 0,

ATF =
1√

(1 + g)(1 + σ2
e
σ2
v
)
> 0,

(29)

where g ∈ (0, 1) is as in Theorem 1.

When the informed investor observes news an instant before the market maker, his

order flow over a short period of time is mainly determined by the direction of incoming

news. Thus, his trades anticipate on the adjustment of his quotes by the market maker,

which creates a short run positive correlation between the trades of the informed investor

and subsequent returns, as observed in reality.17

17Anticipatory trading in our model refers to the ability of the informed investor to trade ahead
of incoming news. The term “anticipatory trading” is sometimes used to refer to trades ahead of
or alongside other investors, for instance institutional investors (see Hirschey (2011)). This form of
anticipatory trading is not captured by our model.
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In Appendix C, we analyze how this result generalizes when the sampling frequency

used by the econometrician is lower than the frequency at which the informed investor

trades on news. We show (see Proposition 14 in Appendix C) that the correlation

between the aggregate order flow of the informed investor over an interval of time of

fixed length and the asset return over the next time interval (of equal length) declines

when the frequency at which data are sampled decreases relative to the frequency at

which the investor trades and goes to zero when the ratio of sampling frequency to

trading frequency goes to zero (as in the continuous time model). Thus, the choice of

a sampling frequency to study high frequency news trading is not innocuous and can

affect inferences. If this frequency is too low relative to the frequency at which trades

take place (which by definition is very high for high frequency traders), it would be more

difficult to detect the presence of anticipatory trading by the informed investor.

4 Empirical Implications

4.1 News Informativeness, Volume and Liquidity

Empirical findings suggest that the activity of high frequency traders vary across stocks

(e.g., Brogaard, Hendershott, and Riordan (2012) find that HFTs are more active in

large cap stocks than small cap stocks). Our model suggests two possible important

determinants of the activity of high frequency traders on news, measured by their par-

ticipation rate as defined in equation (25): (i) the precision of the public information

received by market makers and (ii) the informational content of the news received by

the informed investor.

Following Kim and Verrecchia (1994), we measure the precision of public information

by σe since a smaller σe means that the news received by the market maker provide a

more precise signal about innovations in the asset value.18 Moreover we measure the

volume of trading by Var(dyt), a measure of the average absolute order imbalance in

each transaction.

Proposition 6. In the fast model, an increase in the precision of public news, i.e., a

decrease in σe, results in (i) higher participation of the informed investor (IPRF ), (ii)

higher trading volume (Var(dy)), and (iii) higher liquidity (lower λF ).

18Holding constant the variance of the innovation of the asset value σ2
v, more precise public news

about the changes in asset value amounts to a lower σ2
z = σ2

v + σ2
e , or, equivalently, a lower σ2

e .
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When public information is more precise, the informed investor trades more aggres-

sively on the news he receives as shown by Proposition 2. Indeed, the market maker’s

quotes are then more sensitive to news (µF decreases in σe) and, as a result, the in-

formed investor can better exploit his foreknowledge of news when he receives news

faster than the market maker. As a result, he trades more over short-time interval so

that his participation rate and trading volume increase.

An increase in the precision of public information has an ambiguous effect on the

exposure to adverse selection for the market maker. On the one hand, it increases the

sensitivity of the informed investor’s trade to news, which increases the exposure to ad-

verse selection for the market maker. On the other hand, it helps the market maker to

better forecast the asset liquidation value, which reduces his exposure to adverse selec-

tion. As shown by Proposition 6, the second effect always dominates so that illiquidity

is reduced when the market maker receives more precise news.

These findings are in sharp contrast with other models analyzing the effects of public

information or corporate disclosures, such as Kim and Verrecchia (1994). Indeed, in

these models, an increase in the precision of public information leads to less trading

volume (as informed investors trade less) and greater market liquidity. Furthermore,

they suggest that controlling for the precision of public information is important to

analyze the effect of high frequency trading on liquidity. Indeed, in our model, variations

in the precision of public information lead to a positive association between liquidity and

the activity of high frequency news traders, but this does not imply that high frequency

news trading causes the market to be more liquid (instead, we show in Proposition 10

that the opposite is true).

To test the implications of Proposition 6, one needs a proxy for the precision of public

news received by market makers. For this, one can consider various “news sentiment

scores” that are provided by data vendors such as Reuters, Bloomberg, Dow Jones (see

for instance Gross-Klussmann and Hautsch, 2011). These vendors report firm-specific

news in real time and assign a direction to the news (a proxy for the sign of dzt) and a

relevance score to news. Thus, as proxy for σe, we suggest the average relevance score

of news about a firm (or a portfolio of firms). Indeed, firms with more relevant news

should be firms for which public information is more precise.

In our model, the informed investor has two sources of information: (i) his initial

forecast v0 and (ii) news about the asset value. His initial forecast is never disclosed
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to market makers and can be seen as private information in the traditional sense. In

contrast, the news that the informed investor receives are partially revealed to market

makers and his corresponding information advantage is very short lived if σe is small.

When σv increases, news become relatively more informative than private information

for the informed investor since news account for a greater fraction of the total volatility

of the liquidation value for the asset ( σ2
v

σ2
v+Σ0

increases in σv). At the same time, for a

fixed value of σe, the news received by the market maker are less informative.19 Thus,

to analyze the effect of increasing the informational content of news for the informed

investor ceteris paribus, the next proposition considers the effect of a change in σv, while

holding constant the ratio σe
σv

.

Proposition 7. In the fast model, an increase in the informational content of news for

the informed investor, i.e., an increase in σv holding fixed σe/σv, results in a (i) higher

participation rate for the informed investor (IPRF ), (ii) higher trading volume, and (iii)

lower liquidity.

A greater value of σv increases the informed trader’s profit from speed advantage.

As a result the participation rate of the informed investor and trading volume increase.

Simultaneously, the exposure to adverse selection for the market maker increases and

therefore illiquidity increases. As a proxy for σv, we suggest the number of times the

news sentiment score for a given firm exceeds a certain threshold over a fixed period of

time (say the day). Intuitively, firms for which this number is high are firms for which

more information is released over time (that is firms for which σ2
v

σ2
v+Σ0

is higher).

Last, an increase in σv is associated with a higher price volatility since 1
dt Var(dpt) =

σ2
v + Σ0. Thus, an increase in the informational content of news received by HFTNs

leads to a positive association between the volatility of short-run return and the activity

of high frequency traders on news, although this does not imply that HFTNs have no

causal effect on volatility (in Proposition 12 below, we show that they have no effect on

volatility).20

19Indeed, 1
dt

Var(dvt|dzt) =
σ2
vσ

2
e

σ2
v+σ2

e
, which increases with σv.

20In line with this prediction, Chaboud et al. (2010) find that high frequency traders in their data
are more active on days with high volatility but do not appear to cause higher volatility.
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4.2 Price Discovery and News Trading

Theorem 1 shows that the informed investor trades aggressively on news when he has

a speed advantage. This should impact how the informed trader contributes to price

discovery. To analyze this point more formally, we consider two econometric models

that empiricists commonly use to estimate the informational content of trades: (i) the

VAR model and (ii) the state space model.

Hasbrouck (1991a) advocates the use of Vector Autoregressive models to estimate

the informational content of a trade while accounting for autocorrelation in trades and

returns. Some researchers, e.g., Zhang (2012) or Hirschley (2012), therefore use this

approach to measure the informational content of high frequency traders’ order flows.

In order to make our model more comparable to econometric models, we consider a

discrete time version of our fast model, as described in Appendix B. It works very

similarly to the continuous time model, the main difference being that the infinitesimal

time interval dt is replaced by a real number ∆t > 0. We consider ∆t small, so that we

approximate the equilibrium variables (βt, γt, λt, µt, ρt) in the discrete time model by

their continuous time counterpart. For simplicity, we also write t+ 1 instead of t+ ∆t.

In the model with speed advantage, the informed order flow at t is (omit the super-

script F ):

∆xt = βt(vt − qt)∆t+ γ∆vt = γ∆vt +O(∆t). (30)

where qt is the quote just before the trading at t. From Theorem 1, the order flow

executes at pt+1 = qt + λ∆yt = pt + µ(∆zt−1 − ρ∆yt−1) + λ∆yt. If we denote by

rt = pt+1 − pt the return contemporaneous to ∆xt, we have the following orthogonal

decomposition:

rt = λ∆yt + µ(∆zt−1 − ρ∆yt−1). (31)

Now, using the fact that ∆yt = ∆xt + ∆ut and the fact that ∆xt−1 = γ∆vt−1 +O(∆t),

we obtain the following result.

Proposition 8. The model in which the informed investor has a speed advantage implies

the following VAR model for short run returns and trades by the informed investor.
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Thus, up to terms of order O(∆t),

rt = λ∆xt +
µ

γ

(
1− γρ

)
∆xt−1 + εt,

∆xt = ηt,

(32)

where

εt = λ∆ut + µ∆et−1 − µρ∆ut−1,

ηt = γ∆vt.
(33)

Hasbrouck (1991a) proposes to measure the informational content of a trade at date

t by the permanent impact of a trade, which is the sum of predicted quote revisions

through a fixed number of steps after a trade innovation of a fixed size. In our case,

after at least two steps, the permanent price impact of a trade is

λperm = λ+
µ

γ
(1− γρ) = λ+

µ

γ

1

1 + g
> λ, (34)

where g ∈ (0, 1) is as in Theorem 1. This implies that the Hasbrouck measure λperm

always overestimates λ, the true permanent impact of the informed investor’s trade.

Indeed, the lagged informed order flow ∆xt−1 appears in equation (32) not because

the market maker’s quotes slowly adjust to information contained in past trades, but

because ∆xt−1 anticipates the news received by the market maker at t, i.e., ∆xt−1 is

correlated with the market maker’s quote update µ∆zt−1.

This observation suggests that one must be careful in interpreting measures of the

informational content of trades using the Hasbrouck (1991a)’s approach when informed

investors trade on public information. This problem is in fact discussed by Hasbrouck

(1991a) (see Section III in his paper). It may have become more severe in recent years

with the development of high frequency trading on news.

Brogaard, Hendershott and Riordan (2012) use a state space model, developed by

Menkveld, Koopman and Lucas (2007), to analyze the effect of high frequency traders

on price formation. The price is decomposed into a permanent component wt and a

transitory component st. The permanent component is a martingale whose innovation

is a function of the innovation in the informed investor’s order flow: ∆wt = κ∆̃xt + εt.

The transitory component is a stationary autoregressive component whose innovation
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depends on the informed investor’s trades: st+1 = φst + ψ∆xt + ηt.

In our model with speed advantage, the innovation of ∆xt is simply the news trading

component γ∆vt, since the forecast error component is predictable by the informed

trader. Therefore, the permanent component is wt = vt and its innovation is entirely

explained by informed trades, i.e., κ = 1
γ and εt = 0. The transitory component is equal

to the pricing error st = qt − vt and, after rearranging the pricing equation (18), we

prove the following result.21

Proposition 9. The model in which the informed investor has a speed advantage implies

the following state model:

∆wt = κ∆̃xt + εt, st+1 = φst + ψ∆xt + ηt, with

κ =
1

γ
> 0, φ = 1−mβ∆t, ψ = −1

γ
(1− µ−mγ) < 0,

(35)

where m = λ − µρ, and the other coefficients are as in Theorem 1. (See the Appendix

for more details.)

Brogaard, Hendershott and Riordan (2012) interpret a positive κ as HFTs con-

tributing to the discovery of the efficient price. This interpretation is consistent with

our model, because our news trading component is proportional to the innovation in as-

set value. In the transitory equation, a negative ψ is interpreted as the informed investor

trading against pricing errors and reducing the noise in the price. Our model suggests

that this interpretation should be taken cautiously since ψ < 0 does not come from the

forecast error component of the trading strategy, i.e., β does not enter the equation for

ψ. Instead, ψ is negative because of the news trading component. To see why, suppose

for instance that the informed trader receives positive news (∆vt > 0) and thus buys

the asset (∆xt = γ∆vt +O(∆t). This raises the price, but because the informed trader

has market power, the price increase is smaller than the increase in asset value, i.e.,

λγ∆vt < ∆vt.
22 As a result, there is a negative pricing error precisely at the moment

when the informed trader is buying. In other words, the news trading component gener-

ates a negative correlation between trades and pricing errors. By contrast, the forecast

error component of the trading strategy does not generate the same effect, because it is

21We consider the price to be qt, the quote just before trading. If instead we define st = pt− vt using
the actual trading price, the state space model is also true, but the formulas are more complicated.

22This is because λγ =
(

2 +
σ2
e
σ2
v

(1 + g)
)−1

< 1. See also equation (83) in the Appendix.
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actually included in the autoregressive component φst−1.

4.3 The Effect of HFTN on Market Quality

Controversies about high frequency traders focus on the effects of their speed advantage

on liquidity, price discovery and price volatility. In this section, we study how the

informed investor’s ability to react to news faster than the market maker (i.e., the

presence of high frequency trading on news) affects measures of market quality. To this

end, we compare these measures when the informed investor has a speed advantage and

when he has not, holding the precision of the informed investor’s information constant.

As in Kyle (1985), we measure market illiquidity by λ, the immediate price impact

of a trade.

Proposition 10. Liquidity is lower when the informed investor has a speed advantage,

i.e., λF > λB.

Trades by the informed investor expose the market maker to adverse selection be-

cause the informed investor has a more accurate forecast of the asset liquidation value

than the market maker. Thus, the market maker tends to accumulate a short position

when she underestimates the asset value and a long position when she overestimates

the asset value. This source of adverse selection is present both when the investor has

a speed advantage and when he has not. However, adverse selection is stronger when

the informed investor has a speed advantage because he can also buy just in advance

of positive news and sell in advance of negative news. As a result, market illiquidity

is higher when the informed investor has a speed advantage. This is consistent with

Hendershott and Moulton (2011), who find that a speed reduction for market orders on

the NYSE in 2006 is associated with less liquidity.

Next, we consider the effect of HFTN on price discovery. We measure price discovery

by the average squared pricing error at t, i.e.,

Σt = E
(
(vt − pt)2

)
. (36)

27



The smaller is Σt, the higher is informational efficiency. The change in Σt is given by23

dΣt = −2Cov(dpt, vt − pt)− 2Cov(dpt,dvt) + (2σ2
v + Σ0)dt. (37)

Thus, price discovery improves when short run changes in prices are more correlated

with (a) news (i.e., Cov(dpt,dvt) increases), and (b) the direction of the market maker’s

forecast error (i.e., Cov(dpt, vt−pt) increases). Interestingly, granting a speed advantage

to the informed investor has opposite effects on the two dimensions of price discovery.

Proposition 11. When the informed investor has a speed advantage, short run changes

in prices are more correlated with innovations in the asset value (i.e., Cov(dpt,dvt) is

higher), but less correlated with the market maker’s forecast error (i.e., Cov(dpt, vt−pt)

is smaller). Overall, Σt is identical whether or not the informed investor has a speed

advantage.

Hence, the speed advantage of the informed investor does not increase or reduce

pricing errors on average. However, it changes the nature of price discovery in the short

run. In a nutshell, returns are more informative about the level of the asset value in

the benchmark model, while they are more informative about changes in the asset value

in the fast model. When the informed trader has a speed advantage, returns are more

correlated with news because he trades aggressively on news. By contrast, returns are

less correlated with the level of the asset value in the fast model, because the informed

investor trades less aggressively on the market maker’s forecast error when he has a

speed advantage (βFt < βBt ), as shown in Proposition 1.

In equilibrium, these two effects exactly cancel out so that eventually the pricing

error is the same in both models. In the fast model, new information is incorporated

more quickly into the price while older information is incorporated less quickly, leaving

the total pricing error equal in both models.24

We now consider the effect of HFTN on the volatility of short run returns, Var(dpt).

This volatility has two sources in our model: (i) trading, and (ii) quote updates. The

23We compute dΣt = 2Cov(dvt − dpt, vt − pt) + Cov(dvt − dpt, dvt − dpt). Since the news dvt
is orthogonal to vt − pt, dΣt = −2Cov(dpt, vt − pt) − 2Cov(dpt,dvt) + Var(dvt) + Var(dpt). But
1
dt

Var(dvt) = σ2
v; and by Proposition 12, σ2

p = 1
dt

Var(dpt) = σ2
v + Σ0.

24More formally, the two effects exactly offset each other because, in both models the informed
trader releases information at a constant rate, hence Σt decreases linearly over time. The transversality
condition for optimization requires that no money is left on the table at t = 1, i.e., Σ1 = 0. Since the
initial value Σ0 is exogenously given, the evolution of Σt is the same in both models.
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second source of volatility is reflected into the quote adjustments due to the news received

by the market maker. Thus, following Hasbrouck (1991b), we decompose price volatility

into the volatility coming from trades and the volatility coming from quotes:

Var(dpt) = Var(pt+dt − qt) + Var(qt − pt). (38)

Proposition 12. Whether the informed investor has a speed advantage or not, the

instantaneous volatility of returns is constant, and equal to

σ2
p =

1

dt
Var(dpt) = σ2

v + Σ0. (39)

Trades contribute to a larger fraction of this volatility when the informed investor has a

speed advantage.

Thus, the speed advantage of the informed investor alters the contribution of each

source of volatility. In the fast model, trades contribute more to volatility since trades

are more informative on impending news. The flip side is that the market maker’s quote

is less sensitive to news. Thus, the contribution of quote revisions to short run return

volatility is lower in the fast model. These two effects cancel each other in equilibrium

so that volatility is the same in both models.

5 Conclusion

Adverse selection occurs in financial markets because certain investors have either more

precise information, or superior speed in accessing or exploiting information. To disen-

tangle the effects of precision and speed on market performance, we have derived the

optimal trading strategy of an informed investor when he reacts to news either (i) at

the same speed, or (ii) faster than the other market participants, holding information

precision constant.

Our main result is that the optimal trading strategy of the informed investor is

very different when has a speed advantage versus when he does not. In general, the

optimal trading strategy has two components: (i) the forecast error component, which

is proportional to the difference between the informed investor’s and market makers’

estimates of the asset payoff; and (ii) the news trading component, which is proportional

to the news, i.e., to the innovation in the asset value. We have shown that the news
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trading component occurs only when the informed investor has a speed advantage.

As a consequence, with a speed advantage for the informed investor, his optimal

portfolio is much more volatile, because of the news trading component. Also, at very

high frequencies his order flow is correlated with subsequent returns, because news

trading is driven by news arrivals. These features fit well with some stylized facts about

high frequency traders documented in the literature. For instance, the trades of HFTs

account for a large fraction of the trading volume. Moreover, the marketable orders of

HFTs anticipate very short run price changes. In contrast, we show that the model in

which the informed investor has more accurate information, but no speed advantage,

cannot explain these facts.

We have defined high frequency trading on news (HFTN) as trading by informed

investors with a speed advantage, as in our model. We have two types of empirical

predictions: (i) the effect of different market characteristics on HFTN activity; and (ii)

the effect of HFTN on certain measures of market quality. As an example of prediction

of type (i), we show that an increase in the precision of public news increases news

trading, i.e. HFTN activity, yet surprisingly improves liquidity. For type (ii), we find

that an increase in HFTN activity (a) increases trading volume; (b) does not affect total

price volatility, and (c) increases overall adverse selection, and thus decreases market

liquidity.

Our paper is related to a fast growing literature on high frequency trading. One

caveat about interpreting our work is that HFTN can be identified only with a subcate-

gory of high frequency trading, and not with all HFT. To draw more general conclusions,

one should extend the model in several directions. First, investors’ information could

refer not only to the asset value, but also to the order flow of other traders. Second,

inventory constraints can explain the mean reversion of inventories observed in practice.

Third, allowing informed traders to also submit limit orders would extend the model to

another important category of HFT, the high frequency market makers.

A Proofs of Results

A.1 Proof of Theorem 1

Benchmark model: We compute the optimal strategy of the informed trader at t+dt.

As explained in the discussion before Theorem 1, we consider only strategies dxτ of the
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type dxτ = βBτ (vτ − pτ ) dτ + γBτ dvτ . Recall that Ipt is the market maker’s information

set immediately after trading at t. If we denote by J pt = Ipt ∪ {vτ}τ≤t+dt the trader’s

information set before trading at t+ dt, the expected profit from trading after t is

πt = E

(∫ 1

t
(v1 − pτ+ dτ ) dxτ | J pt

)
. (40)

From (12), pτ+ dτ = pτ + µBτ (dvτ + deτ ) + λBτ (dxτ + duτ ). For τ ≥ t, denote by

Vτ = E
(
(vτ − pτ )2 | J pt

)
. (41)

For convenience, we now omit the superscript B for the coefficients β, γ, µ, λ. Then the

expected profit is

πt = E

(∫ 1

t
(vτ + dvτ − pτ − µτ dvτ − λτ dxτ ) dxτ | J pt

)
=

∫ 1

t

(
βτVτ + (1− µτ − λτγτ )γτσ

2
v

)
dτ.

(42)

Vτ can be computed recursively:

Vτ+ dτ = E
(
(vτ+ dτ − pτ+ dτ )2 | J pt

)
= E

(
(vτ + dvτ − pτ − µτ dvτ − µτ deτ − λτ dxτ − λτ duτ )2 | J pt

)
= Vτ + (1− µτ − λτγτ )2σ2

v dτ + µ2
τσ

2
e dτ + λ2

τσ
2
u dτ − 2λtβtVτ dτ.

(43)

therefore the law of motion of Vτ is a first order differential equation

V ′τ = −2λtβtVτ + (1− µτ − λτγτ )2σ2
v + µ2

τσ
2
e + λ2

τσ
2
u, (44)

or equivalently βτVτ = −V ′τ+(1−µτ−λτγτ )2σ2
v+µ2

τσ
2
e+λ2

τσ
2
u

2λτ
. Substitute this into (40) and

integrate by parts. Since Vt = 0, we get

πt = − V1

2λ1
+

∫ 1

t
Vτ

( 1

2λτ

)′
dτ

+

∫ 1

t

(
(1− µτ − λτγτ )2σ2

v + µ2
τσ

2
e + λ2

τσ
2
u

2λτ
+ (1− µτ − λτγτ )γτσ

2
v

))
dτ.

(45)

This is essentially the argument of Kyle (1985): we have eliminated the choice variable

βτ and replaced it by Vτ . Since Vτ > 0 can be arbitrarily chosen, in order to get an
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optimum we must have
(

1
2λτ

)′
= 0, which is equivalent to

λτ = constant = λ. (46)

For a maximum, the transversality condition V1 = 0 must be also satisfied.

We next turn to the choice of γτ . The first order condition is

−(1− µτ − λτγτ ) + (1− µτ − λτγτ )− λτγτ = 0 =⇒ γτ = 0. (47)

Thus, there is no news trading in the benchmark model. Note also that the second order

condition is λτ > 0.25

Next, we derive the pricing rules from the market maker’s zero profit conditions.

The equations pt = E(v1|Ipt ) and qt = E(v1|Ipt ,dzt) imply that qt = pt + µt dzt, where

µt =
Cov(v1, dzt | Ipt )

Var( dzt | Ipt )
=

Cov(v0 +
∫ 1

0 dvτ , dvt + det | Ipt )

Var( dvt + det | Ipt )
=

σ2
v

σ2
v + σ2

e

= µ. (48)

The equations qt = E(v1|Iqt+dt) and pt+dt = E(v1|Iqt+dt, dyt) imply that pt+dt = qt+λtdyt,

where, since λt = λ is constant,

λ =
Cov(v1, dyt | Iqt+dt)

Var( dyt | Iqt+dt)
=

Cov(v1, βt(vt − pt) dt+ dut | Iqt+dt)

Var(βt(vt − pt) dt+ dut | Iqt+dt)
=

βtΣt

σ2
u

, (49)

where Σt = E
(
(vt − pt)2|Ipt

)
.26 The information set of the informed trader, J pt , is a

refinement of the market maker’s information set, Ipt . Therefore, by the law of iterated

expectations, Σt satisfies the same equation as Vt:

Σ′t = −2λβtΣt + (1− µ)2σ2
v + µ2σ2

e + λ2σ2
u, (50)

except that it has a different initial condition. If we solve this first order differential

equation explicitly, it follows that the transversality condition V1 = 0 is equivalent to∫ 1
0 βt dt = +∞, and in turn this is equivalent to Σ1 = 0. By (49), we get βtΣt = λσ2

u

is constant. Equation (50) then implies that Σ′t is constant. From Σ1 = 0, we get Σt =

25The condition λτ > 0 is also a second order condition with respect to the choice of βτ . To see this,
suppose λτ < 0. Then if βτ > 0 is chosen very large, equation (44) shows that Vτ is very large as well,
and thus βτVτ can be made arbitrarily large. Thus, there would be no maximum.

26Because Iqt+dt = Ipt ∪ {dzt}, the two information sets differ only by the infinitesimal quantity dzt,

and thus we can also write Σt = E
(
(vt − pt)2|Iqt+dt

)
= E

(
(vt − pt)2|Ipt

)
.
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(1− t)Σ0, and βt = β0

1−t . Then, (50) becomes −Σ0 = −2λ2σ2
u+(1−µ)2σ2

v +µ2σ2
e +λ2σ2

u.

Since µ = σ2
v

σ2
v+σ2

e
, we get λ2σ2

u = Σ0 + σ2
vσ

2
e

σ2
v+σ2

e
, which implies (15). Then, β0 = λσ2

u
Σ0

and βt = β0

1−t imply (13).

Fast model: The informed trader has the same objective function as in (40):

πt = E

(∫ 1

t
(v1 − pτ+ dτ ) dxτ | J pt

)
. (51)

but here we use qt instead of pt as a state variable. From (18), we obtain

qτ+ dτ = µFτ dzτ +mF
τ dyτ , with

mF
τ = λFτ − µFτ ρFτ .

(52)

As explained in the discussion before Theorem 1, we consider only strategies dxτ of the

type (17), dxτ = βFτ (vτ − qτ ) dτ + γFτ dvτ . For τ ≥ t, denote by

Vτ = E
(
(vτ − qτ )2 | J pt

)
. (53)

For convenience, we now omit the superscript F for the coefficients β, γ, µ, λ, ρ,m. The

expected profit is

πt =

(∫ 1

t
(vτ + dvτ − qτ − λτ dxτ ) dxτ | J pt

)
=

∫ 1

t

(
βτVτ + (1− λτγτ )γτσ

2
v

)
dτ.

(54)

Vτ is computed as in the benchmark model, except that λτ is replaced by mτ :

Vτ+ dτ = E
(
(vτ+ dτ − qτ+ dτ )2 | J pt

)
= Vτ + (1− µτ −mτγτ )2σ2

v dτ + µ2
τσ

2
e dτ +m2

τσ
2
u dτ − 2mtβtVτ dτ.

(55)

therefore the law of motion of Vτ is a first order differential equation

V ′τ = −2mtβtVτ + (1− µτ −mτγτ )2σ2
v + µ2

τσ
2
e +m2

τσ
2
u, (56)
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or equivalently βτVτ = −V ′τ+(1−µτ−mτγτ )2σ2
v+µ2

τσ
2
e+m2

τσ
2
u

2mτ
. Substitute this into (40) and

integrate by parts. Since Vt = 0, we get

πt = − V1

2m1
+

∫ 1

t
Vτ

( 1

2mτ

)′
dτ

+

∫ 1

t

(
(1− µτ −mτγτ )2σ2

v + µ2
τσ

2
e +m2

τσ
2
u

2mτ
+ (1− λτγτ )γτσ

2
v

))
dτ.

(57)

Since Vτ > 0 can be arbitrarily chosen, in order to get an optimum we must have(
1

2mτ

)′
= 0, which is equivalent to mτ = constant. For a maximum, the transversality

condition V1 = 0 must be also satisfied.

We next turn to the choice of γτ . The first order condition is

−(1− µτ −mτγτ ) + (1− λτγτ )− λτγτ = 0 =⇒ γτ =
µτ

2λτ −mτ
=

µτ
λτ + µτρτ

.

(58)

Thus, we obtain a nonzero news trading component. The second order condition is

λτ + µτρτ > 0. There is also a second order condition with respect to β: mτ > 0: see

Footnote 25.

Next, we derive the pricing rules from the market maker’s zero profit conditions. As

in the benchmark model, we compute

λt =
Covt(v1, dyt)

Vart( dyt)
=

Covt(v1, βt(vt − pt) dt+ γt dvt + dut)

Var(βt(vt − pt) dt+ γt dvt + dut)
=

βtΣt + γtσ
2
v

γ2
t σ

2
v + σ2

u

,

ρt =
Covt( dzt, dyt)

Vart( dyt)
=

γtσ
2
v

γ2
t σ

2
v + σ2

u

,

µt =
Covt(v1, dzt − ρt dyt)

Vart( dzt − ρt dyt)
=

−ρtβtΣt + (1− ρtγt)σ2
v

(1− ρtγt)2σ2
v + ρ2

tσ
2
u + σ2

e

.

(59)

By the same arguments as for the benchmark model, Σt = (1−t)Σ0, βt = β0

1−t , and βtΣt,

λt, ρt, µt are constant. Since Σt satisfies the same equation (56) as Vt, and Σ′t = −Σ0,

we obtain

−Σ0 = −2mtβtΣt + (1− µτ −mτγτ )2σ2
v + µ2

τσ
2
e +m2

τσ
2
u. (60)

We now define the following constants:

a =
σ2
u

σ2
v

, b =
σ2
e

σ2
v

, c =
Σ0

σ2
v

,

g =
γ2

a
, λ̃ = λγ, ρ̃ = ργ, ν =

β0Σ0

σ2
u

γ, m̃ = mγ.

(61)
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With these notations, equations (58)–(60) become

λ̃ = µ(1− ρ̃), λ̃ =
ν + g

1 + g
, ρ̃ =

g

1 + g
, µ =

1− ν
1 + b(1 + g)

c =
2ν

g
− (1− µ− m̃)2 − µ2b− m̃2

g
.

(62)

Substitute λ̃, ρ̃, µ in λ̃ = µ(1− ρ̃) and solve for ν:

ν =
1− (1 + b)g − bg2

2 + b+ bg
=

1 + g

2 + b+ bg
− g. (63)

The other equations, together with m̃ = λ̃− µρ̃, imply

λ̃ =
1

2 + b+ bg
, ρ̃ =

g

1 + g
, µ =

1 + g

2 + b+ bg
, m̃ =

1− g
2 + b+ bg

, (64)

1 + c =
(1 + bg)(1 + g)2

g(2 + b+ bg)2
. (65)

From (61), we get

γ = a1/2g1/2, β0 =
σ2
u

Σ0γ
ν =

a

cγ
ν =

a1/2

cg1/2
ν. (66)

From (63) and (65), we get ν = 1+g
2+b+bg − g = g(2+b+bg)

(1+g)(1+bg)

( (1+g)2(1+bg)
g(2+b+bg)2 − (1+g)(1+bg)

2+b+bg

)
=

g(2+b+bg)
(1+g)(1+bg)

(
c + 1 − (1+g)(1+bg)

2+b+bg

)
= g(2+b+bg)

(1+g)(1+bg)

(
c + (1 − g) (1+b+bg)

2+b+bg

)
. We compute β0 =

a1/2g1/2(2+b+bg)
(1+g)(1+bg)

(
1 + 1−g

c
1+b+bg
2+b+bg

)
. Using again (65), we get

β0 =
a1/2

(1 + c)1/2(1 + bg)1/2

(
1 +

1− g
c

1 + b+ bg

2 + b+ bg

)
. (67)

Now substitute a, b, c from (61) in equations (64)–(67) to obtain equations (19)–(24).

Moreover, the second order conditions λ + µρ > 0 and m > 0 are equivalent to g ∈

(−1, 1).

Finally, we show that the equation 1 + c = (1+bg)(1+g)2

g(2+b+bg)2 has a unique solution g ∈

(−1, 1), which in fact lies in (0, 1). This can be shown by noting that

Fb(g) = 1 + c, with Fb(x) =
(1 + bx)(1 + x)2

x(2 + b+ bx)2
. (68)

One verifies F ′b(x) = (x+1)(x−1)(2+b+3bx)
x2(2+b+bx)3 , so Fb(x) decreases on (0, 1). Since Fb(0) = +∞
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and Fb(1) = 1
1+b < 1, there is a unique g ∈ (0, 1) so that Fb(g) = 1 + c.27

A.2 Useful Comparative Statics

To compare the fast and benchmark models, and to do some comparative statics for the

coefficients involved in Theorem 1, we prove the following result.

Lemma 1. With the notations in Theorem 1, the following inequalities are true:

µF < µB, λF > λB, βF0 < βB0 . (69)

Proof. Recall that in the proof of Theorem 1, we have denoted

a =
σ2
u

σ2
v

, b =
σ2
e

σ2
v

, c =
Σ0

σ2
v

. (70)

We start by showing that

µF =
1 + g

2 + b+ bg
< µB =

1

1 + b
. (71)

By computation, this is equivalent to g < 1, which is true since g ∈ (0, 1).

We show that

λF =
(1 + c)1/2

a1/2

1

(1 + bg)1/2(1 + g)
> λB =

c1/2

a1/2

(
1 +

b

c(b+ 1)

)1/2

. (72)

After squaring the two sides, and using 1 + c = (1+bg)(1+g)2

g(2+b+bg)2 , we need to prove that

1
g(2+b+bg)2 > c+1− 1

1+b , or equivalently 1
1+b >

(1+bg)(1+g)2

g(2+b+bg)2 − 1
g(2+b+bg)2 = 2+b+g+2bg+bg2

(2+b+bg)2 .

This reduces to proving 1 + b + (1 − g)(1 + bg) > 0, which is true, since b > 0 and

g ∈ (0, 1).

In the proof of Theorem 1, we have ν = 1+g
2+b+bg−g = g(2+b+bg)

(1+g)(1+bg)

(
c+(1−g) (1+b+bg)

2+b+bg

)
>

0. But 1+g
2+b+bg > g implies bg < 1−g

1+g . We now show that

βF0 =
a1/2

cg1/2

(
1 + g

2 + b+ bg
− g
)
< βB0 =

a1/2

c

(
c+

b

1 + b

)1/2

, (73)

where we use (63) and (66) for βF0 , and (13) for βB0 . Using (65), the desired in-

27One can check that Fb(x) = 1 + c has no solution on (−1, 0): When b ≤ 1, Fb(x) < 0 on (−1, 0).

When b > 1, Fb(x) attains its maximum on (−1, 0) at x∗ = − 2+b
3b

, for which Fb(x
∗) = (b−1)3

b(b+2)3
< 1.
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equality is equivalent to 1
g

(1−g−bg−bg2)2

(2+b+bg)2 < c + 1 − 1
1+b = (1+bg)(1+g)2

g(2+b+bg)2 − 1
1+b , or 1

1+b <

4+3b+bg(2−b)−bg2(1+2b)−b2g3

(2+b+bg)2 . After some algebra, this is equivalent to bg2(1 + g)2 + bg(1 +

4g+g2) < 3+2b. We use bg < 1−g
1+g (proved above) to show that bg2(1+g)2 < g(1−g2)

and bg(1 + 4g + g2) < (1 − g)1+4g+g2

1+g < (1 − g)(1 + 3g). Then, it is sufficient to prove

that g(1− g2) + (1− g)(1 + 3g) < 3 + 2b, or 1 + 3g − 3g2 − g3 < 3 + 2b. For this, it is

sufficient to prove 1 + 3g − 3g2 < 3 + 2b. But 1 + 3g − 3g2 attains its maximum value

of 1 + 3
4 at g = 1

2 , and 1 + 3
4 < 3 + 2b.

A.3 Proof of Proposition 1

See Lemma 1.

A.4 Proof of Proposition 2

For the benchmark model, as in Theorem 1 and Lemma 1, we have

βB0 =
σu

Σ
1/2
0

(
1 +

σ2
vσ

2
e

σ2
v + σ2

e

)1/2

=
a1/2

c

(
c+

b

1 + b

)1/2

. (74)

From the first equality, since σ2
vσ

2
e

σ2
v+σ2

e
is increasing in σv, so is βB0 . From the second

equality, βB0 is increasing in a = σ2
u
σ2
v

and b = σ2
e
σ2
v
, and decreasing in c = Σ0

σ2
v

, and thus βB0

is increasing in σu and σe, and decreasing in Σ0.

As in the proof of Theorem 1, let F (b, x) = (1+bx)(1+x)2

x(2+b+bx)2 , with ∂F
∂b = − (1+x)2(2+bx+bx2)

x(2+b+bx)3

and ∂F
∂x = − (1−x)(1+x)(2+b+3bx)

x2(2+b+bx)3 . Since g ∈ (0, 1) is the solution of F (b, g(b, c)) = 1 + c,

by differentiating with respect to b and c, respectively, we get ∂F
∂b + ∂F

∂x
∂g
∂b = 0, and

∂F
∂x

∂g
∂c = 1. We compute

∂g

∂b
= −g(1 + g)(2 + bg + bg2)

(1− g)(2 + b+ 3bg)
,

∂g

∂c
= − g2(2 + b+ bg)3

(1− g)(1 + g)(2 + b+ 3bg)
. (75)

This implies that g is decreasing in b and c. Since γF = σu
σv
g1/2 = a1/2g1/2, γF is

increasing in a (and σu); and decreasing in b, c (and σe, Σ0).

From the proof of Theorem 1, we also have

βF0 =
a1/2

cg1/2

(
1 + g

2 + b+ bg
− g
)
. (76)

Since g does not depend on a, βF0 is increasing in a (and σu). We use (75) to compute
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∂βF0
∂b = −a1/2g1/2(1+g)2(2+3b+3bg+b2g+b2g2)

2c(1−g)(4+4b+8bg+b2+4b2g+3b2g2)
, thus βF0 is decreasing in b (and σe). Similarly,

we find that
∂βF0
∂c is proportional to − 1

c2

( 1+g
2+b+bg − g

)
+ g(2+b+bg)(2+b+5bg+b2g+b2g2)

2c(1−g)(2+b+3bg) . Sub-

stituting c = (1+bg)(1+g)2

g(2+b+bg)2 − 1, we obtain that
∂βF0
∂c is proportional to 2(1 − g)(2 + b +

3bg)(g+ bg+ bg2− 1) +
(
(1 + bg)(1 + g)2− g(2 + b+ bg)2

)
(2 + b+ 5bg+ b2g+ b2g2). This

is a polynomial in b and g, which can be written as −2(1− g)2 − b3g(1− g4)− P (b, g),

where P (b, g) is a polynomial with positive coefficients. Since b > 0 and g ∈ (0, 1), we

get
∂βF0
∂c < 0, thus βF0 is decreasing in c (and Σ0). Similarly, if we denote Σv = σ2

v , we

find that
∂βF0
∂Σv

is proportional to b3g(1 + g)3 + b2g3 + 2b2g3(1− g) + 13b2g2 + 9b2g+ b2 +

4bg2 + 4bg + 6bg(1− g2) + 4g(1− g), which is positive. Thus, βF0 is increasing in σv.

A.5 Proof of Proposition 3

In the benchmark model, Equation (11) and γBt = 0 imply that Var(dxt) = (βBt )2Σtdt
2 =

0, since dt2 = 0. Also, Var(dut) = σ2
udt. Thus, IPRB

t = Var(dxt)
Var(dxt)+Var(dut)

= 0.

In the fast model, Equation (17) implies Var(dxt) = (γFt )2σ2
vdt, and Equation (20)

implies (γFt )2σ2
v = σ2

ug. Therefore, IPRF
t = σ2

ugdt
σ2
ugdt+σ

2
udt

= g
g+1 . From Theorem 1, we

know that g ∈ (0, 1).

A.6 Proof of Proposition 4

For k = {B,F}, we write the equilibrium equations

dxt = βkt (vt − pt)dt+ γkdvt,

dpt = λkdyt + µk(dzt − ρkdyt) = mkdyt + µkdzt.
(77)

We first prove the following useful result.

Lemma 2. In both the benchmark and the fast models, i.e., if k ∈ {B,F}, and for all

s < u ∈ (0, 1),

Cov(vs − ps, vu − pu) = Σs

(
1− u
1− s

)mkβk0
,

1

ds
Cov(dvs, vu − pu) = (1−mkγk − µk)σ2

v

(
1− u
1− s

)mkβk0
,

(78)

where mk = λk − µkρk.

Proof. Denote by Xu = Cov(vs−ps, vu−pu). For u ≥ s, dXu = Cov(vs−ps, dvu−dpu) =
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−Cov(vs−ps,dpu) = −mkβkuXudu = −mk βk0
1−uXudu. Then, d ln(Xu) = mkβk0 d ln(1−u).

Also, at u = s, we have Xs = Σs. Thus, we have a first order differential equation, with

solution given by the first equation in (78).

Denote by Yu = 1
ds Cov(dvs, vu − pu). For u > s, dYu = 1

ds Cov(dvs,dvu − dpu) =

− 1
ds Cov(dvs, dpu) = −mkβkuYudu = −mk βk0

1−uYudu. Then, d ln(Yu) = mkβk0 d ln(1− u).

At u = s + ds, we have Ys+ds = 1
ds Cov(dvs, vs − ps + dvs − dps) = 1

ds Cov(dvs,dvs) −
1
ds Cov(dvs,m

kdyt+µkdzt) = (1−mkγk−µk)σ2
v . Thus, we have a first order differential

equation, with solution given by the second equation in (78).

We now prove Proposition 4. For the benchmark model, mB = λB. Then, using the

notations from Lemma 2, we get

Corr(dxBt ,dx
B
t+τ ) =

Cov(vt − pt, vt+τ − pt+τ )

Cov(vt − pt)1/2 Cov(vt+τ − pt+τ )1/2
=

Σt

(
1−t−τ

1−t

)λBβB0
Σ

1/2
t Σ

1/2
t+τ

. (79)

Since Σs = Σ0(1− s), we obtain Corr(dxBt ,dx
B
t+τ ) =

(
1−t−τ

1−t

)λBβB0 − 1
2
.28

In the fast model, we use both equations in (78) to show that the autocovariance

of the informed order flow, Cov(dxFt ,dx
F
t+τ ), is of order dt2. But the informed order

flow variance is of order dt, therefore the autocorrelation is of order dt, which is zero in

continuous time.

A.7 Proof of Proposition 5

For k ∈ {B,F}, recall that AT k
t = Corr(dxt, qt+dt − pt+dt), and dxt = βkt (vt − pt)dt +

γkdvt. In the benchmark, equation (8) implies qt+dt − pt+dt = µBdzt+dt. Therefore,

ATBt = 0.

In the fast model, equation (9) implies qt+dt − pt+dt = µF (dzt − ρFdyt), thus

qt+dt − pt+dt = µF (1− ρFγF )dvt + µFdet − µFρFdut. (80)

Then, 1
dt Cov(dxt, qt+dt− pt+dt) = γFµF (1−ρFγF )σ2

v . Moreover, 1
dt Var(dxt) = (γF )2σ2

v

and 1
dt Var(qt+dt − pt+dt) = (µF )2(1 − ρFγF )2σ2

v + (µF )2σ2
e + (µF )2(ρF )2σ2

u. Together,

28Note that λBβB0 = 1 +
σ2
vσ

2
e

Σ0(σ2
v+σ2

e)
> 1.
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these imply ATF = (1−ρF γF )σv√
(1−ρF γF )2σ2

v+σ2
e+(ρF )2σ2

u

. With a = σ2
u
σ2
v

and b = σ2
e
σ2
v

as in (61), we

use the formulas γF = a1/2g1/2 and ρF = g1/2

a1/2(1+g)
in Theorem 1 to compute ATF =

1√
(1+g)(1+b)

. This proves (29) for ATF
t .

A.8 Proof of Proposition 6

In the fast model, denote by TV F = Var(dyt) the trading volume, and IPRF = Var(dxt)
Var(dyt)

the informed participation rate. Then, by Proposition 3, TV F = σ2
u(1+g), and IPRF =

g
1+g , hence TV F and IPRF have the same dependence on σe as g. From (75), g is

decreasing in b, hence also in σe. Thus, both TV F and IPRF are decreasing in σe.

As in equation (72), we have (λF )2 = 1+c
a

1
(1+bg)(1+g)2 . Using the formula for ∂g

∂b

in (75), we compute
∂
(

(1+bg)(1+g)2
)

∂b = −g(1+g)3(1+bg)
1−g < 0. Therefore, λF is increasing

in b, hence in σe. Thus, higher precision of the public signal (lower σe) implies higher

liquidity (lower price impact coefficient λF ).

A.9 Proof of Proposition 7

As in proof of Proposition 6, the trading volume and the informed participation rate in

the fast model are given, respectively, by TV F = σ2
u(1 + g) and IPRF = g

1+g , hence

TV F and IPRF have the same dependence on σv (holding b = σ2
e
σ2
v

constant) as g. In

the proof of Proposition 2, we analyze g = g(b, c) as a function of b = σ2
e
σ2
v

and c = Σ0
σ2
v

.

If we hold b constant, then g depends on σv only via c. From equation (75) we have

∂g
∂c = − g2(2+b+bg)3

(1−g)(1+g)(2+b+3bg) < 0, thus g is decreasing in c. Therefore, g is increasing in σv,

hence both TV F and IPRF are increasing in σv.

Denote by Σv = σ2
v . As in proof of Proposition 6, we use (λF )2 = 1+c

a
1

(1+bg)(1+g)2 =

Σv+Σ0
σ2
u

1
(1+bg)(1+g)2 . We now hold b constant, and differentiate g only with respect to

c = Σ0
Σv

. After substituting also 1 + c = (1+bg)(1+g)2

g(2+b+bg)2 , we obtain
(
∂(λF )2

∂Σv

)
b=const

=

1−g+b+bg
σ2
u(1+g)(1−g)(2+b+bg)

> 0. Thus, if σv increases and σe
σv

is held constant, λF increases.
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A.10 Proof of Proposition 9

We discretize the continuous time fast model, and write t+ 1 instead of t+ ∆t. We also

remove the superscript F . Equations (17) and (18) imply

∆xt = −βtst∆t+ γ∆vt,

∆qt = m∆yt + µ∆zt,
(81)

where st = qt − vt is the pricing error, and m = λ − µρ. Then, using (81), we rewrite

st+1 = st + ∆qt −∆vt as follows:

st+1 = (1−mβt∆t)st − (1− µ−mγ)∆vt + (m∆ut + µ∆et). (82)

Using equations (64), we can also compute

γ = a1/2g1/2, λ =
1

γ

1

2 + b+ bg
, ρ =

1

γ

g

1 + g
, µ =

1 + g

2 + b+ bg
,

m =
1

γ

1− g
2 + b+ bg

, 1− µ−mγ =
b+ bg

2 + b+ bg
.

(83)

A.11 Proof of Proposition 10

See Lemma 1.

A.12 Proof of Proposition 11

As in Proposition 9, we discretize the models, and write t+ 1 instead of t+ ∆t. Denote

by ∆pt = pt+1 − pt the price change over one interval. Equation (8) implies that in

the benchmark model ∆pt = µB∆zt +λB∆yt; moreover, the benchmark informed order

flow is of order ∆t, i.e., ∆xt = O(∆t). Equation (9) implies that in the fast model,

∆pt = λF∆yt + µF (∆zt−1 − ρF∆yt−1). We aggregate price changes over N intervals

from t to t + N , and we denote the sum by ∆N . We assume that N is large, with

N = O
(

1
∆t1/3

)
. Then, we obtain, respectively,

∆Npt = µB∆N zt + λB∆Nut +O(N∆t),

∆Npt = λF∆N yt + µF (∆N zt−1 − ρF∆N yt−1)

= λF∆N yt + µF (∆N zt − ρ
F∆N yt) +O(∆t1/2),

(84)
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since zt − zt−1 and yt − yt−1 are of order ∆t1/2. Denote by ∆N t = N∆t = O(∆t2/3).

Note that ∆Nut = O(N1/2∆t1/2) = O(∆t1/3) = O
(
(∆N t)

1/2
)
, and similarly for the other

independent diffusion processes. We have O(N∆t) = O(∆N t) and O(∆t1/2) = o(∆N t).

For the benchmark model we obtain

1

σ2
v∆N t

Cov(∆Npt,∆N vt) = µB +
o(∆N t)

∆N t
. (85)

In the fast model, the informed order flow is ∆xt = γF∆vt +O(∆t), and we compute

1

σ2
v∆N t

Cov(∆Npt,∆N vt) = γF (λF − µFρF ) + µB +
o(∆N t)

∆N t
. (86)

Finally, we prove that γF (λF −µFρF )+µB > µB. Using (83) and (71), we need to show

that 2
2+b+bg >

1
1+b , which is equivalent to 1 > g. But this is true, since g ∈ (0, 1).

A.13 Proof of Proposition 12

Denote Var(dpt) = σ2
pdt the variance of the instantaneous price changes, and we use

Theorem 1 to compute the various components of this price change. In the benchmark

model, Var(pt+dt − qt) = (λB)2σ2
udt =

(
Σ0 + σ2

vσ
2
e

σ2
v+σ2

e

)
dt. Also, Var(qt+dt − pt+dt) =

(µB)2(σ2
v + σ2

e)dt = σ4
v

σ2
v+σ2

e
dt. We obtain the volatility decomposition in the benchmark

model,

σ2
p = Σ0 + σ2

v =

(
Σ0 +

σ2
vσ

2
e

σ2
v + σ2

e

)
+

σ4
v

σ2
v + σ2

e

. (87)

Similarly, in the fast model, Var(pt+dt − qt) = (λF )2
(
(γF )2σ2

v + σ2
u

)
dt. Using equa-

tion (83), we compute Var(pt+dt − qt) = 1+g
g(2+b+bg)2σ

2
v dt. Also, Var(qt+dt − pt+dt) =

(µF )2
(
(1− ρFγF )2σ2

v + σ2
e + (ρF )2σ2

u

)
dt = (1+g)(1+b+bg)

(2+b+bg)2 σ2
v dt.

Using the equilibrium parameter values of Theorem 1, we obtain that Var(pt+dt−qt)

is higher than in the benchmark, Var(qt+dt − pt+dt) is lower than in the benchmark,

and Var(dpt) = Σ0 + σ2
vt is the same as in the benchmark. We obtain the volatility

decomposition in the fast model,

σ2
p = Σ0 + σ2

v =
1 + g

g(2 + b+ bg)2
σ2
v +

(1 + g)(1 + b+ bg)

(2 + b+ bg)2
σ2
v . (88)

we note that, according to (65), Σ0 + σ2
v = σ2

v(1 + c) = σ2
v

(1+g)2(1+bg)
g(2+b+bg)2 .

Finally, we show that the volatility component coming from quote updates is larger
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in the benchmark, i.e., σ2
v

σ2
v+σ2

e
= 1

1+b >
(1+g)(1+b+bg)

(2+b+bg)2 . The difference is proportional to

3 − g + 2b + bg − bg2 = 2(1 + b) + (1 − g)(1 + bg) > 0. Since the total volatility is the

same, it also implies that the volatility component coming from the trades is larger in

the fast model.

B Models in Discrete Time

B.1 Discrete Time Fast Model

We divide the interval [0, 1] into T equally spaced intervals of length ∆t = 1
T . Trading

takes place at equally spaced times, t = 1, 2, . . . , T − 1. The sequence of events is as

follows. At t = 0, the informed trader observes v0. At each t = 1, . . . , T − 1, the

informed trader observes ∆vt = vt − vt−1; and the market maker observes ∆zt−1 =

∆vt−1 + ∆et−1, except at t = 1. The error in the market maker’s signal is normally

distributed, ∆et−1 ∼ N (0, σ2
e∆t). The market maker quotes the bid price = the ask

price = qt. The informed trader then submits ∆xt, and the liquidity traders submit

in aggregate ∆ut ∼ N (0, σ2
u∆t). The market maker observes only the aggregate order

flow, ∆yt = ∆xt + ∆ut, and sets the price at which the trading takes place, pt. The

market maker is competitive, i.e., makes zero profit. This translates into the following

formulas:

pt = E(vt | Ipt ), Ipt = {∆y1, . . . ,∆yt,∆z1, . . . ,∆zt−1},

qt+1 = E(vt | Iqt ), Iqt = {∆y1, . . . ,∆yt,∆z1, . . . ,∆zt}.
(89)

We also denote

Ωt = Var(vt | Ipt ),

Σt = Var(vt | Iqt ).
(90)

Definition 1. A pricing rule pt is called linear if it is of the form pt = qt + λt∆yt, for

all t = 1, . . . , T − 1.29 An equilibrium is called linear if the pricing rule is linear, and

the informed trader’s strategy ∆xt is linear in {vτ}τ≤t and {qτ}τ≤t.

The next result shows that if the pricing rule is linear, the informed trader’s strategy

29We could defined more generally, a pricing rule to be linear in the whole history {∆yτ}τ≤t, but as
Kyle (1985) shows, this is equivalent to the pricing rule being linear only in ∆yt.
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is also linear, and furthermore it can be decomposed into a forecast error component,

βt(vt−1 − qt), and a news trading component, γt∆vt.

Theorem 2. Any linear equilibrium must be of the form

∆xt = βt(vt−1 − qt)∆t+ γt∆vt,

pt = qt + λt∆yt,

qt+1 = pt + µt(∆zt − ρt∆yt),

(91)

for t = 1, . . . , T − 1, where βt, γt, λt, µt, ρt, Ωt, and Σt are constants that satisfy

λt =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

,

µt =

(
σ2
u + β2

t Σt−1∆t− βtγtΣt−1

)
σ2
v(

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

)
σ2
e +

(
β2
t Σt−1∆t+ σ2

u

)
σ2
v

,

mt = λt − ρtµt =
βtΣt−1(σ2

v + σ2
e) + γtσ

2
vσ

2
e(

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

)
σ2
e +

(
β2
t Σt−1∆t+ σ2

u

)
σ2
v

,

ρt =
γtσ

2
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

,

Ωt = Σt−1 + σ2
v∆t−

β2
t Σ2

t−1 + 2βtγtΣt−1σ
2
v + γ2

t σ
4
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆t,

Σt = Σt−1 + σ2
v∆t

−
β2
t Σ2

t−1(σ2
v + σ2

e) + β2
t Σt−1∆tσ4

v + σ4
vσ

2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e(

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

)
σ2
e +

(
β2
t Σt−1∆t+ σ2

u

)
σ2
v

∆t.

(92)

The value function of the informed trader is quadratic for all t = 1, . . . , T − 1:

πt = αt−1(vt−1 − qt)2 + α′t−1(∆vt)
2 + α′′t−1(vt−1 − qt)∆vt + δt−1. (93)

The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtmt

2(λt − αtm2
t )
,

γt =
1− 2αtmt(1− µt)

2(λt − αtm2
t )

,

αt−1 = βt∆t(1− λtβt∆t) + αt(1−mtβt∆t)
2,

α′t−1 = αt(1− µt −mtγt)
2 + γt(1− λtγt),

α′′t−1 = βt∆t+ γt(1− 2λtβt∆t) + 2αt(1−mtβt∆t)(1− µt −mtγt),

δt−1 = αt
(
m2
tσ

2
u + µ2

tσ
2
e

)
∆t+ α′tσ

2
v∆t+ δt.

(94)
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The terminal conditions are

αT = α′T = α′′T = δT = 0. (95)

The second order condition is

λt − αtm2
t > 0. (96)

Given Σ0, conditions (92)–(96) are necessary and sufficient for the existence of a linear

equilibrium.

Proof. First, we show that equations (92) are equivalent to the zero profit conditions

of the market maker. Second, we show that equations (94)–(96) are equivalent to the

informed trader’s strategy in (91) being optimal.

Zero Profit of market maker: Let us start with with the market maker’s update

due to the order flow at t = 1, . . . , T − 1. Conditional on Iqt−1, the variables vt−1 − qt

and ∆vt have a bivariate normal distribution: vt−1 − qt

∆vt

 | Iqt−1 ∼ N

 0

0

 ,
 Σt−1 0

0 σ2
v

 . (97)

The aggregate order flow at t is of the form

∆yt = βt(vt−1 − qt)∆t+ γt∆vt + ∆ut. (98)

Denote by

Φt = Cov

 vt−1 − qt

∆vt

 ,∆yt
 =

 βtΣt−1

γtσ
2
v

∆t. (99)

Then, conditional on It = Iqt−1∪{∆yt}, the distribution of vt−1−qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | It ∼ N
 µ1

µ2

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 , (100)

where µ1

µ2

 = Φt Var(∆yt)
−1∆yt =

 βtΣt−1

γtσ
2
v

 1

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆yt, (101)
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and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var

 vt−1 − qt

∆vt

− Φt Var(∆yt)
−1Φ′t

=

 Σt−1 0

0 σ2
v∆t

− 1

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

 β2
t Σ2

t−1 βtγtΣt−1σ
2
v

βtγtΣt−1σ
2
v γ2

t σ
4
v

∆t.

(102)

We compute

pt − qt = E(vt − qt | It) = µ1 + µ2 =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆yt, (103)

which proves equation (92) for λt. Also,

Ωt = Var(vt − qt | It) = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ2

t−1 + 2βtγtΣt−1σ
2
v + γ2

t σ
4
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆t,
(104)

which proves the formula for Ωt.

Next, to compute qt+1 = E(vt | Iqt ), we start from the same prior as in (97), but we

consider the impact of both the order flow at t and the market maker’s signal at t+ 1:

∆yt = βt(vt−1 − qt)∆t+ γt∆vt + ∆ut,

∆zt = ∆vt + ∆et.
(105)

Denote by

Ψt = Cov

 vt−1 − qt

∆vt

 ,
 ∆yt

∆zt

 =

 βtΣt−1 0

γtσ
2
v σ2

v

∆t,

V yz
t = Var

 ∆yt

∆zt

 =

 β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u γtσ
2
v

γtσ
2
v σ2

v + σ2
e

∆t.

(106)

Conditional on Iqt = Iqt−1∪{∆yt,∆zt}, the distribution of vt−1− qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | Iqt ∼ N
 µ1

µ2

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 , (107)
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where

 µ1

µ2

 = Ψt (V yz
t )
−1

 ∆yt

∆zt

 =

 βtΣt−1(σ2
v + σ2

e)∆yt − βtγtΣt−1σ
2
v∆zt

γtσ
2
vσ

2
e∆yt + (β2

t Σt−1∆t+ σ2
u)σ2

v∆zt


(β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u)σ2
e + (β2

t Σt−1∆t+ σ2
u)σ2

v

, (108)

and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var

 vt−1 − qt

∆vt

−Ψt (V yz
t )
−1

Ψ′t

=

 Σt−1 0

0 σ2
v∆t

−
 β2

t Σ2
t−1(σ2

v + σ2
e) βtγtΣt−1σ

2
vσ

2
e

βtγtΣt−1σ
2
vσ

2
e (β2

t Σt−1∆t+ γ2
t σ

2
e + σ2

u)σ4
v


(β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u)σ2
e + (β2

t Σt−1∆t+ σ2
u)σ2

v

∆t.

(109)

Therefore,

qt+1 − qt = µ1 + µ2

=

(
βtΣt−1(σ2

v + σ2
e) + γtσ

2
vσ

2
e

)
∆yt +

(
σ2
u + β2

t Σt−1∆t− βtγtΣt−1

)
σ2
v∆zt(

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

)
σ2
e +

(
β2
t Σt−1∆t+ σ2

u

)
σ2
v

(110)

= mt∆yt + µt∆zt = (λt − ρtµt)∆yt + µt∆zt, (111)

which proves equation (92) for µt, mt, and ρt. Also,

Σt = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ2

t−1(σ2
v + σ2

e) + β2
t Σt−1∆tσ4

v + σ4
vσ

2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e(

β2
t Σt−1 + (βt + γt)2σ2

v + σ2
u

)
σ2
e +

(
β2
t Σt−1 + σ2

u

)
σ2
v

∆t,

(112)

which proves the formula for Σt.

Optimal Strategy of Informed Trader: At each t = 1, . . . , T − 1, the informed

trader maximizes the expected profit: πt = max
∑T−1

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by

backward induction that the value function is quadratic and of the form given in (93):

πt = αt−1(vt−1 − qt)2 + α′t−1(∆vt)
2 + α′′t−1(vt−1 − qt)∆vt + δt−1. At the last decision

point (t = T − 1) the next value function is zero, i.e., αT = α′T = α′′T = δT = 0, which
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are the terminal conditions (95). This is the transversality condition: no money is left

on the table. In the induction step, if t = 1, . . . , T − 1, we assume that πt+1 is of the

desired form. The Bellman principle of intertemporal optimization implies

πt = max
∆x

E
(

(vt − pt)∆x+ πt+1 | Iqt , vt,∆vt
)
. (113)

The last two equations in (91) imply that the quote qt evolves by qt+1 = qt +mt∆yt +

µt∆zt, where mt = λt − ρtµt. This implies that the informed trader’s choice of ∆x

affects the trading price and the next quote by

pt = qt + λt(∆x+ ∆ut),

qt+1 = qt +mt(∆x+ ∆ut) + µt∆zt.
(114)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(

∆x(vt−1 + ∆vt − qt − λt∆x− λt∆ut)

+ αt(vt−1 + ∆vt − qt −mt∆x−mt∆ut − µt∆vt − µt∆et)2 + α′t∆v
2
t+1

+ α′′t (vt−1 + ∆vt − qt −mt∆x−mt∆ut − µt∆vt − µt∆et)∆vt+1 + δt

)
= max

∆x
∆x(vt−1 − qt + ∆vt − λt∆x)

+ αt

(
(vt−1 − qt −mt∆x+ (1− µt)∆vt)2 + (m2

tσ
2
u + µ2

tσ
2
e)∆t

)
+ α′tσ

2
v∆t

+ 0 + δt.

(115)

The first order condition with respect to ∆x is

∆x =
1− 2αtmt

2(λt − αtm2
t )

(vt−1 − qt) +
1− 2αtmt(1− µt)

2(λt − αtm2
t )

∆vt, (116)

and the second order condition for a maximum is λt − αtm2
t > 0, which is (96). Thus,

the optimal ∆x is indeed of the form ∆xt = βt(vt−1 − qt)∆t + γt∆vt, where βt∆t and
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γt are as in (94). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1− λtβt∆t) + αt(1−mtβt∆t)

2
)

(vt−1 − qt)2

+
(
αt(1− µt −mtγt)

2 + γt(1− λtγt)
)

∆v2
t (117)

+
(
βt∆t+ γt(1− 2λtβt∆t) + 2αt(1−mtβt∆t)(1− µt −mtγt)

)
(vt−1 − qt)∆vt

+ αt
(
m2
tσ

2
u + µ2

tσ
2
e

)
∆t + α′tσ

2
v∆t + δt.

This proves that indeed πt is of the form πt = αt−1(vt−1−qt)2+α′t−1(∆vt)
2+α′′t−1(vt−1−

qt)∆vt + δt−1, with αt−1, α′t−1, α′′t−1 and δt−1 as in (94).

We now briefly discuss the existence of a solution for the recursive system given in

Theorem 2. The system of equations (92)–(94) can be numerically solved backwards,

starting from the boundary conditions (95). We also start with an arbitrary value of

ΣT > 0.30 By backward induction, suppose αt and Σt are given. One verifies that

equation (92) for Σt implies

Σt−1 =
Σt

(
σ2
vσ

2
u + σ2

v(σ
2
u + γ2

t σ
2
e)
)
− σ2

vσ
2
uσ

2
e∆t(

σ2
uσ

2
e + σ2

v(σ
2
u + γ2

t σ
2
e) + β2

t ∆t2σ2
vσ

2
e − 2γtβt∆tσ2

vσ
2
e

)
− Σtβ2

t ∆t
(
σ2
v + σ2

e

) .
(118)

Then, in equation (92) we can rewrite λt, µt,mt as functions of (Σt, βt, γt) instead of

(Σt−1, βt, γt). Next, we use the formulas for βt and γt to express λt, µt,mt as functions of

(λt, µt,mt, αt,Σt). This gives a system of polynomial equations, whose solution λt, µt,mt

depends only on (αt,Σt). Numerical simulations show that the solution is unique under

the second order condition (96), but the authors have not been able to prove theoretically

that this is true in all cases. Once the recursive system is computed for all t = 1, . . . , T−

1, the only condition left to do is to verify that the value obtained for Σ0 is the correct

one. However, unlike in Kyle (1985), the recursive equation for Σt is not linear, and

therefore the parameters cannot be simply rescaled. Instead, one must numerically

modify the initial choice of ΣT until the correct value of Σ0 is reached.

B.2 Discrete Time Benchmark Model

The setup is the same as for the fast model, except that the market maker gets the

signal ∆z at the same time as the informed trader observes ∆v. The sequence of events

30Numerically, it should be of the order of ∆t.
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is as follows. At t = 0, the informed trader observes v0. At each t = 1, . . . , T − 1,

the informed trader observes ∆vt = vt − vt−1; and the market maker observes ∆zt =

∆vt + ∆et, with ∆et ∼ N (0, σ2
e∆t). The market maker quotes the bid price = the ask

price = qt. The informed trader then submits ∆xt, and the liquidity traders submit

in aggregate ∆ut ∼ N (0, σ2
u∆t). The market maker observes only the aggregate order

flow, ∆yt = ∆xt + ∆ut, and sets the price at which the trading takes place, pt. The

market maker is competitive, i.e., makes zero profit. This implies

pt = E(vt | Ipt ), Ipt = {∆y1, . . . ,∆yt,∆z1, . . . ,∆zt},

qt = E(vt | Iqt ), Iqt = {∆y1, . . . ,∆yt−1,∆z1, . . . ,∆zt}.
(119)

We also denote

Σt = Var(vt | Ipt ),

Ωt = Var(vt | Iqt ).
(120)

The next result shows that if the pricing rule is linear, the informed trader’s strategy

is also linear, and furthermore it only has a forecast error component, βt(vt − qt).

Theorem 3. Any linear equilibrium must be of the form

∆xt = βt(vt − qt)∆t,

pt = qt + λt∆yt,

qt = pt−1 + µt−1∆zt,

(121)

for t = 1, . . . , T − 1, where by convention p0 = 0, and βt, γt, λt, µt, Ωt, and Σt are

constants that satisfy

λt =
βtΣt

σ2
u

,

µt =
σ2
v

σ2
v + σ2

e

,

Ωt =
Σtσ

2
u

σ2
u − β2

t Σt∆t
,

Σt−1 = Σt +
β2
t Σ2

t

σ2
u − β2

t Σt∆t
∆t− σ2

vσ
2
e

σ2
v + σ2

e

∆t.

(122)
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The value function of the informed trader is quadratic for all t = 1, . . . , T − 1:

πt = αt−1(vt − qt)2 + δt−1. (123)

The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtλt

2λt(1− αtλt)
,

αt−1 = βt∆t(1− λtβt∆t) + αt(1− λtβt∆t)2,

δt−1 = αt
(
λ2
tσ

2
u + µ2

t (σ
2
v + σ2

e)
)
∆t+ δt.

(124)

The terminal conditions are

αT = δT = 0. (125)

The second order condition is

λt(1− αtλt) > 0. (126)

Given Σ0, conditions (122)–(126) are necessary and sufficient for the existence of a

linear equilibrium.

Proof. First, we show that equations (122) are equivalent to the zero profit conditions

of the market maker. Second, we show that equations (124)–(126) are equivalent to the

informed trader’s strategy being optimal.

Zero Profit of market maker: Let us start with with the market maker’s update

due to the order flow at t = 1, . . . , T−1. Conditional on Iqt , vt has a normal distribution,

vt|Iqt ∼ N (qt,Ωt). The aggregate order flow at t is of the form ∆yt = βt(vt−qt)∆t+∆ut.

Denote by

Φt = Cov(vt − qt,∆yt) = βtΩt∆t. (127)

Then, conditional on Ipt = Iqt ∪ {∆yt}, vt ∼ N (pt,Σt), with

pt = qt + λt∆yt,

λt = Φt Var(∆yt)
−1 =

βtΩt

β2
t Ωt∆t+ σ2

u

,

Σt = Var(vt − qt)− Φt Var(∆yt)
−1Φ′t = Ωt −

β2
t Ω2

t

β2
t Ωt∆t+ σ2

u

∆t

=
Ωtσ

2
u

β2
t Ωt∆t+ σ2

u

.

(128)
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To obtain the equation for λt, note that the above equations for λt and Σt imply λt
Σt

= βt
σ2
u

.

The equation for Ωt is obtained by solving for Σt in the last equation of (128).

Next, consider the market maker’s update at t = 1, . . . , T−1 due to the signal ∆zt =

∆vt + ∆et. From vt−1|Ipt−1 ∼ N (pt−1,Σt−1), we have vt|Ipt−1 ∼ N (pt−1,Σt−1 + σ2
v∆t).

Denote by

Ψt = Cov(vt − pt−1,∆zt) = σ2
v∆t. (129)

Then, conditional on Iqt = Ipt−1 ∪ {∆zt}, vt|I
q
t ∼ N (qt,Ωt), with

qt = pt−1 + µt∆zt,

µt = Ψt Var(∆zt)
−1 =

σ2
v

σ2
v + σ2

e

,

Ωt = Var(vt − pt−1)−Ψt Var(∆zt)
−1Ψ′t = Σt−1 + σ2

v∆t−
σ4
v

σ2
v + σ2

e

∆t

= Σt−1 +
σ2
vσ

2
e

σ2
v + σ2

e

∆t.

(130)

Thus, we prove the equation for µt. Note that equation (130) gives a formula for Σt−1 as

a function of Ωt, and we already proved the formula for Ωt as a function of Σt in (122).

We therefore get Σt−1 as a function of Σt, which is the last equation in (122).

Optimal Strategy of Informed Trader: At each t = 1, . . . , T − 1, the informed

trader maximizes the expected profit: πt = max
∑T−1

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by

backward induction that the value function is quadratic and of the form given in (123):

πt = αt−1(vt− qt)2 + δt−1. At the last decision point (t = T − 1) the next value function

is zero, i.e., αT = δT = 0, which are the terminal conditions (125). In the induction step,

if t = 1, . . . , T − 1, we assume that πt+1 is of the desired form. The Bellman principle

of intertemporal optimization implies

πt = max
∆x

E
(

(vt − pt)∆x+ πt+1 | Iqt , vt,∆vt
)
. (131)

The last two equations in (121) show that the quote qt evolves by qt+1 = qt +mt∆yt +

µt∆zt+1. This implies that the informed trader’s choice of ∆x affects the trading price
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and the next quote by

pt = qt + λt(∆x+ ∆ut),

qt+1 = qt + λt(∆x+ ∆ut) + µt∆zt+1.
(132)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(

∆x(vt − qt − λt∆x− λt∆ut)

+ αt(vt + ∆vt+1 − qt − λt∆x− λt∆ut − µt∆zt+1)2 + δt

)
= max

∆x
∆x(vt − qt − λt∆x)

+ αt

(
(vt − qt − λt∆x)2 + (λ2

tσ
2
u + µ2

t (σ
2
v + σ2

e))∆t
)

+ δt.

(133)

The first order condition with respect to ∆x is

∆x =
1− 2αtλt

2λt(1− αtλt)
(vt − qt), (134)

and the second order condition for a maximum is λt(1 − αtλt) > 0, which is (126).

Thus, the optimal ∆x is indeed of the form ∆xt = βt(vt − qt)∆t, where βt∆t satisfies

equation (124). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1−λtβt∆t)+αt(1−λtβt∆t)2

)
(vt−qt)2 + αt

(
λ2
tσ

2
u+µ2

t (σ
2
v +σ2

e)
)
∆t + δt.

(135)

This proves that indeed πt is of the form πt = αt−1(vt − qt)2 + δt−1, with αt−1 and δt−1

as in (124).

Equations (122) and (124) form a system of equations. As before, it is solved back-

wards, starting from the boundary conditions (125), and so that Σt = Σ0 at t = 0.

C Sampling at Lower Frequency than Trading Frequency

Suppose trades are aggregated over short time intervals of length ∆τ . Then, data

are indexed by τ = 0, 1, 2, . . . , 1
∆τ − 1 and the informed order flow at τ is ∆xτ =

xτ∆τ+∆τ −xτ∆τ . The empirical counterpart of the Informed Participation Rate and the

autocorrelation of the informed investor’s order flow when data are sampled every ∆τ
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periods of time are, respectively,

IPR(∆τ) =
Var(∆xτ (∆τ))

Var(∆xτ (∆τ)) + Var(∆uτ (∆τ))
,

Corr(∆xτ (∆τ),∆xτ+k(∆τ)).

(136)

Proposition 13. When ∆τ is small, the empirical informed participation rate in the

benchmark increases with the sampling interval ∆τ and is always below its level in the

fast model:

IPRB(∆τ) =
(βBt )2Σt

σ2
u

∆τ + o(∆τ),

IPRF (∆τ) =
(γF )2σ2

v

(γF )2σ2
v + σ2

u

+ o(1).

(137)

The informed order flow autocorrelation in the fast model increases with the sampling

interval ∆τ and is always below its level in the benchmark:

Corr(∆xBτ (∆τ),∆xBτ+k(∆τ)) =

(
1− t− k∆τ

1− t

)λBβB0 − 1
2

+ o(1),

Corr(∆xFτ (∆τ),∆xFτ+k(∆τ)) =
βFt+k∆τ (βFt Σt + γF (1−mFγF − µF )σ2

v)

(γF )2σ2
v

×
(

1− t− k∆τ

1− t

)mF βF0
∆τ + o(∆τ).

(138)

To define the empirical counterpart of our measure of anticipatory trading, we now

consider that trading takes place in discrete time rather than in continuous time. The

infinitesimal time interval dt is replaced by a real number ∆t > 0. Time is thus indexed

by t = 0, 1, 2, . . . , 1
∆t − 1. We assume that ∆t is small and we approximate the equilib-

rium variables (βt, γt, λt, µt, ρt) in this discrete time model by their continuous time

counterpart. The informed trade at time t is equal to ∆xt = βt(vt−qt)∆t+γ∆vt, where

qt is the quote just before the order flow arrives, and pt+1 is the execution price.

We consider that the econometrician has data sampled every n trading rounds, i.e.,

the sampling interval is ∆τ = n∆t. Therefore the data are a time-series indexed by

τ = 0, 1, 2, . . . , 1
∆τ − 1 and the τ -th observation corresponds to trading during the n

trading rounds from t = τn to t = τn+ n− 1:

∆xτ (∆τ) = ∆xτn + . . .+ ∆xτn+n−1, (139)
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and the return over this period is:

rτ (∆τ) = pt+n − pt. (140)

Finally, consider the empirical counterpart of our measure of anticipatory trading:

AT τ (∆τ) = Corr(∆xτ (∆τ), rτ+1(∆τ)). (141)

The next result shows that that sampling data at a sufficiently high frequency (i.e.,

low ∆τ) is important for detecting anticipatory trading.

Proposition 14. In the fast model, the empirical measure of anticipatory trading de-

creases with ∆τ and converges to zero when ∆τ → +∞:

ATFτ (∆τ) =
µF (1− ρFγF )σv√

σ2
v + Σ0

∆t

∆τ
. (142)

The aggregated order flow spans n = ∆τ
∆t trading periods. Moreover, each trade

anticipates news that is incorporated in the quotes in the next trading round. Therefore,

only the last trade of the aggregated order flow ∆xτ (∆τ) is correlated with the next

aggregated return rτ+1(∆τ). As a result, when n increases, the correlation between

∆xτ (∆τ) and rτ+1(∆τ) decreases. When n becomes too large, the correlation becomes

almost zero.

C.1 Proof of Proposition 13

Denoting t = τ∆τ , the τth trade in the data is ∆xτ = xt+∆τ−xt =
∫ t+∆τ
u=t βu(vu−pu)du+

γdvu. When ∆τ is small, in the benchmark model we have Var(∆xBτ ) = (βBt )2Σt(∆τ)2 +

o((∆τ)2), which yields the informed participation rate in (137). Using Lemma 2, we ob-

tain: Cov(∆xBτ ,∆x
B
τ+k) = βBt+k∆τβ

B
t Σt

(
1−t−k∆τ

1−t

)λBβB0
(∆τ)2 + o((∆τ)2), which proves

the first equation in (138).

In the fast model: Var(∆xFτ ) = (γF )2σ2
v∆τ+o(∆τ), from which follows the informed

participation rate in (137). Using Lemma 2, Cov(∆xFτ ,∆x
F
τ+k) = βFt+k∆τ (βFt Σt+γ

F (1−

mFγF−µF )σ2
v)
(

1−t−k∆τ
1−t

)mF βF0
(∆τ)2+o((∆τ)2), where mF = λF−µFρF , which yields

the second equation in (138).
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C.2 Proof of Proposition 14

When ∆τ is small, we have Cov(∆xτ (∆τ), rτ+1(∆τ)) = γFµF (1 − ρFγF )σ2
v∆t. Also,

Var(∆xτ ) = (γF )2σ2
v∆τ + o(∆τ), and Var(rτ+1) = (σ2

v + Σ0)∆τ + o(∆τ). These prove

(142).
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