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1 Introduction
Methods capable of forecasting the entire yield curve based on a time se-
ries extension of the Nelson-Siegel model Nelson and Siegel (1987) were
suggested in the literature and compared to the non-parametric alterna-
tives Diebold and Li (2004). While relatively successful in forecasting the
yield curve, the Nelson-Siegel model tends to have poor fit to highly non-
linear yield curves and at the long end of the term structure, although
this can be improved by considering the Svensson (1994) model. 

However, we find that Nelson-Siegel and Svensson models have poor
forecasting performance around the points of non-parallel shifts, hence
making them potentially problematic in interest rate risk management.

In this paper we show how to implement these models using non-lin-
ear least squares and how to obtain standard errors and confidence in-
tervals for the parameters, which proves to be useful in assessing the
goodness-of-fit at specific points in the term structure, such as at the
events of non-parallel shifts.

Furthermore, we consider an alternative model based on principal
components and smoothing splines, which gives improved forecasting
performance, particularly for the highly non-linear changes in the term
structure curvature.

For empirical illustrations we use the Euribor short-term interest
rates with maturities ranging from one week to one year and the
Government bond yields with longer maturities of 2 to 10 years, which
gives a fairly complete European term structure data (Figure 1).

Considering a widely spread term structure presents a modelling
challenge, especially when attempting to forecast the yield curve. The EU
term structure has notably changed both slope and curvature at several
points from the 2001–2006 period covered by our data. Several of the
changes can be viewed as non-parallel shifts in the term structure, hence

causing non-linear shifts in the shape of the yield curve at a number of
time points.

In this paper we carry out an array of backtests comparing out-of
sample performance of various multivariate linear models such as PCA-
VAR and multivariate GARCH models, along with a combinations of
Nelson-Siegel-Svensson and MGARCH methods. We adopt a hands-on ap-
proach and demonstrating how the suggested methods can be easily im-
plemented in S or R programming languages, illustrating the methods
on the EU terms structure data.

2 Nelson-Siegel and Svensson functions
The Nelson and Siegel (1987) model specifies the yield curve of interest
rate vector rt = (r1t, . . . , rMt ) equation for a given time t as a non-linear
function of the maturities vector m = (m1, . . . , mM) and can be written
for a given rate (maturity) i at time t as
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The parameters in (1) to be estimated for each t are thus
θt = (βt0, βt1, βt2, τt). Fitting (1) to each time point t = 1, . . . , T results in a
multivariate time series � of the form
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for each time t. The challenge in estimating (4) is not as much in obtain-
ing unconstrained parameters, but in obtaining standard errors or confi-
dence intervals along with allowing for bound constraints on the
parameters or latent factors. Zivot and Wang (2006) describe estimation
methods in S+FinMetrics capable of estimating unconstrained parame-
ters in Nelson-Siegel and Svensson models. Scherer and Martin (2005)
briefly illustrate derivative free estimation of El Karoui et al. (2006) ver-
sion of the Svensson model without obtaining the confidence intervals
for the coefficients.

We will show who how to implement the Svensson model (and hence
with minor modification of the objective function the Nelson-Siegel
model) in the S programming language by obtaining coefficient esti-
mates along with standard errors, while allowing for upper and lower
bound constrains on the coefficients.

The Svensson function (3) can be implemented in S as a simple func-
tion of a data vector data and a generic parameter vector p as follows

NSS.obj <- function(p, data)
{
zero.fit <-(p[1]-p[2]*((1-exp(-(Mtr/p[3])))/(Mtr/p[3]))+

p[4]*((1-exp(-(Mtr/p[3])))^2/(-(Mtr/p[3]))
-exp(-(Mtr/p[3])))+
p[5]*((1-exp(-(Mtr/p[6])))^2/(-(Mtr/p[6]))
-exp(-(Mtr/p[6]))))

sum((zero.fit - data)^2)
}

which gives us the necessary objective function for numerical optimiza-
tion. In order to obtain standard errors of the parameters we can use a
Newton algorithm, which requires expressions for the first and second
derivatives (gradient and Hessian). These expressions can be obtained au-
tomatically by the deriv3 function from the MASS library (Venables and
Ripley 2001), the necessary S code for the Svensson function can be writ-
ten as

NSS.der <- deriv3(~((p1-p2*((1-exp(-(Mtr/p3)))/(Mtr/p3))+
p4*((1-exp(-(Mtr/p3)))^2/(-(Mtr/p3))-exp(-(Mtr/p3)))+
p5*((1-exp(-(Mtr/p6)))^2/(-(Mtr/p6))
-exp(-(Mtr/p6))))-data)^2,

c(“p1”, “p2”, “p3”, “p4”, “p5”, “p6”),
function(data, p1, p2, p3, p4, p5, p6) NULL)

NSS.GradHess <- function(p, data)
{

e <- NSS.der(data, p[1], p[2], p[3], p[4], p[5], p[6])
g <- colSums(attr(e, “gradient”))
H <- colSums(attr(e, “hessian”), 2)
list(gradient = g, hessian = H[row(H) <= col(H)])

} ^
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Diebold and Li (2004) interpret the first three columns of � as latent vari-
ables representing the level, slope, and curvature of the term structure.
London (2005) gives similar interpretation to the first three principal
components of the interests rates time series, hence the Nelson-Siegel
model can be interpreted as a latent variable model that can be used to
estimate the underlying latent factors driving the term structure. The
consequence is that we can now consider forecasting latent factors. In
the Nelson-Siegel model we already know the functional relationship be-
tween the factors and the individual interest rates, and we can infer the
future shape of the yield curve.

Diebold and Li (2004) fit the Nelson-Siegel function (1) by fixing τt to a
constant and estimate the beta coefficients by ordinary least squares
(OLS) applied sequentially to each time point. 

However, the Nelson-Siegel function is known to fit poorly to highly
non-linear term structures, especially at the longer end of the term struc-
ture. To overcome this problem Svensson (1994) generalized the (Nelson
and Siegel 1987) model by including additional parameters leading to
the model given by
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it (m, θt) = βt0 − βt1

(
1 − exp

(−mit/τ
−1
t1

)
mit/τ

−1
t1

)

+ βt2

(
1 − exp

(−mi/τ
−1
t1

)
mit/τ

−1
t1

− exp
(−mit/τ

−1
t1

))

+ βt3

(
1 − exp

(−mi/τ
−1
t2

)
mit/τ

−1
t2

− exp
(−mit/τ

−1
t2

))
(3)

hence the time-varying parameters are now θt = (βt0, βt1, βt2, βt3, τt1, τt2),
which apparently loses some of the interpretability of the simpler “three-
factor” Nelson-Siegel model. A similar parametrization was considered
by El Karoui et al. (2006).

The θt parameters in (1) and (3) can be estimated by nonlinear least
squares by minimizing

Wilmott magazine 87

Figure 1: EU interest rates.
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With NSS.obj, NSS.der, and NSS.GradHess at hand we can make
use of a general purpose optimization routine such as nlminb (non-lin-
ear minimization with box constrains) in S-Plus.

As an illustration, consider estimating the yield curve for the month-
ly EURIBOR terms structure date on February 2000 

results <- nlminb(start=rep(0.5,6),
objective=NSS.obj,
gradient=NSS.GradHess,
hessian=T,
data=EURIBOR.Feb2000,
lower=c(0.0001,-0.5,0.0001,

0.0001,0.0001,0.0001),
upper=c(1,1,5,1,1,1),

control=nlminb.control(iter.max=50,
eval.max=100))

Hessian matrix can be easily extracted as results$hessian. Moreover,
we can compute the coefficient correlation matrix by round(cov2cor
(results$hessian),5). 

Now, lets consider an empirical application. Figure 2 shows Svensson
model estimates for selected months at times of pronounced shifts in the
term structure. Recalling Figure 1, we know that in late 2000 early 2001
the term structure changed both direction and shape, thus inducing a

non-parallel shift with pronounced changes in the yield curve. Along the
path the shape changed from concave to convex which caused very poor
fit of the Svensson model (we obtained similar results using the simpler
Nelson-Siegel model).

The obvious issue is how reliable would Nelson-Siegel or Svensson
models be in yield curve forecasting around the inversion points, at
times when the term structure is shocked by non-parallel shifts? Before
trying to answer this question, we can take a closer look at the coefficient
estimates at selected points in the terms structure. Table 1 shows esti-
mates for February and November 2000, at the times when the yield
curve had concave shape, and before it assumed convex shape.

Clearly, we can notice changes in the estimated  coefficients, includ-
ing a sign change in β1, however, it is evident that none of the beta pa-
rameters (i.e. latent factors) were estimated precisely, the estimates are
insignificantly different from zero. On the other hand the τ parameters
that control the curvature of the function are significant. Here we can
also notice that τ1 significantly increased from 2.18 to 3.22 between
February and November 2000, which suggests the importance of estimat-
ing τ parameters from the data rather then fixing them to a constant as
is often done in practice.

In addition, coefficients seem to be highly correlated, and notably
correlations between τ1 and all other coefficients changed signs between
two time points (Table 2). With these estimates at hand, we have slightly
better insight in the miss-fit of the Nelson-Siegel and Svensson models at

Figure 2: Yield curves from August 2000 till March 2001
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the points of curvature changes in the term structure. Given the impreci-
sion in the estimated coefficients, we should not be surprised the fit was
poor.

3 Smoothed splines and latent variable
models
While Nelson-Siegel and Svensson functions are still great tools for yield
curve forecasting in the “normal’’ times, we need methods that are less

sensitive to non-parallel shifts in the term structure. Fisher et al. (1995)
proposed estimating yield curve at any given point t by using the smooth-
ing splines method that minimizes the penalized sum of squares

∑M

i=1
(rit − f (m))

2 + λ

∫ (
f ′′(t)

)2
dt, (5)

where the second part is the penalty term with penalty parameter λ.
Smoothing splines can be estimated with the S+FinMetrics function
term.struc() with the method=”smooth” argument. Consider a
smoothed spline estimate of the yield curve for December 2000 shown in
Figure 3. Compared to the Nelson-Siegel and Svensson fit, this is a notable
improvement. Unlike Nelson-Siegel type of models, the smoothing
splines don’t have an immediate applicability in yield curve forecasting.
In the next section, however, we will show that smoothing splines can in-
deed be used in forecasting with an improved performance around cur-
vature shifts.

Consider an affine latent variable model written for time t as

rt = Af t + et, (6)

where rt ≡ (r(1)
t , r(2)

t , . . . , r(M)
t ) is the vector of interest rate data with M dif-

ferent maturities, ft ≡ (f (1)
t , f (2)

t , . . . , f (K)
t ) is a vector of latent factors driv-

ing the term structure. Finally, et ≡ (e(1)
t , e(2)

t , . . . , e(M)
t ) is the vector of

idiosyncratic terms reflecting the fraction of the term structure not ex-
plained by the latent variables. We generally allow for K < M. Note that
we could easily interpret the first three factors as the level, slope, and
curvature of the term structure.

By collecting the equations for all time points into matrices we obtain
RT = (

r′
1, r′

2, . . . , r′
T

)′
,FT = (

f ′
1, f ′

2, . . . , f ′
T

)′
, and ET = (

e′
1, e′

2, . . . , e′
T

)′
.We can

thus re-write the factor model (6) for the entire term structure as
RT = AFT + ET , hence we can obtain the closed-form expression for

^

February 2000 estimates

Estimate SD     t-ratio  p-value 

β0 0.0620   6.0000 0.0103 0.4959 
β1 0.0206   4.7970 0.0043 0.4983 
τ1 2.1830   0.0105 207.0776 0.0000 
β2 0.0024   5.2406 0.0005 0.4998 
β3 0.0061   3.7436 0.0016 0.4994 
τ2 0.3950   0.0256 15.4273 0.0000 

November 2000 estimates:

Estimate SD       t-ratio   p-value 

β0 0.0539 6.0000 0.0090 0.4964 
β1 –0.0250 5.0398 –0.0050 0.5020 
τ1 3.2181 0.0025 1313.0597 0.0000 
β2 0.0232 5.4330 0.0043 0.4983 
β3 0.0066 2.4684 0.0027 0.4989 
τ2 0.1309 0.0659 1.9867 0.0235 

Table 1: NSS model coefficient estimates

February 2000 estimates 

β0 β1 τ1 β2 β3 τ2

β0 1.00000 –0.95598 –0.83066 –0.96056 –0.85922 –0.83961 
β1 –0.95598 1.00000 0.65465 0.99866 0.95890 0.86459 
τ1 –0.83066 0.65465 1.00000 0.67984 0.43794 0.67064 
β2 –0.96056 0.99866 0.67984 1.00000 0.94404 0.88359 
β3 –0.85922 0.95890 0.43794 0.94404 1.00000 0.73999 
τ2 –0.83961 0.86459 0.67064 0.88359 0.73999 1.00000 

November 2000 estimates 

β0 β1 τ1 β2 β3 τ2

β0 1.00000 –0.97048 0.41694 –0.97647 –0.71620 –0.82744 
β1 –0.97048 1.00000 –0.57941 0.99873 0.80569 0.90240 
τ1 0.41694 –0.57941 1.00000 –0.57441 –0.39409 –0.64945 
β2 –0.97647 0.99873 –0.57441 1.00000 0.77895 0.89117 
β3 –0.71620 0.80569 –0.39409 0.77895 1.00000 0.74432 
τ2 –0.82744 0.90240 –0.64945 0.89117 0.74432 1.00000 

Table 2: Coefficient correlations
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A as Â = (
F′

T FT

)−1
F′

T RT . Consequently, the fitted term structure, ex-
pressed as an affine function of the latent factors can be obtained as
R̂T =

((
F′

T FT

)−1
F′

T

)
FT.

It follows, that given the estimates of the future realizations of the la-
tent factors we can predict, say step-ahead, term structure by

r̂T+1 =
((

F′
T FT

)−1
F′

T

)
f̂T+1. (7)

To use (7) in forecasting we need an estimate of the FT matrix, as well as the
forecast ̂fT+1. The simplest way of obtaining the scores is to compute K prin-
cipal components and use the components scores as an estimate of FT .
Subsequently, we can estimate a forecasting model such as MGARCH or
VAR on the principal components thereby obtaining an estimate of fT+1.

Before considering alternative forecasting models, we need to briefly
check how good are the principal component estimates of the latent fac-
tors, i.e., assess the in-sample goodness-of-fit. Retaining K = 3 principal
components (hence mimicking the three substantive components of the
term structure), we compute the predicted (fitted) term structure as ÂRT .
Figure 4 shows the fit at the short and long end of the term structure in-
dicating very good fit, therefore we are indeed able to summarize the
term structure time series with only three latent factors.

An S function that returns step-ahead forecasts from a vector autore-
gressive model can be written as

Forecast.fun <- function(data)
{
PreDict <- predict(VAR(data,na.rm=T,max.ar=2))[[1]]
return(list(Forecast = PreDict))
}

Figure 4: In-sample fit of PCA model.
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Figure 3: December 2000 yield curve.
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where VAR is a built-in function for estimating vector autoregressive mod-
els in S+FinMetrics that can automatically select the best fitting VAR
model (here we limit the choice to either first or second order VAR due to
short time series of 59 monthly observations.) How well can a PCA-VAR
model forecast the term structure? The results of a backtest of the step-
ahead forecasting performance is shown in Figure 5—we can notice very
close fit at the short end and slightly worst fit at the long end.

The backtest itself is relatively easy to implement, namely the follow-
ing function will return the results of a rolling step-ahead forecasting
model, where data is an S-Plus data object of class timeSeries, width de-
notes the width of the rolling window and n sets the number of principal
components to be used in the forecasting model:

PCAbacktest <- function(data,width,n)
{
w <- width
PCA.model <- princomp(data,cor=T)
PCA.ts <- timeSeries(pos=positions(data),

data=data.frame(PCA.model$scores[,1:n]))
MyPCA <- roll(Forecast.fun, data=PCA.ts,

width=w, trace=T)
F.mat <- cbind(as.matrix(MyPCA$Forecast@data),1)
A.mat <- solve(t(F.mat)%*%F.mat)%*%t(F.mat)%*%

as.matrix(data@data[w:nrow(data),])
R.fit     <- F.mat%*%A.mat
DataToReturn <- timeSeries(pos=positions(data)

[w:nrow(data)],
data=data.frame(data@data
[w:nrow(data),],R.fit))

colIds(DataToReturn) <- c(paste(“Rate”,colIds(data),
”months”),
paste(“Forecast”,colIds(data)))

return(DataToReturn)
}

Finally, we can apply smoothing splines (6) to the forecasted rates,
which for selected months gives the plots in Figure 6, which also shows
jackknife confidence intervals. The improvement over the Nelson-Siegel
estimates in Figure 2 is notable. We can plot the smoothing estimates for
a given time point using a function such as following:

SSplot <- function(data,maturity,i=1,MyTitle)
{
x <- maturity;
y <- as.numeric(as.matrix(data@data[i,]));
fit <- smooth.spline(x, y)

TECHNICAL ARTICLE 4

Figure 5: Out-of-sample backtest of PCA-VAR model
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res <- (fit$yin - fit$y)/(1-fit$lev)
sigma <- sqrt(var(res))
upper <- fit$y + 2.0*sigma*sqrt(fit$lev)
lower <- fit$y - 2.0*sigma*sqrt(fit$lev)
matplot(fit$x, cbind(upper,fit$y,lower),

type=”lpl”,pch=”*”,lty=c(3,5),col=c(1,2,1),
main=paste(MyTitle),cex=2)

invisible()
}

3.1 Comparing alternative models
As final comparison, we consider 15 different yield curve forecasting
methods and backtest it to evaluate their overall forecasting perform-
ance. We consider forecasting the Nelson-Siegel and Svensson model co-
efficients, following the idea in Diebold and Li (2004) as well as the latent
factor models estimated as (6). With the latter, we obtain the smoothing
spline estimates of the interest rates of the step-ahead forecast and take
the difference between this and the observed rates. With the Nelson-
Siegel-Svensson functions, we used the step-ahead coefficients forecasts
to estimate the predicted yield curve, again taking the difference be-
tween this estimate and the observed rates.

We estimate four multivariate GARCH models (DVEC, EWMA1,
EWMA2, and BEKK) along with the linear VAR model for the Nelson-
Siegel, Svensson, and latent factor models, respectively. For details of
S+FinMetrics implementation of the MGARCH and VAR models see
Zivot and Wang (2006).

A simple backtest summary evaluation measure can be computed as
T∑

t=s

N∑
i=1

(
Yti

(
m, θ̂t

) − rti

)2
, (8)

which is the overall sum of squared forecasting errors, and s denotes the
starting time of the backtest. We set s = 20 and run the backtests over the
2001–2006 period, again using the EURIBOR time series data. The results
are summarized in Table 3. We have used AIC and BIC information crite-
ria to select the best fitting models.

We find that forecasting latent factors estimated by principal compo-
nents and then spline-smoothing the predicted rates generally gives bet-
ter forecasts of the yield curve then applying the same forecasting
methods to the Nelson-Siegel and Svensson coefficients.

Figure 6: Smoothed spline estimates with confidence intervals.
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NS model  NSS model PCA     

DVEC    0.01627   0.02770   0.00515 
EWMA1   0.01621   0.02380   0.00513 
EWMA2   0.03627   0.06477   0.01672 
BEKK    0.02011   0.02770   0.00516 
VAR     0.00101   0.00138   0.00076 

Table 3: Forecasting performance backtest
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To conclude, we can note that changes in non-linear structure of the
interest rates are easier to capture by principal components applied di-
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