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Are Stocks Really Less Volatile in the Long Run?
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ABSTRACT

According to conventional wisdom, annualized volatility of stock returns is lower over
long horizons than over short horizons, due to mean reversion induced by return pre-
dictability. In contrast, we find that stocks are substantially more volatile over long
horizons from an investor’s perspective. This perspective recognizes that parameters
are uncertain, even with two centuries of data, and that observable predictors imper-
fectly deliver the conditional expected return. Mean reversion contributes strongly
to reducing long-horizon variance but is more than offset by various uncertainties
faced by the investor. The same uncertainties reduce desired stock allocations of
long-horizon investors contemplating target-date funds.

CONVENTIONAL WISDOM VIEWS STOCK returns as less volatile over longer invest-
ment horizons. This view seems consistent with various empirical estimates.
For example, using two centuries of U.S. equity returns, Siegel (2008) reports
that variances realized over investment horizons of several decades are sub-
stantially lower than short-horizon variances on a per-year basis. Such evi-
dence pertains to unconditional variance, but a similar message is delivered
by studies that condition variance on information useful in predicting returns.
Campbell and Viceira (2002, 2005), for example, report estimates of conditional
variances that decrease with the investment horizon.

We find that stocks are actually more volatile over long horizons from an
investor’s perspective. Investors condition on available information but realize
their knowledge is limited in two key respects. First, even after observing
206 years of data (1802 to 2007), investors do not know the values of the
parameters of the return-generating process, especially the parameters related
to the conditional expected return. Second, investors recognize that observable
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“predictors” used to forecast returns deliver only an imperfect proxy for the
conditional expected return, whether or not the parameter values are known.
When viewed from this perspective, the return variance per year at a 50-year
horizon is at least 1.3 times higher than the variance at a 1-year horizon.

Our main object of interest is the predictive variance of rr 7.z, the k-period
return starting at time T'. Predictive variance, denoted by Var(rz 7. | Dr), con-
ditions on Dy, the data available to investors at time 7. From an investor’s
perspective, predictive variance is the relevant variance—the one suitable for
portfolio decisions. Readers might be more familiar with ¢rue variance, which
conditions on ¢, the parameters of the return-generating process. Investors
realize they do not know ¢, and predictive variance incorporates that param-
eter uncertainty by conditioning only on Dy. In contrast, true variance condi-
tions on ¢, regardless of whether it also conditions on Dy. The true uncondi-
tional variance, Var(ry 7.1 | ¢), is estimated by the usual sample variance, as
in Siegel (2008). The true conditional variance, Var(ry 7. | ¢, Dr), is estimated
by Campbell and Viceira (2002, 2005). True variance is the more common fo-
cus of statistical inference. For example, an extensive literature uses variance
ratios and other statistics to test whether (1/k)Var(rr 7. | ¢) is the same for
every investment horizon k.! We focus on (1/k)Var(rr 7. | Dr) instead. That
is, we compare long- and short-horizon predictive variances, which matter to
investors. Investors might well infer from the data that the true variance is
lower at long horizons while at the same time assessing the predictive variance
to be higher at long horizons.

The distinction between predictive variance and true variance is readily seen
in the simple case in which an investor knows the true variance of returns but
not the true expected return. Uncertainty about the expected return contributes
to the investor’s overall uncertainty about what the upcoming realized returns
will be. Predictive variance includes that uncertainty, while true variance ex-
cludes it. Expected return is notoriously hard to estimate. Uncertainty about
the current expected return and about how expected return will change in the
future is the key element of our story. This uncertainty plays an increasingly
important role as the investment horizon grows, as long as investors believe
that expected return is “persistent,” that is, likely to take similar values across
adjacent periods.

Under the traditional random walk assumption that returns are distributed
independently and identically (i.i.d.) over time, true return variance per period
is equal at all investment horizons. Explanations for lower true variance at
long horizons commonly focus on “mean reversion,” whereby a negative shock
to the current return is offset by positive shocks to future returns and vice
versa. Our conclusion that stocks are more volatile in the long run obtains
despite the presence of mean reversion. We show that mean reversion is only
one of five components of long-run predictive variance:

1A partial list of such studies includes Fama and French (1988), Poterba and Summers (1988),
Lo and MacKinlay (1988, 1989), Richardson and Stock (1989), Kim, Nelson, and Startz (1991), and
Richardson (1993).
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(i) i.i.d. uncertainty

(1) mean reversion
(ii1) uncertainty about future expected returns
(iv) uncertainty about current expected return
(v) estimation risk.

Whereas the mean-reversion component is strongly negative, the other com-
ponents are all positive, and their combined effect outweighs that of mean
reversion.

Of the four components contributing positively, the one making the largest
contribution at long horizons reflects uncertainty about future expected re-
turns. This component (iii) is often neglected in discussions of how return
predictability affects long-horizon return variance. Such discussions typi-
cally highlight mean reversion, but mean reversion—and predictability more
generally—require variance in the conditional expected return, which we de-
note by u,. That variance makes the future values of i, uncertain, especially
in the more distant future periods, thereby contributing to the overall uncer-
tainty about future returns. The greater is the degree of predictability, the
larger is the variance of y; and thus the greater is the relative contribution of
uncertainty about future expected returns to long-horizon predictive variance.

Three additional components also make significant positive contributions to
long-horizon predictive variance. One is simply the variance attributable to
unexpected returns. Under an i.i.d. assumption for unexpected returns, this
variance makes a constant contribution to variance per period at all invest-
ment horizons. At long horizons, this component (i), though quite important, is
actually smaller in magnitude than components (ii) and (iii) discussed above.

Another component of long-horizon predictive variance reflects uncertainty
about the current u;. Components (i), (ii), and (iii) all condition on the cur-
rent value of ;. Conditioning on the current expected return is standard in
long-horizon variance calculations using a vector autoregression (VAR), such as
Campbell (1991) and Campbell, Chan, and Viceira (2003). In reality, though,
an investor does not observe u;. We assume that the investor observes the
histories of returns and a given set of return predictors. This information is
capable of producing only an imperfect proxy for u;, which in general reflects
additional information. Pastor and Stambaugh (2009) introduce a predictive
system to deal with imperfect predictors, and we use that framework to assess
long-horizon predictive variance and capture component (iv). When u; is per-
sistent, uncertainty about the current ., contributes to uncertainty about u; in
multiple future periods, on top of the uncertainty about future u;’s discussed
earlier.

The fifth and last component adding to long-horizon predictive variance, also
positively, is one we label “estimation risk,” following common usage of the
term. This component reflects the fact that, after observing the available data,
an investor remains uncertain about the parameters of the joint process gener-
ating returns, expected returns, and the observed predictors. That parameter
uncertainty adds to the overall variance of returns assessed by an investor. If
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the investor knew the parameter values, this estimation-risk component would
be zero.

Parameter uncertainty also enters long-horizon predictive variance more
pervasively. Unlike the fifth component, the first four components are nonzero
even if the parameters are known to an investor. At the same time, those four
components can be affected significantly by parameter uncertainty. Each com-
ponent is an expectation of a function of the parameters, with the expectation
evaluated over the distribution characterizing an investor’s parameter uncer-
tainty. We find that Bayesian posterior distributions of these functions are
often skewed, so that less likely parameter values exert a significant influence
on the posterior means, and thus on long-horizon predictive variance.

The effects of parameter uncertainty on the predictive variance of long-
horizon returns are analyzed in previous studies such as Stambaugh (1999),
Barberis (2000), and Hoevenaars et al. (2007). Barberis discusses how pa-
rameter uncertainty essentially compounds across periods and exerts stronger
effects at long horizons. The above studies find that predictive variance is
substantially higher than estimates of true variance that ignore parameter
uncertainty. However, all three studies also find that long-horizon predictive
variance is lower than short-horizon variance for the horizons considered—
up to 10 years in Barberis (2000), up to 20 years in Stambaugh (1999), and
up to 50 years in Hoevenaars et al. (2007).2 In contrast, we often find that
predictive variance even at a 10-year horizon is higher than at a 1-year
horizon.

A key difference between our analysis and the above studies is our inclusion
of uncertainty about the current expected return u;. The above studies employ
VAR approaches in which observed predictors perfectly capture u;, whereas we
consider predictors to be imperfect, as explained earlier. We compare predictive
variances under perfect versus imperfect predictors, and we find that long-run
variance is substantially higher when predictors are imperfect. Predictor im-
perfection increases long-run variance both directly and indirectly. The direct
effect, component (iv) of predictive variance, is large enough at a 10-year hori-
zon that subtracting it from predictive variance leaves the remaining portion
lower than the 1-year variance.

The indirect effect of predictor imperfection is even larger, stemming from
the fact that predictor imperfection and parameter uncertainty interact—once
predictor imperfection is admitted, parameter uncertainty is more important
in general. This result occurs despite the use of informative prior beliefs about
parameter values, as opposed to the noninformative priors used in the above
studies. When u; is not observed, learning about its persistence and predic-
tive ability is more difficult than when u; is assumed to be given by ob-
served predictors. The effects of parameter uncertainty pervade all components
of long-horizon returns, as noted earlier. The greater parameter uncertainty

2 Instead of actually reporting predictive variance, Barberis reports a closely related quantity:
the asset allocation for a buy-and-hold power-utility investor. His allocations for the 10-year horizon
exceed those for short horizons, even when parameter uncertainty is incorporated.
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accompanying predictor imperfection further widens the gap between our anal-
ysis and the previous studies.?

Predictor imperfection can be viewed as omitting an unobserved predictor
from the set of observable predictors used in a standard predictive regression.
The degree of predictor imperfection can be characterized by the increase in the
R? of that predictive regression if the omitted predictor were included. Even
if investors assign a low probability to this increase being larger than 2% for
annual returns, such modest predictor imperfection nevertheless exerts a sub-
stantial effect on long-horizon variance. At a 30-year horizon, for example, the
predictive variance is 1.2 times higher than when the predictors are assumed
to be perfect.

Our empirical results indicate that stocks should be viewed by investors
as more volatile at long horizons. Indeed, corporate Chief Financial Officers
(CFOs) tend to exhibit such a view, as we discover by analyzing survey evi-
dence reported by Ben-David, Graham, and Harvey (2010). In quarterly sur-
veys conducted over 8 years, Ben-David, Graham, and Harvey ask CFOs to
express confidence intervals for the stock market’s annualized return over the
next year and the next 10 years. From the reported results of these surveys, we
infer that the typical CFO views the annualized variance of 10-year returns to
be at least twice the 1-year variance.

The long-run volatility of stocks is of substantial interest to investors. Ev-
idence of lower long-horizon variance is cited in support of higher equity al-
locations for long-run investors (e.g, Siegel (2008)) as well as the increasingly
popular target-date mutual funds (e.g., Gordon and Stockton (2006), Greer
(2004), and Viceira (2008)). These funds gradually reduce an investor’s stock
allocation by following a predetermined “glide path” that depends only on the
time remaining until the investor’s target date, typically retirement. When the
parameters and conditional expected return are assumed to be known, we find
that the typical glide path of a target-date fund closely resembles the pattern of
allocations desired by risk-averse investors with utility for wealth at the target
date. Once uncertainty about the parameters and conditional expected return
is recognized, however, the same investors find the typical glide path signifi-
cantly less appealing. Investors with sufficiently long horizons instead prefer
glide paths whose initial as well as final stock allocations are substantially
lower than those of investors with shorter horizons.

The remainder of the paper proceeds as follows. Section I derives expres-
sions for the five components of long-horizon variance discussed above and
analyzes their theoretical properties. Section II describes our empirical frame-
work, which uses up to 206 years of data to implement two predictive systems
that allow us to analyze various properties of long-horizon variance. Section ITI
explores the five components of long-horizon variance using a predictive system

3 Schotman, Tschernig, and Budek (2008) find that, if the predictors are fractionally integrated,
long-horizon variance of stock returns can exceed short-horizon variance. With stationary pre-
dictors though, they find that long-horizon variance is smaller than short-horizon variance. By
incorporating predictor imperfection as well as parameter uncertainty, we find that long-horizon
variance exceeds short-horizon variance even when predictors are stationary.
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in which the conditional expected return follows a first-order autoregression.
Section IV then gauges the importance of predictor imperfection using an al-
ternative predictive system that includes an unobservable predictor. Section V
discusses the robustness of our results. Section VI returns to the above discus-
sion of the distinction between an investor’s problem and inference about true
variance. Section VII considers the implications of the CFO surveys reported
by Ben-David et al. (2010). Section VIII analyzes investment implications of
our results in the context of target-date funds. Section IX summarizes our
conclusions.

I. Long-Horizon Variance and Parameter Uncertainty

Let r; .1 denote the continuously compounded return from time ¢ to time ¢ + 1.
We can write

Tep1 = Mg + Ugea, @)

where u; denotes the expected return conditional on all information at time
¢t and w1 has zero mean. Also define the k-period return from period 7' + 1
through period T' + %,

rrrar =rr41+rre2+ o+ 74k (2

An investor assessing the variance of rr 1.1 uses Dy, a subset of all information
at time 7'. In our empirical analysis in Section III, Dy consists of the full histo-
ries of returns as well as predictors that investors use in forecasting returns.*
Importantly, Dy typically reveals neither the value of w7 in equation (1) nor
the values of the parameters governing the joint dynamics of r;, u;, and the
predictors. Let ¢ denote the vector containing those parameter values.

This paper focuses on Var(rr 7. | Dr), the predictive variance of rr 7. given
the investor’s information set. Since the investor is uncertain about ur and ¢,
it is useful to decompose this variance as

Var(rr 711 | Dr) = E{Var(rr 7% | ur, ¢, Dr) | Dr}
+Var{E (rT,T+k|;,LT,¢,DT)|DT}. 3)

The first term in this decomposition is the expectation of the conditional vari-
ance of k-period returns. This conditional variance, which has been estimated
by Campbell and Viceira (2002, 2005), is of interest only to investors who know
the true values of u7 and ¢. Investors who do not know w7 and ¢ are interested
in the expected value of this conditional variance, and they also account for the
variance of the conditional expected k-period return, the second term in equa-
tion (3). As a result, they perceive returns to be more volatile and, as we show be-
low, they perceive disproportionately more volatility at long horizons. Whereas

4We are endowing the investor with the same information set as the set that we use in our
empirical analysis. In that sense, we are putting investors and econometricians on an equal footing,
in the spirit of Hansen (2007).
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the conditional per-period variance of stock returns appears to decrease with
the investment horizon, we show that (1/k)Var(rr 7. | Dr), which accounts for
uncertainty about w7 and ¢, increases with the investment horizon.

The potential importance of parameter uncertainty for long-run variance is
readily seen in the special case where returns are i.i.d. with known variance o2
and unknown mean w. In this case, the mean and variance of k-period returns
conditional on x are both linear in k: the mean is £ and the variance is ko?.
An investor who knows . faces the same per-period variance, o2, regardless
of k. However, an investor who does not know u faces more variance, and this
variance increases with k. To see this, apply the variance decomposition from
equation (3),

Var(rr 7.1 | Dr) = E{ko? | Dy} + Var{ku | Dr}

4)
= ko? + E?Var{u|Dr},

so that (1/k)Var(rr 741 | Dr)increases with k. In fact, (1/k)Var(rr 741 | Dr) — oo
as k — oo. That is, an investor who believes that stock prices follow a random
walk but who is uncertain about the unconditional mean u views stocks as
more volatile in the long run.

To assess the likely magnitude of this effect, consider the following back-
of-the-envelope calculation. If uncertainty about u is given by the standard
error of the sample average return computed over T periods, or o/+/T, then
(1/k)Var(rp 7.4 | Dr) = 02(1 + k/T). With & = 50 years and T' = 206 years, as
in the sample that we use in Section III, (1 + &2/T') = 1.243, so the per-period
predictive variance exceeds o2 by a quarter. Of course, if the sample mean
estimate of u is computed from a sample shorter than 206 years (e.g., due to
concerns about nonstationarity), then uncertainty about p is larger and the
effect on predictive variance is even stronger.

When returns are predictable, so that u; is time-varying, Var(rr 74| Dr)
can be above or below its value in the i.i.d. case. Predictability can induce
mean reversion, which reduces long-run variance, but predictability also in-
troduces uncertainty about additional quantities, such as future values of
and the parameters that govern its behavior. It is not clear a priori whether
predictability makes returns more or less volatile at long horizons, compared to
thei.i.d. case. At sufficiently long horizons, uncertainty about the unconditional
expected return will still dominate and drive (1/k)Var(ry 7. | Dr) to infinity.
At long horizons of relevance to investors, whether that per-period variance is
higher than at short horizons is an empirical question that we explore.

In the rest of this section, we assume for simplicity that u, follows an AR(1)
process,®

w1 = (1 = BIE, + Bus + wey1, 0<pg <L (5)

5 Our stationary AR(1) process for u; nests a popular model in which the stock price is the sum of
a random walk and a positively autocorrelated stationary AR(1) component (e.g., Summers (1986)
and Fama and French (1988)). In that special case, p,, as well as return autocorrelations at all
lags are negative. See the Appendix.
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The AR(1) assumption for u, allows us to further decompose both terms on the
right-hand side of equation (3), providing additional insights into the compo-
nents of Var(rr 74z | Dr). The AR(1) assumption also allows a simple charac-
terization of mean reversion. Time variation in y; induces mean reversion in
returns if the unexpected return u; 1 is negatively correlated with future values
of ;. Under the AR(1) assumption, mean reversion requires a negative corre-
lation between u;1; and w1, or py, < 0. If fluctuations in u; are persistent,
then a negative shock in u; ;1 is accompanied by offsetting positive shifts in the
s+i’s for multiple future periods, resulting in a stronger negative contribution
to the variance of long-horizon returns.

A. Conditional Variance

This section analyzes the conditional variance Var(rr . | ur, ¢, Dr), which
is an important building block in computing the variance in equation (3).
The conditional variance reflects neither parameter uncertainty nor uncer-
tainty about the current expected return, since it conditions on both ¢ and
ur. The parameter vector ¢ includes all parameters in equations (1) and
(5), ¢ = (B, E,, puw, 04, 0), Where o, and o, are the conditional standard de-
viations of u;,; and w;,1, respectively. Assuming that equations (1) and (5)
hold and that the conditional covariance matrix of [u;,1 ws;1] is constant,
Var(rr rip | pur, ¢, Dr) = Var(ry r4z | i1, ¢). Furthermore, we show in the
Appendix that

Var(rr r i | oy, ¢) = ko2 [1 + 2dpy, Ak) + d2B(R)], (6)
where

Al =14 (1 gt )

= +%<‘ ‘ﬂﬁ>

B 1 1— ,kal 21 _ 132(1371)

B(k)—l—l—E(—l—z,B 15 +8 T (8)
. [1+p R 7 5
75w ©

and R? is the ratio of the variance of u; to the variance of r,,;, based on
equation (1).

The conditional variance in (6) consists of three terms. The first term, ko2,
captures the well-known feature of i.i.d. returns—the variance of k-period re-
turns increases linearly with k. The second term, which contains A(k), reflects
mean reversion in returns arising from the likely negative correlation between
realized returns and expected future returns (p,, < 0), and it contributes neg-
atively to long-horizon variance. The third term, which contains B(k), reflects
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Figure 1. Conditional multiperiod variance and its components for different values of
Puw correlation between expected and unexpected returns. Panel A plots the conditional
per-period variance of multiperiod returns from equation (6), Var(rr 74z | ur. ¢)/k, as a function
of the investment horizon % for three different values of p,,. Panel B plots the component of the
variance that is due to mean reversion in returns, 032quwA(k). Panel C plots the component of
this variance that is due to uncertainty about future values of the expected return, o2d2B(k). For
all three values of py,, variances are computed with g = 0.85, R? = 0.12, and an unconditional
standard deviation of returns of 20% per year.

the uncertainty about future values of 1;, and it contributes positively to long-
horizon variance. When returns are unpredictable, only the first term is present
(because R? = 0 implies d = 0, so the terms involving A(k) and B(k) are zero).
Now suppose that returns are predictable, so that B> > 0 and d > 0. When
k = 1, the first term is still the only one present, because A(1) = B(1) =0. As %
increases, though, the terms involving A(k) and B(k) become increasingly im-
portant, because both A(k) and B(k) increase monotonically from zero to one as
k goes from one to infinity.

Figure 1 plots the variance in (6) on a per-period basis (i.e., divided by &) as
a function of the investment horizon k. Also shown are the terms containing
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A(k) and B(k). It can be verified that A(k) converges to one faster than B(k). (See
the Appendix.) As a result, the conditional variance in Figure 1 is U-shaped: as
k increases, mean reversion exerts a stronger effect initially, but uncertainty
about future expected returns dominates eventually.® The contribution of the
mean reversion term, and thus the extent of the U-shape, is stronger when
pouw takes larger negative values. The contributions of mean reversion and un-
certainty about future u7;’s both become stronger as predictability increases.
These effects are illustrated in Figure 2, which plots the same quantities as
Figure 1, but for three different R? values. Note that a higher R? implies not
only stronger mean reversion but also a more volatile 1;, which in turn implies
more uncertainty about future pp;’s.

The key insight arising from Figures 1 and 2 is that, although mean rever-
sion significantly reduces long-horizon variance, that reduction can be more
than offset by uncertainty about future expected returns. Both effects become
stronger as R? increases, but uncertainty about future expected returns pre-
vails when R? is high. A high R? implies high volatility in u; and therefore
high uncertainty about 117 ;. In that case, long-horizon variance exceeds short-
horizon variance on a per-period basis, even though ¢ and the current ur are
assumed to be known. Uncertainty about ¢ and the current 7 exerts a greater
effect at longer horizons, further increasing the long-horizon variance relative
to the short-horizon variance.

B. Components of Long-Horizon Variance

The variance of interest, Var(rr 71 | Dr), consists of two terms on the right-
hand side of equation (3). The first term is the expectation of the conditional
variance in equation (6), so each of the three terms in (6) is replaced by its
expectation with respect to ¢. (We need not take the expectation with respect
to ur, since ur does not appear on the right in (6).) The interpretations of
these terms are the same as before, except that now each term also reflects
parameter uncertainty.

The second term on the right-hand side of equation (3) is the variance of the
true conditional expected return. This variance is taken with respect to ¢ and
ur. It can be decomposed into two components: one reflecting uncertainty about
the current up, or predictor imperfection, and the other reflecting uncertainty
about ¢, or “estimation risk.” (See the Appendix.) Let b7 and gr denote the
conditional mean and variance of the unobservable expected return pr:

br =E(ur ¢, Dr) (10)

qr = Var(ur | ¢, Dr). (11)

6 Campbell and Viceira (2002, pp. 95-96) also model expected return as an AR(1) process, but
they conclude that variance per period cannot increase with £ when p,, < 0. They appear to
equate conditional variances of single-period returns across future periods, which would omit the
uncertainty about future expected return.
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Figure 2. Conditional multiperiod variance and its components for different values of
R2. Panel A plots the conditional per-period variance of multiperiod returns from equation (6),
Var(ry 742 | i, )/k, as a function of the investment horizon % for three different values of R2.
Panel B plots the component of the variance that is due to mean reversion in returns, rrf 2d puw A(R).
Panel C plots the component of this variance that is due to uncertainty about future values of
the expected return, o2d?B(k). For all three values of R?, variances are computed with g = 0.85,
puw = —0.6, and an unconditional standard deviation of returns of 20% per year.

The right-hand side of equation (3) can then be expressed as the sum of five
components:

Var(rr 741 | Dr)
= E{ko?|Dr) + E|2ko2dp,, AR)|Dp) + E|ko2d*Bk)|Dy)

ii.d. uncertainty mean reversion future p7,; uncertainty
1-ph\? 1-pt
+ E (—1 _f;) qr|Dr; + Var kEr—i-%(bT —E)|Dr¢. (12

current up uncertainty estimation risk
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Parameter uncertainty plays a role in all five components in equation (12).
The first four components are expected values of quantities that are viewed as
random due to uncertainty about ¢, the parameters governing the joint dynam-
ics of returns and predictors. (If the values of these parameters were known to
the investor, the expectation operators could be removed from those four com-
ponents.) Parameter uncertainty can exert a nontrivial effect on the first four
components, in that the expectations can be influenced by parameter values
that are unlikely but cannot be ruled out. The fifth component in equation (12)
is the variance of a quantity whose randomness is also due to parameter uncer-
tainty. In the absence of such uncertainty, the fifth component is zero, which is
why we assign it the interpretation of estimation risk.

The estimation risk term includes the variance of RE,, where E, denotes the
unconditional mean return. This variance equals k*Var(E, | Dr), so the per-
period variance (1/k)Var(rp 11 | Dr) increases at rate k. Similar to the i.i.d.
case, if E, is unknown, then the per-period variance grows without bounds as
the horizon % goes to infinity. For finite horizons that are typically of interest
to investors, however, the fifth component in equation (12) can nevertheless be
smaller in magnitude than the other four components. In general, the k-period
variance ratio, defined as

(1/R)Var(ry 74| Dr)

V(k) = ,
® Var(ryy1 | Dr)

(13)

can exhibit a variety of patterns as % increases. Whether V(&) > 1 at various
horizons £ is an empirical question.

II. Empirical Framework: Predictive Systems

It is commonly assumed that the conditional expected return u; is given by
a linear combination of a set of observable predictors, x;, so that u; = a + b'x;.
This assumption is useful in many applications, but we relax it here because
it understates the uncertainty faced by an investor assessing the variance of
future returns. Any given set of predictors x; is likely to be imperfect, in that
iy is unlikely to be captured by any linear combination of x; (u; # a + b'x;).
The true expected return u, generally reflects more information than what we
assume to be observed by the investor—the histories of ; and x;. To incorporate
the likely presence of predictor imperfection, we employ a predictive system,
defined in Pastor and Stambaugh (2009) as a state-space model in which ry,
x;, and u; follow a VAR with coefficients restricted so that u; is the mean
of r,,1.” As noted by Pastor and Stambaugh, a predictive system can also be
represented as a VAR for r;, x;, and an unobserved additional predictor. We

7 State-space models have been used in a number of studies analyzing return predictability,
including Conrad and Kaul (1988), Lamoureux and Zhou (1996), Johannes, Polson, and Stroud
(2002), Ang and Piazzesi (2003), Brandt and Kang (2004), Dangl and Halling (2006), Duffee (2006),
and Rytchkov (2007).
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employ both versions here, as each is best suited to different dimensions of our
investigation. Our two predictive systems are specified as follows:

SYSTEM 1:

Tep1 = Mg + Uyl (14)
Xep1 =0 + Ax; + v (15)
wey1 = (1= BE, + B + wepq. (16)
SYSTEM 2:
re=a+bx +m 4w 17
Xep1 =0 4+ Axy + vep1 (18)
1 = 8T + Npy1. (19)

In System 1, the conditional expected return p; is unobservable, and we
assume 0 < 8 < 1. System 2 includes 7; as an unobserved additional predictor
of return, and we assume 0 < § < 1. In both systems, the eigenvalues of A are
assumed to lie inside the unit circle and the vector containing the residuals of
the three equations is assumed to be normally distributed, independently and
identically across ¢.

System 1 is well suited for analyzing the components of predictive vari-
ance discussed in the previous section, because the AR(1) specification for w1
in equation (16) is the same as that in equation (5). Pastor and Stambaugh
(2009) provide a detailed analysis of System 1, and we apply their econometric
methodology in this study. In the next section, we investigate empirically the
components of predictive variance using System 1.

System 2 is well suited for exploring the role of predictor imperfection in de-
termining predictive variance. To see this, let o2 denote the variance of 7;,1 in
equation (19). As 62 — 0, the predictors approach perfection, and equation (17)
approaches the standard predictive regression,

re1=a+bx +ep. (20)

By examining results under various prior beliefs about the possible magnitudes
of 02, we can assess the effect of predictor imperfection on predictive variance.
We do so in Section IV.

We conduct analyses using both annual and quarterly data. Our annual data
consist of observations for the 206-year period from 1802 through 2007, as
compiled by Siegel (1992, 2008). The return r; is the annual real log return
on the U.S. equity market, and x; contains three predictors: the dividend yield
on U.S equity, the first difference in the long-term high-grade bond yield, and
the difference between the long-term bond yield and the short-term interest
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rate.® We refer to these quantities as the “dividend yield,” the “bond yield,”
and the “term spread,” respectively. These three predictors seem reasonable
choices given the various predictors used in previous studies and the informa-
tion available in Siegel’s data set. Dividend yield and the term spread have long
been entertained as return predictors (e.g., Fama and French (1989)). Using
post-war quarterly data, Pastor and Stambaugh (2009) find that the long-term
bond yield, relative to its recent levels, exhibits significant predictive ability
in predictive regressions. That evidence motivates our choice of the bond-yield
variable used here. All three predictors exhibit significant predictive abilities
in a predictive regression as in (20), with an R? in that regression of 5.6%.°
Our quarterly data consist of observations for the 220-quarter period from
1952Q1 through 2006Q4. We use the same three predictors in x; as Pastor and
Stambaugh (2009): dividend yield, CAY, and bond yield.°

III. Components of Predictive Variance (System 1)

This section uses the first predictive system, specified in equations (14)
through (16), to empirically assess long-horizon return variance from an in-
vestor’s perspective. In Section III.A, we specify prior distributions for the
system’s parameters and analyze the resulting posteriors. Those posterior dis-
tributions characterize the parameter uncertainty faced by an investor who
conditions on essentially the entire history of U.S. equity returns. That uncer-
tainty is incorporated in the Bayesian predictive variance, which is the focus of
Section II1.B. We analyze the five components of predictive variance and their
dependence on the investment horizon. For this analysis, we report results
using annual data. Results based on quarterly data are summarized later in
Section V; detailed results are reported in the Internet Appendix.!!

A. Priors and Posteriors

For each of the three key parameters that affect multiperiod variance—p,,,
B, and R>—we implement the Bayesian empirical framework under three dif-
ferent prior distributions, displayed in Figure 3. The priors are assumed to
be independent across parameters and follow the same functional forms as in
Pastor and Stambaugh (2009). For each parameter, we specify a “benchmark”

8 We are grateful to Jeremy Siegel for supplying these data. The long-term bond yield series
is constructed from the yields of federal bonds and high-grade municipal bonds, as described in
Siegel (1992).

9 Details of the predictive regression results and the bootstrap significance tests are provided
in the Internet Appendix, which is available on the authors’ websites as well as on the Journal of
Finance website at http://www.afajof.org/supplements.asp.

10 See that study for more detailed descriptions of the predictors. Our quarterly sample ends in
2006Q4 because the 2007 data on CAY of Lettau and Ludvigson (2001) are not yet available as
of this writing. Our quarterly sample begins in 1952Q1, after the 1951 Treasury-Fed accord that
made possible the independent conduct of monetary policy.

1 The Internet Appendix is available on the authors’ websites as well as on the Journal of
Finance website at http://www.afajof.org/supplements.asp.
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Figure 3. Prior distributions of parameters. The plots display the prior distributions for 8,
Puw, the true R? (fraction of variance in the return ., ; explained by the conditional mean 1), and
the “observed” R? (fraction of variance in r;, 1 explained by the observed predictors x;). The priors
shown for the observed R2 correspond to the three priors for the true R2 and the benchmark priors
for B and py,.

prior as well as two priors that depart from the benchmark in opposite direc-
tions but seem at least somewhat plausible as alternative specifications. When
we depart from the benchmark prior for one of the parameters, we hold the
priors for the other two parameters at their benchmarks, obtaining a total of
seven different specifications of the joint prior for p,.,, 8, and R?. We estimate
the predictive system under each specification to explore the extent to which

a Bayesian investor’s assessment of long-horizon variance is sensitive to prior
beliefs.
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The benchmark prior for p,,, the correlation between expected and unex-
pected returns, has 97% of its mass below zero. This prior follows the reason-
ing of Pastor and Stambaugh (2009), who suggest that, a priori, the correlation
between unexpected return and the innovation in expected return is likely
to be negative. The more informative prior concentrates toward larger nega-
tive values, whereas the less informative prior essentially spreads evenly over
the range from minus one to one. The benchmark prior for 8, the first-order
autocorrelation in the annual expected return u;, has a median of 0.83 and
assigns a low (2%) probability to 8 values less than 0.4. The two alterna-
tive priors then assign higher probability to either more persistence or less
persistence. The benchmark prior for R?, the fraction of variance in annual
returns explained by u;, has 63% of its mass below 0.1 and relatively little
(17%) above 0.2. The alternative priors are then either more concentrated or
less concentrated on low values. These priors on the true R? are shown in
Panel C of Figure 3. Panel D displays the corresponding implied priors on
the “observed” R?—the fraction of variance in annual real returns explained
by the predictors. Each of the three priors in Panel D is implied by those in
Panel C, while holding the priors for p,,, and 8 at their benchmarks and spec-
ifying noninformative priors for the degree of imperfection in the predictors.
Observe that the benchmark prior for the observed R? has much of its mass
below 0.05.

We compute posterior distributions for the parameters using the Markov
Chain Monte Carlo (MCMC) method discussed in Pastor and Stambaugh
(2009). These posteriors summarize the parameter uncertainty faced by an
investor after updating the priors using the 206-year history of equity returns
and predictors. Figure 4 plots the posteriors corresponding to the priors plotted
in Figure 3. The posteriors of 8, shown in Panel B of Figure 4, reveal substan-
tial persistence in the conditional expected return u;. The posterior modes are
about 0.9, regardless of the prior, and g values smaller than 0.7 seem very
unlikely. Comparing the posteriors with the priors in Figure 3, we see that the
data shift the prior beliefs in the direction of higher persistence. The posteriors
of the true R?, displayed in Panel C, lie to the right of the corresponding priors.
For example, for the benchmark prior, the prior mode for the true R? is less
than 0.05, while the posterior mode is nearly 0.1. The data thus shift the priors
in the direction of greater predictability. The same message is conveyed by the
posteriors of the observed R?, plotted in Panel D.

The posteriors of p,, are displayed in Panel A of Figure 4. These posteriors
are more concentrated toward larger negative values than any of the three
priors of p,,, suggesting strong mean reversion in the data. The posteriors are
similar across the three priors, consistent with observed autocorrelations of an-
nual real returns and the posteriors of R? and g discussed above. Equations (1)
and (5) imply that the autocovariances of returns are given by

Cov(ry, 1) = B (Bop + o), E=1,2,..., (21)
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Figure 4. Posterior distributions of parameters. Panel A plots the posteriors of p,,, the
correlation between expected and unexpected returns. Panel B plots the posteriors of 8, the persis-
tence of the true conditional expected return i;. Panel C plots the posteriors of the true R? (fraction
of variance in the return r;,; explained by u;). Panel D plots the posteriors of the “observed” R?
(fraction of variance in r;,1 explained by the observed predictors x;). The results are obtained by
estimating the predictive system on annual real U.S. stock market returns in 1802 to 2007. Three
predictors are used: the dividend yield, the bond yield, and the term spread.

where o2 = 02/(1 — ). From (21) we can also obtain the autocorrelations of
returns,
Corr(ry, r;-1) = 1 (BR? + puuv/(1 — ROR2(1 - p2)), k=1,2,..., (22)

by noting that o = R%s? and o = (1 — R*)s;”. The posterior modes of p,,, in
Figure 4 are about —0.9, and the posterior modes of R? and g are about 0.1 and
0.9, as observed earlier. Evaluating (22) at those values gives autocorrelations
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starting at —0.028 for 2 = 1 and then increasing gradually toward zero as k&
increases. Such values are statistically indistinguishable from the observed
autocorrelations of annual real returns in our sample.!2

Panel A of Figure 5 plots the prior and posterior distributions for the R? in
a regression of the conditional mean s, on the three predictors in x,. This R?
quantifies the degree of imperfection in the predictors (R? = 1 if and only if the
predictors are perfect), which plays a key role in our analysis. Both distributions
are obtained under the benchmark prior from Figure 3. The prior distribution
for R? is rather noninformative, assigning nontrivial probability mass to the
whole (0, 1) interval. In contrast, the posterior distribution is substantially
tighter, indicating relevant information in the data. This posterior reveals a
substantial degree of predictor imperfection, in that the density’s mode is about
0.3 and values above 0.8 have near-zero probability.

Further perspective on the predictive abilities of the individual predictors is
provided by Panel B of Figure 5. This panel plots the posteriors of the partial
correlations between u; and each predictor, obtained under the benchmark
priors.'® Dividend yield exhibits the strongest relation to expected return, with
the posterior for its partial correlation ranging between zero and 0.9 and having
a mode around 0.6. Most of the posterior mass for the term spread’s partial
correlation lies above zero, but there is little posterior mass above 0.5. The bond
yield’s marginal contribution is the weakest, with much of the posterior density
lying between —0.2 and 0.2. In the multiple regression of returns on the three
predictors, described at the end of Section II, all predictors (rescaled to have
unit variances) have comparable OLS slope coefficients and ¢-statistics. When
compared to those estimates, the posteriors in Panel B indicate that dividend
yield is more attractive as a predictor and that bond yield is less attractive.
These differences are consistent with the predictors’ autocorrelations and the

12 The first five autocorrelations in our 206-year sample are 0.02, —0.17, —0.04, 0.01, and —0.10.
To assess the compatibility of these sample autocorrelations with our predictive system, we proceed
as follows. We first draw the full set of system parameters from their posterior distribution.
Using these parameters, we simulate a 206-year sample of returns by drawing the error terms
in equations (14) and (16) from their joint normal distribution. We then compute the first five
autocorrelations for this simulated sample. Repeating this procedure for many posterior draws
of parameters, we obtain many sets of sample autocorrelations simulated from the predictive
system. These simulated sets form a five-dimensional probability density because there are five
autocorrelations. We then consider a five-dimensional grid of autocorrelation values, spaced 0.03
apart, splitting the parameter space into a finite number of five-dimensional “buckets.” We calculate
the empirical frequency F' with which the bucket containing the observed set of autocorrelations
(0.02, —0.17, —0.04, 0.01, —0.10) obtains in our simulations. Finally, we compute the p-value as the
fraction of the simulated sets of autocorrelations that fall in buckets whose empirical frequency is
smaller than F. The p-value based on 300,000 simulations is 37%, indicating that the predictive
system cannot be rejected based on sample autocorrelations.

13 The partial correlation of a predictive variable with yu; is informative about the variable’s
predictive power for returns, but it does not necessarily measure the variable’s importance for
portfolio decisions. For a rebalancing investor, the contemporaneous correlation of the variable
with stock return is important for determining the hedging demand for the stock. We would like
to thank one of the referees for this valid observation.
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Figure 5. Distributions of parameters related to predictor imperfection. Panel A plots the
(implied) prior and posterior of the fraction of variance in the conditional expected return u; that
can be explained by the predictors. The values smaller than one indicate predictor imperfection.
Panel B plots the posteriors of partial correlations between each of the three predictors and ;.
Benchmark priors are used throughout. The results are obtained by estimating the predictive
system on annual real U.S. stock market returns in 1802 to 2007. Three predictors are used: the
dividend yield, the bond yield, and the term spread.

fact that the posterior distribution of 8, the autocorrelation of 1, centers around
0.9. The autocorrelations for the three predictors are 0.92 for dividend yield,
0.65 for the term spread, and —0.04 for the bond yield. The bond yield’s low
autocorrelation makes it look less correlated with u;, whereas dividend yield’s
higher autocorrelation makes it look more like u;.

B. Multiperiod Predictive Variance and Its Components

Each of the five components of multiperiod return variance in equation (12)
is a moment of a quantity evaluated with respect to the distribution of the
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Figure 6. Predictive variance of multiperiod return and its components. Panel A plots
the variance of the predictive distribution of long-horizon returns, Var(rr 7, | Dr). Panel B plots
the five components of the predictive variance. All quantities are divided by %, the number of
periods in the return horizon. The results are obtained by estimating the predictive system on
annual real U.S. stock market returns in 1802 to 2007. Three predictors are used: the dividend
yield, the bond yield, and the term spread.

parameters ¢, conditional on the information D7 available to an investor at
time T'. In our Bayesian empirical setting, Dy consists of the 206-year history of
returns and predictors, and the distribution of parameters is the posterior den-
sity given that sample. Draws of ¢ from this density are obtained via the MCMC
procedure and then used to evaluate the required moments of each of the com-
ponents in equation (12). The sum of those components, Var(rr 74 | Dr), is the
Bayesian predictive variance of rp 1.

Figure 6 displays the predictive variance and its five components for hori-
zons of £ =1 through 50 years, computed under the benchmark priors. The
values are stated on a per-year basis (i.e., divided by %). The predictive variance
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(Panel A) increases significantly with the investment horizon, with the per-year
variance exceeding the 1-year variance by about 45% at a 30-year horizon and
about 80% at a 50-year horizon. This is the main result of the paper.

The five variance components, displayed in Panel B of Figure 6 reveal the
sources of the greater predictive variance at long horizons. Over a 1-year hori-
zon (k = 1), virtually all of the variance is due to thei.i.d. uncertainty in returns,
with uncertainty about the current ur and parameter uncertainty also making
small contributions. Mean reversion and uncertainty about future u,’s make
no contribution for 2 = 1, but they become quite important for larger k. Mean
reversion contributes negatively at all horizons, consistent with p,, < 0 in the
posterior (see Figure 4), and the magnitude of this contribution increases with
the horizon. Nearly offsetting the negative mean reversion component is the
positive component due to uncertainty about future u,’s. At longer horizons, the
magnitudes of both components exceed the i.i.d. component, which is flat across
horizons. At a 10-year horizon, the mean reversion component is nearly equal
in magnitude to the i.i.d. component. At a 30-year horizon, both mean reversion
and future-u; uncertainty are substantially larger in magnitude than the i.i.d.
component. In fact, the mean reversion component is larger in magnitude than
the overall predictive variance.

Both estimation risk and uncertainty about the current ur make stronger
positive contributions to predictive variance as the investment horizon length-
ens. At the 30-year horizon, the contribution of estimation risk is about two-
thirds of the contribution of the i.i.d. component. Uncertainty about the cur-
rent pr, arising from predictor imperfection, makes the smallest contribution
among the five components at long horizons, but it still accounts for almost a
quarter of the total predictive variance at the 30-year horizon.

Table I reports the predictive variance at horizons of 25 and 50 years under
various prior distributions for p,,, 8, and R%. For each of the three parame-
ters, the prior for that parameter is specified as one of the three alternatives
displayed in Figure 3, while the prior distributions for the other two param-
eters are maintained at their benchmarks. Also reported in Table I is the
ratio of the long-horizon predictive variance to the 1-year variance, as well as
the contribution of each of the five components to the long-horizon predictive
variance.

Across the different priors in Table I, the 25-year variance ratio ranges from
1.15 to 1.42, and the 50-year variance ratio ranges from 1.45 to 1.96. The
variance ratios exhibit the greatest sensitivity to prior beliefs about R2. The
“loose” prior beliefs that assign higher probability to larger R? values produce
the lowest variance ratios. When returns are more predictable, mean reversion
makes a stronger negative contribution to variance, but uncertainty about
future u,’s makes a stronger positive contribution. Those two components are
the largest in absolute magnitude. The next largest is the positive contribution
from i.i.d. uncertainty, which declines as the prior on R? moves from tight to
loose. Recall that i.i.d. uncertainty is the posterior mean of ko2. This posterior
mean declines as the prior on R? loosens up because greater posterior density



452 The Journal of Finance®

Table I
Variance Ratios and Components of Long-Horizon Variance

The first row of each panel reports the ratio (1/k)Var(rr r4;|Dr)/Var(rpyq|Dr), where
Var(rp 741 | Dr) is the predictive variance of the k-year return based on 206 years of annual
data for real equity returns and the three predictors over the 1802 to 2007 period. The second
row reports Var(rp 7 | Dp), multiplied by 100. The remaining rows report the five components of
Var(rr 741 | Dr), also multiplied by 100 (they add up to total variance). Panel A contains results
for k£ = 25 years, and Panel B contains results for £ = 50 years. Results are reported under each
of three priors for p,.,, R2, and B, where p,, is the correlation between expected and unexpected
returns, R? is the fraction of variance in the return r,,1 explained by 1, and § is the persistence
of the true conditional expected return p;. As the prior for one of the parameters departs from the
benchmark, the priors on the other two parameters are held at the benchmark priors. The “tight”
priors, as compared to the benchmarks, are more concentrated toward —1 for p,,, 0 for RZ, and 1
for B; the “loose” priors are less concentrated in those directions.

Puw R2 B
Prior Tight Bench Loose Tight Bench Loose Tight Bench  Loose

Panel A: Investment Horizon & = 25 years

Variance ratio 1.30 1.36 1.26 1.31 1.36 1.15 1.42 1.36 1.34
Predictive variance 3.82 3.99 3.68 3.92 3.99 3.28 4.17 3.99 3.93
IID component 2.59 2.60 2.59 2.75 2.60 2.43 2.58 2.60 2.60
Mean reversion —-413 —-401 —-410 -3.04 —-4.01 -451 —-428 -—-4.01 -3.97

Uncertain future p 2.91 2.86 2.84 1.70 2.86 3.51 3.14 2.86 2.79
Uncertain current p 0.97 0.96 0.94 0.75 0.96 0.92 1.17 0.96 0.93
Estimation risk 1.48 1.58 1.41 1.75 1.58 0.93 1.56 1.58 1.57

Panel B: Investment Horizon & = 50 years

Variance ratio 1.76 1.82 1.64 1.72 1.82 1.45 1.96 1.82 1.79
Predictive variance 5.14 5.34 4.79 5.14 5.34 4.13 5.75 5.34 5.27
IID component 2.59 2.60 2.59 2.75 2.60 2.43 2.58 2.60 2.60
Mean reversion -552 -536 -542 —-432 -536 -561 -580 -5.36 -5.28

Uncertain future p 5.40 5.31 5.13 3.60 5.31 554 597 5.31 5.16
Uncertain current p 0.95 0.94 0.91 0.90 0.94 0.73 1.16 0.94 0.92
Estimation risk 1.72 1.85 1.59 221 1.85 1.03 1.85 1.85 1.87

on high values of R? necessitates less density on high values of 62 = (1 — R?)02,
given that the sample is informative about the unconditional return variance
o2, Prior beliefs about p,,, and g have a smaller effect on the predictive variance
and its components.'*

In sum, when viewed by an investor whose prior beliefs lie within the wide
range of priors considered here, stocks are considerably more volatile at longer

14 This relative insensitivity to prior beliefs about p,,, and 8 appears to be specific to the long
sample of real equity returns. Greater sensitivity to prior beliefs appears if returns in excess of
the short-term interest rate are used instead, or if quarterly returns on a shorter and more recent
sample period are used. In all of these alternative samples, we obtain variance results that lead to
the same qualitative conclusions.
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horizons. The greater volatility obtains despite the presence of a large negative
contribution from mean reversion.

IV. Perfect Predictors versus Imperfect Predictors (System 2)

This section uses the second predictive system, given in equations (17)
through (19), to investigate the extent to which long-run variance is affected by
predictor imperfection. Recall that predictor imperfection in System 2 is equiva-
lent to 02 > 0. Incorporating predictor imperfection is a key difference between
our analysis and the studies by Stambaugh (1999) and Barberis (2000), which
analyze the effects of parameter uncertainty on long-run equity volatility. Those
studies model expected return as u; = a + b'x;, so that the observed predictors
deliver expected return perfectly if the parameters a and b are known. The
latter “perfect-predictor” assumption yields the predictive regression in (20),
which obtains as the limit in System 2 when o2 approaches zero. Combining
the predictive regression in (20) with the VAR for x; in (18) then delivers impli-
cations for long-run variance in the perfect-predictor setting, as in Stambaugh
(1999) and Barberis (2000).

To assess the importance of predictor imperfection, we compute predictive
variances under various informative prior beliefs about o,. Noninformative
prior beliefs are specified for all other parameters of the predictive system ex-
cept 8, the autocorrelation of the additional unobserved predictor.'®> When using
the annual data, we specify the prior distribution for § to be the same as the
benchmark prior in System 1 for 8, the autocorrelation of the conditional mean.
We shift the prior for § somewhat closer to 1.0 when using the quarterly data,
since a given persistence for the expected annual return is likely to correspond
to a higher persistence at the quarterly frequency.'®

We specify three different priors for o,,. One of the priors has all of its mass
at o, = 0, which is equivalent to an assumption of perfect predictors. The re-
maining two priors are displayed in the uppermost panels of Figure 7. Panel
A shows the priors used with annual data, and Panel B shows those for the
quarterly data. The latter densities are shifted closer to zero, consistent with
the higher frequency. Updating these priors with the data produces the corre-
sponding posterior densities for o, shown in Panels C and D. The posteriors
for o, shift noticeably to the left versus the priors, indicating that the sample
information plays a nontrivial role in resolving some of the uncertainty about
predictor imperfection.

Investors’ posterior beliefs about predictor imperfection can also be char-
acterized in terms of AR?, defined as the “true” R? for predicting one-period
returns—the R? when conditioning on both x; and 7;,—minus the “observed” R?

15 The Internet Appendix provides details on the Bayesian procedures, including the specifica-
tion of priors and the calculation of predictive variances.

16 With the annual data, the prior for § is a truncated normal, where the mean and standard
deviation of the nontruncated distribution are 0.99 and 0.25. The latter values are 0.99 and 0.15
with the quarterly data.
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Figure 7. Priors and posteriors for predictor imperfection. The plots display prior and
posterior distributions under the predictive system (System 2) in which expected return depends
on a vector of observable predictors, x;, as well as a missing predictor, ;, that obeys an AR(1)
process. The top panels display prior distributions for o, the standard deviation of 7;, under
different degrees of predictor imperfection. The middle panels display the corresponding posteriors
for 0. The bottom panels display the posterior distributions of ARZ, the “true” R? for one-period
returns when conditioning on {x;, 7;} minus the “observed” R? when conditioning only on x;. The
left-hand panels are based on annual data from 1802 to 2007 for real U.S. stock returns and three
predictors: the dividend yield, the bond yield, and the term spread. The right-hand panels are
based on quarterly data from 1952Q1 to 2006Q4 for real returns and three predictors: the dividend
yield, CAY, and the bond yield.

when conditioning only on x;. Panels E and F of Figure 7 show the posteriors
for AR?. From these plots we see that, after updating with the sample data,
investors in our setting believe predictor imperfection to be rather modest. For
example, the specification with less predictor imperfection (solid line) has the
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Figure 8. Predictive variance under predictor imperfection. The plots display predictive
variance under the predictive system (System 2) in which expected return depends on a vector of
observable predictors, x;, as well as a missing predictor, 7;, that obeys an AR(1) process. Predictive
variances are shown for the two imperfect-predictor cases as well for the case of perfect predictors
(0; = 0). Panel A is based on annual data from 1802 to 2007 for real U.S. stock returns and three
predictors: the dividend yield, the bond yield, and the term spread. Panel B is based on quarterly
data from 1952Q1 to 2006Q4 for real returns and three predictors: the dividend yield, CAY, and
the bond yield.

bulk of the posterior mass below AR? = 0.02 for annual data. In other words,
after seeing the data, an investor in that case believes it is fairly unlikely
that an unobserved predictor could raise the R? by more than 2%. With quar-
terly data, the corresponding posterior for AR? concentrates on even smaller
values.

Even when investors assess potential predictor imperfection to be relatively
modest, the imperfection has important consequences for the predictive vari-
ance of long-horizon returns. Predictive variances for horizons up to 50 years
are shown in Panel A of Figure 8 for the annual data, while Panel B shows
the corresponding results for the quarterly data. The importance of recognizing
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predictor imperfection emerges clearly from these results. In Panel A, the pre-
dictive variances at the longest horizons are about 1.3 times higher when
predictor imperfection is recognized than when predictors are assumed to be
perfect. For the quarterly results in Panel B, that ratio is well over 2.0.

We also see in Figure 8 that predictive variances are substantially greater at
long horizons than at short horizons, once predictor imperfection is recognized.
Thus, the results for System 2 deliver the same overall message as the earlier
results for System 1. In Panel A, using annual data, the predictive variance at
the 50-year horizon is 1.4 to 1.5 times the 1-year variance, depending on the
degree of predictor imperfection. In Panel B, using quarterly data, the 50-year
variance is 1.3 to 1.4 times the 1-year variance.

Stambaugh (1999) and Barberis (2000) investigate the effects of parameter
uncertainty using data beginning in 1952, the same year that our quarterly
data begin. With these data, predictor imperfection plays an especially large
role—more than doubling the variance at long horizons. With perfect predictors,
consistent with Stambaugh and Barberis, predictive variance is substantially
lower at long horizons: the 50-year variance ratio is then 0.6. In contrast,
when predictor imperfection is incorporated, the 50-year variance ratio is 1.3
to 1.4, as observed above. Thus, when using post-1951 data, accounting for
predictor imperfection rather dramatically reverses the answer to the question
of whether stocks are less volatile in the long run.

We also see that the findings of Stambaugh and Barberis, which indicate that
stocks are less volatile at longer horizons even after incorporating parameter
uncertainty, do not obtain over the longer 206-year period. The predictive vari-
ances in Panel E are actually higher at long horizons, given perfect predictors,
with a 50-year variance ratio just below 1.2. In all of our results, however, ad-
mitting predictor imperfection produces long-run variance that substantially
exceeds not only short-run variance but also long-run variance computed as-
suming perfect predictors.

V. Robustness
A. Alternative Samples

Our main empirical message—that long-run predictive variance of stock re-
turns exceeds short-run variance—is robust to various sample specifications
for both predictive systems.!” First, we extend the results for System 1 to the
quarterly data included in the results for System 2. We adjust the prior distri-
butions in System 1 to reflect the different data frequency, shifting the priors
for R? and p,,, to the left and those for 8 to the right.!® We find that the results

17 Detailed results are reported in the Internet Appendix.

18 We shift the prior on R? to the left because return predictability is likely to be weaker in
quarterly data than in annual data. It is well known that, in the presence of persistence in the
conditional expected return, there is more predictability at lower data frequencies. We also shift
the prior on p,, to the left because the correlation between expected and unexpected returns
is likely to be less negative at lower frequencies. Given stationarity in expected returns, stock
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with the quarterly data are even stronger than those with our annual data. Us-
ing the benchmark priors, the 25-year predictive variance is 92% larger than
the 1-year variance, and the 50-year predictive variance is nearly three times
the 1-year variance.

Second, instead of using real returns, we compute excess stock returns by
subtracting the short-term interest rate from the realized stock return, and
we then repeat the analyses for both predictive systems using both annual
and quarterly data. The results are similar to those with real returns: all of the
50-year predictive variances exceed short-run variance by substantial amounts.
Third, instead of using three predictors, we use only one—dividend yield—
and repeat the analyses for both predictive systems using both annual and
quarterly data. The results are again similar to the original three-predictor
results: consistently higher predictive variances at long horizons.

Fourth, we conduct subperiod analyses for the results based on annual data.
For both predictive systems, we split the 1802 to 2007 sample in half and
estimate the predictive variances separately as of the ends of both subperi-
ods. Under the same priors used in Figures 6 and 8, the predictive variance
per period rises monotonically with the horizon under both systems in the first
subperiod. In the second subperiod, the predictive variance rises monotonically
under System 2, while under System 1 it exhibits a U-shape with respect to
the horizon. In the latter case, the variance decreases through a horizon of
7 years but increases thereafter, exceeding the 1-year variance beyond an
18-year horizon. That is, the negative effect of mean reversion prevails at short
horizons, but the combined positive effects of estimation risk and uncertainty
about current and future u;’s prevail at long horizons. For both subperiods
and both predictive systems, long-horizon predictive variance exceeds short-
run variance across all specifications: the 50-year variance ratio is at least
1.25 under System 1 and at least 1.8 under System 2.

B. Model Uncertainty

In general, investors are uncertain about whether expected return is a linear
function of a set of observed predictors. In our setting of predictor imperfection,
that uncertainty admits the possibility that an unobserved predictor also plays
a role. Another dimension of uncertainty about expected return is whether
one or more observed predictors are necessary. As a simple case, consider an
investor who rules out an unobserved predictor but is uncertain about which
observed predictors belong in the predictive regression that delivers expected
return. The latter case of “model uncertainty” is analyzed by Avramov (2002)
and Cremers (2002). We analyze predictive variance in this setting in order to
consider an alternative dimension of uncertainty about expected return.

returns measured over increasingly long periods are likely to be increasingly driven by cash flow
news as opposed to discount rate news. Finally, we shift the prior on g to the right because a given
persistence in the expected annual return is likely to correspond to a higher persistence at the
quarterly frequency.
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As explained earlier, our data include three observed predictors in both the
annual and quarterly samples. Therefore, for each sample, there are eight
(22) possible models that represent different subsets of the three predictors
(including the case of no predictors, that is, constant expected return). To this
set of models we apply the model-uncertainty framework of Avramov (2002).
We change from his data to ours but otherwise follow his methodology and
specifications, which include the assignment of equal prior probabilities across
the possible models.!® Predictive variances in this setting incorporate not only
uncertainty about the parameters within each model but also uncertainty about
which of the eight models best captures expected return. We compute predictive
variances for horizons from 1 year through 50 years and find that predictive
variance per period increases with the investment horizon for both the annual
and quarterly data. For the annual data, the annualized variance at a 50-year
horizon is about 1.24 times the 1-year variance; for the quarterly data, the
predictive variance per-quarter at a 200-quarter horizon is about 1.75 times
the one-quarter variance.? We thus see that our study’s main conclusion—
higher predictive variance per period for longer horizons—also obtains from
this alternative perspective on uncertainty about expected return.

C. Time-Varying Volatility

Our implementation of predictive systems assumes that the covariance ma-
trix of the disturbances is constant over time. This assumption may seem
unappealing, given evidence of time-varying volatility reported in a large lit-
erature on that topic. The assumption offers two advantages for this study.
First, it permits a more tractable framework for exploring the importance of
parameter uncertainty and predictor imperfection for long-horizon volatility.
We show that much of long-horizon volatility is induced by various aspects of
uncertainty about expected returns, such as uncertainty about the current and
future values of u; as well as about the parameters characterizing the process
for u;. Uncertainty related to u; affects the perception of returns over many
future periods; as a result, this uncertainty exerts an increasingly large effect
on multiperiod volatility as the investment horizon increases. It is well known
that u, is difficult to estimate, and this difficulty is highlighted once we recog-
nize that predictors are imperfect. All of these arguments would remain valid
if we allowed the covariance matrix of the disturbances to vary over time.

The second advantage of the constant-covariance-matrix assumption is that
it allows us to abstract from fluctuations in short-run volatility that would
complicate the question of whether stocks are more volatile in the long run. To
see the latter point, consider a period (such as the fall of 2008) when the current
short-run volatility greatly exceeds its typical level. When looking forward from

19We refer the reader to Avramov (2002) for details, including the procedure for calculating
predictive variance. He does not report variances but instead reports initial buy-and-hold asset
allocations for size/book-to-market portfolios for horizons up to 10 years.

20 Plots of the predictive variances are reported in the Internet Appendix.
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that point in time, investors almost surely see stocks as less volatile over longer
investment horizons, due to the well-documented mean reversion in short-
run volatility. Conversely, when short-run volatility is unusually low, investors
may view stocks as more volatile in the long run simply because they expect
volatility to increase toward its long-run mean. Such observations seem less
interesting than asking whether stocks are less volatile over long horizons,
abstracting from effects that can flip the answer back and forth over time.
This question is also the focus of previous studies, cited earlier, that address
long-horizon versus short-horizon equity volatility.

Allowing time-varying volatility need not change the analytical results in
Section I. To see this, suppose there is time variation in the conditional covari-
ance matrix of k; = [u; v; w,], the vector of residuals in System 1. Let X; denote
the conditional covariance matrix at time ¢ of «;, 1. It seems plausible to assume
that, if ; = T at a given time ¢, then

Ei(ksyix/,;) =% foralli > 0. (23)

Such a property is satisfied, for example, by a stationary first-order multivari-
ate GARCH process of the form

vech(X;) = co + Cyvech(k:k;) + Covech(Z;_1), (24)

where vech(.) stacks the columns of the lower triangular part of its argument.
With (23), the conditional variance of the k-period return in equation (6) is
unchanged, provided we interpret it as Var(rr 7. | ur, ¢, 7 = X). The intro-
duction of parameter uncertainty is also unchanged, under the interpretation
that ¥ is uncertain but that, whatever it is, it also equals X7. Setting X7 = ¥
removes horizon effects due to the mean reversion in X7 discussed earlier. If
Y7 were instead low relative to 3, for example, then the reversion of future
Y748 to X could also contribute to long-run volatility. Setting £7 = ¥ excludes
such a contribution, producing a cleaner assessment of long-run volatility.

Time variation in volatility could potentially matter for long-horizon invest-
ing by inducing hedging demands. In a setting with dynamic rebalancing,
investors could find it valuable to adjust their stock allocations for the pur-
pose of hedging against adverse movements in volatility. Chacko and Viceira
(2005) estimate the magnitude of the volatility-induced hedging demands by
calibrating a model in which the inverse of volatility follows a simple mean-
reverting process. They find that hedging demands are very small, due to
insufficient variability and persistence in volatility. In reaching their conclu-
sion, Chacko and Viceira assume that their parameter estimates are equal to
the parameters’ true values. If parameter uncertainty were taken into account,
the volatility-induced hedging demands could potentially be larger. We do not
analyze hedging demands since our portfolio analysis in Section VIII considers
a predetermined asset allocation policy. Nonetheless, we view the analysis of
volatility-induced hedging demands in the presence of parameter uncertainty
as an interesting topic for future research.
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Figure 9. Sample variance ratios of annual real equity returns, 1802-2007. The plot dis-
plays the sample variance ratio V(k) = Var(rt.Hk)/(kVar(rtth)), where Var(r; ;) is the unbiased
sample variance of k-year log returns, computed at an overlapping annual frequency. Also shown
are the 1st, 10th, and 50th percentiles of the Monte Carlo sampling distribution of V (k) under the
hypothesis that annual log returns are independently and identically distributed as normal.

VI. Predictive Variance versus True Variance

This section provides further perspective on our results by distinguishing
between two different measures of variance: predictive variance and true vari-
ance. The predictive variance, our main object of interest thus far, is the vari-
ance from the perspective of an investor who conditions on the historical data
but remains uncertain about the true values of the parameters. The true vari-
ance is defined as the variance conditional on the true parameter values. The
predictive variance and the true variance coincide if the data history is in-
finitely long, in which case the parameters are estimated with infinite preci-
sion. Estimates of the true variance can be relevant in some applications, such
as option pricing, but the predictive variance is relevant for portfolio decisions.

When conducting inference about the true variance, a commonly employed
statistic is the sample long-horizon variance ratio. Values of such ratios are
often less than one for stocks, suggesting lower unconditional variances per
period at long horizons. Figure 9 plots sample variance ratios for horizons of
2 to 50 years computed with the 206-year sample of annual real log stock
returns analyzed above. The calculations use overlapping returns and unbi-
ased variance estimates.?! Also plotted are percentiles of the variance ratio’s

21 Each ratio is computed as V R(q) in equation (2.4.37) of Campbell, Lo, and MacKinlay (1997).
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Figure 10. Posterior distributions for 30-year variance ratios. Panel A plots the posterior
distribution of the unconditional variance of 30-year stock market returns, Var(rr 130 | ¢), divided
by 30 times the unconditional variance of 1-year returns, Var(ry 1 | ¢). Panel B plots the analogous
ratio for the conditional variance, Var(rr 7430 | Dr, ¢). (The posterior mean of that variance is
the first term of the predictive variance in equation (25).) The results are obtained by estimating
System 1 on annual real U.S. stock market returns in 1802 to 2007. Three predictors are used: the
dividend yield, the bond yield, and the term spread.

Monte Carlo sampling distribution under the null hypothesis that returns are
i.i.d. normal. That distribution exhibits positive skewness and has nearly 60%
of its mass below one. The realized value of 0.28 at the 30-year horizon attains
a Monte Carlo p-value of 0.01, supporting the inference that the true 30-year
variance ratio lies below one (setting aside the multiple-comparison issues of
selecting one horizon from many). Panel A of Figure 10 plots the posterior
distribution of the 30-year ratio for true unconditional variance, based on the
benchmark priors and System 1. Even though the posterior mean of this ratio
is 1.34, the distribution is positively skewed and 63% of the posterior proba-
bility mass lies below one. We thus see that the variance ratio statistic in a
frequentist setting and the posterior distribution in a Bayesian setting both
favor the inference that the true unconditional variance ratio is below one.
Inference about true unconditional variance ratios is of limited relevance
to investors, for two reasons. First, even if the parameters and the conditional
mean ur were known, the unconditional variance would not be the appropriate
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measure from an investor’s perspective, because conditional variance is more
relevant when returns are predictable. The ratio of true unconditional vari-
ances can be less than one while the ratio of true conditional variances exceeds
one, or vice versa. At a horizon of £ = 30 years, for example, parameter values
of B = 0.60, R?> = 0.30, and p,,, = —0.55 imply a ratio of 0.90 for unconditional
variances but 1.20 for conditional variances.??

The second and larger point is that inference about true variance, conditional
or unconditional, is distinct from assessing the predictive variance perceived by
an investor who does not know the parameters. This distinction can be drawn
clearly in the context of the variance decomposition,

Var(rr 741 | Dr) = E{Var(ry 742 | ¢, Dr) | Dy} + Var{E (rr 7421 ¢, Dr) | Dr}.
(25)

The variance on the left-hand side of (25) is the predictive variance. The quan-
tity inside the expectation in the first term, Var(rr 7% | ¢, Dr), is the true con-
ditional variance, relevant only to an investor who knows the true parameter
vector ¢ (but not up, thus maintaining predictor imperfection). The data can
imply that this ¢#rue variance is probably lower at long horizons than at short
horizons while also implying that the predictive variance is higher at long hori-
zons. In other words, investors who observe Dy can infer that, if they were told
the true parameter values, they would probably assess 30-year variance to be
less than 1-year variance. These investors realize, however, that they do not
know the true parameters. As a consequence, they evaluate the posterior mean
of the true conditional variance, the first term in (25). That posterior mean
can exceed the most likely values of the true conditional variance, because the
posterior distribution of the true variance can be skewed (we return to this
point below). Moreover, investors must add to that posterior mean the poste-
rior variance of the true conditional mean, the second term in (25), which is
the same as the estimation-risk term in equation (12). In a sense, investors do
conduct inference about true variance—they compute its posterior mean—but
they realize that this estimate is only part of predictive variance.

The results based on our 206-year sample illustrate how predictive variance
can be higher at long horizons while true variance is inferred to be most likely
higher at short horizons. Panel B of Figure 10 plots the posterior distribution
of the variance ratio

(1/k)Var(ry 7.1 | ¢, Dr)

Vi) = Var(rr 1 | ¢, Dr)

(26)

for £ = 30 years. The posterior probability that this ratio of true variances lies
below one is 76%, and the posterior mode is below 0.5. In contrast, recall that

22 The relation between the ratios of conditional and unconditional variances is derived in the
Appendix. Campbell and Viceira (2002, p. 96) state that the unconditional variance ratio is always
greater than the conditional ratio, but it appears that they equate single-period conditional and
unconditional variances in reaching that conclusion.
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30-year predictive variance is substantially greater than 1-year variance, as
shown earlier in Figure 6 and Table 1.

The true conditional variance Var(rr 7. | ¢, Dr) is the sum of four quanti-
ties, namely, the first four components in equation (12) with the expectations
operators removed. The posterior distributions of those quantities (not shown
to save space) exhibit significant asymmetries. As a result, less likely values
of these quantities exert a disproportionate effect on the posterior means and
therefore on the first term of the predictive variance in (25). The components re-
flecting uncertainty about current and future u,; are positively skewed, so their
contributions to predictive variance exceed what they would be if evaluated at
the most likely parameter values. This feature of parameter uncertainty also
helps drive predictive variance above the most likely value of true variance.

VII. Long-Horizon Variance: Survey Evidence

Our empirical results show that investors should view stocks as more volatile
over long horizons than over short horizons. Corporate CFOs indeed appear
to exhibit such a view, as can be inferred from survey results reported by
Ben-David et al. (2010). Their survey asks each CFO to give the 10th and 90th
percentiles of a confidence interval for the annualized (average) excess equity
return to be realized over the upcoming 10-year period. The same question is
asked for a 1-year horizon. For each horizon (%), the authors use the 10th and
90th percentiles to approximate Var(7;), the variance of the CFO’s perceived
distribution of the annualized return. The resulting standard deviations are
then averaged across CFOs. If we treat the averaged standard deviations as
those perceived by a “typical” CFO, we can infer the typical CFO’s views about
long-horizon variance.

The relation between Var(7;) and the annualized variance of the k-year re-
turn, (1/k)Var(rr r.1), which is our object of interest, must obey

K
(1/k)Var(rp 741) = (1/k)Var (Z 7'T+i>

i=1 @7
= (1/k)Var(kry,)

= kVar(r).

If CFOs perceive stocks as equally volatile at all horizons, as in the standard
i.i.d. setting with no parameter uncertainty, then (1/2)Var(ry r,r) = Var(rr r.1)
and Var(#,) = Var(rr 7,1)/k. In that case, the perceived standard deviation of
the 1-year return should be 3.2 (=+/10) times the perceived standard deviation
of the annualized 10-year return. In the survey results reported by Ben-David
et al., we observe that the ratios of the 1-year standard deviation to the 10-year
standard deviation are substantially below 3.2. Across 33 quarterly surveys
from the first quarter of 2002 through the first quarter of 2010, the ratio ranges
from 1.25 to 2.14, and its average value is 1.54. Even the maximum ratio of
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2.14 implies

Var(fl )

_ 2
Varg) (2.14)7, (28)

or, applying (27), a 10-year variance ratio given by

(1/10)Var(rT,T+10) N 10

Ve = @17 =2.18, (29)

as compared to the value of 1.0 when stocks are equally volatile over long and
short horizons. In other words, the typical CFO appears to view stock returns
as having at least twice the variance over a 10-year horizon than over a 1-year
horizon.

VIII. Target-Date Funds

This section explores the long-run riskiness of stocks from the perspective
of a very popular investment strategy. Target-date funds, also known as life-
cycle funds, represent one of the fastest-growing segments of the investment
industry. Since the inception of these funds in the mid-1990s, their assets have
grown to about $280 billion in 2010, including a net cash inflow of $42 billion
during the tumultuous year 2008. About 87% of target-date fund assets are
held in retirement accounts as of third-quarter 2010 (Investment Company
Institute (2011)).

Target-date funds follow a predetermined asset allocation policy that grad-
ually reduces the stock allocation as the target date approaches, with the aim
of providing a more conservative asset mix to investors approaching retire-
ment.?? A predetermined allocation policy is not optimal because it sacrifices
the ability to rebalance in response to future events, an ability analyzed in
numerous studies of dynamic asset allocation.?* We venture off the well-trod
path of that literature to consider a long-horizon strategy that, while subopti-
mal in theory, has become important in practice. We do not attempt to explain
why so many real-world investors desire a predetermined path for their asset
allocations. We simply take that fact as given and analyze the asset allocation
problem within that setting. This focus also seems natural in the context of
our study, since long-horizon equity volatility is relevant for investors making
long-horizon equity decisions.

To analyze target-date funds using a simple model, we consider an investor
who can invest in two assets, the stock market and a real riskless asset. The
investor’s horizon is K years, and his utility for end-of-horizon wealth Wy is
given by W}{A/ (1 — A). The investor commits at the outset to a predetermined

23 See Viceira (2008) for a more detailed discussion of target-date funds.

24 Recent examples include Balduzzi and Lynch (1999), Barberis (2000), Brandt et al. (2005),
Brandt, Santa-Clara, and Valkanov (2009), Detemple, Garcia, Rindisbacher (2003), Lynch and
Balduzzi (2000), and Lynch (2001), among others. Wachter (2010) provides a review of the asset
allocation literature.
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investment strategy in which the stock allocation evolves linearly from the
first-period allocation w; to the final-period allocation wg. The investor solves
for the values of w; and wg within the (0, 1) interval to maximize expected
utility. The investor assumes that the conditional expected stock return at the
beginning of each horizon, w7, is equal to the unconditional expected return
E,, while treating E, as uncertain. This specification removes the effect that a
nonzero value of uy — E, would have on the investor’s desired pattern of stock
allocations over the investment horizon. We solve the problem numerically,
setting relative risk aversion A to eight and the riskless real rate to 2% per
year.

Target-date funds are often motivated by arguments related to human capital
and labor income. A typical argument goes as follows.?> Human capital is bond-
like as it offers a steady stream of labor income. Younger people have more
human capital because they stand to collect labor income over a longer time
period. Younger people thus have a larger implicit position in bonds. To balance
that position, younger people should invest a bigger fraction of their financial
wealth in stocks, and they should gradually reduce their stock allocation as
they grow older.

We consider two frameworks that differ in their treatment of labor income.
In the first framework, presented in Section VIII.A, the investor invests an
initial nest egg and does not invest additional savings from any labor income.
In the second framework, presented in Section VIII.B, the investor also saves
a fraction of his labor income. Both frameworks lead to the same conclusions
regarding the effects of parameter uncertainty on the stock allocations of long-
horizon investors.

A. No Savings from Labor Income

In this section, we assume that the investor derives no savings from any
labor income. The investor simply begins with initial financial wealth Wy,
which subsequently evolves as follows:

Wii1 = Wil +wirs 1 + (1 —worsl (30)

where rg; is the simple stock return in year ¢ and r is the risk-free rate.¢
Panels A and B of Figure 11 plot the investor’s optimal initial and final stock
allocations, w; (solid line) and wg (dashed line), for investment horizons rang-
ing from 1 to 30 years. In Panel A, parameter uncertainty is ignored, in that the
parameters characterizing the return process are treated as known and equal

25 See, for example, Bodie, Merton, and Samuelson (1992), Viceira (2001), Cocco, Gomes, and
Maenhout (2005), and Gordon and Stockton (2006). Other recent studies that analyze portfolio
choice in the presence of labor income include Gomes and Michaelides (2005), Benzoni, Collin—
Dufresne, and Goldstein (2007), Gomes, Kotlikoff, and Viceira (2008), and Lynch and Tan (2009),
among others.

26 There is no adjustment for intermediate consumption since the investor is concerned only
about terminal wealth.
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Figure 11. Parameter uncertainty and target-date funds. The figure plots equity allocations
w1 (solid line) and wg (dashed line) for a long-horizon investor with utility for end-of-horizon
wealth (W) given by W1=4/(1 — A). At the beginning of a K-period horizon, the investor commits
to a strategy in which the equity allocation evolves linearly from the first-period allocation w; to
the final-period allocation wg. The remaining portion of the investor’s portfolio is allocated to a
riskless asset, assumed to provide a constant real return of 2% per year. Relative risk aversion
(A) equals eight. The investor chooses both w; and wg on the interval (0, 1) to maximize expected
utility. The investor incorporates parameter uncertainty in Panels B and D but not in Panels A
and C. The investor has no labor income savings in Panels A and B (equation (30)). In Panels C
and D, he does save from labor income, and his wealth evolves as in equation (31).

to their posterior means. In Panel B, parameter uncertainty is incorporated by
using the posterior distributions. These come from our baseline setting: Sys-
tem 1 implemented on the 1802 to 2007 sample with three predictors and the
benchmark prior.

The optimal allocations in Panel A of Figure 11 are strikingly similar to those
selected by real-world target-date funds. The initial allocation w; decreases
steadily as the investment horizon shortens, declining from about 85% at long
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horizons such as 25 or 30 years to about 30% at the 1-year horizon, whereas
the final allocation wg is roughly constant at about 30% to 40% across all
horizons. Investors in real-world target-date funds similarly commit to a stock
allocation schedule, or glide path, that decreases steadily to a given level at the
target date. The final stock allocation in a target-date fund does not depend
on when investors enter the fund, but the initial allocation does—it is higher
for investors entering longer before the target date. Not only the patterns but
also the magnitudes of the optimal allocations in Panel A resemble those of
target-date funds. For example, Viceira (2008) reports that the target-date
funds offered by Fidelity and Vanguard reduce their stock allocations from
90% at long horizons to about 30% at short horizons. In addition, Vanguard’s
stock allocations equal 90% for all horizons of 25 years or longer (see Viceira’s
Figure 5.2), which corresponds nicely to the relatively flat portion of the solid
line in Panel A.%7 In short, target-date funds seem appealing to investors who
maximize expected power utility of wealth at the target date and who ignore
parameter uncertainty.

In contrast, target-date funds do not appear desirable if the same investors
incorporate parameter uncertainty, as shown in Panel B. For short investment
horizons, the results look similar to those in Panel A, but for longer horizons,
neither w; nor wg is roughly invariant to the horizon; instead, they both de-
crease with K. For example, an investor with a 15-year horizon chooses to glide
from w; = 62% to wis = 33%, but an investor with a 30-year horizon chooses
lower stock allocations, gliding from w; = 57% to w3y = 7%. The long-horizon
stock allocations are lower in Panel B because investors perceive dispropor-
tionately more parameter uncertainty at long horizons.

B. Labor Income

In this section, we assume that the investor saves a positive fraction of his
labor income each year. The investor’s financial wealth evolves as follows:

Wi = Wl +wirs i1 + (1 — wryl + 8Ly, (31)

where L; denotes labor income and s is the savings rate. We assume a con-
stant savings rate, abstracting from the fact that investors may benefit from
dynamically adjusting their savings rates over time. A constant savings rate
is consistent with the fact that the predominant use of target-date funds is
in employer-sponsored retirement plans, where the employer and employee
contributions are both typically predetermined fractions of income. We set
s = 2.20%, which is the average annual ratio of aggregate personal saving to
personal income over the past 5 years (2005 to 2009), as reported by the Bureau
of Economic Analysis.

27 Qur simplification of target-date funds does not impose the constraint, common in practice,
that all investors with the same time remaining in their horizons also have the same allocation.
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We assume the following simple process for labor income growth:
Lt+1/Lt —1= 5(43 — aget) + €141, (32)

where & is a constant, age, denotes the investor’s age in year ¢, and ¢, is drawn
randomly from N(0, 62). We set 0. = 0.08, which is equal to the estimate of the
annualized standard deviation of wage income growth reported by Heaton and
Lucas (2000). The motivation for the age-related term in equation (32) is the
evidence that expected labor income exhibits a hump-shaped pattern over a
typical investor’s life cycle. For example, Figure 1 in Cocco et al. (2005) shows
that labor income is an inverse U-shaped function of age, for each of three
different groups of households sorted by their education level. To capture the
concave pattern in the level of labor income, we assume that the growth rate of
labor income is a linearly decreasing function of age. We calibrate this function
to the middle line in Cocco, Gomes, and Maenhout’s Figure 1, according to
which expected labor income grows until age 43 and declines thereafter. We
set £ = 0.0043, so that initial labor income growth at age 20 is 10%, as in
Cocco, Gomes, and Maenhout’s Figure 1. We assume that the investor retires at
age 65, which is also the end of his investment horizon, so that age, = 65 —
K+t

Note that labor income growth in equation (32) is uncorrelated with stock
market returns. This assumption is motivated by the evidence that the corre-
lation between wage growth and the stock market is generally close to zero.
For example, Heaton and Lucas (2000) report a correlation of —0.07, and Cocco
et al. (2005) report correlations ranging from —0.02 to 0.01 across three dif-
ferent education levels. However, the assumption of zero correlation is not
necessary for our conclusions. In an earlier version of the paper, we modeled
labor income growth as a convex combination of returns on the stock market
and the T-bill, and we found that our conclusions were unaffected by relatively
large changes in the weight on the stock market.

To capture the fact that younger people (those with higher values of K) tend
to have less financial wealth, we specify the initial ratio of financial wealth
to labor income, denoted by Fx = Wy/Ly, as a decreasing function of horizon
K. Given the retirement age of 65, F is the ratio of financial wealth to labor
income for an investor with age, = 65 — K. We specify Fx as

4
Fx =exp ( 45K). (33)
The function in equation (33) is empirically motivated by data from the
2007 Panel Study of Income Dynamics (PSID) compiled by the University of
Michigan. For all ages between 20 and 65, we compute the median ratio of
financial wealth to labor income across all households headed by a person of
that age.?® The natural logarithm of this median ratio is an approximately lin-
ear function of age, and its value is about —4 for age 20 and about zero for age

28 The financial wealth of each household is computed by adding up items S805, S811, S815,
and S819 in PSID.
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65. Adopting this linear approximation and recognizing that K = 65 — age,, we
quickly obtain equation (33).

Panels C and D of Figure 11 plot the investor’s optimal initial and final stock
allocations, w; and wg, as a function of the investment horizon. These panels
are constructed in the same way as Panels A and B, except that the investor’s
financial wealth follows equation (31) rather than equation (30). Parameter
uncertainty is incorporated in Panel D but not in Panel C.

Similar to Panel A, the optimal allocations in Panel C look very much like
those adopted by target-date funds. The initial allocation w; decreases from
100% at horizons longer than 15 years to about 30% at the 1-year horizon,
whereas the final allocation wg is roughly constant at 30—40% across all hori-
zons. Target-date funds thus seem appealing to investors who ignore parame-
ter uncertainty even if those investors have labor income savings. In contrast,
Panel D shows that target-date funds do not seem appealing if the same in-
vestors incorporate parameter uncertainty. For horizons longer than 23 years,
both w; and wg decrease with K. For example, an investor with a 23-year hori-
zon chooses to glide from w; = 100% to weg = 14%, whereas an investor with a
30-year horizon glides from w; = 93% to wgy = 3%. Echoing our earlier observa-
tion in the absence of labor income savings, the long-horizon stock allocations
are lower in Panel D because investors perceive more parameter uncertainty
at long horizons.

In Figure 11, investors always optimally choose downward-sloping glide
paths, wxg < wy, for all K > 1. This choice is not driven by mean reversion;
wg < wi remains optimal even if mean reversion is eliminated by setting
puw = 0. Instead, the driving force is that future expected returns ur.; are
unknown and likely to be persistent. As j increases, the future values ur. ; be-
come increasingly uncertain from the perspective of investors at time 7. As a
result, the future returns 711 = ur4; + ur+ 41 become increasingly volatile
from the investors’ perspective. In other words, investors perceive distant fu-
ture returns to be more volatile than near-term returns. Facing the need to pre-
determine their future allocations, investors commit to invest less in stocks in
the more uncertain distant future. This simple logic shows that neither mean
reversion nor human capital are necessary to justify downward-sloping glide
paths. If investors must commit to a fixed schedule of future stock allocations,
they will choose lower allocations at longer horizons simply because they view
single-period stock returns as more volatile at longer horizons.

The results in Figure 11 demonstrate how parameter uncertainty makes
target-date funds undesirable when they would otherwise be virtually optimal
for investors who desire a predetermined asset allocation policy. It would be
premature, however, to conclude that parameter uncertainty makes target-date
funds undesirable to such investors in all settings. The above analysis abstracts
from many important considerations faced by investors, such as intermediate
consumption, housing, etc. Our objective in this section is simply to illustrate
how parameter uncertainty can reduce the stock allocations of long-horizon
investors, consistent with our results about long-horizon volatility.
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IX. Conclusions

We use predictive systems and up to 206 years of data to compute long-
horizon variance of real stock returns from the perspective of an investor
who recognizes that parameters are uncertain and predictors are imperfect.
Mean reversion reduces long-horizon variance considerably, but it is more
than offset by other effects. As a result, long-horizon variance substantially
exceeds short-horizon variance on a per-year basis. A major contributor to
higher long-horizon variance is uncertainty about future expected returns,
a component of variance that is inherent to return predictability, especially
when expected return is persistent. Estimation risk is another important
component of predictive variance that is higher at longer horizons. Uncer-
tainty about current expected return, arising from predictor imperfection, also
adds considerably to long-horizon variance. Accounting for predictor imper-
fection is key in reaching the conclusion that stocks are substantially more
volatile in the long run. Overall, our results show that long-horizon stock in-
vestors face more volatility than short-horizon investors, in contrast to previous
research.

In computing predictive variance, we assume that the parameters of the
predictive system remain constant over 206 years. Such an assumption, while
certainly strong, is motivated by our objective to be conservative in treating pa-
rameter uncertainty. This uncertainty, which already contributes substantially
to long-horizon variance, would generally be even greater under alternative
scenarios in which investors would effectively have less information about the
current values of the parameters. There is, of course, no guarantee that using
a longer sample is conservative. In principle, for example, the predictability
exhibited in a given shorter sample could be so much higher that both pa-
rameter uncertainty as well as long-run predictive variance would be lower.
However, when we examine a particularly relevant shorter sample, a quar-
terly postwar sample spanning 55 years, we find that our main results are even
stronger.

Changing the sample is only one of many robustness checks performed in the
paper. We also consider a number of different prior distributions and modeling
choices, reaching the same conclusion. Nonetheless, we cannot rule out the
possibility that our conclusion would be reversed under other priors or modeling
choices. In fact, we already know that, if expected returns are modeled in
a particularly simple way, assuming perfect predictors, then investors who
rely on the postwar sample view stocks as less volatile in the long run. By
continuity, stocks will also appear less volatile if only a very small degree of
predictor imperfection is admitted a priori. Our point is that this traditional
conclusion about long-run volatility is reversed in a number of settings that
we view as more realistic, even when the degree of predictor imperfection is
relatively modest.

Our finding that predictive variance of stock returns is higher at long hori-
zons makes stocks less appealing to long-horizon investors than conventional
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wisdom would suggest. A clear illustration of such long-horizon effects emerges
from our analysis of target-date funds. We demonstrate that a simple specifica-
tion of the investment objective makes such funds appealing in the absence of
parameter uncertainty but less appealing in the presence of that uncertainty.
However, one must be cautious in drawing conclusions about the desirability of
stocks for long-horizon investors in settings with additional risky assets such
as nominal bonds, additional life cycle considerations such as intermediate con-
sumption, and optimal dynamic saving and investment decisions. Investigating
asset allocation decisions in such settings while allowing the higher long-run
stock volatility to enter the problem is beyond the scope of this study but offers
interesting directions for future research.

Appendix
A. Derivation of the Conditional Variance Var(rr .1 | ur, ¢)

We can rewrite the AR(1) process for u; in equation (5) as an MA(oco) process

uy = E, + Z,Biwt_i, (A1)

1=0

given our assumption that 0 < 8 < 1. From (1) and (A1), the return % periods
ahead is equal to
E-1 _
rrie = (1= pFHE, + g 1ur + Z B wr g + . (A2)
i=1
The multiperiod return from period T + 1 through period T + % is then

k
rork= Y rryi = kB, +

=1

k
wr4i + Z UT+i-
i=1 (A3)

k k-1 1 k—i
_Ii (MT - Er) + Z ,3
i=1

1-5

1

The conditional variance of the k-period return can be obtained from
equation (A3) as

2
Var(rr rirlur, ¢) = ko2 + Zw |:k —-1-28

1— ﬂk71 N ’32 1— ’32(131):|

(1—p)2 1-5 1-p2
200 A (A4)
]

Equation (A4) can then be written as in equations (6) to (9), where d arises
from the relation

o) =0,(1—p%) =0;R*1-p*) = (0, /(1- R»))R*(1 - B°). (A5)



472 The Journal of Finance®

B. Properties of A(k) and B(k)

A(1)=0, B(1) = 0.

Ak)— lask — oo, Blk) > 1 as k — .

Ak + 1) > A(k) VR, B(k + 1) > B(k) VE.

A(k) > B(k) Vk, with a strict inequality for all 2 > 1.
0<Ak) <1,0<Bk) <1.

A(k) converges to one more quickly than B(k).

RN R

Properties 1 and 2 are obvious. Properties 3 and 4 are proved below. Property
5 follows from Properties 1 through 3. Property 6 follows from Properties 1
through 4.

Proof that A(k+ 1) > A(k) VEk:

= L_ — k-2 k-1
A(k+1)—1+k+1[ 1-A+B+---+B8 7+
=1+Ll[—l—,B(1+,3+..._|_ﬂk*2+/3k71)]
k+1Fk
_ k B
—1+m|:A(k)—l—?:|,

which exceeds A(k) if and only if A(k) < 1 — g*. This is indeed true because

- _1_1 Ly ... k=11 — _1 0 1, ... k-1
AR =1—— =B 4+ =1 2B+ B+ + 5]

< 1—%[@3’6] =1-p".

Proof that Bk + 1) > B(k) Vk:
Bk+1)

:1+lﬁ[—l—2ﬂ(1+ﬂ+-~-+ﬂk’2+ﬂk’1)+ﬂ2(1+ﬂ2+~--+(ﬂ2)k’2

+ (Y]

— Ll _1_ k=2 2 2, . 2\k—2
—1+k+1k[{ 1-280+B8+ - +B)+p A+ B+ +(B) 7))

_ 2ﬂk + ﬂZk]
k

_ _ 1_ k 2k
_1+k+1[B(k) 142 (=26"+p )],
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which exceeds B(k) if and only if B(k) <1+ g% — 2% This is indeed true
because

Bly—1-2%11_ 2%(;‘3 +o+ D+ %(/32 o+ (BT (B

E 'k
=1+ %[((ﬂQ)O — 280 + (B — 2L + -+ (BY1 — 281
<14 %[k((ﬁ%k —28M]

= 1 + ﬁZk - 2/3k7

where the inequality follows from the fact that the function f(x) = (82)* — 28~
is increasing in x (because f'(x) = 2(InB)B*(B* — 1) > 0,for 0 < 8 < 1).

Proof that A(k) > B(k) Vk > 1:

- B

B 1 ) 1— /32(k71) 1— ‘Bk—l
B(k)—A(k)—E[ﬂ T —

= %[ﬂ2+~--+(ﬂ2)k*1—(ﬂ+~--+ﬂk*1)]

11 ' 1
=22 (B =7 B -1 <0.
=1 =1

C. Decomposition of Var{E (rp 741 |1, ¢, Dr)| Dy}

Let Er = E@r rir|pur, ¢, Dr). The variance of Er; given Dy can be de-
composed as

Var{Er ;| Dr} = E{Var[E7 ;.| ¢, Dr]| Dr} + Var{E[E7 1 | ¢, Dr]| Dr}. (A6)

To simplify each term on the right-hand side, observe from equations (1), (2),
and (5) that

Ery=EG@rii+rrio+---+rryrlur, ¢, Dr)

=E(ur + uri1+- +purip-1lnr, ¢) (AT)
—FkE, + 1__‘?;(;” —E).
Taking the first and second moments of (A7), using (10) and (11), then gives
E(Er |9, Drl = RE, + -2 (b — ) (A8)

1-8
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1- g\
Var[ET,k | ¢, Dr] = ( 15 ) qr. (A9)

Substituting (A8) and (A9) into (A6) then gives the fourth and fifth terms in
(12), using (3).

D. Relation between Conditional and Unconditional Variance Ratios
The unconditional variance (which does not condition on w7 ) is given by

Var(rr 741 | ¢) = E[Var(rr vz | ur, ¢, Dr) | ¢l + Var[E (rp 741 | 1. ¢, Dr) | ¢l
k

2
A ) Var(uz | 9)

= Var(ry 74 | ur, ¢) + (

1-8
1-p4\° ,/ RZ
:VaI‘(Y'T,T+k|MT,¢)+(1_ﬂ) o, (1—R2>’ (A10)
using equation (A7). It follows from equation (6) that
Var(rT,TH | M, (]5) = (73. (All)
Combining equations (A10) and (A11) for £ = 1 gives
olR? ol Var(ry r+1 | pr, @)
Var(rr r11|¢) = Var(rr 741 | ur, ¢) + e 1 g2 .
(A12)

Denote the conditional variance ratio V,(k) and the unconditional variance ratio
V.(k) as follows:

(1/k)\Var(rr 741 | ur, ) V(k) = (1/R)Var(rr 7111 ¢)
Var(rpyi|pr.¢) U Var(rrri1 | @)

These ratios can then be related as follows, combining (A10), (A12), and (A13):

(1/k)Var(rr 741 | $)(1 — R?)
Var(rp 71| ur, ¢)

:<wmvm07¢%|um¢X1—R%_F%(1—&)2R2

V.(k) = . (A13)

Vuk) =

Var(rr ry1 | r, @) 1-p
B - 1(1_ﬂk>2 )
—-RW+y (T ) B (A14)

E. Permanent and Temporary Price Components in Our Setting

Fama and French (1988), Summers (1986), and others employ a model in
which the log stock price p; is the sum of a random walk s; and a stationary
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component y, that follows an AR(1) process:

P =8+ (A15)
St =u+S-1+¢€ (A16)
Ve =byi1+e, (A17)

where e; and ¢; are mean-zero variables independent of each other and |b| < 1.
Noting that rr,1 = p;11 — pr, it is easy to verify that equations (A15) through
(A17) deliver a special case of our model in equations (1) and (5), in which

E =pu (A18)
g=">b (A19)
we =p— (1 —>b)y, (A20)
U1 = €141 €141 (A21)
Wi41 = -1 - b)et+1~ (A22)
This special case has the property
Oyw = COV(qu, wt+1) =—(1- b)O'ez <0, (A23)

implying the presence of mean reversion. We also see that

ol 1-b,

2 — =(1-b202=(1-b2—_=__"_ (A24)
oy = Var(u,) = (1 - b)*oy = (1-0) 0= 115%
and therefore, using (21),
b(1-b) 1-5
Cov(ry1,11) = o + oy = 1—+b(’e2 ~(1-b)o?=— o bUeZ < 0. (A25)

Thus, under (A15) through (A17) with b > 0, all autocovariances in (21) are
negative and all unconditional variance ratios are less than one.
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