
54 Wilmott magazine

Hans-Peter Deutsch, d-fine, Frankfurt, Germany, 
Email for correspondence hans-peter.deutsch@d-fine.de

Portfolio Theory 
with a Drift

In Markowitz theory the risk of a portfolio V consisting of holdings Ni in
M risky assets (the risk factors) with values Vi , volatilities σi , expected
returns Ri and mutual correlations ρij is simply the portfolio volatility

σV =
√

wT Cw (2.2)

Here C denotes the covariance matrix with the elements Cij = σiρijσj for
i, j = 1, . . . M and w is the vector of asset weights, i.e. wi = NiVi/V for
i = 1, . . . M.

As explained in most texts on portfolio theory, the optimal invest-
ment strategy (yielding the highest expected return for the risk incurred)
within Markowitz theory is to invest in the so called Market Portfolio. This
portfolio is the fully invested portfolio having maximum Sharpe Ratio

γm = R̂m

σm
(2.3)

where σm denotes the volatility of the market portfolio and ̂Rm := Rm − rf

denotes its expected excess return1 (above the risk free rate rf ).
Even if the risk σm of the market portfolio doesn’t coincide with the

risk preference σrequired of an investor, the investor should still invest in
this portfolio, although not all of his money. If σrequired < σm the investor
should only invest a percentage w of the total capital in the market port-
folio and the rest of the capital should be invested risk free (in a money
market account). On the other hand, if σrequired > σm the investor should
borrow money (from the money market) and invest the total sum of his
own capital and the loan in the market portfolio (leveraged investment).

1 Introduction
The validity of the Markowitz approach to portfolio management, i.e.,
the mean/variance view on risk and return and, as a consequence, the
validity of the CAPM have been questioned time and again in the litera-
ture. Most of these investigations focus on the underlying assumptions
being not true in the real world. Specifically, asset returns are not nor-
mally distributed and neither volatilities nor correlations are constant
over any reasonable holding period δt and therefore the volatility (which is
the heart of the Markowitz theory) is not a suitable risk measure.

Rather then re-stating all these investigations of empirical evidence
for or against Markowitz and the CAPM, we take a different approach
here. We stay within the Markowitz framework (which is basically the
same as the Black-Scholes framework), i.e., we hold on to the assumptions
that asset returns are normally distributed with constant volatilities and
correlations and show, that even within this framework the volatility is not a
suitable risk measure. We thus beat Markowitz theory with its own
weapons, so to say.

2 Markowitz in a Nut Shell
The goal of modern portfolio management is to optimize risk adjusted per-
formance measures (abbreviated “RAPM”), i.e., ratios of the kind

(expected) portfolio return

portfolio risk
(2.1)
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Since the optimal portfolio has the maximum excess return the investor
can expect for the risk taken and since investing or borrowing in the
money market produces neither any additional excess return nor any
additional volatility, this strategy gives the best possible Sharpe Ratio for
any required risk level. The expected return of this strategy as a function
of the risk (the volatility) incurred is a straight line with slope γm , the
Capital Market Line.

Within this framework all sorts of portfolio optimizations can be
done, even analytically as long as no constraints (like for instance “no
short selling” or the like) have to be obeyed. For example, asset weights,
excess return and volatility of the market portfolio can be calculated
(Deutsch (2004))

wm= C−1R̂

1T C−1R̂
, R̂m = R̂T C−1R̂

1T C−1R̂
, σ 2

m = R̂m

1T C−1R̂
(2.4)

where R̂ is the vector of the asset’s expected excess returns Ri with com-
ponents ̂Ri := Ri − rf for i = 1, . . . M.

3 A Better Risk Measure
To compare classical Markowitz theory with modern risk concepts, we
have to start all over again, and carefully ask: What is risk? Very general-
ly, risk is defined as a potential loss, which will not be exceeded over a cer-
tain time horizon δt (the holding period) with a specified probability c (the
confidence), see for instance (Deutsch (2004)), (Jorion (1997)) or (RiskMetrics
(1996)). In the world of normally distributed asset returns this leads
(Deutsch (2004)) to the Value at Risk of the above mentioned portfolio V
consisting of the M risky assets (the risk factors)

VaRc,δ t(RV ) ≈ |Q1−c| V
√

δt

√√√√ M∑
k,l=1

wkσiρijσjwl − Vδt
M∑

k=1

wkRk

where Q1−c denotes the (1 − c) percentile of the standard normal
distribution. This can be written more compactly using obvious vector
notation:

VaRV (c) ≈ |Q1−c| V
√

δt
√

wT Cw − Vδt wT R

= |Q1−c| V
√

δtσV − Vδt RV

(3.1)

with the covariance matrix C having the matrix elements Cij = σiρijσj for
i, j = 1, . . . M as in Eq. 2.2.

The generalization to the case where the assets in the portfolio are
not the risk factors themselves but M financial instruments with values
Vk depending on n risk factors Si is straight forward. As shown in (Deutsch
(2004)), the Delta-Normal approximation of the VaR for this situation
looks exactly the same as Eq. 3.1, but C now is the covariance matrix of
the financial instruments which (in first order approximation) is related to
the covariances of the risk factors via

Ckl =
n∑

i,j=1


k
i σiρijσj


l
j with 
k

i = Si

Vk
�k

i

where �k
i = ∂Vk/∂Si denotes the linear price sensitivity (the Delta) of

the kth financial instrument with respect to the ith risk factor. To
arrive at this Delta-Normal Value at Risk, several approximations have
to be made (in addition to all assumptions of Markowitz theory),
namely

1. The functional dependencies of the instrument prices on the risk
factors are approximated linearly

2. The exponential risk factor evolution (i.e., the solutions to the sto-
chastic differential equations describing the risk factor processes as
correlated Brownian motions, see (Deutsch (2004))) is approximated
linearly.

However, besides these approximations and besides all the assump-
tion of normally distributed returns and constant volatilities and corre-
lations, it is still not possibly to bring the VaR in Eq. 3.1 in line with the
even simpler risk definition of Markowitz theory, where the portfolio risk
is simply the portfolio volatility as in Eq.2.2. For this, we need one more
crucial approximation, namely

The risk factor drifts are neglected since (for reasonably short hold-
ing periods) the risk resulting from fluctuations is much larger than
the effect of the drift  (Riskmetrics (1996)).

This would neglect the second term in Eq. 3.1 and the VaR would then
indeed be proportional to the volatility. However, while the first two
approximations are usually acceptable for portfolios with rather linear
assets (not for options portfolios, however) and for not too long holding
periods, the neglect of the drift is in direct contradiction to the very con-
cept of the Capital Market Line describing the optimal investment strate-
gy! As explained above, an investor can achieve any desired volatility with
this strategy by distributing money between the market portfolio and the
(risk free) money market account. In particular, he can attain arbitrarily
small volatilities. But an arbitrarily small volatility is not large compared
to the drift! Therefore, the drift must not be neglected (not even for
short holding periods) as soon as the money market comes into play!
We have to stick with Eq. 3.1 as our risk measure and cannot reduce it to
Eq. 2.2. The consequences of this circumstance are far reaching and are
the topic of this paper.

3.1 Being not fully invested
Let’s now look at the risk of a typical investment on the Capital Market
Line, where part of the money is invested in (or borrowed from) the
money market. In this case we have a percentage

w=
M∑

i=1

wi = wT 1

invested in the risky assets Vi and a part wf = 1 − w invested in the risk
free account (for a leveraged investment we have wf < 0 and w > 1). Of
course, the risk free part does not contribute to the fluctuations of the
total investment. It does, however, contribute to the expected return, i.e.
to the drift of the total investment. Adding the risk free contribution wf rf

^
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to the drift yields

VaRV (c) ≈ |Q1−c| V
√

δt
√

wT Cw − Vδt
[
wT R + wf rf

]
= |Q1−c| V

√
δt

√
wT Cw − Vδt

[
wT R + (1 − wT 1)rf

]
= |Q1−c| V

√
δt

√
wT Cw − Vδt

[
wT(R − 1rf ) + rf

]
Thus, the Value at Risk for the total investment is

VaRV (c) ≈ |Q1−c| V
√

δt
√

wT Cw − Vδt[wT R̂ + rf ]

= |Q1−c| V
√

δt σV − Vδt
[̂
RV + rf

]
= |Q1−c| V

√
δt σV − VδtRV

(3.2)

Here RV ≡ E [rV ] is the expected return of the total investment and R̂V is
the expected excess return of the total investment. Thus, we get back
Equation 3.1 also for not fully invested portfolios.

Observe that the percentile Q1−c of the normal distribution (depend-
ing on the required confidence level c) and the holding period δt do not
enter as common factors. This should also intuitively be clear: the smaller
the quantile (the larger the confidence) the larger is the fluctuations’
influence on the VaR compared to the drift. Similarly: the larger the hold-
ing period, the larger is the drift effect compared to the fluctuations. The
relative influences of drift and fluctuations on the risk depend strongly
on the chosen confidence level c and holding period δt. Therefore, c and δt
can not be eliminated from the risk definition.

We now divide the VaR by V to get a risk measure in percentage terms,
i.e., independent of the total amount invested.We also divide by δt to gen-
erate dimensionless RAPMs of the form like Equation 2.1. Another moti-
vation for dividing by Vδt is to write the VaR directly in terms of the
annualized portfolio returns rV :

VaRV (c) ≈ |Q1−c| Vδt
√

var [rV ] − Vδt E [rV ] (3.3)

This form can be derived by observing that2

σ 2
V ≡ 1

δt
var [δ ln(V)] = δt var [rV ]

In this form, Vδt even looks like a common factor3. Thus, our risk meas-
ure replacing the volatility is the risk per unit of time and per monetary unit
invested

ηV ≡ VaRV (c)

V δt

= |Q1−c|
√

var [rV ] − E [rV ]

= qσV − RV

= q
√

wT Cw − wT R̂ − rf

(3.4)

where we have introduced the abbreviation

q ≡ |Q1−c| /
√

δt (3.5)

to streamline the notation. Keep in mind that q is not an overall constant
and therefore can not be ignored as in classical Markowitz theory.

In addition, compared to Equation 2.2, we now have the term −RV tak-
ing the drift’s influence on the risk (defined as the potential loss occur-
ring with probability 1 − c) into account. This produces an important
effect: The expected investment return (which includes the risk free earn-
ings) influences the risk. Therefore, whenever one is not fully invested,
the risk free money market influences the investment risk, since it con-
tributes to the investment’s expected return. This has severe conse-
quences. The most important consequence is the fact, that Markowitz
theory can not be “saved” by simply replacing σ with η everywhere. As we
will now see, things are more subtle.

4 The Capital Market Line with Drift
Although we haven’t constructed it yet, let’s assume that for any given
investment universe (i.e., for any given set of M risky assets) there is a fully
invested optimal portfolio with return Rm and risk ηm . As in Markowitz the-
ory, if the risk ηm of the optimal portfolio doesn’t coincide with the risk
preference ηrequired of the investor, the investor still invests in the optimal
portfolio, although not all of his money. If ηrequired < ηm the investor only
invests a percentage w of the total capital in the optimal portfolio and
the rest of the capital in a risk free money market account. On the other
hand, if ηrequired > ηm the investor borrows money from the money mar-
ket and invests the total sum of his own capital and the loan in the opti-
mal portfolio.

The expected return of such an investment in the money market
account and the optimal portfolio is

RV = wRm + (1 − w)rf (4.1)

where w := wT 1 denotes the part invested in the risky assets. With this
RV , the risk, as defined in Equation 3.4, of such an investment is

ηV = qσV − RV

= qσV − wRm − (1 − w)rf

which again explicitly shows how the risk free rate influences the risk of
the total investment. We can write σV = wσm since the risk free return
has no volatility4 to arrive at 

ηV = w (qσm − Rm) − (1 − w)rf

= wηm − (1 − w)rf

(4.2)

This should also intuitively be clear: The part w of the investment in the
optimal portfolio contributes the risk of the optimal portfolio while the
part (1 − w) invested in the money market reduces the risk by its expect-
ed (risk free) return.

Solving Equation 4.2 for the leverage w, we find that (in contrast to
Markowitz theory) the extent of investment in risky asset is not simply
given by the ratio of the investment risk to the risk of the optimal portfo-
lio, but rather by

w = ηV + rf

ηm + rf
(4.3)
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Inserting this w into Equation 4.1 allows us to write the investment
return as a function of the investment risk

RV = ηV + rf

ηm + rf
Rm + (1 − ηV + rf

ηm + rf
) rf

= ηV + rf

ηm + rf
Rm + ηm − ηV

ηm + rf
rf

=
(
Rm − rf

)
ηV + (Rm + ηm) rf

ηm + rf

or

RV = Rm − rf

ηm + rf
· ηV + ηm + Rm

ηm + rf
· rf (4.4)

Thus, as in Markowitz theory, the expected investment return RV as a
function of the investment risk ηV is a straight line. This straight line is
the capital market line when drift effects are considered. However, the
slope of this line is not given by the Sharpe Ratio of Eq. 2.3 but rather by

�m ≡ Rm − rf

ηm + rf
= R̂m

ηm + rf
= R̂m

qσm − R̂m

(4.5)

We call this ratio5 the Deutsch Ratio™. Just like the Sharpe Ratio, the
Deutsch Ratio™ is not only defined for the optimal portfolio Vm but for
any portfolio6:

�V ≡ RV − rf

ηV + rf
= R̂V

qσV − R̂V

(4.6)

5 The Risk of the Excess Returns
The numerator in the Deutsch Ratio™ (and in the Sharpe Ratio for that
matter) has a very natural interpretation: it is the expected value of the
investment’s excess returns. To achieve a just as natural interpretation for
the denominator of the Deutsch Ratio™ observe the following: The Value
at Risk in Equation 3.2 or 3.3 is the quantile of the distribution of the
investment returns rV . Since the investment’s excess returns r̂V are
obtained by simply subtracting the constant risk free rate rf from each rV ,
the distribution of the excess returns ̂rV has exactly the same shape as the
distribution of the returns rV , simply shifted by −rf . Thus, the Value at
Risk of the excess returns, defined in exactly the same way as the “usual”
VaR, i.e. as the quantile of their distribution, is

VaRc( r̂V ) = VaRc(rV ) + V δt rf (5.1)

This can of course also be seen directly from Equation 3.3 by observing
that rf only adds to the expected return but leaves the variance
unchanged:

VaRc( r̂V ) = |Q1−c| Vδt
√

var [ r̂V ] − Vδt E [ r̂V ]

= |Q1−c| Vδt
√

var [rV ] − Vδt E
[
rV − rf

]
= |Q1−c| Vδt

√
var [rV ] − Vδt E [rV ]︸ ︷︷ ︸ + Vδt rf

VaR c (rV )

Dividing by V δt as in Equation 3.4 we get the risk measure ̂η of the excess
returns in the same units as our risk measure η

η̂V ≡ VaRc( r̂V )

Vδt

= |Q1−c|
√

var [ r̂V ] − E [ r̂V ]

= qσV − R̂V

= q
√

wT Cw − wT R̂

= ηV + rf

(5.2)

Thus, the denominator of the Deutsch Ratio™ is the risk of the excess returns.
And the Deutsch Ratio™ itself is simply the expected excess return divid-
ed by the risk of the excess returns:

�V ≡ R̂V

η̂V
= expected excess return

risk of excess returns
(5.3)

As already known for the expected returns, we now also see for the risk
that excess returns (instead of returns) are the most natural quantities to
consider in asset management.

In asset management it is much more natural to always work with excess
returns, not only regarding expectations, but also regarding risk.

As an example of how much more natural excess returns are, observe
the following: The investment risk ηV in Eq. 4.2 is not zero for w = 0 but
rather for

w0 := rf

ηm + rf
(5.4)

as can easily be verified by inserting w0 into Eq. 4.2. A leverage w < w0 has
“negative risk”. This means that the fluctuations of the investment value
are so small compared to the (positive) drift, that the investment return
at the border of the confidence interval (i.e. the quantile of the return
distribution belonging to confidence c) is still positive. Or in other words:
the potential loss incurred by the fluctuations is still less than the
expected return.

For instance, we have for w = 0 < w0 from Equations 4.1 and 4.2
RV = rf and ηV = −rf . This is fully consistent: For w = 0 the whole invest-
ment is placed in the money market. Thus, the expected return is the
money market return without any fluctuations and the risk for any con-
fidence level, i.e. the potential loss, is the negative of the one and only
P&L value rf . However, it might seem awkward that the so called risk free
investment should have a non-zero risk (and a negative one at that!). This
does not happen, if one uses the risk of the excess returns, Equation 5.2, as
the risk measure: Since η̂V = ηV + rf , this risk measure is exactly zero
when everything is invested risk free.

As another example look at the second term in Eq. 4.4 . The expected
return as a function of investment risk in Eq. 4.4 has on offset. For risk
ηV = 0 (attainable through the leverage w = w0 according to Eq. 5.4) the
expected return is

RV = ηm + Rm

ηm + rf
rf
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which is larger than the risk free rate rf as long as the return Rm of the
optimal portfolio is larger than rf (which usually is the case as a compen-
sation for the risk of the optimal portfolio). Thus, even for ηV = 0 the
expected return is larger than the risk free return. This is the compensa-
tion for the risk of incurring a loss greater than the border of the confi-
dence interval belonging to the chosen confidence c. As already stressed,
ηV = 0 only means that the negative influence of the fluctuations just
compensates the positive influence of the drift. But it does not mean that
there are no fluctuations7!

All these “hard to digest” facts disappear, as soon as one uses excess
returns throughout. The capital market line in terms of excess returns can
be derived by simply subtracting rf from Equation 4.4:

R̂V = RV − rf

= Rm − rf

ηm + rf
· ηV + ηm + Rm − (

ηm + rf

)
ηm + rf

· rf

= Rm − rf

ηm + rf
· (ηV + rf

)
Thus, the Capital Market line can be written very elegantly as

R̂V = �m η̂V with �m = R̂m

η̂m
(5.5)

No more offset! The expected excess return is zero when the excess
return risk is zero. And - as discussed above - the excess return risk is zero
when everything is invested risk free.

5.1 The Condition for Positive Risk of Excess Returns
But even the excess return risk ̂ηV in Eq. 5.2 could become negative, name-
ly when the confidence c is chosen so low8 and/or the holding period δt so
large that q = |Q1−c| /

√
δt is smaller than ̂RV /σV . The latter happens to be

the traditional Sharpe Ratio γ . Thus, we have the following requirement
for a sensible choice of parameters, i.e., parameters which guarantee pos-
itive risk of excess returns:

|Q1−c|√
δt

≡ q
!
> γV ≡ R̂V

σV
(5.6)

To see what this means for the available choices of confidence c, given a
holding period δt, observe that the 1 − c quantile of the standard normal
distribution is negative for any confidence c > 50% , i.e., for any reason-
able confidence level we have

|Q1−c| = −Q1−c ∀c > 50%

For such confidence levels we therefore obtain the requirement

− Q1−c
!
>

R̂V

σV

√
δt

1 − c < N

(
− R̂V

σV

√
δt

)

c > 1 − 1√
2π

∫ −√
δt R̂V /σV

−∞
e−x2 /2dx

(5.7)

Numerical examples show, that this is not much of a restriction in prac-
tice, see Figure 5.1. Only portfolios with very high expected excess
return and simultaneously very low volatility would require a confidence c
significantly larger than ca. 70%. Such portfolios are unrealistic, howev-
er, since for such low volatilities the expected portfolio return should
approach the risk free return, i.e. the expected excess return should
approach zero. 

For confidence levels above the lower bound required by Eq. 5.7, port-
folio optimization based on maximizing the Deutsch Ratio™ works very
well, since the Deutsch Ratio™ behaves nicely, see Figure 5.2.

If the confidence is chosen to low, however, the risk of excess
returns (i.e. the denominator of the Deutsch Ratio™) goes from positive
values through zero to negative values and generates artificial poles of
the Deutsch Ratio™ leading to spurious optimization results strongly
dependent on the parameter choice, see Figure 5.3. One should there-
fore always make sure that the confidence is above the required mini-
mum level when performing portfolio optimization based on the
Deutsch Ratio™.

Figure 5.1: Minimum required confidence level to guarantee positive
excess return risk for a portfolio with a holding period of 30 days as a
function of the portfolio’s volatility and expected excess return.
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6 Interpretation of the Deutsch Ratio™
The most intuitive interpretation of the Deutsch Ratio™ is already given
by Equation 5.3 above, i.e., the Deutsch Ratio™ is the ratio of the expecta-
tion to the risk of the excess returns. In addition, there are some more
insights worth mentioning.

6.1 The Deutsch Ratio™ and the Market Price of Risk
Equation 5.5 can be read in the following way: For each unit of additional
risk ̂ηV an investor is willing to take, the expected return of the total invest-
ment increases by an amount �m , i.e., by the Deutsch Ratio™ of the optimal
portfolio9. �m is therefore the market price of risk of the investment universe
consisting of the M risky assets (and of course the money market account)
when drift effects are taken into account. The market price of risk, i.e. the
return expected for incurring risk, should of course be as large as possible.
Thus, the optimal portfolio or “Market Portfolio” consisting of the M risky
assets has to be constructed in such a way, that its Deutsch Ratio™ is maxi-
mal. We can summarize these insights in the following theorem:

The market portfolio is the fully invested portfolio with the maximal
Deutsch Ratio™ attainable within the available investment universe. The
maximum Deutsch Ratio™ is the slope of the capital market line describ-
ing the expected return of the optimal investment strategy as a function
of the investment risk. Therefore, the maximum Deutsch Ratio™ is the
market price of risk for the investment universe under consideration.

6.2 Deutsch Ratio™, Sharpe Ratio and Risk Adjusted
Performance
We now compare the Deutsch Ratio™ defined in Eq. 4.6 with the tradi-
tional Sharpe Ratio from Eq. 2.3 everybody is accustomed to since 50
years. The reciprocal of Eq.4.6 directly yields the relation between the
Deutsch Ratio™ and the Sharpe Ratio

�−1
V = q γ −1

V − 1 ⇐⇒ �V = γV

q − γV
with γV ≡ RV − rf

σV
(6.1)

This again explicitly shows that the Deutsch Ratio™ is well behaved
(−∞ < �V < ∞) only for q > γV as already seen in Eq. 5.6.

Note that the Sharpe Ratio is not directly a risk adjusted performance
measure (“RAPM”) in the sense of expected (excess) return over the hold-
ing period δt per risk over that holding period, not even if the the drift is
neglected in Eq. 3.2: The expected return over the holding period is RV δt
and the risk free proceeds are rf δt. If the risk (in percent of the portfolio
value) is given by the VaR as in Eq. 3.2 with no drift, a risk adjusted per-
formance measure would be

RAPM (c, δt)drift neglected = RV δt − rf δt

VaRV (c)/V

≈ RV δt − rf δt

|Q1−c|
√

δtσV

=
√

δt

|Q1−c|
RV − rf

σV

= 1

q
γV
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Figure 5.3: Deutsch Ratio for the same situation as in figure 5.2. The only
difference is that instead of 90% the confidence was now chosen to be
c = 60% which is well below the 71,8% required by Eq. 5.7.
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Figure 5.2: Deutsch Ratio for 90% confidence of a portfolio with a holding
period of 30 days as a function of the portfolio’s volatility and expected
excess return. For the most extreme combination of volatility and excess
return in the picture ( R̂V = 10%, σV = 5% ), the minimum required confi-
dence level according to Eq. 5.7 is 71,8%.
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with the abbreviation q as in Eq. 3.5. Thus, the Sharpe Ratio has to be
“scaled” with the factor 1/q = √

δt/ |Q1−c| to qualify for a (dimensionless)
risk adjusted performance measure.

The Deutsch Ratio™, on the other hand, is directly a RAPM: The
expected return over the holding period is again RV δt and the risk free
proceeds are again rf δt. But the risk (potential loss for a given confidence
c in percent of the portfolio value) is now ηV δt as can directly be seen
from the first line of Eq. 3.4. Thus all factors δt cancel:

RAPM (c, δt)risk as Eq .3.4 = RV δt − rf δt

VaRV (c)/V + rf δt

≈ RV δt − rf δt

ηV δt + rf δt

= �V

When comparing the Deutsch Ratio™ with the Sharpe Ratio numerical-
ly, one should therefore either compare the two resulting RAPMs, or one
should compare γV with the scaled Deutsch Ratio™ q�V . Figure 6.1 shows
such a comparison. From Eq. 6.1 it is easy to see, that the scaled Deutsch
Ratio™ can be written as

q�V = 1

γ −1
V − q−1

Thus, the larger q is compared to the Sharpe Ratio, the closer (apart from
the scaling) the Sharpe Ratio and the Deutsch Ratio™ become.

7 The Market Portfolio
with Drift
In Section 4 we assumed that there exists an
optimal portfolio which was the basis for the
Capital Market Line. We will now construct this
optimal portfolio, i.e. we will explicitly deter-
mine its weights. To do this, we search for any
portfolio with maximum Deutsch Ratio, and
than, in a second step scale its weights such that
it is fully invested.

Let’s start by finding the so-called character-
istic portfolio (Deutsch (2004)) with respect to
the numerator of our RAPM, i.e. with respect to
the excess return. Thus, we take the vector ̂R of
the asset’s excess returns as the so-called attrib-
ute vector. Then the portfolio’s excess return
R̂V = wT R̂ is the exposure of portfolio V to that
attribute (Deutsch (2004)). By definition, the
characteristic portfolio VR for attribute R̂ is the
minimum risk portfolio with exposure R̂V = 1.

All of this is exactly the same as in Markowitz
theory. But instead of the volatility we now have
η̂ from Eq. 5.2 as our risk measure. Thus, the
characteristic portfolio VR for attribute R̂ has to
minimize the risk

η̂R = q
√

wT
RCwR︸ ︷︷ ︸
σR

− wT
RR̂︸︷︷︸

R̂R

(7.1)

under the constraint

wT
RR̂

!= 1 (7.2)

In other words, for a constant portfolio excess return ̂R = 1, we construct
the portfolio with minimum risk η̂ or equivalently with maximum
Ratio 1/η̂V . But since R̂V = 1 by construction, 1/η̂V is the Deutsch
Ratio™ R̂V /η̂V . Therefore, this portfolio will have maximum Deutsch
Ratio™.

The Lagrangian for this optimization problem is

L = q
√

wT
RCwR − wT

RR̂︸ ︷︷ ︸
To be Minimized

−λ
[
wT

RR̂ − 1
]︸ ︷︷ ︸

Constraint

To find the optimal weights wR we differentiate this Langrangian with
respect to those weights and set the derivative equal to zero.

0
!= ∂L

∂wT
R

= q
CwR√
wT

RCwR

− (1 + λ)R̂ (7.3)

Figure 6.1: Comparison of Sharpe and Deutsch Ratio™ for 90% confidence of a portfolio with a holding
period of 10 days as a function of the portfolio’s volatility for a constant expected excess return of 10%
(note the logarithmic scale).
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Multiplying from the left by wT
R and observing Eq.7.2 yields the Lagrange

multiplier.

0 = q
wT

RCwR√
wT

RCwR

− (1 + λ) wT
RR̂︸︷︷︸
1

1 + λ = q
√

wT
RCwR = qσR

With this λ, the weights in Equation 7.3 become

wR = 1

q

√
wT

RCwR(1 + λ)C−1R̂

= σ 2
R C−1R̂

(7.4)

Note at this point that q has cancelled! Thus, we have the reassuring
result 

The weights of the optimal portfolio which maximizes the Deutsch
Ratio™ are independent of an investors holding period δt and confi-

dence level c.

To proceed further, it is easiest to left-multiply by R̂T , exploiting
Constraint 7.2 again:

R̂T wR = 1

σ 2
R R̂T C−1R̂ = 1

This directly yields the variance of the characteristic portfolio:

σ 2
R = 1

R̂T C−1R̂

Thus, the weights in Eq. 7.4 are explicitly

wR = C−1R̂

R̂T C−1R̂
(7.5)

As enforced by constraint 7.2, this portfolio has an excess return of 1,
i.e., of 100%. Therefore it usually contains significant leverage. Let’s now
determine this leverage, i.e., the degree of investment in risky assets. The
part of the investment which is invested in risky assets is

w = 1T wR = 1T C−1R̂

R̂T C−1R̂

and the weight of the cash account is accordingly (1 − w). The Market
Portfolio for our risk measure η is by definition, analogous to Markowitz
theory, the fully invested portfolio with maximum Deutsch Ratio™. To find
this Market Portfolio we simply divide the weights of the above optimal
portfolio by the risky portion w:

wm = 1

w
wR

= R̂T C−1R̂

1T C−1R̂

C−1R̂

R̂T C−1R̂

= C−1R̂

1T C−1R̂

But these are exactly the same weights as the weights of the Market
Portfolio in Markowitz theory, i.e. with the volatility as the risk measure,
see Eq. 2.4. We can therefore state:

The portfolio which maximizes the Deutsch Ratio™ also maximizes
the Sharpe Ratio.

Its expected excess return, volatility and its risk are

R̂m = R̂T wm = R̂T C−1R̂

1T C−1R̂

σ 2
m = wT

mCwm = R̂T C−1R̂(
1T C−1R̂

)2 = R̂m

1T C−1R̂

η̂m = qσm − R̂m =
√

R̂
T
C−1R̂

1T C−1R̂

(
q −

√
R̂T C−1R̂

)
(7.6)

8 Summary
In this paper we have introduced the Deutsch Ratio™ which is the correct
market price of risk when drift effects are taken into account. This ratio
(and not the Sharpe Ratio) emerges naturally when excess returns (instead
of returns) are considered throughout. The Capital Market Line describing
the expected excess return of the optimal investment strategy as a func-
tion of the risk incurred is given by Eq.5.5, i.e.,

R̂V = �m η̂V with �m = R̂m

η̂m

This is the central result of this paper. We have also shown by explicit
construction that the Market Portfolio defining this capital market line is
the same as in traditional Markowitz theory. Therefore, even when drift
effects are taken into account there still exists the Market Portfolio every-
body should invest (part of his/her money) in. And portfolio optimization
is as stable and parameter-independent (w.r.t. holding period and confi-
dence) when maximizing the Deutsch Ratio™ as it is when maximizing
the Sharpe Ratio, as long as holding period and confidence are chosen in
a sensible way, i.e., as long as they fulfill Eq.5.6.

Although the Market Portfolio is the same as the Markowitz Market
Portfolio and therefore independent of holding period and confidence,
any individual portfolio within the optimal strategy for a specific risk
preference ηV is still dependent on δt and c, since ηV depends on those
parameters. The optimal extent of investment w is determined by the risk
preference ηV via Eq. 4.3, i.e.,

w = η̂V

η̂m

with η̂m from Eq. 7.6. Therefore, although the portfolio to construct the
Capital Market Line is the same as in Markowitz theory, any portfolio on
that line differs from Markowitz theory. This is because any portfolio on
that line has to fulfill a constraint regarding the preferred risk (which is
different from the Markowitz volatility) while the Market Portfolio itself
only has to fulfill the “fully invested” constraint which is the same as in
Markowitz theory.
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All these concepts (among many
others) have been implemented in d-
fine’s triple-α portfolio optimization
service10. This service is also capable
of using much more realistic risk
measures like model- and parameter-
free Value at Risk and Expected Short
Fall methods, taking full account of
fat tail information and extreme
events like market crashes. To be
fully realistic, we also consistently
include transaction costs, borrowing
fees and mandate compliance con-
straints in the optimization deci-
sions. Together with other concepts
like characteristic portfolios and
stop loss strategies based on GARCH
volatility models, superb and realis-
tic performance can be generated.
Figure 8.1 shows a typical example
for such a portfolio performance
over almost 12 years (from June 1992
until March 2004).
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Figure 8.1: A typical portfolio performance over 12 years. The risky assets are ETFs on three DJ STOXX 600 Sector
Indexes (Media, Healthcare and Technology) and an ETF on the MDAX. The Benchmark is the DJ STOXX 600 itself.
The Deutsch Ratio™ was optimized under the constraints that no short selling was allowed and that the weight of
each risky asset has to always be ≤25%. The risk was kept as close to the risk of the benchmark as possible within
these constraints (but always lower than the benchmark risk). In addition each position was stop loss managed based
on its current volatility. Transaction costs were fully taken into account. They are the reason for the relatively low
trading frequency despite the fact that the optimizer was “allowed” to trade every single trading day. The annualized
average Alpha over those 12 years is 6.93%.

1. In this paper we always use “hats” to denote excess returns.
2. Since δ ln(V) = ln V(t + δt) − ln V(t + δt) = ln

[
V (t+ δ t)

V (t)

]
and by the very definition

of a return we have V(t + δt) = V(t)erV (t)δ t , i.e., δ ln(V) = rV (t)δt.
3. Note, however, that the rV are all annualized.
4. Similarly, the investment’s expected excess returns is simply

R̂V = wR̂m

5. Deutsch Ratio™ is a Trademark of d-fine GmbH, Frankfurt, Germany.
6. For all investments on the Capital Market Line we of course have �V = �m .
7. This is the fundamental difference to a risk measure based solely on the volatility
like, e.g., Eq.2.2. If such a risk measure is zero then there are no fluctuations at all by
definition.
8. For instance for a confidence of c = 50% the percentile of the standard normal distri-
bution is Q1− c = 0 and the “risks” are always ̂ηV = −R̂V and ηV = −RV no matter how
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large the fluctuations are! This clearly shows that some parameter choices are utterly
senseless!
9. This also holds if one prefers ηV as the risk measure, see Eq. 4.4.
10. See http://www.d-fine.de/triple_a

� Alexander, C. (Ed.), The Handbook of Risk Management and Analysis, John Wiley &
Sons, Chichester, 1996.
� Baschnagel, J., Paul, W., Stochastic Processes—From Physics to Finance, Springer
Verlag, Heidelberg.
� Deutsch, H.-P., Derivatives and Internal Models, 3rd Edition, Palgrave MacMillan,
New York, 2004
� Dixit, A. K., Pindick, R. S., Investment under Uncertainty, Princeton University Press,
Princeton, New Jersey, 1994.
� Elton, E., Gruber, M., Modern Portfolio Theory and Investment Analysis, 5. Edition,
John Wiley & Sons, New York, 1995.
� Grinold, R., Kahn, R., Active Portfolio Management, Probus, 1995.



Wilmott magazine 63

TECHNICAL ARTICLE 1

W

� Gwilym, O., Sutcliffe, C. (Eds.), High-Frequency Financial Market Data, Risk
Publications, London, 1999.
� Hamilton, J. D., Time Series Analysis, Princeton University Press, Princeton, New Jersey,
1994.
� Hammer D., Dynamic Asset Allocation, John Wiley & Sons.
� Haugen, R. A., Modern Investment Theory, 4. Edition, Phipe Prentice Hall,
Upper Saddle River, New Jersey, 1997.
� Jorion, P., Value at Risk: The New Benchmark for Controlling Derivatives Risk, McGraw-
Hill, 1997.
� Korajzykk, R.A. (Ed.), Asset Pricing and Portfolio Performance, Risk Publications,
London 1999.
� Longerstaey J., Introduction to RiskMetrics, Morgan Guaranty Trust Company, 1998.
� Markowitz, H. M., Mean Variance, Blackwell, 1987.
� Markowitz, H. M., Portfolio Selection, 2. Edition, Blackwell, 1998.
� RiskMetrics, Technical Document, 4. Edition JP Morgan Global Research, New York,
1996.
� Sharpe, W. F., Alexander, G.J., Bailey, J. V., Investments, 5. Edition, Prentice Hall, 1995.


