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F I N F O R M AT I C S

M
y previous article showed that

smart learners ought to adjust

the log odds of beliefs – that is,

the logarithm of the ratio of

the probabilities of two compet-

ing hypotheses – by a statistical

quantity known as “the weight of the evidence”.

To calculate the weight of the evidence:

● compute the probability that the evidence

would have occurred if the first hypothesis 

were true

● compute the probability that the evidence

would have occurred if the second hypothesis

were true

● form the ratio of the two probabilities

● take the logarithm of the ratio.

Since new evidence continually spews up,

smart learners are obliged to keep repeating this

process, endlessly updating their beliefs. That

makes the log odds for any smart learner the

cumulative sum (or integral, in continuous time)

of all the weights of evidence observed in the

past, plus the log odds of whatever beliefs you

started with.

In this article we’re going to practice apply-

ing these concepts. In the process we’ll find

remarkably simple explanations for some 

market behaviors that baff le classical finance. 

Tides of disagre e m e n t
The first problem we’ll tackle is the influence of

the initial or “prior” beliefs. Suppose two smart

learners start with different priors, so that the

difference in the initial log odds equals some

nonzero . If each of them observes the same evi-

dence and incorporates it properly, they will

adjust their log odds by identical amounts. So

what happens to the difference in their log odds?

That’s right: nothing. It will remain , regard-

less of the evidence.

At first glance, this seems doubly strange. It’s
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some hypothesis is true, whereas

Judy 

is 95 per cent sure it’s false. If new

evidence comes along that raises 

by 10, even Judy will be 

99.91 per cent confident.

But disagreements can wax as

well as wane. Suppose Punch

starts out 99.9998 per cent confi-

dent in something, whereas Judy is slightly less

confident, by a measly 0.0909 per cent. Neither

Punch nor Judy can bother fighting over such

microscopic slivers of disagreement. But suppose

the hypothesis is false. Eventually, if they keep

observing long enough, both will swing toward

the correct view. But here Judy will be much

quicker to the punch than Punch. Indeed, there

is bound to be one day when Judy has lost 95 per

cent of her confidence while Punch has lost only

5 per cent. How do I know that? Because all I’ve

done is run the first example in reverse, with a

stable difference of 6 in the log odds.

Do differences in priors always persist with-

out change? No. Opinions can ultimately con-

verge if regimes change; that is, if the past occa-

sionally ceases to be relevant. On the other hand,

uncertainty about the nature of new regimes can

breed more divergence. So I would caution read-

ers against dismissing what we’ve just seen.

Remember that standard finance imposes an

even stricter assumption, where the regime is

fixed for all time and everyone knows what it is.

As a result, standard finance can’t even explain

why reasonable people disagree, much less why

disagreements ebb and flow. The model here

can. Which do you think is a sounder foundation

for finance?

The volatility of volatility
Suppose we know a coin is biased by some fixed

amount but we’re unsure about the direction.

Denoting heads by 1, tails by 0, and the unknown

mean by , and the weight of the evidence if

heads appears as , we can calculate:

Similarly, the weight of the evidence if tails

appears is:

Hence the log odds will be a random walk

with increments . If the bias is positive, the

drift will be 

If the drift is negative, the drift will be 

Last but not least, suppose initially we think

either regime is equally likely, so that the prior

log odds is zero and the initially expected drift

is zero. Hence, everything is neatly symmetrical

around the origin and as simple as this kind of

problem can be. 

Now the price of a claim on a sequence of

coin flips will rise with the expectation of heads,
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strange theoretically, because you would think

that two rational people carefully analyzing 

the same evidence ought to eventually converge

in beliefs. But it’s also strange practically,

because even among rational people disagree-

ments ebb and flow like tides, with few signs of

constant spacing. Or perhaps I should say “

especially among rational people”, because irra-

tional people tend to get well and truly stuck in

the rut of wishful thinking.

In fact, all three perspectives are easily recon-

ciled. The “constant ” result refers not to beliefs

directly but to the log odds of beliefs. Denoting

beliefs by , the log odds are defined as 

Hence, given , can be calculated as:

This makes what is known as a logistic func-

tion in , more precisely a standard logistic func-

tion. A standard logistic function veers toward

zero or one outside of a transitional range cen-

tered on and symmetric around the origin. That

shouldn’t be too surprising, given that probabili-

ty is bounded by 0 and 1 while log odds stretch

from - to + , and given that switching a core

hypothesis with its complement shouldn’t make

any fundamental difference. 

The relationship is graphed above. The 

horizontal distance between two points repre-

sents the log odds difference between two beliefs,

while the vertical distance represents the 

corresponding probability difference. Clearly, a

constant horizontal distance can make for a 

wildly varying vertical distance. 

To illustrate, let’s suppose Punch’s prior

about something is =+3 while Judy’s is =-3.

That is, initially Punch is 95 per cent sure that
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all else being equal. In other words,

holding the coin flipping schedule

and payoffs for heads and tails are

fixed, will be a monotonically

increasing function of . To simpli-

fy some more, let’s assume buyers

are risk neutral. In that case, they

must be indifferent between a

claim with perceived probability 

and a claim consisting of fractional

shares in the flip of a good coin

and 1- in the flip of a bad coin.

That implies is linear in , with

It follows that the volatility of

the price of a claim will be

times the volatility of ,

where is the standard logistic of 

and is an ordinary random walk.

To give you a feel for what this

looks like, volatilities for four sim-

ulations are charted below. In each

of these simulations, =0.02.

Volatilities are calculated on a

rolling 100 flip basis and reported

for flips 100 to 1000. For compari-

son I chart volatilities both for log

odds and for beliefs and 1000 coins

flips.

In all the simulations, the sam-

ple volatility of logodds is very sta-

ble, with just a tiny flutter. This is true for all

ordinary random walks, including the continu-

ous variant known as Brownian motion. In con-

trast, the sample 

volatility of beliefs and/or prices shows much

more variety, with pronounced and irregular

fluctuations, although volatility does tend to

decline over time. 

The explanation is simple. Volatility of beliefs

varies with current beliefs for the same reason

that the impact of news varies with current

beliefs. Mathematically,

which is maximized at =1/2 and shrinks toward

zero at the edges. In other words, the more nearly

convinced you are about something to begin

with, the less noticeable impact any new infor-

mation will make – at least insofar as you process

new information sensibly.

So the current model, simple as it is, is far

more realistic than standard finance theory,

except for the secular decline in volatility as

uncertainty eventually dissipates. The obvious

fix for that is to allow sources of new uncertainty

through regime switching. That’s where we’re

heading in subsequent models. For those of you

who can’t wait, do a Google search for “regime

switching finance” and you’ll find a host of inter-

esting stuff. I particularly recommend some

papers by Pietro Veronesi of the University of

Chicago, 
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