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1 Introduction
The Libor Market Model of Brace Gatarek and Musiela (BGM) (1997) is the
market standard model for pricing and hedging exotic interest rate deriv-
atives. Its advantages include model parameters which are easy to inter-
pret in terms of financial variables, ability to define realistic correlation
dynamics, and the ability to price essentially any callable Libor exotics by
means of Monte Carlo valuation.

There are two main difficulties in practical implementation of the
BGM Model. Firstly the drift is strongly state-dependent and cannot be
reduced to a low-dimensional Markovian form. Whilst simulations with
long time-steps can still be performed using a suitable differencing
scheme (Hunter et al., 2001; Joshi, 2005), this does mean that Monte
Carlo simulation is the only practical method for pricing. One must work
hard to achieve acceptable convergence, particularly when computing
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hedge ratios of callable Libor exotics Piterbarg (2004). Secondly,
although calibration to market prices of caplets is of course trivial, there
is a great deal of debate surrounding the best way to perform global cali-
bration of a BGM model to market prices of all at-the-money swaptions.
The choice of calibration method becomes even richer when exten-
sions to BGM, including displaced diffusion, local volatility or stochas-
tic volatility are considered Rebonato (2004). However when the model
is used in a production environment, it is by no means simple to
ensure that a small change in market quotes give rise to a correspond-
ingly small change in model parameters and hence stable hedges are
obtained.

A second type of market model is the swap market model Galluccio et
al. (2004). The advantages and disadvantages of this model are closely
related to those of the BGM model. For instance, in the case of a co-termi-
nal swap market model, calibration to a set of coterminal swaptions is
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trivial, but achieving good numerical convergence of greeks and stable
global calibration are again very challenging.

A third type of Market Model is the Markov Functional model pro-
posed by Hunt, Kennedy and Pelsser (2000), Hunt and Kennedy (2005).
The derivation of this model has the unusual starting point of proposing
a state variable which follows a simple driftless Brownian motion with
time-dependent volatility, which is typically 1- or 2-dimensional.

dxi = σi(t)dWi (1)

〈dWidWj〉 = ρijdt (2)

The calibration of the model corresponds to the choice of the numeraire
as some function N(�x, t) of this state variable. The standard choice of
numeraire, and the one which is used in this paper, is the zero-coupon bond
with maturity TN . The model can therefore be used to price any (non-path
dependent) Libor exotics using a backwards finite difference solver. Of
course strongly path-dependent products can also be priced using Monte
Carlo methods. Whilst global calibration of the 1-factor Markov Functional
model is not possible, local calibration to the complete volatility smile of
one swap or libor rate per maturity is possible. Because the model allows cal-
ibration to the smile, it is particularly suitable for highly smile-sensitive
products such as high strike payers Bermudan swaptions.

The purpose of this paper is to present a range of numerical methods
which can be used in the calibration of the Markov Functional model.
These improve the speed of the standard calibration method described by
Hunt, Kennedy and Pelsser, but more importantly they make extensions
of the calibration, including joint calibration to caplets and swaptions,
more practical.

2 The Markov Functional Model
The standard calibration of the 1-factor Markov Functional model, as
described by Hunt, Kennedy and Pelsser, relies on a Jamshidian-type
trick. To be more specific, using the market prices of European swaptions
we can find the market price of a digital swaption which pays an annuity
if the swap rate is greater than some strike:

Dmarket (K) = N0E

[
At�(SRt − K)

Nt

∣∣∣Ft

]
(3)

where �(x) represents the Heaviside (step) function. In this calibration
method, caplets can be considered to be a single period swaption. Moreover,
having calibrated the numeraire at canonical dates tN , tN−1, . . . , ti+1 we can
price in the model a product which pays an annuity if the state variable x is
greater than some critical value x�

Dmodel (x�) = N0E

[
At(xt)�(xt − x�)

N(xt, t)

∣∣∣Ft

]
(4)

We make the ansatz that the swap rate is a monotonic function of the
state variable and solve for the swap rate as a function of state variable

SR(x) = D−1
market (Dmodel (x)) (5)

So given a continuum of European swaption prices, we can extract
the swap rate, and hence the numeraire, as a function of the state
variable.

A similar backwards-rolling calibration method can be used in the 2-fac-
tor Markov Functional model. As suggested in Hunt and Kennedy (2005) we
make the ansatz that the swap rate of interest is a monotonic function of a
1-d projection of the 2-d state variables z(x, y). Hunt and Kennedy choose the
projection function using a low-dimensional, Markovian approximation to
a BGM model which they call the ‘pre-model’. We propose another choice,
which is motivated by an approximation to a Hull-White model and which
additionally allows the efficient numerical integration methods in the cali-
bration described in section 5.

Consider the two-factor Hull-White short rate model:

df 1
t = −λ1 f 1

t + σ1dW 1
t

df 2
t = −λ2 f 2

t + σ2dW 2
t

rt = f 1
t + f 2

t + φ(t)

(6)

where φ(t) is a deterministic term. By making the substitution xt =
exp(λ1t)f 1

t , yt = exp(λ2t)f 2
t we obtain driving factors in the form of (1).

dxt = σ1 exp(λ1t)dW 1
t

dyt = σ2 exp(λ2t)dW 2
t

rt = exp(−λ1t)xt + exp(−λ2t)yt + φ(t)

(7)

In the two-factor Hull-White model, then, the short rate is a monoto-
nic function of the bilinear projection function

z(xt, yt) = exp(−λ1t)xt + exp(−λ2t)yt (8)

or more generally

z(xt, yt) = xt/
√

var(xt) + yt/
√

var(yt) (9)

In the case of a 2-factor Markov Functional model, we therefore expect
realistic behaviour by assuming that the Libor rate or swap rate is a
monotonic function of (9). Moreover, as we shall find in section 5, this sim-
ple bilinear form allows very efficient performance of the integrals used
in calibration.

3 Extrapolation of Market Swaption
Prices

The calibration method described in the previous section is simple and
numerically well-behaved. However, market data for European swaptions
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with extremely high or extremely low strikes might not exist or may be
arbitrageable for several reasons:

• Market data for at-the-money swaptions and for swaptions of
extreme strikes may not come from the same source or may not have
been updated at the same time, and hence may be inconsistent. For
example quotes for at-the-money swaptions are very liquid, and will
be typically updated on a continuous basis by market data providers.
However swaptions with extreme strikes will be much less liquid
and may be updated only occasionally.

• In many banks, smile surfaces are parametrised by means of a sto-
chastic volatility model such as the SABR model Hagan et al. (2002).
Hagan gives an asymptotic expansion for the price of a European
option in this model which is extremely accurate for strikes close to
the forward. However in the wings of the distribution, the approxi-
mation derived by Hagan for the implied volatility of a European
option can give negative probability densities and hence arbitrage-
able market prices. Of course the problem here is not the use of the
SABR model itself, but in pushing an asymptotic expansion beyond
its region of applicability. Other interpolation methods have been
suggested, such as Gatheral’s SVI (stochastic volatility inspired) para-
meterisation Gatheral (2004), which could also be used to mitigate
this problem.

Typically the degree of arbitrage from these causes will be much too
small to exploit once transaction costs are taken into account. However it
prevents the functional inversion in (5), and as a result, calibration to digi-
tal swaptions can only be performed for a finite range of strikes. Outside of
this range, some extrapolation method should be used, however it is vital-
ly important that the extrapolation method chosen for digital options
must preserve the price of a european option. In other words, if the market
price of an at-the-money European swaption (payers or receivers) is Emarket

then the extrapolation must give the correct value for a call option

Emarket =
∫ F

−∞
(df − Dmarket (K))dK (10)

and a put option

Emarket =
∫ ∞

F
Dmarket (K)dK (11)

where df is the discount factor on the payment date.
If we only have trustworthy, non-arbitrageable prices for European

swaptions with strikes in the range kmin to kmax , we must ensure that our
extrapolated market prices satisfy the following:∫ kmin

−∞
(df − Dmarket (K)) = Emarket −

∫ F

kmin

(df − Dmarket (K))dK

∫ ∞

kmax

Dmarket (K)dK = Emarket −
∫ kmax

F
Dmarket (K)dK

(12)

Otherwise, we may have a Markov Functional model which reprices
digital swaptions perfectly within the range of interest, but which fails

significantly for at-the-money European swaptions. One way to achieve
this is by constructing an interpolating object and performing the inte-
gals on the RHS of (12) using a standard method such as adaptive Gauss-
Lobatto integration. We can choose any extrapolation method satisfying
(12), but if we choose an extrapolation type such as exponential, then the
integrals on the LHS can be performed analytically and the task is partic-
ularly easy.

4 Interpolation of the Numeraire
Function

The main requirements on the numeraire are that

• It must be positive, for all choices of market data, state variable �x and
time t.

• If the numeraire is a zero-coupon bond with maturity TN , the expec-
tation of 1/N(x, t) must equal the discount factor ratio DF(t)/DF(TN)

for all t so that the model will match market prices for zero-coupon
bonds stripped from a yield curve

During the model calibration, the numeraire function is only con-
structed on a set of canonical dates. Typically these canonical dates may
be quarterly, semiannual, or annual, with the choice made according to
the period of Libor underlying the caplets, or else the fixed period of the
swaptions used for calibration. In general we will need to price products
with payment dates different from the canonical dates, so some form of
interpolation of the numeraire function is necessary.

For a 1-factor Markov Functional model, N(x, t) is stored as a 2-d inter-
polating object. The first requirement is generally achieved by choosing
an interpolation method which preserves positivity. The second require-
ment is achieved by defining a normalised ‘numeraire function’

fi(x/
√

v(t)) = DF(TN)

DF(ti)

1

N(x, ti)
(13)

where

v(t) =
∫ t

0
σ 2(s)ds (14)

is the variance of the underlying Wiener process. The functions fi(x) can
use any x-interpolation method, although we have found that log-linear
interpolation and flat extrapolation gives particularly good results. For t-
interpolation, we can interpolate between the different time-slices fi(x)
linearly in variance v(t). This interpolation method is chosen because it
preserves normalisation between the interpolation dates. For example, if
the numeraire function is correctly normalised at canonical dates:

DF(TN)

DF(t1)

∫ ∞

−∞

dx√
2πv1

exp(−x2/2/v1)

N(x, t1)
=

∫ ∞

−∞
f1(x̃) exp(−x̃2/2)

dx̃√
2π

= 1

DF(TN)

DF(t2)

∫ ∞

−∞

dx√
2πv2

exp(−x2/2/v2)

N(x, t2)
=

∫ ∞

−∞
f2(x̃) exp(−x̃2/2)

dx̃√
2π

= 1

(15)
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then the interpolated numeraire function will also be correctly nor-
malised

DF(TN)

DF(t)

∫ ∞

−∞

dx√
2πv

exp(−x2/2/v)

N(x, t)
=

∫ ∞

−∞
f (x̃) exp(−x̃2/2)

dx̃√
2π

=
∫ ∞

−∞

(
v − v1

v2 − v1
f1(x̃) + v2 − v

v2 − v1
f2(x̃)

)

× exp(−x̃2/2)
dx̃√
2π

= v − v1

v2 − v1
+ v2 − v

v2 − v1
= 1

(16)

and all zero-coupon bonds will be exactly repriced.

5 Numerical Methods for Expectation
Integrals

The calibration of the 1-factor model requires calculation of two inte-
grals, the first of which is a convolution:

I1(xt, t) = E[ f (xT , T)|Ft ]

=
∫ ∞

−∞

f (xT , T)dx√
2π(v(T) − v(t))

exp

(
− (xT − xt)

2

2(v(T) − v(t))

) (17)

Although the convolution form suggests the use of Fourier methods,
our experience is that it can be difficult to prevent edge-effects from dif-
fusing into the solution domain. Instead we perform these integrals
using straightforward Gauss-Hermite integration Press et al. (1992). The
second integral used in the 1-factor model is the conditional expectation:

I2 = E[ f (xT , T)�(xT − x�)|F0]

=
∫ ∞

x�

f (xT , T)dx√
2πv(T)

exp

(
− x2

T

2v(T)

) (18)

where again the function f (xT , T) is smooth. In the 1-factor case, the cost
of these integrals is not too great, so that the choice of numerical meth-
ods used is not too critical. However some improvement in performance
is achieved by calculating the conditional expectation integral by a
change of variable 

y = N(x/
√

v(t))

I2 =
∫ 1

y�

f (x(y), T)dy
(19)

where N(x) is the cumulative normal distribution. The integral can now
easily be performed using Gauss-Legendre integration. Note that the
method of an inverse cumulative normal transform followed by Gauss-
Legendre quadarature only gives good results if the integrand meets
some regularity conditions. In particular, for some functions f (x), the

polynomial fit implicit in the Gauss-Legendre method is very far from
the original function. However in this case, particularly when using flat
extrapolation of the numeraire function, the algorithm works well.

In the 2-factor Markov Functional model, the choice of integration
method becomes much more important. The convolution integral:

I3(�xt, t) = E[f (�xT , T)|Ft ]

=
∫ ∞

−∞

∏
i

dxi√
2π

exp

(
− 1

2
(�xT − �xt).v

−1.(�xT − �xt)

)
f (xT , T)√

det v

(20)

is an integral of a smooth function over a Gaussian kernel. One possible
approach to integrals of this type is to diagonalise the matrix v, and to
use 1-d Gauss-Hermite integration for each eigenvector direction. This is
known as ‘repeated quadrature’. With Gauss-Hermite quadrature of
order n for each direction, this will require n2 evaluations of the inte-
grand. Another approach, which we have found gives improved speed
with no loss of accuracy, is to use a cubature formula. This technique is not
widely known in Quantitative Finance, and the reader is referred to Cools
(1997) for an introduction to the subject. Briefly, instead of the 1-d set of
orthogonal polynomials which are used to construct Gauss-Hermite
points and weights Press et al. (1992), cubature techniques start with a
basis set of 2-d orthogonal polynomials. Again the aim is to find a set of
weights and points such that the integral is approximated by

∫
K(�x)f (�x)d�x ≈

N∑
i=1

wif (�xi) (21)

Finding the optimal set of points �xi at which the integrand should be
evaluated is a great deal more difficult than in the 1-dimensional case
and relies on finding points which are simultaneously zeros of as many
as possible of the basis functions. This uses advanced group-theoretic
techniques and efficient formulae are only known for a few values of N.
In the case of a 2-dimensional integration with a Gaussian kernel, for
example, a number of efficient formulae of degree 5 are known (i.e. inte-
grating exactly all bivariate polynomials of order 5 and less) [3] for values
of N between 7 and 12. A number of formulae of degree 9 are known,
with values of N between 18 and 25. A number of higher order schemes
are known, but those described give remarkably quick and robust results
for the cost of only a small number of function evaluations.

The integral I4 is defined by

I4 = E[ f (�xT , T)�(z(x, y) − z�)|F0]

=
∫ ∞

−∞

∏
i

dxi√
2π

�(z(x, y) − z�) exp

(
− 1

2
�xT

T .v
−1.�xT

)
f (�xT , T)√

det v

(22)

and since we chose a bilinear projection function (9) 

z(x, y) = cxx + cyy = r(x cos θ + y sin θ) (23)

we can rotate the coordinates of the integral so that the digital condition
affects only one direction.
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�x′ = U�x (24)

U =
(

cos θ sin θ

− sin θ cos θ

)

so that 

I4 =
∫ ∞

x�

dx′
∫ ∞

−∞
dy′ exp

(
− 1

2
�x′T

T .U.v−1.UT .�x′
T

)
f (UT �x′

T , T)

2π
√

det v
(25)

We can then perform the y′—integral using Gauss-Hermite, transform
the x′—coordinate using (19) and then perform the x′—integral using
Gauss-Legendre. This method gives excellent accuracy because it deals
explicitly with the discontinuity in the integrand.

6 Calibration of the Volatility Function
and Typical Results

When implemented in C++, the numerical methods described above
allow an efficient implementation of the standard calibration of the
Markov Functional model. For a simple example with 20 canonical dates
(10 yrs, semiannual), calibration of the 1-factor model on a grid of size 50
takes around 0.06 seconds on a 2.8GHz Intel Pentium IV Xeon. For the 2-
factor model, calibration of the numeraire on a 30*30 grid takes about
0.28 seconds. 

In each case, the calibration is sufficiently fast that we can perform
some or all of this calibration sweep iteratively, whilst solving for the volatil-
ity σ (t) of the Markovian process (1). As described in Hunt et al. (2000), the
term-structure of volatility effectively controls the integrated correlation of
different forward rates, whilst preserving a link to a continuous hedging
argument. To give a simple example, we have used a Levenberg-Marquardt
algorithm Press et al. (1992), Nielsen (1999) to calibrate the piecewise con-
stant volatility of the Markovian process, enabling calibration to the whole
(smile-consistent) distribution of caplets, whilst additionally calibrating to a
set of at-the-money coterminal swaptions. Each call to the error function of
the nonlinear solver does the following steps:

• set the piecewise constant volatility of the Markovian process to the
chosen value;

• perform the Markov-functional calibration sweep;
• using the newly calibrated model, compute the prices of the set of at-

the-money coterminal swaptions;
• the error function returned is the difference between model and

market prices for these coterminal swaptions;

Such a calibration type might be suitable for a product such as a
callable range accrual on Libor. Digital caplets with any strike are cor-
rectly repriced, so we can be confident that the underlying range accru-
al, which can be decomposed into a sum of digital caplets, is correctly
priced. The optionality will be priced correctly, at least in the limit that
the barrier levels are widely spaced, because we can reprice all of the
underlying European options into which we might exercise. 

Typical results from the calibration were gathered using market data for
the Euro interest rates market, observed on 9th August 2005. For the 1-fac-
tor Markov Functional model, the numeraire was stored on a 80 point grid
with 20 canonical dates (10 yrs semiannual). Calibration of the numeraire
function and of σ (t) took 35 seconds using the algorithm described above,
and 3 outer iterations of the Levenberg-Marquardt algorithm were used. As
expected, the complete smile for the caplets was reproduced perfectly (see
figure 1). The ATM coterminal swaptions were also repriced, although again
as expected, out-of-the-money the smile was not matched perfectly (figure
2). Figure 3 shows repricing errors for ATM options across the swaption
matrix. The calibrated term-structure of σ (t) is shown in figure 4.

The remaining calibration error had two sources. Firstly, numerical
convergence error which could be reduced by increasing the number of
points on the numeraire grid and the number of Levenberg-Marquardt
iterations. Secondly, a small error was introduced by calibrating to canon-
ical caplets (with no fixing lag) and then repricing real caplets with a 2
business day fixing lag.

Similar results were obtained using a 2-factor model. For example, with
a 30*30 grid and 2 outer iterations of the Levenberg-Marquardt solver, glob-
al calibration to caplets and coterminal swaptions took 99 seconds. Because
of the somewhat coarser numerical grid, the maximum calibration error
for the ATM caplets or coterminal swaptions in the calibration set increased
from 0.1% illustrated in figure 3, to 0.21%. Of course the use of a 2-factor

Figure 1: Calibration results for caplets with a start date of 4y. As
these are being used for the calibration of the numeraire function, they
are all exactly repriced.
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model would now enable more realistic modelling of products which
depend on CMS spread. As a simple example, figure 5 shows a scatter plot of
Monte Carlo paths, illustrating the decorrelation between the 5yr swap rate
and the 1yr swap rate, observed in 5 years.

As a final illustration of the use of the Markov Functional model, the 1-
factor model was used to price Bermudan swaptions. The prices of co-termi-
nal swaptions were used to calibrate the numeraire function, and the prices
of ATM caplets were used to calibrate the volatility function. The results
obtained were compared with prices from a Hull-White model calibrated to
at-the-money coterminal swaptions, and also with market consensus

Bermudan prices (source: Markit Group). In an illustration of the phenome-
non described at the start of section 3, the data supplier of the swaption and
caplet prices used as calibration inputs was different to the source of the
Bermudan prices used to compare the model outputs. The data supplier
provided prices for caps and forward-starting caps which were then subject-
ed to a proprietary caplet stripping method.

Results are presented in figure 6 for 10y no-call 1y EUR Bermudan swap-
tions. As expected, the prices of low strike payers and high strike receivers
options are dominated by their intrinsic value, and hence are not sensitive
to details of the model. The Hull-White model gives acceptable accuracy for

TECHNICAL ARTICLE 2

Figure 4: Calibration results for the Markovian process volatility σ (t).

Figure 2: Calibration results for 5y/5y swaptions. As these are being
used for the calibration of the volatility σ (t), the ATM coterminal swap-
tions are exactly repriced.

Figure 5: Decorrelation between the 5yr swap rate and the 1yr swap rate
observed in 5yrs, using the 2-factor Markov Functional model. 1024 Monte
Carlo samples are plotted. Integrated lognormal correlation between these
two swap rates is 90.8%, comparable with that observed in the market.

Figure 3: Calibration results for the ATM swaption matrix. The table shows the
difference between market implied volatilities and implied volatilities from the
calibrated model. The options which were part of the calibration set are shown
in boldface.
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low strike receivers options because the volatility skew enforced by Hull-
White is reasonably close to that observed in the market. However for high-
strike payers swaptions, we find that the Markov Functional model’s abili-
ty to match the smile exactly gives a significant improvement in the accu-
racy of pricing.

The Hull-White results were obtained using calibration to at-the-money
options, to highlight the smile-sensitivity of Bermudan swaptions. In this
case there is some debate regarding whether it is preferable to calibrate to
at-the-money, at-the-strike, or at-the-exercise-boundary options. The second
and third of these choices will give a better match to market prices than at-
the-money calibration. However there are strong objections to the use of
these methods in production. Firstly, there is a risk of self-arbitrage, incon-
sistency between the various locally calibrated models used to price

options within a single Bermudan book. Second, it is not clear how to
extend these methods to other products such as callable range accruals or
snowballs, whilst guaranteeing stable hedge parameters.

It is important to ensure that the extra degrees of freedom added to
the Markov-Functional model did not result in over-fitting market data.
The calibration method described above decouples the roles of the differ-
ent model parameters: the numeraire function N(x, t) is calibrated to
caplets, whilst the volatility function σ (t) is calibrated to swaptions.
Hunt, Kennedy and Pelsser give a simple financial interpretation of the
term-structure of σ (t) in terms of a mean-reversion parameter, control-
ling the terminal decorrelation. And experimentally we find that a small
change in market data gives rise to a small change in model parameters,
so that we believe that the system has a single global optimum.

7 Conclusion
The following numerical methods are proposed for use with the Markov-
Functional model:

• a safe method to extrapolate digital option prices beyond those
observed in the market;

• storage of a rescaled numeraire function, to enforce correct normali-
sation at all event dates;

• in the case of the 2-factor model, use of a simple linear projection
function. This allows the integrals in calibration to be performed
very efficiently;

• cubature techniques which can give significantly higher speed than
repeated Gauss-Hermite quadrature.

When these methods are used, standard calibration as described by
Hunt, Kennedy and Pelsser is extremely rapid. In fact, it can be fast
enough that it is possible to calibrate the Markovian volatility functions,
thereby achieving joint calibration to swaptions and caplets. 
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