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1 Introduction
The question of estimation of volatility has been studied extensively in
the past two decades. As discussed for instance in (Javaheri, Lautier and
Galli 2003) one possible approach would be the use of nonlinear filter-
ing. In that article techniques such as the extended Kalman filter (EKF),
the unscented Kalman filter (UKF) and simulation based particle filtering
(PF) were applied.

On the other hand, the concept of Wiener chaos expansions (WCE)
has been recently introduced in finance in the context of Malliavin cal-
culus (Oksendal 1997), option hedging (Lacoste 1996) as well as unified
framework for interest rate and foreign exchange modeling (Hughston
and Rafailidis 2005). Interestingly WCE has a natural application to the
problem of nonlinear filtering as pointed by many such as (Lototsky,
Mikulevicius and Rozovskii 1997).

In this paper this idea is used to present a series expansion allowing
us to find the optimal estimation of the hidden volatility.

2 The Estimation Problem
We suppose we have an unobservable variance vt which could correspond
either the instantaneous volatility in a stochastic volatility framework, or
the implied volatility in a stochastic implied volatility model.

We assume that the initial volatility has a known distribution 

v0 ∼ q

and follows the stochastic differential equation (SDE)

dvt = f (t, vt)dt + σ (t, vt)dzt (1)

where dzt is a Brownian motion (BM)  and f (t, v) and σ (t, v) are known
deterministic functions. For instance for a square root stochastic volatility
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model (with zero correlation1) we would have under the risk neutral
measure f (t, v) = κ(θ − vt) and σ (t, v) = σ

√
vt where the parameters κ , θ

and σ are the usual speed of mean reversion, long term variance and
volatility of volatility.

The observation yt could be for instance the option price 

dyt = h(vt)dt + dwt (2)

where dwt is a BM uncorrelated with dzt and h(.) is a (usually nonlinear)
deterministic function. For example, for a stochastic implied volatility
model h(.) will be the Black Scholes function, and for the square root
stochastic volatility model h(.) will be the Heston closed form model. As
for dwt it could be considered as the “market noise”.

In a discrete observation framework, having yn = h(vn) + Bn , it is
known (Kushner and Budhiraja A. S. 2000) that the optimal conditional
density ρn of vn given all the observations yk for 0 ≤ k ≤ n follows the
iterative Bayes equation

ρn(v) = cn.Ln−1,n (ρn−1) (v). exp
{− (yn − h(v))2

/2
}

where cn is a normalizing constant and Ln−1,n(p) is the Fokker-Plank solu-
tion on [tn−1, tn ]. It is interesting to note that setting  exp

{−(yn − h(v))2/2
}

and repeating this operation many times, we shall have

ρn(v) ∝ ηn(v).Ln−1,n

(
ηn−1(v)Ln−2,n−1

(
. . . η1(v).L0,1q(v)

))
which is a form of chaotic expansion. Therefore the concept of chaos is
introduced quite naturally in this manner.

In the continuous framework the optimal conditional density in
πt(g) = E[g(vt)|Yt ], where g(.) is any deterministic function (for instance
identity g(vt) = vt ) and Yt all the information between times 0 and t,
follows a stochastic partial derivatives equation (SPDE) commonly
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referred to as the Kushner-Stratonovich (KS) equation

πt(g) = π0(g) +
∫ t

0
πs(Lsg)ds +

∫ t

0
[πs(gh) − πs(g)πs(h)](dys − πs(h)ds)

with again L the Fokker-Planck operator associated to the volatility SDE

L(p) = − ∂(p(v)f (v))

∂v
+ 1

2

∂2(p(v)σ 2(v))

∂v2
(3)

By performing a change of measure we can significantly simplify the KS
equation. Indeed, posing

λt = exp

(
−

∫ t

0
h(vs)dws − 1

2

∫ t

0
h2(vs)ds

)

and making the change of measure dP∗/dP = λt where dyt becomes a BM
uncorrelated to dvt , we shall have from the conditional version of the
Bayes theorem (Elliott, Aggoun and Moore 1995)

πt(g) = E[g(vt)|Yt ] = E∗ [g(vt)λ
−1
t |Yt ]

E∗ [λ−1
t |Yt ]

calling u(t, v) the unnormalized density, we will therefore get 

E[g(vt)|Yt ] =
∫

R g(v).u(t, v)dv∫
R u(t, v)dv

(4)

and this new density u(t, v) follows a simpler SPDE called the Zakai
equation

du(t, v) = L(u)dt + h(v).u(t, v).dyt (5)

3 The Chaos Expansion
One way to solve for u(t, v) would be to use a WCE as follows. Taking an
orthonormal functional basis (mk(t))k≥1 we can introduce the complete
orthonormal system

ξα(y) =
∏

k

1√
αk !

Hαk

(∫ t

0
mk(s)dys

)

where α = (αk)k≥1 is a multi-index of integers such that the length
|α| = ∑

k≥1 αk remains finite and Hn(x) s the Hermite polynomial of order n.
A form of WCE (referred to as the “second” form or the Cameron-

Martin version) states that we can write

u(t, v) =
∑
k≥0

∑
|α|=k

1√
α!

ξα(y).φα(t, v) (6)

where φn(t, v) are deterministic coefficients to be determined.
It is fundamental to note that this expansion (much like Fourier or

Karhunen-Loeve expansions) separates the SPDE in two pieces: a determinis-
tic piece represented by the functions φn(t, v) which can be solved just by
knowing the volatility dynamics and the nature of the nonlinear observa-
tion function h(v), and on the other hand, a stochastic piece putting all the

randomness of dys in the Hermite polynomials. Hence the computation of
the deterministic functions could be carried out separately and could be
viewed as a calibration process.

As shown in (Lototsky, Mikulevicius and Rozovskii 1997) the above
coefficients could be obtained by solving (deterministic) PDE’s with usual
techniques. The PDE’s could be written as 

∂φα(t, v)

∂ t
= L(φα)(t, v) +

∑
k

αk.mk(t).h(v).φα∗ (k)(t, v) (7)

where α∗(k) = (α1, . . . , αk−1, αk − 1, αk+1, . . .) is another multi-index. A
quick justification for the above is the following:

It can be verified that the above polynomial ξα(y) verifies

ξα(y) = 1√
α!

∂α

∂zα
Pt(z)|z=0

where ∂α

∂ zα is the derivative taken upon all indexes αk ’s present in α and

Ps(z) = exp




∫ s

0

∑
k≥1

mk(τ )zk.dy(τ ) − 1

2

∫ s

0

∑
k≥1

(mk(τ )zk)
2dτ




with (zk) a sequence of real variables. 

Clearly

dPs(z)

Ps(z)
=

∑
k≥1

mk(s)zkdy(s)

and u(t, v) satisfying the Zakai equation (5), by Ito lemma we shall have

d(u(s, v)Ps(z)) = Lu(s, v)Ps(z)ds + h(v)
∑
k≥1

mk(s)zku(s, v)Ps(z)ds

+ h(v)u(s, v)Ps(z)dy(s) + u(s, v)
∑
k≥1

mk(s)zkPs(z)dy(s)

and taking expectations E∗ [.] and setting φ(s, v, z) = E∗ [u(s, v).Ps(z)] we
will obtain the deterministic PDE2

∂φ

∂s
= Lφ +

∑
k≥1

mk(s)zkh(v)φ

On the other hand by definition of the Cameron-Martin decomposition,
the coefficient

φα(s, v) = √
α!E∗ [u(s, v).ξα(y)]

therefore using the previous identification of ξα(y)

φα(s, v) = ∂α

∂zα
E∗ [u(s, v)Ps(z)]|z=0

applying the operator ∂α

∂ zα to the previous PDE

∂φα

∂s
= Lφα +

∑
k≥1

mk(s)h(v)
∂α

∂zα
[zkφ(s, v, z)]|z=0

(QED)
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Practically we can choose a length |α| < N and an order (greatest non-
zero index) d(α) < n and subdivide the time interval over sub-intervals of
a length � as {[ti−1, ti]}i≥1 and solve

∂φ i
α(t, v)

∂ t
= L(φ i

α)(t, v) +
∑

k

αk.mk(t).h(v).φ i
α∗ (k)(t, v)

over each [ti−1, ti] with the boundary condition φ i
α = u(ti−1, v) if |α| = 0

and the null function otherwise.
A convenient choice for the orthonormal basis (mi

k(s))k≥1 would be
setting mi

k(s) = mk(s − ti−1) and

m1(s) = 1/
√

�

mk(s) = √
2/� cos

(
π(k − 1)s

�

) (8)

for k > 1 within [0, �] and null outside.
With this choice, we will have∫

m1(s)dy(s) ≈ y(ti) − y(ti−1)√
�

and for k > 1 taking over [ti−1, ti]

ys ≈ yi−1 + yi − yi−1

�
s

with 0 ≤ s ≤ � we will get∫
mk(s)dy(s) ≈

√
2�

π 2(k − 1)2
(yi − yi−1)

(
(−1)k−1 − 1

)

3.1 Chaos Expansion of Order One
We can then take simple cases such as N = n = 1 and

∂φ i
0(t, v)

∂ t
= L(φ i

0)(t, v)

∂φ i
1(t, v)

∂ t
= L(φ i

1)(t, v) + m1(t).h(v).φ i
0(t, v)

with boundary condition φ i
0(0, v) = u(ti−1, v) and φ i

1(0, v) = 0 and of
course u(t0, v) = q(v)

As for the orthonormal set we take

m1(s) = 1/
√

�

Having φ0 and then φ1 over the time interval [ti−1, ti] then

u(ti, v) ≈ φ0(t, v) + φ1(t, v)ξ1 (9)

where 

ξ1 =
∫

m1(s)dy(s) = y(ti) − y(ti−1)√
�

Note that this would be equivalent to applying an Euler discretization
scheme to the Zakai equation.

3.1.1 Solving the PDE’s
The PDE’s could be solved for example via a finite difference (FD) tech-
nique. Taking a time grid ti = t0 + i� and a space grid (vj)1<j<M with an
interval δ we can write

u j
i = u j

i−1.[1 − �

δ2
σ (ti−1, v j

i−1) + h(v j
i−1).(yi − yi−1)]

+ u j+1
i−1 .[− �

2δ
f (ti−1, v j+1

i−1 ) + �

2δ2
σ (ti−1, v j+1

i−1 )]

+ u j−1
i−1 .[

�

2δ
f (ti−1, v j−1

i−1 ) + �

2δ2
σ (ti−1, v j−1

i−1 )]

this is a forward equation with the initial condition uj
0 = qj .

It is fundamental to note that this FD scheme can be separated in two
pieces

u0 j
i = u j

i−1.

[
1 − �

δ2
σ

(
ti−1, v j

i−1

)]

+ u j+1
i−1 .

[
− �

2δ
f
(

ti−1, v j+1
i−1

)
+ �

2δ2
σ

(
ti−1, v j+1

i−1

)]

+ u j−1
i−1 .

[
�

2δ
f
(

ti−1, v j−1
i−1

)
+ �

2δ2
σ

(
ti−1, v j−1

i−1

)]

which corresponds to Chaos of order zero, or the Fokker-Planck equation,
and

u1 j
i =

[
u j

i−1.h(v j
i−1).

√
�

]
.(yi − yi−1)/

√
�

which adds the first degree supplement, and of course

u j
i = u0 j

i + u1 j
i

this is because φ i
1(0, v) = 0 which is also true for all higher order φ’s.

Therefore the actual Fokker-Planck FD happens only for φ0 and then we
can add the higher order terms.

Having obtained uj
i in this manner, the estimation of the variance vi

will be

v̂i ≈
∑M

j=1 u j
i v j

i∑M
j=1 u j

i

3.2 Chaos Expansion of Order Two
We take |α| ≤ N = 2 and d(α) ≤ n = 2 which means in addition to the
above functions we will have φ2 as well as  φ1,1, φ2,2 and φ1,2

∂φ i
2(t, v)

∂ t
= L(φ i

2)(t, v) + m2(t).h(v).φ i
0(t, v)

as well as

∂φ i
1,1(t, v)

∂ t
= L(φ i

1,1)(t, v) + 2m1(t).h(v).φ i
1(t, v)

where α1 = 2 and α2 = 0

∂φ i
2,2(t, v)

∂ t
= L(φ i

2,2)(t, v) + 2m2(t).h(v).φ i
2(t, v)
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where α1 = 0 and α2 = 2

∂φ i
1,2(t, v)

∂ t
= L(φ i

1,2)(t, v) + m2(t).h(v).φ i
1(t, v) + m1(t).h(v).φ i

2(t, v)

where α1 = 1 and α2 = 1.
This therefore involves solving six PDE’s instead of two, and3

ξ2 =
∫

m2(s)dy(s)

ξ1,1 = 1√
2

[(∫
m1(s)dy(s)

)2

− 1

]

ξ2,2 = 1√
2

[(∫
m2(s)dy(s)

)2

− 1

]

ξ1,2 = ξ2,1 =
(∫

m1(s)dy(s)

) (∫
m2(s)dy(s)

)

and 

u(t, v) ≈ φ0(t, v) + φ1(t, v)ξ1 + φ2(t, v)ξ2 + φ1,1(t, v)ξ1,1

+ 2φ1,2(t, v)ξ1,2 + φ2,2(t, v)ξ2,2

(10)

which completes the algorithm. The numeric solving via FD could be car-
ried out similarly to the first degree expansion.

4 Future Work
In order to test the performance of the above tools, we could simulate a
time series of (theoretically unknown) instantaneous variances vi as well
as for instance three-months at-the-money option prices yi = C(vi) + wi

with C(v) the Heston closed form function for a given set of parameters
(κ, θ, σ ) and zero stock volatility correlation. Given that we will have gen-
erated this series artificially, we will have access to the unobservable vi

and we will therefore be able to estimate the error ei = |vi − v̂i|. Hence we
could compare the performance of these tools to the commonly used EKF
and UKF.

Preliminary tests indicate that the WCE of order one is comparable to
EKF, however the higher order WCEs outperform both EKF and UKF. This
is not surprising since as mentioned for instance in (Ito and Xiong 2000)

an Euler discretization of the Zakai equation and the application of the
usual discrete filter (Javaheri, Lautier and Galli 2003)

p(vi|y1:i−1) =
∫

p(vi|vi−1)p(vi−1|y1:i−1)dvi−1

p(vi|y1:i) = p(yi|vi)p(vi|y1:i−1)

p(yi|y1:i−1)

would precisely provide a Gaussian filter such as Kalman’s. Furthermore,
as we saw this corresponds to a first order chaos expansion. A more accu-
rate measure of the performance of these chaos based algorithms is left
to a future publication in the interest of brevity.

1. We could introduce the correlation by using techniques such as the ones discussed in
(Javaheri, Lautier and Galli 2003).
2. Needless to say, the operator L only affects the variable v. 
3. Note that φ1,2 = φ2,1
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