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The Martingale Optimality
Principle: The best you can 
is good enough 

In this sense, a martingale can be characterized by the phrase
“Tomorrow will be like today”. However, this phrase leaves a lot of space
for different mathematical consequences. Typical examples are given by
the pictures below all displaying realizations of a martingale and show-
ing a fair random walk with constant step size (i.e. the probability for an
up move of 1 equals that of a down move of 1), a fair random walk with
increasing step size (i.e. at time t = n the step size equals ±n), and a fair
random walk with decreasing step size 1/n. 

Still, the main question remains: Why should such a behaviour of
your wealth or of your optimal utility or of any other thing that you can
control should be desirable ? Or:

1 Introduction 
The word martingale is definitely among the most used words in mathe-
matical finance, a fact which is due to the fundamental importance of
martingale measures in connection with option pricing. However, this
subject will not be touched here. The area of application where this arti-
cle is centered around is not pricing but optimal behaviour of an indi-
vidual at a financial market or at any area where decisions about control
actions have to be taken such as looking for optimal investment strate-
gies, steering an airplane in an efficient way, or searching for the opti-
mal velocity of a production line. What makes the appearance of a mar-
tingale mysterious in this connection is its usual interpretation as an
equilibrium or as a model for a fair game where one is (in the mean) as
rich after having played the game as one was before participating in it.
And this is definitely not the aim of someone optimizing his income ! 

Tomorrow will be like today 
So let us first define what a martingale is:

Definition 1:
A mmaarrttiinnggaallee {(X(t), Ft), t ∈ [0, T]} is a (real-valued) integrable stochastic
process satisfying 

E(X(s)|Ft) = X(t) a.s. for all s, t ∈ [0, T] with s ≥ t

where we also allow the fixed constant T to equal plus infinity. 
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Figure 1: A fair random walk
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inequalities of impulse control. The direct applications in finance will be
the solution of both the standard Merton problem of portfolio optimiza-
tion and a verification theorem for the portfolio problem under fixed and
proportional transaction costs. 

2 The Martingale Optimality Principle 
Let Xu(t) be a controlled stochastic process, i.e. a stochastic process
depending on a strategy u(.) (“the control”) which we are allowed to
choose. Here, the time set can be either continuous (in which case we
concentrate on the intervall [0, T ]) or discrete (in which case we consid-
er the finite set {0, 1, . . . , T}), the state space should be some subset of
IRd and the control u(.) should satisfy conditions such that the resulting
controlled process exists and is uniquely determined by the choice of
the control. Of course, the control should only be chosen with respect
to the knowledge of the past and present of the controlled process, i.e.
it should be progressively measurable with respect to a suitable filtra-
tion. We further assume the controlled process to be a Markov process.
The technical assumptions will be made more precise when we give var-
ious concrete applications of the martingale optimality principle in the
next section.

Our aim is the solution of the following control problem

max
u(.)∈A(x,I)

E0,x(F(Xu(T))), (1)

i.e. we maximize the expected utility of the final value of the con-
trolled process where suitable smoothness assumptions on the utility
function F are specified when needed and where A(x, I) denotes the set
of admissible control processes on the time set I given that the initial
state of the controlled process is x. Exact specifications of an admissi-
ble control will depend on the nature of the problem and the dynam-
ics of the underlying process and will therefore be given in the differ-
ent applications. 

The principle method of stochastic control now is to look at a whole
family of such control problems parametrized by all possible initial states
of the time and the controlled process (t, x) which gives rise to the so
called value function

v(t, x) = sup
u(.)∈A(x,I(t))

Et,x(F(Xu(T))) (2)

where I(t) denotes the restricted time set starting at time t. 
Having introduced this minimal set of ingredients we are now already

able to formulate the martingale optimality principle. 

TThheeoorreemm 11:: The Martingale Optimality Principle
If there exists a control strategy u∗(.) such that with the definition of the
function

g(t, x) := Et,x
(
F
(
Xu∗

(T)
))

(3)

When should you hope that tomorrow is like today ? 
The general answer is simple. If today is already brilliant then it would be
nice if tomorrow would be the same. A very intuitive example from sports
is given by your football team being on top of the table. It simply cannot
get better ! Thus, it would be optimal if one could conserve this state over
time. The mathematical answer to the question will be given by the mar-
tingale optimality principle. It is a general principle which can on one
hand be used to solve optimal control problems and on the other hand
can be used to derive nearly all optimality characterizations in the area of
stochastic control independent on the dynamics of the underlying con-
trolled process. However, its proof is extremely simple. We will state it in a
very general form and demonstrate how optimality and existence proofs
of control strategies can be separated by using it. Special applications are
intuitive derivations of the HJB-equation and the quasi-variational
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Figure 2: A fair random walk with increasing step size

Figure 3: A fair random walk with decreasing step size
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we have that

(M) g
(
t, Xu∗

(t)
)

is a martingale
(SM) g(t, Xu(t)) is a supermartingale for all admissible control

strategies u(.)

then we obtain:

a) u∗(.) is an optimal control strategy for problem (1).
b) For all possible initial states of the time and the controlled process (t, x)

we get

g(t, x) = v(t, x), (4)

i.e. g(., .) coincides with the value function of problem (1).

PPrrooooff:: We first prove assertion a). Let therefore u(.) be an arbitrary admis-
sible control and u*(.) an admissible control such that the corresponding
function g(., .) as defined in (3) satisfies the conditions (M) and (SM). We
then obtain

E0,x
(
F
(
Xu∗

(T)
)) = E0,x

(
g

(
T, Xu∗

(T)
)) = g(0, x) ≥ E0,x(g(T, Xu(T)))

= E0,x(F(Xu(T))),

where we have used the properties (M) and (SM). Hence, optimality of u*(.)
is proved. To obtain assertion b) just replace the pair (0, x) by (t, x)in the
above chain of equalities and inequalities (where we of course implictly
use the Markov property of the controlled processes).

RReemmaarrkk:: The simplicity of the proof of the martingale optimality principle
is a bit surprising given the usually long and technical proofs of optimali-
ty results (compare e.g. Fleming and Soner (1993) or Korn and Korn (2001)).
However, it will turn out that the existence of a control process with the
properties (M) and (SM) is quite a strong assumption, but it will also imply
all the popular optimality results of stochastic control. Of course, besides
existence, the main question is how to get such a strategy. We will deal
with this problem in the following explicit examples in the next section.

3 The Martingale Optimality Principle 
in Control and in Finance
i) TThhee HHJJBB--EEqquuaattiioonn ooff ssttoocchhaassttiicc ccoonnttrrooll aanndd MMeerrttoonn’’ss ppoorrttffoolliioo pprroobblleemm
We first consider the classical case of a controlled stochastic differential
equation, i.e. we assume that the controlled process Xu(t) is the solution
of a stochastic differential equation

dXu(t) = µ(t, Xu(t), u(t))dt + σ (t, Xu(t), u(t))dW (t) (5)

where the time set is the intervall [0, T], W (t) a one-dimensional
Brownian motion, and the coefficient functions are uniformly (with
respect to time t and the control u) Lipschitz in the x-variable. We con-
sider problem (2) and assume that F is continuous, concave and grows at
most polynomially in x.

To make use of the martingale optimality principle we consider some
arbitrary control process u(.) and assume that the function

h(t, x) := Et,x(F(Xu(T))) (6)

is a C1,2 -function. Application of Itô’s formula together with representa-
tion (5) leads to 

h(t, Xu(t)) = h(0, x) +
t∫

0

hx(s, Xu(s))σ (s, Xu(s), u(s))dW (s)

+
t∫

0

[ht(s, Xu(s)) + hx(s, Xu(s))µ(s, Xu(s), u(s))

+ 1
2 hxx(s, Xu(s))σ 2(s, Xu(s), u(s))]ds.

(7)

Under suitable growth conditions (such as h(.) being polynomially
bounded) the stochastic integral in (7) is a martingale. Hence, h(t, Xu(t))
would be a martingale if the integrand in the ds-integral would vanish. It
would be a supermartingale if this integrand would always be non-positive.
Taking into account the martingale optimality principle, a control process
with an associate function h(., .) as given in (6) would be optimal, and fur-
ther h(., .) would coincide with the value function. We have now totally
specified all our requirements on both the optimal control u(t) and the
corresponding function h(., .) and by using the martingale optimality
principle we have thus proved the following well-known result: 

TThheeoorreemm 22:: Verification theorem for the HJB-Equation
Let there exist a polynomially bounded classical C1,2 -solution to the
HHaammiillttoonn--JJaaccoobbii--BBeellllmmaann EEqquuaattiioonn of stochastic control

0 = sup
u∈U

{gt(t, x) + µ(t, x, u)gx(t, x) + 1
2 σ 2(t, x, u)gxx(t, x)} (8)

F(x) = ν(T, x) (9)

Then with v(t, x) denoting the value function of problem (2) we have:

a) g(t, x) ≥ v(t, x) ∀ (t, x) ∈ [0, T) × R .

b) If there exists an admissible control u*(t) satisfying

u∗(t) ∈ arg max
u∈U

{
gt

(
t, Xu∗

(t)
) + µ

(
t, Xu∗

(t), u
)

gx

(
t, Xu∗

(t)
)

+ 1
2 σ 2

(
t, Xu∗

(t), u
)

gxx

(
t, Xu∗

(t)
)}

then we have

g(t, x) = v(t, x) ∀ (t, x) ∈ [0, T) × R, (10)

and u*(t) is an optimal control strategy for problem (2).

RReemmaarrkk::
1. It is worth pointing out that now the proofs of optimality and exis-

tence for an optimal control are well separated. While the martingale
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optimality principle ensures the optimality, the existence of such a
control is implied by the existence of a sufficiently smooth solution of
the HJB-Equation. 

2. Of course, the relevant variants for verification results for HJB-
Equations for problems with running costs, with constrained state
space or with an infinite horizon (see Fleming and Rishel (1975) or
Fleming and Soner (1993) for an overview on the different forms of the
continuous-time stochastic control problems) can be derived in a sim-
ilar fashion.

EExxaammppllee:: MMeerrttoonn’’ss ooppttiimmaall ppoorrttffoolliioo pprroobblleemm
An even more explicit example than the above one of Theorem 2 is given
by Merton’s portfolio problem (see Merton (1969), (1971), (1990)). We con-
sider the special case of a terminal wealth problem: Given that an
investor invests in a riskless bank account and a risky stock with price
dynamics given by

dP0(t) = P0(t)rdt, P0(0) = 1,

dP1(t) = P1(t)[bdt + σ dW (t)], P1(0) = p
(11)

(where W (t) is a one-dimensional Brownian motion) the investor’s goal is
to maximize 

max
π(.)∈A(x)

E0,x(U(Xπ (T))) (12)

where the utility function U(x) is assumed to be strictly increasing and
strictly concave (typical examples are ln(x) or xγ with 0 < γ < 1). Here,
π (.) denotes the investor’s portfolio process (i.e. the process of the frac-
tion of his wealth invested in the stock at time t) and A(x) is the set of all
admissible portfolio processes if the investor has an initial endowment of
x (see Korn and Korn (2001) for more details). For simplicity, we will only
call a bounded stochastic process which is progressively measurable with
respect to the Brownian filtration an admissible portfolio process. Such a
portfolio process in particular leads to a non-negative wealth process
which can be seen from the following stochastic differential equation for
the evolution of the investor’s wealth X(t) over time:

dX(t) = X(t)[(r + π(t)(b − r))dt + π(t)σ dW (t)], X(0) = x (13)

(see e.g. Chapter 2 in Korn and Korn (2001) for the derivation of this equa-
tion). Merton’s ingenious idea then was to interpret this wealth equation
(13) as a controlled stochastic differential equation of the form (5) where
the control strategy is the portfolio process. I.e. we obtain such an equa-
tion by setting

u(t) = π(t), µ(t, x, u) = (r + u(b − r))x, σ (t, x, u) = uσ x. (14)

By Theorem 2, we can solve the portfolio problem (12) via solving the
corresponding HJB-Equation

0 = max
π∈[−a,a]

{ 1
2 (σπx)2vxx(t, x) + (r + π(b − r))

× xvx(t, x) + vt(t, x)}, U(x) = v(T, x)
(15)

for the value function 

v(t, x) = max
π

Et,x(U(X(T))) . (16)

In the case of a so-called HARA-utility function U(x) = 1
γ

xγ with
0 < γ < 1 (or in case of the logarithm U(x) = ln(x)) one assumes the
value function to be concave. With this assumption the optimization
problem in (15) consists of maximizing a parabola which is downwards
open. Thus, the formal minimizer in (15) is given by

π ∗(t) = π ∗(t, x) = − (b − r)vx(t, x)

σ 2xvxx(t, x)
. (17) 

Plugging this into (15) results in a non-linear partial differential equa-
tion which can be solved explicitly using the ansatz v(t, x) = f (t)xγ (see
Korn and Korn (2001)). Having verified this, we then obtain the optimal
portfolio process from (17) as 

π ∗(t) = b − r

(1 − γ )σ 2
(18) 

(the optimal solution for the logarithmic utility is obtained by setting
γ = 0). For more on the topic of the Merton problem and generalizations
(multi-stock setting, incomplete markets, constraints, . . .) see e.g.
Karatzas and Shreve (1998) or Korn (1997). Note that the constraint
π ∈ [−a, a] implicitly introduced in (15) is only needed to ensure a global
Lipschitz condition for the wealth equation. The constant a is at our dis-
posal and we just have to choose it large enough such that the optimal
portfolio process given by (18) lies in the interior of [−a, a].

iiii)) PPoorrttffoolliioo ooppttiimmiizzaattiioonn wwiitthh ttrraannssaaccttiioonn ccoossttss aanndd tthhee qquuaassii--vvaarriiaattiioonnaall
iinneeqquuaalliittiieess ooff ooff iimmppuullssee ccoonnttrrooll
The above optimal portfolio process given in (18) is constant over time
which is a nice structural feature. However, from the application’s point
of view this means that an investor has to trade at each point in time to
keep the fraction of the wealth invested in the stock constant as bond
and stock prices change in different ways. So in the presence of fixed
transaction costs the investor would immediately (!) be ruined. To over-
come this problem, Eastham and Hastings (1988) introduced an impulse
control approach to portfolio optimization which was later taken up and
generalized in Korn (1998). 

We consider the same securities market as given in equation (11) of
the previous section. Now the trading strategy of an investor is complete-
ly described by the money invested in bond and stock at time t,
(B(t), S(t)). As long as he does not rebalance these holdings they evolve as
multiples of the relevant security prices, i.e. we have

dB(t) = B(t)r dt, B(0) = B,

dS(t) = S(t)[bdt + σ dW (t)], S(0) = S
(19)

If however the investor decides to rebalance his holdings at an intervention
time θi (i.e. at such a time where rebalancing of the holdings takes place)
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the investor has to pay a sum of fixed and proportional transaction costs of
the form

K + k|Si| (20)

with 0 < K, 0 ≤ k < 1, Si := S(θi) − S(θi−1) . These transaction costs are
paid out of the bond holdings. Therefore, we have the following balance
equation:

B(θi) = B(θi−1) − Si − k|Si| − K. (21)

Hence, the strategy of the investor is uniquely determined by the
choice of the intervention times θi, i ∈ {0, 1, 2, . . .} and the correspon-
ding changes Si in the stock holdings. A sequence of such pairs (θi, Si),
i ∈ {0, 1, 2, . . .} where θi is a stopping time with respect to the Brownian
filtration ft and where Si is f θi—measurable is called an impulse control
strategy. Note that in contrast to the situation in Merton’s problem the
choice of the right time to intervene adds a new decision variable to the
problem which again consists of maximizing the expected utility from
final wealth, 

max
{(θ i ,Si)}i∈IN ∈Z

E0,B,S(U(X(T))). (22)

where the wealth process X(t) is given by X(t) = B(t) + S(t). The set of
admissible impulse control strategies Z consists of all those impulse
control strategies where the intervention times do not accumulate
before the time horizon T and where the actions Si are constrained to
yield non-negative values for B(θi) and S(θi). This ensures that the
wealth of our holdings after all securities are sold is always bounded
from below by −K . We could also require to have a non-negative wealth
after selling all securities, but for simplicity we drop this condition
here.

Again, the question is hhooww ttoo uussee tthhee mmaarrttiinnggaallee ooppttiimmaalliittyy pprriinncciippllee
to solve problem (22), or more precisely, to characterize the optimal solu-
tion via a verification theorem?

Let us therefore consider an arbitrary admissible impulse control
strategy (θi, Si), i ∈ {0, 1, 2, . . .} and look at the evolution of its corre-
sponding expected utility over time: 

Et,B(t),S(t)(U(Xθ ,S(T))) =: v(t, B(t), S(t)) = v(0, B, S)

+
t∫

0

[vt(.) + bS(u)vs(.) + 1
2 σ 2S2(u)vss(.)]ds +

t∫
0

. . . dW (u)

+
∞∑

i=1

[v(θi ∧ t, B(θi − ∧t) − K − S, S(θi ∧ t) + Si)

− v(θi ∧ t, B(θi − ∧t), S(θi − ∧t))]

(23)

Simply for saving space we have omitted dependencies on (t, B, S). Due to
the discontinuities of the controlled process of bond and stock holdings
at the intervention times, we can apply the Itô formula only between the
interventions and have to consider the difference in the values of v(.,.,.)
before and after interventions separately. But if we now have a close look
at equation (23), we can exactly figure out the necessary conditions need-
ed to apply the martingale optimality principle.

All expressions in (23) in the brackets have to equal zero for the left
hand side being a martingale. They have to be non-positive if the left
hand side should be a super martingale. To formulate this in a compact
fashion we have to introduce the following two operators:

Mv(t, B, S) := max
S∈A(B,S)

v(t, B − K − S − k|S|, S + S) (24)

where A(B, S) is the feasible set for the actions given the holdings of
(B,S). Note that the transaction costs directly enter into the compo-
nents of v but not as an additional term in the maximisation prob-
lem as would be typical for impulse control problems. We further
introduce: 

Lv(t, B, S) := 1
2 σ 2S2 vSS(t, B, S) + bSvS(t, B, S) + vt(t, B, S). (25)

To ensure that each term of the series in equation (23) is non-positive
we have to require

v(t, B, S) ≥ Mv(t, B, S), (26) 

a fact which—if v(t,B,S) is the value function—is also very natural as it
says: “Behaving optimally on a global scale is always as good as doing the
best immediate transaction an behaving optimally afterwards”. To
ensure non-positivity of the ds-integrand in (23) we need 

Lv(t, B, S) ≤ 0. (27)

Of course, these two inequalities have to be connected in some way. If
the investor decides to not change his holdings then the wealth
process evolves as a diffusion with characteristic operator L. During
these times we must have equality in (27). However, at the first time
when changing the holdings is optimal, we must have equality in (26),
simply by definition of the operator M and the fact that v should be the
value function. We thus get the following equality closing the system
(26) and (27):

Lv(t, B, S)(v(t, B, S) − Mv(t, B, S)) = 0. (28)

Together with the obvious final condition 

v(T, B, S) = U(B + S) (29)
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(where for simplicity we have assumed no selling costs at the terminal
time or—equivalently—have assumed to maximize paper value of our
holdings) we have now specified all the conditions characterizing the
value function, the so called quasi-variational inequalities, a result sum-
marized in:

TThheeoorreemm 33:: Verification theorem for the quasi-variational inequalities
Let there exist a polynomially bounded C1,2 -solution v(t, b, s) to the qquuaassii--
vvaarriiaattiioonnaall iinneeqquuaalliittiieess of impulse control (26)-(29). 

If then v̂(t, b, s) denotes the value function of problem (22) then we
have:

a) v(t, b, s) ≥ v̂(t, b, s) ∀ (t, b, s) ∈ [0, T) × [0, ∞)2 .
b) If there exists an admissible impulse control {(θi, Si)}i∈N given by

θ0 := 0, θi := inf {t < θi−1|v(t, B, S) = Mv(t, B, S)},
Si := arg max

S
{v(t, B − K − S − k|S|, S + S)}

(a so called qvi-control) then we have

v(t, b, s) = v̂(t, b, s) ∀ (t, b, s) ∈ [0, T) × [0, ∞)2, (30)

and the above impulse control is an optimal control strategy for
problem (22).

RReemmaarrkk:: The above result is of the form “A sufficiently regular solution of
the qvi coincides with the value function and the corresponding qvi-control
is an optimal one”. However, this has to be handled with a lot of care.
There will typically not exist a solution to the qvi satisfying the above
smoothness requirements. However, it can be shown that this require-
ment can be relaxed to cover practical cases (see Korn (1998) for details).
The main difficulty now lies in the task of solving the qvi. An explicit
solution does not seem to be possible. However, one can try numerical
methods such as discretisation of the qvi or an asymptotic expansion as
given in Korn (1998) for the case of the utility function U(x) = 1 − e−λx for
some positive constant λ.

iiiiii)) OOppttiimmaalliittyy eeqquuaattiioonnss iinn ddiissccrreettee ttiimmee
If we are in a discrete-time setting then we can of course not hope for a
differential equation characterizing the value function. However, we can
then deduce the well-known Bellman or backward induction principle
from the martingale optimality principle. To see this, in a discrete-time
setting, let

h(t, x) := Et,x(F(Xu(T))) (31)

for some admissible control u (where we assume that admissibility of
the control means that it is adapted to a specified filtration, it takes on

only values in a compact set U, and that the controlled process satisfies
integrability constraints ensuring that h(t, x) is finite). It is then clear
that we have

h(T, x) = F(x), h(T − 1, x) = ET−1,x(F(Xu(T))) = ET−1,x(h(T, Xu(T))). (32)

Using the tower law of conditional expectation and an induction
argument we can use the last equality to show

h(T − k, x) = ET−k,x(h(T − k + 1, Xu(T − k + 1))). (33)

Now this equation together with the tower law implies that 

h(t, Xu(t)) = Et,Xu (t)(F(Xu(T))) (34)

is a martingale. For any other admissible control w the supermartingale
property of 

h(t, Xw(t)) = Et,Xw (t)(F(Xu(T))) (35)

would be implied by the inequality 

h(t, Xw(t)) ≥ Et,Xw (t)(h(t + 1, Xw(t + 1))). (36)

But this inequality will always be correct if in each possible pair (t, x)
we have that the control u(t) = u(t, x) satisfies

u(t, x) = arg max
w∈U

Et,x(h(t + 1, Xw(t + 1))) (37)

where here Xw(t + 1) means that the control w is applied at time t and
results in Xw(t + 1). Hence, the martingale optimality principle implies:

TThheeoorreemm 44:: Backward induction principle
Assume that there is a continuous function h(t, x) satisfying 

h(t, x) = max
w∈U

Et,x(h(t + 1, Xw(t + 1))) (38)

h(T, x) = F(x) (39)

for all t ∈ {0, 1, .., T − 1}, x ∈ IR . If further the corresponding process
u(t) = u(t, x) given by (37) is an admissible control then we have 

v(t, x) = h(t, x) (40)

for all above pairs (t, x), where v(t, x) denotes the value function of
problem (2), and the control u(t) = u(t, x) is an optimal control for
problem (2). 

We thus can compute the optimal utility and the optimal control
backwards starting at the final time where the value function and the
utility function coincide. A possible area of application of this result is
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W

the solution of a portfolio problem in an n-period binomial model via
the above indicated backward induction algorithm. We do not present it
here but encourage the interested reader to try to solve it along the lines
indicated above. 

4 More Problems and More Martingales 
Of course there are many more control problems in finance and in
other applications than the ones presented here. However, you are now
equipped with a tool box that you can successfully use to solve such
problems !

Discover your own martingale

One way to apply the martingale optimality principle then is to simply
guess the optimal strategy. What then remains is to show the properties
(M) and (SM). A good way in guessing an optimal strategy is to look for a
suitable martingale in your control problem. The typically harder part
then is to show property (SM) (of course only, if your guess was correct !).
The other way to apply the martingale optimality principle is the sys-
tematic construction of sufficient conditions characterizing the value
function and optimal controls. This can typically be done similar to the
derivation of the two verification theorems in Section 3.
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