
66 Wilmott magazine

Gábor J. Székely
Bowling Green State University, Bowling Green, OH
Hungarian Academy of Sciences, Budapest, Hungary

Half of a Coin: 
Negative Probabilities

we discuss an example in finance. This example shows the close connec-
tion between negative probabilities and debits.

2 What is the Half of a Coin?
Let us start our journey in the world of negative probabilities with a fair
coin. It has two sides: head and tail, we can also denote them by 0 and 1. Fair
coins are random variables that take 0 and 1 with the same 1/2 probability.
The most convenient analytic tool for studying the addition of coins or any
other integer valued random variables is the probability generating function
(p.g.f.). It is defined by the formula f (z) = ∑

n pnzn , where pn is the probabili-
ty of taking the integer number n. The p.g.f. of a fair coin is f (z) = 1/2 + z/2.
If we drop the condition of nonnegativity of the numbers pn and suppose
only that the sequence pn sequence is normed, that is 

∑
n pn = 1 and∑

n |pn| < ∞, then we simply say that f (z) is a generating function (g.f.) and
(pn) is a generalized distribution. In the same sense we can speak of generalized
random variables.

The absolute convergence 
∑

n |pn| < ∞ guarantees that a generalized
random variable X which takes the value n with probability pn can be
interpreted and also simulated as a classical random variable that takes
the value n with frequency ≈ |pn|/ ∑∞

n=0 |pn|. But we must not forget that
if pn < 0 then we need to interpret this unusual phenomenon. We return
to this problem at the end of this paper.

1 Kolmogorov’s Bible
Around the time when Kolmogorov published his most influential book in
1933 (A. N. Kolmogorov 1933), the Nobel Laureate physicist, E. Wigner in
1932 published the following claim (joint with L. Szilárd, E. Wigner 1932):
in quantum theory the joint density function P(x, p) of the location and
the momentum of a particle cannot be nonnegative everywhere: it is
always real but its integral over the whole space is 0. Another Nobel
Laureate  physicist, P. Dirac (1942), also emphasized the necessity of nega-
tive probabilities. We can continue this list with R. P. Feynman (1987), M. S.
Bartlett (1945), etc. The views of many outstanding physicists have not real-
ly touched the heart of most mathematicians. For them the notion of prob-
ability is codified in Kolmogorov’s ‘Bible’ therefore probabilities are real
numbers in the interval [0,1], nothing else makes sense ‘by definition’.
Most experts claim that even if we could define negative probabilities in a
consistent way, nobody needs them. Negative probabilities simply have no
applications.

In this paper we shall see that from a mathematical point of view neg-
ative probabilities are the same type of natural extensions of classical
probabilities as the negative numbers are natural extensions of the non-
negative ones. So, in order to use negative probabilities we do not need to
leave the ‘Paradise’ of Kolmogorov’s theory, all we need is to use it in a
more flexible way. Concerning the applicability of negative probabilities
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The addition of independent random variables corresponds to the
multiplication of their p.g.f.’s (see e.g. W. Feller 1967 Ch. XI.) thus the
p.g.f. of the sum of two fair coins is ((1 + z)/2)2 = 1/4 + z/2 + z2/4. It
seems natural to define the half coin via the generalized g.f.

√
1 + z

2
=

∞∑
n=0

pnzn. (1)

According to the binomial theorem

√
1 + z

2
= 1√

2

∞∑
n=0

(
1/2

n

)
zn.

We can get rid of the somewhat strange choice number 
(1/2

n

)
with the

help of Catalan numbers defined by the formula

Cn =
(2n

n

)
n + 1

, n = 0, 1, . . .

This number sequence 1, 1, 2, 5, 14, 42, 132, 429, . . . occurs in very many
seemingly unrelated situations (see H. W. Gould 1985). Since

(
1/2

n

)
= (1/2)(−1/2)(−3/2) . . . (−(2n − 1)/2)

n!
= (−1)n−12Cn−1

4n

for n = 1, 2, . . ., half coins are random variables that take the value n
with probability

pn = (−1)n−1
√

2
Cn−1

4n
n = 0, 1, . . . .

((C−1 = −1/2 is a convenient definition.) This formula is free from the
strange choice function 

(1/2
n

)
but an even more mystical phenomenon

appears. In this sequence, every other number (meaning every other
probability) is negative.

Formula (1) with z = 1 shows that 
∑

n pn = 1. We also need to check∑
n |pn| < ∞. Apply the same formula (1) with z = −1 to see that

0 = ∑∞
n=0(−1)npn , and therefore 

∑∞
n=1 |pn| = p0 = 1/

√
2 = √

2/2, hence∑∞
n=0 |pn| = √

2.

3 Fractions of Biased Coins and Dice
The p.g.f. of a biased coin is p + qz, where 0 < p = 1 − q < 1.

Half of this coin can be defined via the generalized g.f. 
√

p + qz. Its
Taylor expansion

√
p + qz = √

p
∞∑

n=0

(
q

p

)n (
1/2

n

)
zn

shows that for p ≥ q the sequence of signed probabilities pn = √
p

(
q
p

)n (1/2
n

)
is absolute convergent.

The same holds for the cubic root, . . . or any other n-th root of p + qz.
Thus it makes sense to speak not only about half coins but also about
third coins, etc. Similarly we can deal with half, third, . . . dice with as
many sides as we wish. A generalized die with n + 1 sides (n = 1, 2, . . . is a
random variable X with possible values 0, 1, . . . , n such that the the
sequence of probabilities P(X = k) = pk > 0 k = 0, 1, . . . n is non-increas-
ing. It is not hard to show that for every m = 1, 2, 3, . . . the m-th part of a
generalized die is meaningful in the sense that if f (z) = ∑n

k=0 pkzk is the
p.g.f. of a generalized die and

f (z)1/m =
∞∑

n=0

a(m)
n zn, m = 1, 2, 3, . . . ,

then for m = 2, 3, . . .
∑∞

n=0 |a(m)
n | < ∞ .

4 The Fundamental Theorem
of Negative Probabilities

In the sequence of probabilities pn, n = 1, 2, . . . of a half coin every other
number is  negative. Does this make any sense, do these generalized random
variables have any meaning? Alfred North Whitehead said that, “the point
about zero is that we do not need to use it in the operations of daily life. No
one goes out to buy zero fish.” Similarly, we cannot remove a five-acre swath
from a three-acre field,  but nothing prevents us from subtracting five from
two. In this section we prove that our mystical random variables have the
same ‘operational meaning’ than the negative numbers.

The summation of independent random variables corresponds to the
product of their generating functions. Not so long ago we proved (see I.
Z. Ruzsa and G. J. Székely 1983 or I. Z. Ruzsa and G. J. Székely 1988) the
following.

Fundamental theorem: For every generalized g.f. f (of a signed probability
distribution) there exist two p.d.f.’s g and h (of ordinary nonnegative probability dis-
tributions) such that the product fg = h.

Thus if f is the generalized g.f. of a half coin C, a third of a die, (or any
other related mystical object), then we can always find two ordinary
coins, ordinary dice (ordinary random object) C1, C2 such that if we flip
C and C1, their sum is C2 . In this sense every generalized (signed) distri-
bution is a kind of difference (‘so-called convolution difference’) of two
non-signed (ordinary) probability distributions. This result justifies the
application of signed probabilities in the same sense as we use negative
numbers.

5 An Application of Negative
Probabilities in Finance

In the theory of interest (see e.g. S. G. Kellison 1991) the following nota-
tion is used traditionally. Payments at times t = 1, 2, . . . , n are denoted by
R1, R2, . . . , Rn , and the discount factor is v = (1 + i)−1 where i the effective
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rate of interest. The duration is by definition

d =

n∑
t=1

tvtRt

n∑
t=1

vtRt

.

This is clearly an expected value type quantity: if the random variable T
takes the values t = 1, 2, . . . , n with probabilities

pt = P(T = t) = vtRt

n∑
t=1

vtRt

,

then d is the expected value of T. What is the advantage of calling the
weights pt probability and the weighted average d expected value? The prob-
ability interpretation suggests that the variance of T and other probabilisti-
cally or statistically important notions might play some role in this context.
And they do. For example the derivative of d with respect to the interest rate
i is −vσ 2, where σ 2 is the variance of the random variable T. Since both v
and the variance σ 2 is nonnegative, d as a function of i cannot increase. This
is important in practice. On the other hand it does make sense to suppose
that Rt can take negative values; just think of a negative payment which is a
withdraw of money. In this case the variance σ 2 can easily be negative.
Negative probabilities and negative variances directly correspond to nega-
tive payments, and there is nothing more natural than negative payments.
We do it every day when we withdraw money from our bank account.

6 The Operational Meaning 
of Negative Probabilities

Garret Birkhoff, mathematics professor at Harvard, said that ‘Everybody
speaks about Probability, but no one is able to clearly explain to others
what a meaning has Probability according to his own conception.’
Bertrand Russel was equally critical in a 1929 lecture when he said
‘Probability is the most important concept in modern science, especially
as nobody has the slightest notion what is means.’ In case of negative
probabilities the meaning is even less obvious.

What seems to be helpful if we separate the operational value of  proba-
bility and the interpretation of this operational value. Probabilities, even if
they are between 0 and 1 need interpretations.  For example the so-called
frequentists interpret probabilities as limit of relative frequencies.
Bayesians have their own interpretation based on the ratio of bets you
would be willing to offer. What we claim is that the operational value of
probability (the value we work with, say add, multiply, . . .) is not neces-
sarily a number between 0 and 1. The operational value can be negative,
complex (like the value of the state function in quantum physics) or even
more abstract (see G. J. Székely 1976). Then we need to interpret these

abstract ‘creatures’ (similarly to Max Born’s interpretation of complex
valued  state functions in quantum physics). In case of negative probabil-
ities or signed distributions our fundamental theorem mentioned above
suggests a natural interpretation. If a random variable X has a signed dis-
tribution, we can always find two other random variables Y, Z with ordi-
nary (not signed) distributions such that X and Y are independent and
X + Y = Z in distribution. Thus X can be interpreted as the ‘difference’ of
two ‘ordinary’ Z and Y .

Negative probabilities can also have more than one interpretations.
Here is a direct and natural one. If (pn) is a sequence  of signed probabili-
ties such that 

∑ |pn| < ∞ , then an = |pn|/ ∑ |pn| is a traditional nonneg-
ative probability distribution but if pn < 0, then we must not forget that
in the operational sense pn is on the other side of the scale, pn < 0 is a
debit type probability.
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