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Correlation Smile Structures in Equity
and FX Volatility Markets

shown how the presence of liquidly quoted cross vanilla options in the foreign ex-
change market leads to unique correlation structures, and how this is not the case for
equity options markets. It is further conjectured that a specific choice of fit, whereby
pair wise correlations are dependent on the whole state of the system rather than just
the two underlying stocks, may in fact have a basis in actual equity market dynamics.
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Abstract
Reconciling and explaining observed volatility surfaces of equity indices from observed
volatility surfaces of its constituents is an important issue for both relative value trad-
ing, and the pricing and hedging of equity options books. The same issues are to be
found in the case of ‘cross’ rates in foreign exchange markets. This note develops the
motivation behind moving to a correlation structure type approach and discusses its ra-
tionale in the case of both equity and foreign exchange markets. A method for estimat-
ing the correlation structure is then described in the local volatility framework. It is

Background
Volatility quotes in terms of full moneyness by term matrices are normally
available for single market factors—these may be individual FX rates, say
USD/JPY, or individual stocks, say ING Groep, as quoted on the EUROSTOXX
50 index. In equity markets as well, volatility matrices are available for
stock indices—the S&P 500, EUROSTOXX50, and Nikkei are just some of the
examples that leap to mind.

Equity and FX markets differ in a variety of ways. One difference is
the typical definition of moneyness. FX markets prefer using a nor-
malised version of moneyness of a vanilla option—often the delta of the
underlying option. Equity markets in contrast have had a few years of
debate about the merits of different version of moneyness—sticky strike
and sticky delta are two of the more well known examples. It appears
that sticky strike is still commonly used—especially on the short end of
the curve, and many market participants have various arguments in its
favour—not least the simplicity of definition. One simplicity is that
pricing is consistent with Black-Scholes sensitivities—a trader’s P/L at
the end of day is consistent with the reported greeks (or at least ought
to be!). This is not the case with sticky delta, for example, where under
significant skews/smiles the Black-Scholes sensitivities of a single
volatility may be significantly far removed from the actual sensitivi-
ties. Many a trader and institution has come to grief on this point—and
it is fair to say not all have adapted, even at the time of writing. An op-
tion premium may be faked by inputting one volatility number into

the Black-Scholes pricing formulas—but the sensitivities cannot be ob-
tained in this manner. 

All these differences notwithstanding, there are a number of similari-
ties across FX and equity markets, albeit with some differences here as
well. One is the presence of multi-factor derivatives instruments where
correlation becomes an important input. Cross FX rates, while traded as a
single factor, are really a multi-factor, albeit simple, instrument for traders
who book their P/L in a currency different from either of the currencies
that constitute the cross rate. The obvious example is the EUR/JPY cross
for a trader who does his accounting in USD. Because of the liquidity of
the EUR/JPY volatility market, the trader need not estimate the volatilities
from USD/JPY and EUR/USD volatilities and an associated correlation
(structure) between these two rates. Instead, the implied EUR/JPY volatility
surface contains within it implicit information about this correlation
(structure). Most often, and given the way both FX vanilla and exotics mar-
kets function at the time of writing, this is not a concern to most market
participants. 

While this is generally true, for anyone involved in pricing baskets on
USD/JPY and EUR/USD, and perhaps with a precise or pedantic bent of
mind, questions of consistency and value do arise—what correlation should
one use? Relative value correlation traders and multi-factor exotics traders
would be asking the same question in a different context—namely question
of consistency and value across the three quoted implied volatility surfaces.
To provide a concrete and still topical example, the concern might be the
relative value of a EUR/JPY 10 delta butterfly trade against its 25 delta
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Most market participants would generally agree that trending mar-
kets in equities generally exhibit higher correlation (at least on the down-
side)—and there are a number of easily conceivable reasons why this
might be so. Non trending markets tend to get de-correlated—even though
significant positive correlation is still the norm. Let’s assume for the mo-
ment that it is so—what would one then expect for the relative observed
skew between individual stocks and the basket?

A perceptive trader would say that the above scenario for correlation
suggests that skew for larger moves (far out of the money options) on the
index would be significantly above observed skews on the underlying
constituents (for far out of the money options). For options not very far
from the money, this effect would be less pronounced. The overall point
is that introducing a reasonable correlation structure in terms of ob-
served dynamics of equity markets, and market participant behaviour,
would introduce a relative spread between skews(smiles) on the index
and skews (smiles) in the underlyings.

The correlation structure that leads to such an index volatility sur-
face, and conversely provides the explanation for observed implied data,
would not just be an abstract mathematical construct and fit—with little
or no financial justification. Quite the contrary in fact. In the hands of an
astute correlation trader, such a structure would shed light on the un-
derlying markets, and identify opportunities both for relative value trad-
ing, and for hedging correlation exposure. 

With the above motivation in mind, I propose an ansatz for calculat-
ing implied or consistent correlation structures. I use the term implied
when a unique correlation structure can be unveiled, in the sense of
complete information and liquidity, as is the case in FX markets, and
consistent for incomplete information, as is the case in equity markets. It
should be clear that a consistent correlation structure so obtained may
not be unique.

Correlation Structure in the Local
Volatility Framework
I highlight the method in the local volatility1 framework. It is useful to
keep in mind the schematic chart depicted in Figure 1:

I shall take the above graph to mean that we can move from the
volatility surface to implied distributions, or from the volatility surface
to local volatility—in fact, in all possible directions. Namely, that knowl-
edge of any one of the three circles above is enough for us to recreate the
other two.2

Assume that the index Y is a function of N underlying factors:

Y ≡ Y(x1, ....., xN) (1)

and that the SDE’s for the single factor options (underlyings) are given as
follows:

dxi = ai(xi, t)dt + σi(xi, t)dWi; 1 ≤ i ≤ N (2)

Note that I have used a slightly different definition of local volatility
above from the one conventionally used. I now assume the presence of an
index, called Y, which is a function of the above xi . The SDE for the index
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counterpart—given information about the whole EUR/USD and USD/JPY
volatility surfaces. 

A quick and fast answer would be along the lines of supply and de-
mand, and market efficiency etc. While not obviously incorrect, such an
answer would fail to address the real underlying issue. A thoughtful rela-
tive value trader would (should) realise that this question concerns issues
of unrealised correlation—what correlation does he expect (anticipate)
given prevailing market and anticipated market conditions? At the time
of writing the story of the US current account deficit is writ large every-
where—if and when the big depreciation in USD comes, what would it
mean for volatility surfaces in a relative sense—across EUR/USD, USD/JPY
and EUR/JPY respectively? Would it be sensible to expect the same corre-
lation for large moves in the underlying markets that one would expect
for smaller moves? A thoughtful relative value trader would, if he is lucky
in the resources made available to him, be able to infer correlation infor-
mation from the three volatility surfaces, and see if his expectations are
priced in. If not, he could put on some trades in anticipation—expecting
the markets to converge favourably to his positions as events unfold.

While in the above discussion I have highlighted some issues that are
of concern to a relative value correlation trader, the same concerns would
apply to a thoughtful exotics trader as well—one who is concerned with put-
ting on appropriate vega hedges for the multi-factor exotics in his books.
The issues remain the same, though the end objective is slightly different.

The foregoing discussion on FX markets leads us to into equity volatility
(correlation) markets. Here, the differences lies primarily in lack of liquidity
to hedge the correlation exposure (recent growth of explicit correlation ex-
otics, like correlation swaps, not withstanding), and in the number of un-
derlying factors at hand. In the FX example above, the trader was concerned
only with EUR/JPY, which is a simple product of EUR/USD and USD/JPY, just
two underlying factors. Secondly, while an exotic written on EUR/USD and
USD/JPY has a correlation exposure, this can in principle be hedged away by
trading the cross vega in the liquid implied EUR/JPY options market. By and
large, the equity trader does not have such a luxury.

The equity markets trader, unlike his FX counterpart, does not have ac-
cess to complete information—primarily resulting from the large number
of possible combinations that can be readily created. EURSTOXX50 volatility
surfaces for individual constituents may be fairly complete and readily
available—as is the case for options on the index itself (the whole basket).
Yet volatility surfaces for pair wise combinations are rarely fully available—
which is where the missing information lies.

What an equity trader observes, on the other hand, are the full set of
volatility matrices for the underlying stocks, and a volatility matrix for the
index (basket). A thoughtful equity trader, like his FX counterpart, would
be keen to reconcile the two. How does one move from individual volatility
matrices to the index volatility surface? It would surely be nice if simple es-
timates of correlation would help create a volatility matrix for the index in
line with the observed one.

This would perhaps be asking too much—and in fact, from anecdotal
evidence, appears to be so. Consistency between volatility surfaces of in-
dividual stocks and the volatility surface of the overall index is not easily
achieved by ascribing a single correlation number for each pair. One
would expect risk premia to be an important factor in the determination
of the index volatility surface. This in particular immediately leads us
into the idea of a correlation structure.
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is then given by Ito’s lemma:

dY =
∑

i

∂Y

∂xi
ai(xi, t)dt +

∑
i,j

∂2Y

∂xi∂xj
σiσjρijdt +

∑
i

∂Y

∂xi
σidWi (3)

However, we also observe the volatility surface for the index Y directly.
Assume that its SDE is given by:

dY = a(Y, t)dt + σy(Y, t)dWy (4)

Equations 2 and 3 provide two different SDE’s for the index Y . Taking
the instantaneous variance of equations 2 and 3 and equating them
gives:

σ 2
Y (xi, ..., xN; t) =

∑
i,j

∂Y

∂xi

∂Y

∂xj
σi(xi, t)σj(xj, t)ρi,j (5)

Equation 5 shows that correlation ρi.j contribute to the local volatility
of Y , and hence may be regarded as an instantaneous and time and
spot dependent correlation. Let us now term it the local correlation
structure:

ρij ≡ ρij(x1, ....., xN; t) (6)

Case 1—”Cross FX”
In the preceding discussion we discussed the relation of EUR/JPY volatility
surfaces to those of EUR/USD and USD/JPY. Regarding EUR/JPY as a func-
tion of just the two factors, EUR/USD and USD/JPY, it is clear that one can
back out a unique correlation structure from equation 5.

In terms of a local volatility description, this correlation structure
provides consistency across all three implied volatility surfaces. It may be
used for relative value trading or for the pricing of other exotics. 

From the above example, we can see that FX is a slightly easier case,
as volatility surfaces on the major crosses are readily available, so im-
plied local correlation structures may be inferred for all exchange-rate
pairs.

Case 2—”Equity Indices”
Here equation 6 indicates that we have great freedom in choosing the
local correlations,ρij(x1, ....., xN; t), to match the observed left hand side—
the implied local volatility of the index as derived from the index volatil-
ity surface. For N factors, we have N(N − 1)/2 correlation to play around
with. While the flexibility is welcome, it is clear that some fits achieved
may have little meaning from an economic point of view.

One way around this problem is to try a proportional fitting tech-
nique across all correlations. By this I mean that if fitting a flat corre-
lation structure does not yield the local volatility of the index, all
correlation should be perturbed in the same direction. In a world of just
3 underlying stocks, for example, if the chosen correlation (say the im-
plied ATM correlations) do not yield the correct local volatility of the

index (say are below), then all 3 correlations may be proportionately
moved up till equality is achieved. This is equivalent to writing equation 5
in the following manner:

σ 2
Y (xi, ..., xN; t) =

∑
i

(
∂Y

∂xi

)2

σ 2
i

+ 2
∑
i �=j

∂Y

∂xi

∂Y

∂xj
σi(xi, t)σj(xj, t)ρij(ATM)α(x1, .., xN; t)

(7)

Here the ρij(ATM) are defined to be implied correlations using ATM
volatilities—which are known and the choice is reduced to finding the
function α(x1, .., xN; t), which is the only unknown in equation 7.

Discussion
One important point to note about equations 6 and equations 7 is that the
pair wise correlations, ρij(x1, ....., xN; t), may be state-dependent. In other
words, nothing precludes ρij from depending on all the (x1, ....., xN; t) re-
spectively rather than just (xi, xj; t). While there is no reason why this
should be the case (indeed equation 5 could conceivably be fitted with the
constraint that the individual ρij are functions of only (xi, xj; t)), it is clear
that we can make the correlations dependent on the information for the
entire state at a given time—in other words, the (x1, ....., xN; t).

The method suggested in equation 7 to achieve a fit in fact achieves
this explicitly. All correlations move up or down by the same multiplica-
tive factor α(x1, .., xN; t). In fact we have the equation:

ρij(x1, ..., xN; t) = ρij(ATM)α(x1, .., xN; t) (8)

This simply achieves the following: as the market moves from state to
state, all instantaneous correlations move up and down proportionately
as determined by α(x1, .., xN; t). Instantaneous pair wise correlations be-
come dependent on the entire state of the market, (x1, ....., xN; t), not just
on the sub-state (xi, xj; t).

This is perhaps not an unwelcome effect of the fitting method chosen
above. Anecdotal evidence suggests that pair wise correlations tend to
move together. In other words, as the market moves from one state to an-
other, pair wise correlations tend to move in unison—at least in some av-
erage manner. 

The following two graphs from the Global Titans Index are illustrative.
The time series of correlation above is on a data set of 3500 days—so

roughly 10 years. Each data point was constructed from 90 day periods—
chosen to be non overlapping here. A quick glance suggests that pair-wise
correlations do tend to move together. In fact, it is interesting to look at
the above graph in light of correlation of the pair wise correlation time
series.

Table 1 is interesting in that the correlation of correlation is roughly
around 50% on average. Note that since IBM is the base stock above, one
would really expect zero correlation across the grey row and column—
that is indeed the case, but rounding errors in Excel give non-zero num-
bers. Note as well that the average correlation of correlation is pretty
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close to 50%. It is in fact 51.24%, excluding self-correlations and the
greyed cells.

IBM is a random choice and perhaps the numbers say more about the
base stock chosen than highlighting the size of the effect. It is clear that

credit ratings, sectors and other essential factors and information would
be expected to have an effect on the numbers obtained.

Over the same period, it would be instructive to use some other
stock as a base—just for the sake of comparison. I have randomly chosen
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CORRELATION of CORRELATION - 90 day non overlapping periods, 10 year history back from July 22, 2004 

C UN 
HSBA 
LN

IBM
UN 

NESN 
VX 

PEP 
UN 

PFE 
UN 

PG 
UN 

ROG 
VX 

RDA 
NA 

UNA 
NA 

C UN 100% 45% 88% 31% 50% 47% 50% 48% 44% 
HSBA LN 45% 100% 44% 46% 41% 46% 46% 58% 44% 
IBM UN 7% 
NESN 
VX 88% 44% 100% 37% 56% 50% 66% 53% 50% 
PEP UN 31% 46% 37% 100% 66% 62% 40% 34% 61% 
PFE UN 50% 41% 56% 66% 100% 71% 60% 45% 60% 
PG UN 47% 46% 50% 62% 71% 100% 41% 61% 51% 
ROG VX 50% 46% 66% 40% 60% 41% 100% 51% 54% 
RDA NA 48% 58% 53% 34% 45% 61% 51% 100% 48% 
UNA NA 44% 44% 50% 61% 60% 51% 54% 48% 100% 

Average 50.39% 46.16% 55.46% 47.01% 56.18% 51.03% 49.58% 51.52%

7% 
-17% 

-17% 100% 9% -11% -9% -15% -10% 0% 

9% 
-11% 

-9% 
-15% 
-11% 
-10% 

0% 

-11% 

TABLE 1: CORRELATION OF CORRELATION TIME SERIES WITH IBM AS BASE
STOCK—RELATING TO FIGURE 2 ABOVE

(Data Source: Bloomberg)

CORRELATION of CORRELATION - 90 day non overlapping periods, 10 year history back from July 22, 2004 

C UN 
HSBA 
LN

IBM
UN 

NESN 
VX 

PEP 
UN 

PFE 
UN 

PG 
UN 

ROG 
VX 

RDA 
NA 

UNA 
NA 

C UN 100% 15% 26% 100% 27% 45% 55% 34% 34% 
HSBA LN 15% 100% 36% 16% 22% 49% 18% 36% -3% 
IBM UN 26% 36% 100% 27% 38% 55% 9% 6% -9% 
NESN 
VX 100% 16% 27% 100% 26% 46% 56% 35% 34% 
PEP UN 27% 22% 38% 26% 100% 30% 17% 26% 5% 
PFE UN 45% 49% 55% 46% 30% 100% 21% 28% -12% 
PG UN 
ROG VX 55% 18% 9% 56% 17% 21% 100% 38% 29% 
RDA NA 34% 36% 6% 35% 26% 28% 38% 100% 7% 
UNA NA 34% -3% -9% 34% 5% -12% 29% 7% 100% 

Average 41.87% 23.64% 23.44% 42.39% 23.79% 32.58% 30.31% 26.10% 10.69%

-24% 
-2% 
-7% 

-24% 
-2% 

-12% 

-19% 
-11% 

-6% 

-24% -2% -7% -24% -2% -12% -19% -11% -6% 100% 

TABLE 2: CORRELATION OF CORRELATION TIME SERIES WITH PG AS BASE
STOCK—RELATING TO FIGURE 3 ABOVE

(Data Source: Bloomberg)
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PG here. This time we see greater dispersion in the correlation time
series chosen in Table 2:

Comparing Figure 2 with Figure 3, we can see that the envelope of
time series is a little broader. The correlation of correlation time series
with PG as a base stock is shown below:

Here it is clear that the correlation of pair-wise correlation with PG as
base stock is lower than with IBM as base stock. In fact the average is now
28.31%, so dropping by around 24% from the results for the correspon-
ding period with IBM.

For one final example I now choose HSBC as a base stock keeping
the same period. Table 3 depicts the numbers and Figure 4 the graphs
associated with this choice.

The correlation of correlation table is given below. In this case the av-
erage correlation is now back up at 50% (in fact 49.45%)

Discussion of Method and Suggestions
for Further Research
The examples chosen above were for illustrative purposes only—and
were randomly chosen. A full statistical study would be in order before
any level of confidence can be achieved. Nevertheless the above numbers
are encouraging in that they seem to point to a pattern that suggests
that pair wise correlations tend to move together in unison—depending
on the full state of the system. In particular it does seem that pair wise
ρij depend on (x1, ....., xN; t) rather than just (xi, xj; t). In other words the
full dependence may be written as ρij(x1, ....., xN; t). It further appears
that, in the local volatility framework described elsewhere in this paper,
the choice of fit suggested in equation 8 may have some underlying
meaning in terms of dynamics of actual markets.3

CORRELATION of CORRELATION - 90 day non overlapping periods, 10 year history back from July 22, 2004 

C UN 
HSBA 
LN

IBM
UN 

NESN 
VX 

PEP 
UN 

PFE 
UN PG UN 

ROG 
VX 

RDA 
NA 

UNA 
NA 

C UN 100% -9% 20% 100% 56% 38% 59% 72% 54% 71% 
HSBA 
LN -9% 100% -11% -11% 4% -18% 17% 5% -2% -15% 
IBM UN 20% -11% 100% 21% 25% 50% 25% 27% 26% 39% 
NESN 
VX 100% -11% 21% 100% 55% 39% 56% 72% 55% 71% 
PEP UN 56% 4% 25% 55% 100% 35% 64% 63% 50% 52% 
PFE UN 38% -18% 50% 39% 35% 100% 35% 53% 35% 39% 
PG UN 59% 17% 25% 56% 64% 35% 100% 53% 32% 58% 
ROG VX 72% 5% 27% 72% 63% 53% 53% 100% 61% 69% 
RDA NA 54% -2% 26% 55% 50% 35% 32% 61% 100% 53% 
UNA NA 71% -15% 39% 71% 52% 39% 58% 69% 53% 100% 

Average 58.70% 29.19% 58.46% 49.86% 40.40% 47.72% 58.77% 45.75% 56.24%

TABLE 3: CORRELATION OF CORRELATION TIME SERIES WITH HSBC AS BASE
STOCK—RELATING TO FIGURE 4 ABOVE

(Data Source: Bloomberg)
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Volatility
Surface

Local
Volatility

Figure 1: The relation between volatility 
surface, implied distributions and local volatility.

90 Day NonOverlapping Correlation - IBM as base stock
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(Data Source: Bloomberg)

Figure 2: 90 Day correlation on individual Global Titans against IBM over last 
10 years.
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Appendix
Equations 5 and 7 can be solved explicitly in simple cases. Say we first set 

ρij(x1, ..., xN; t) = ρ(x1, ., xN; t) for all i, j (9)

This means that all pair wise correlations are the same, though state
dependent—clearly not a very precise assumption, but one which sheds
some light on the correlation structure so obtained. From equation 5, we
then get:

ρ(x1, ., xN; t) =
σ 2

Y (Y(x1, .., xN); t) −
∑

i

(
∂Y

∂xi

)2

σ 2
i (xi; t)

2
∑
i �=j

∂Y

∂xi

∂Y

∂xj
σi(xi; t)σj(xj; t)

(10)

Equation 10 is useful in that we see the correlation structure obtained
is not entirely unintuitive. It is simply the difference between the instan-
taneous variance on the index and the sum of the instantaneous vari-
ances of its constituents (appropriately weighted). 

Keeping our goal of simplest possible fits we can go a touch better by re-
writing the pair-wise state dependent correlations as:

ρij(x1, ..., xN; t) = 〈
ρij

〉
α(x1, .., xN; t)

where 
〈
ρij

〉
are some mean level of correlation per chosen pair. In this case

we obtain:

α(x1, ., xN; t) =
σ 2

Y (Y(x1, .., xN); t) −
∑

i

(
∂Y

∂xi

)2

σ 2
i (xi; t)

2
∑
i �=j

〈
ρij

〉 ∂Y

∂xi

∂Y

∂xj
σi(xi; t)σj(xj; t)

and we can then use equation 11 to get the resulting correlation structure.
Not that in both cases above, the pair-wise state dependent correlations so
obtained will be 100% correlated with each other—which is clearly not the
case in reality. However, it does capture some essence of underlying mar-
kets, while achieving a consistency of fit between the index volatility sur-
face and its constituent surfaces.

Any information in this report is based on data obtained from sources con-
sidered to be reliable, but no representations or guarantees are made by the au-
thor or Commerzbank AG with regard to the accuracy or completeness of the
data. The opinions, statements and calculations contained herein constitute the
author’s opinion and work at this date and time, and are subject to change with-
out notice. This report is for information purposes, it is not intended to be and
should not be construed as a recommendation, offer or solicitation to acquire, or
dispose of, any particular securities or a recommendation to adopt a particular
trading strategy.

90 Day NonOverlapping Correlation - HSBC as base stock
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(Data Source: Bloomberg)

Figure 4: 90 Day correlation on individual Global Titans against HSBC over last
10 years.

FOOTNOTES

1. Dupire, Bruno (1994). Pricing with a smile, Risk, 7 (1), 18-20.
2. Technically, constraints have to be imposed in terms of integrability, choice of stochastic
differential equation etc—but I will assume that they have been appropriately imposed.
3. Where we had set ρij(x1,…,xN;t) = ρij(ATM)α(x1,…,xN;t)

90 Day NonOverlapping Correlation - PG as base stock
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Figure 3: 90 Day correlation on individual Global Titans against PG over last
10 years.


