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Poker as a Lottery

Introduction
Doyle Brunson1, two-time winner of the World Series of Poker main
event, has likened a poker tournament to a lottery in which more skilled
players (like himself) hold more tickets than less skilled players (like my-
self). In this article, I work out the details of this analogy and provide
some very general and, I think, very important results for anyone hoping
to be a winning poker player.

Lottery Analytics
Consider a lottery in which each player is allowed to write his name on
any number of tickets and drop them into a hat. After each player has de-
posited his tickets, the hat is shaken. The winner’s name is drawn first.
The drawing then continues until a distinct name (not the winner’s) is
drawn; that player is the second place finisher. The drawing then con-
tinues again until a third distinct name (not the winner’s and not the
second place finisher’s) is drawn; that player is the third place finisher.
This procedure is repeated until each player’s name is drawn, the ran-
dom order of names determining the placement of each player.

Let’s say the lottery has N players. One of the players, named Doyle co-
incidently, writes his name on α tickets; all the other players write their
names on β tickets each. The probability that Doyle finishes in nth place
is equal to the conditional probability that he places nth , given that he
hasn’t placed, times the probability that he hasn’t placed:

pn = α

(N − n)β + α

[
1 −

n−1∑
m=1

pm

]

The conditional probability’s numerator is Doyle’s number of tickets; its
denominator is the total number of tickets remaining, given that Doyle
hasn’t placed. pn is really just a function of the ratio α/β , or, better still,
of s ≡ α/β − 1, which measures Doyle’s advantage. Table 1 shows pn for
N = 10 and various s.

Poker Analytics
Consider now a poker tournament into which N players pay x0 and from
which the nth place finisher is paid xn . The buy-in x0 is composed of two
pieces: the notional q, which goes into the prize pool and is later distrib-
uted to the tournament winners, and the fee (or “vig”) q’, which goes to
the tournament organizer; x0 = q + q’. Such tournaments are available
on the internet starting every few minutes. Table 2 shows typical values
for q and q’. Table 3 shows typical values for N and xn /(Nq).

A priori, poker skill is a complex function of a player’s strategy.
Acquiring skill is the subject of most articles and books on poker. In this
article, I take a different approach. Guided by Brunson’s analogy that a
poker tournament is like a lottery, I equate poker skill to the number of
tickets held in a lottery and define an a posteriori method for measuring
poker skill.

In an N player poker tournament, one player, again named Doyle as
homage, has skill α; all other players have skill β . As in the lottery,
Doyle’s advantage is given by his relative skill s ≡ α/β − 1. This is an im-
portant point: even an excellent poker player (in an absolute sense) is at
a disadvantage when playing against players who are better than he is.
Further, if all players use the same strategy, even the game theoretically
optimal (Nash equilibrium) strategy, no one has an advantage.

Doyle’s payout from one poker tournament is a random variable, X
let’s say, and his profit is another random variable, Y ≡ X − x0 . Both X
and Y, through pn , are functions of s. The mean and variance of Y, also
functions of s, are

µ = 〈Y〉
σ 2 = 〈

Y2
〉 − 〈Y〉2

where

〈 f (Y)〉 ≡
N∑

n=1

pnf (yn)

*I am a financial engineer in the Analytics group at PIMCO.



Figure 1 shows the distribution of Y for a ten player, $10 + $1 tourna-
ment for s = 0 and s = 50%.

If Doyle plays in a series of I, N player, x0 buy-in tournaments against
opponents who all have the same skill level, his profit per tournament is
the random variable YI ≡ Y /I. The mean and standard deviation of YI are

µI = µ

σI = σ√
I

Figures 2 and 3 show for I = 10 and I = 20, the evolution of YI for a se-
ries of ten player, $10 + $1 tournaments for s = 0 and s = 50%. As you can
see, the more tournaments Doyle plays, the closer the distribution gets to
the normal distribution (which is the Central Limit Theorem).

Now let’s say Doyle, starting with an initial bankroll b0, actually plays
in I, N player, x0 buy-in tournaments. He wins some and he loses some
and in the end he’s grown (or pruned!) his bankroll to bI , for an average
profit per tournament of yI = (bI − b0)/I. The maximum likelihood esti-
mate of Doyle’s skill s is given implicitly by µ(s) = yI . Further, in order to
reject, with γ confidence, the null hypothesis, H0: s = 0, that Doyle is an
unskilled player and accept the alternative hypothesis, H1: s > 0, that he
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TABLE 3: TYPICAL PAYOUTS

xn/(Nq) N

2 6 10 20 30 50

n 1 100% 65% 50% 40% 30% 30%
2 35% 30% 30% 25% 22%
3 20% 20% 20% 17%
4 10% 15% 12%
5 10% 9%
6 6%
7 4%

TABLE 2: TYPICAL
BUY-INS
x0 q q'
[$] [$] [$]

6 5 1
11 10 1
22 20 2
33 30 3
55 50 5
77 70 7

109 100 9
215 200 15
530 500 30

TABLE 1: PROBABILITY
OF PLACING
Pn s

–50% 0% 50%
0

n 1 5% 10% 11%
2 6% 10% 11%
3 6% 10% 11%
4 6% 10% 11%
5 7% 10% 10%
6 8% 10% 10%
7 9% 10% 10%
8 11% 10% 9%
9 14% 10% 9%

10 28% 10% 8%
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Figure 1: Profit Distributions after 1 Tournament.
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Figure 2: Profit Distributions after 10 Tournaments.
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is a skilled player, Doyle must earn an average profit per tournament of
at least y*:

y∗ = σ√
I
�−1(γ ) + µ

where µ and σ are calculated here with s = 0 and �−1 is the inverse stan-
dard normal cumulative distribution function. Here, we assume Doyle
has played enough tournaments (in practice 10 to 20) that the distribu-
tion of YI is very closely normal. For example, for a series of 20, ten player,
$10 + $1 tournaments, y∗ = $5.15 at the 95% confidence level.

Lastly, let’s say, with γ confidence, that Doyle has statistically signifi-
cant skill s. If his bankroll is bI and he plays in an x0 buy-in tournament,
his bankroll growth rate, a random variable, is

R = ln

(
1 + Y

bI

)

and his expected bankroll growth rate, his expected return, is

r ≡ 〈R〉 =
N∑

n=1

pn ln

(
1 + yn

bI

)

The Kelly Criterion2 says that Doyle should choose a buy-in x∗ that
maximizes his expected return, given his bankroll bI . Table 4 shows
the optimal buy-in fraction, f ∗ ≡ x∗/bI , for players of various skill levels
playing in tournaments with a 10% vig (q’/q) and the typical payout

structures of Table 3. (A negative optimal buy-in fraction means the player
does not have enough skill to overcome the vig.) A player, even one with
statistically significant skill s, should not buy into a tournament too
large for his bankroll and should, instead, choose the largest tournament
buy-in x0 available for which x0/bI < f ∗(s).

Conclusion
The analysis presented here views a poker tournament as a lottery in
which poker skill is equated to the number of lottery tickets held. No
mention is made of the details of the player’s poker strategy. One result
of this analysis is that relative skill determines poker success. The sec-
ond result is a statistical methodology for measuring poker skill. The
third result is a recipe for maximizing bankroll growth, given statisti-
cally significant skill.
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Figure 3: Profit Distributions after 20 Tournaments.

TABLE 4: OPTIMAL BUY-IN FRACTIONS

f* N

2 6 10 20 30 50

s 0% –11% –5% –4% –2% –2% –1%
25% 1% 4% 4% 2% 2% 2%
50% 11% 11% 10% 7% 6% 4%
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