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You Can’t Always Get What You Want — 
Estimating the Value at Risk from
Historical Data with Limited Statistics

be used with caution, because it can deviate substantially from the “real” VaR. Our
results also confirm the theoretical results derived by Herzberg and Bennemann in a
recent paper.

Keywords
value-at-risk, historical simulation, Monte Carlo simulation, order statistics

Abstract
Historical simulation is a method widely used to calculate the VaR in the context of
market risk, where a key challenge is that the VaR level of a portfolio must be estimated
from a limited amount of data. We analyse the properties of different VaR-estimators by
simulating different return distributions. Our analysis shows that the predictive power
of a VaR estimate at high confidence levels with a limited amount of data should only

1 Introduction
The Value at Risk (VaR) is a measure to quantify the total risk of a single
asset or a portfolio of assets. It is widely used by corporate treasures and
fund managers as well as financial institutions. Especially in the frame-
work of CAD 2 it has gained particular importance. VaR is aimed at mak-
ing a statement of the form: “We are x% certain that we will not lose
more than V over a given time horizon T”, where the value V is given by
the VaR of the portfolio.

Historical simulation is a method widely used to calculate the VaR in
the context of market risk (see for instance Deutsch (2004) for a detailed
discussion of the method). A problem often faced when estimating the
VaR via historical simulation is the limited amount of available data.
Consider the problem of estimating the 99% VaR using a historical time
series of 250 days, which is a typical problem many financial institu-
tions face. In this case, the estimated VaR would lie between the 2nd and
3rd smallest value of this time series (in theory at the 2.5 smallest value).
It is not a priori clear which value—the 2nd , 3rd , or maybe even the aver-
age of both—does provide a suitable estimate for the 99% VaR. 

In Herzberg and Bennemann (2006) it was demonstrated that order
statistics can be used to uncover various properties of the VaR estimated

by using the 2nd and 3rd (or more generally the kth ) smallest value. Most
of these properties, e.g. the expected quantile or its error, are independ-
ent of the portfolio or the return functions of the underlying assets1.
However, if a linear combination of the 2nd and 3rd smallest value is used
to estimate the VaR, few general statements can be made. The purpose of
this paper is to bridge this gap by using computer simulations to com-
pute the VaR of different portfolios using different estimators.

To this end we assessed the implied error by choosing the (i) second
(ii) third or (iii) the mean of the second and third smallest values of the
initial time series for an estimate of the VaR. We did this for three differ-
ent portfolio scenarios: (i) A Gaussian distributed portfolio, (ii) a portfolio
distribution with fat tails (modeled by a Pareto distribution), and (iii) a
two asset portfolio composed of a stock and a put option on that stock,
where we used a log-normal distribution for the price increments of the
underlying stock.

It turned out, as expected, that the mean between the second and
the third smallest value of the initial time series provided the most accu-
rate estimator for the 99% VaR. For all three values, however, the error
due to the limited amount of data was not negligible. The error was
largest when taking the 3rd smallest value. In this case, one effectively
measures a 98.5% VaR in 25%–30%—depending on the scenario—of all
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Based on this estimate, the implied VaR level was assessed. It was
computed using the following scheme:

(i) 250 random numbers were drawn from the distributions according
to the scenarios (a)–(c)

(ii) The estimates EVaR
{2,3,2.5} were assessed

(iii) Using the inverse cumulative density F−1
{a,b,c} of the distributions in (a)–(c),

the implied VaR level for each estimate was computed (in scenario (c), F−1
c was

determined numerically):

VaRimplied = 1 − F−1
{a,b,c}

(
EVaR

{2,3,2.5}
)

By repeating this scheme 5000 times, the cumulative distribution and a
histogram of implied VaR levels was estimated.

3 Results
3.1 Gaussian Distributed Portfolio:
The following table summarizes the mean values and standard devia-
tions of the VaR estimators EVaR

{2,3,2.5} , computed using the implied VaR
level distribution:

^
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estimations (which is in good agreement with Herzberg and Bennemann
(2006), which predicts 27.5 %) which corresponds to an error of 50%. But
also for the case when the mean between the 2nd and the 3rd smallest value was
taken, the probability of effectively measuring a 98.5% VaR still was
approximately 15%–20%. 

To summarize, our analysis showed that an estimation of the VaR,
in particular at large confidence levels > 95%, should be used with cau-
tion, as the implied errors can be substantial due to the limited amount
of data.

2 Methods
To assess the 99% VaR, we considered three different scenarios:

(a) A Gaussian distributed portfolio (more precisely, a portfolio whose
increments, i.e. its relative changes in value, all have a Gaussian dis-
tribution) with mean 0 and a standard deviation of 1. In this case the
probability density function is given by:

P(V) = (
√

2π)−1 exp(−V2/2)

(b) A portfolio with fat tails (more precisely, a portfolio whose incre-
ments in value all have distribution with fat tails). We assumed its
increments to follow, up to a positive additive constant which we
may assume to be zero (since we are only interested in the ranking of
the losses, and adding a constant does not change the picture), a
Pareto distribution:

P(V) = kVm

(−V)k+1
,

where the parameters Vm and k denote an offset value and the expo-
nent of the power law decay of the distribution, respectively. For the
following analysis, the value of Vm was fixed to −1 and the parame-
ter k was changed between 1 and 2. The support of this distribution
is thus restricted to (−∞ , Vm ].

(c) A Portfolio composed of a stock S with weight � and a European put
option on that stock V ,

� = V + �S

The stock price was assumed to be log-normally distributed,

S = S0 exp(σ N(0, 1)),

and the put option was priced using the Black-Scholes model.
Parameters chosen were S0 = 1, σ = 0.2 p.a., time to maturity T = 250
days, risk-less rate r = 0.05 p.a. and strike price K = exp(rT). The partic-
ular choice of r ensured that the option was at the money at expiry. The
weight � was chosen such that the portfolio was �-hedged.

In all three cases, we simulated 250 portfolio values, where for each
portfolio the 99% VaR was estimated using 

(i) the second smallest value (EVaR
2 ),

(ii) the third smallest value (EVaR
3 ), and

(iii) the average between the second smallest and the third smallest
value (EVaR

2.5 ).
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Figure 1.1: Cumulative distribution of implied VaR for the three estimators
for a EVaR

{2, 3, 2.5} Gaussian distributed portfolio. The horizontal bars denote

their mean ± standard deviation. The 99% level is shown as a dashed line.

2nd value 3rd value (2nd + 3rd)/2

Mean 99.2 98.8 99.0
Std Dev 0.57 0.69 0.60

The results for the 2nd and 3rd smallest value are in excellent agree-
ment with the theoretical results from Herzberg and Bennemann (2006).
According to these results the expected VaR level should be 99.2 and 98.8
for the the 2nd and 3rd smallest value respectively. The theoretical results



54 Wilmott magazine

also extend to the standard deviation, predicted to be 0.56 and 0.69,
again in good agreement with our simulation results.

As apparent from the cumulative density and the table above, once
more the mean between the 2nd and 3rd smallest value is the best esti-
mate for the 99% level. The probability of implicitly assuming a confi-
dence level smaller than 98.5% and 98%—corresponding to a relative
error of 50% and 100%, respectively—are given by:

3.3 Portfolio Composed of a Stock and an European
Put Option (∆ Hedged)
The following table summarizes the mean values and standard devia-
tions of the VaR estimators EVaR

{2,3,2.5} , computed using the implied VaR
level distribution:
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Figure 1.2: Histogram of the implied VaR values for a Gaussian distributed
portfolio. Notice the asymmetric shape which gives rise to a large probability
of large deviations in the implied VaR. Color code: See legend.

2nd value 3rd value Mean 2nd + 3rd

98.5% 11.3% (11.0%) 27.5%(27.5%) 18.0%
98% 3.9% (3.9%) 12.9%(12.2%) 6.6%

The value in brackets show the values computed using the theoreti-
cal results from Herzberg and Bennemann (2006).

3.2 Fat Tailed Portfolio (Pareto Distribution):
The following table summarizes the mean values and standard devia-
tions of the VaR estimators EVaR

{2,3,2.5} , computed using the implied VaR
level distribution:
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Figure 2.1: Cumulative distribution of implied VaR for the three estimators
EVaR

{2, 3, 2.5} for a Pareto distributed portfolio The horizontal bars denote their
mean ± standard deviation. The 99% level is shown as a dashed line.

2nd value 3rd value Mean 2nd + 3rd

Mean 99.2 98.8 99.0
Std Dev 0.56 0.68 0.59

As apparent from the cumulative density and the table above, the
mean between the 2nd and 3rd smallest value is the best estimate for the
99% level. The probability of implicitly assuming a level smaller than
98.5% and 98%—corresponding to a relative error of 50% and 100%,
respectively—are given by:

2nd value 3rd value Mean 2nd + 3rd

98.5% 12.0% 30.3% 18.1%
98% 4.3% 13.1% 7.4%
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Figure 2.2: Histogram of the implied VaR values for a Pareto distributed port-
folio. Notice the asymmetric shape which gives rise to a large probability of
large deviations in the implied VaR. Color code: See legend.
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2nd value 3rd value Mean 2nd + 3rd

Mean 99.2 98.8 99.0
Std Dev 0.55 0.66 0.58

2nd value 3rd value Mean 2nd + 3rd

98.5% 24.9% 14.9% 99.0
98% 3.1% 9.6% 5.2%

98.5% and 98%—corresponding to a relative error of 50% and 100%,
respectively—are given by:

4 Discussion
For all three scenarios, the mean between the second and third value pro-
vided the best estimate for the 99% VaR. Consistently, the standard devia-
tion of the implied VaR distribution was approximately 0.06. Altogether
our results for the 2nd and 3rd smallest value were in good agreement
with the theoretical predictions from Herzberg and Bennemann (2006).
In particular, the VaR level associated with these values (and its standard
deviation) proved to be independent of the type of distribution function
and portfolio used in the simulations.

Many practitioners tend to use the third heaviest loss as an estimate
for the 99% VaR. Our analysis and the theoretical results from Herzberg
and Bennemann (2006) reveal, however, that this choice is particularly
bad for two reasons: (i) The mean of the estimator is systematically small-
er than the 99% level and (ii) the width of the distribution is very large. In
particular the latter finding provides a serious issue of concern: For
approximately 30% of all cases, the implied error by taking the third
smallest value was even larger than 50% (hence, in about 30% of all cases
one measured a 98.5% VaR level or worse, significantly underestimating
the true risk of the portfolio). This reduced to approximately 15%-20%
and 10%-15% of all cases when the mean between the second and the
third, or the second smallest value is taken, respectively. 

Taken together, our analysis showed that the predictive power of a
VaR estimate at high levels (here: 99%) with a limited amount of data
(here: 250 values), should only be used with extreme caution. The results
further demonstrate that the implied VaR can deviate substantially from
the “real” VaR which was intended to be measured in the first place.
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99% level. The probability of implicitly assuming a level smaller than

1. In this paper we use a slightly different notation to Herzberg and Bennemann (2006),
what is called 1 %-quantile in Herzberg and Bennemann (2006) is what we mean by 99%
VaR, etc.

■ H.-P. Deutsch, “Derivatives and Internal Models” (third edition), Palgrave Macmillian
2004
■ F. S. Herzberg, Ch. Bennemann: “Order statistics for Value at Risk estimation and
option pricing”, Wilmott 26 (2006).

FOOTNOTES & REFERENCES

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

95 96 97 98 99 100

Implied VaR

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

2nd value
3rd value
Mean 2nd,3rd
1% Quantile
SigmaQuantile 2nd
SigmaQuantile 3rd
SigmaQuantile (2nd+3rd)/2

Figure 3.1: Cumulative distribution of implied VaR for the three estimators
EVaR

{2, 3, 2.5} for a portfolio composed of a stoch and a European put option. The
horizontal bars denote their mean ± standard deviation. The 99% level is
shown as a dashed line.

Figure 3.2: Histogram of the implied VaR values for a portfolio composed
of a stoch and an European put option. Notice the asymmetric shape which
gives rise to a large probability of large deviations in the implied VaR. Color
code: See legend.
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