Feature Selection with caret's Genetic Algorithm Option
Principal Components Regression

Principal Components Regression in R, an operational tutorial
http://www.r-bloggers.com/principal-components-regression-in-r-an-operational-tutorial/
John Mount Ph. D.
Data Scientist at Win-Vector LLC
[bookmark: _GoBack]Win-Vector LLC's Dr. Nina Zumel has just started a two part series on Principal Components Regression that we think is well worth your time. You can read her article here. Principal Components Regression (PCR) is the use of Principal Components Analysis (PCA) as a dimension reduction step prior to linear regression. It is one of the best known dimensionality reduction techniques and a staple procedure in many scientific fields. PCA is used because:
· It can find important latent structure and relations.
· It can reduce over fit.
· It can ease the curse of dimensionality.
· It is used in a ritualistic manner in many scientific disciplines. In some fields it is considered ignorant and uncouth to regress using original variables.
We often find ourselves having to often remind readers that this last reason is not actually positive. The standard derivation of PCA involves trotting out the math and showing the determination of eigenvector directions. It yields visually attractive diagrams such as the following.
[image: GaussianScatterPCA svg]
Wikipedia: PCA
And this leads to a deficiency in much of the teaching of the method: glossing over the operational consequences and outcomes of applying the method. The mathematics is important to the extent it allows you to reason about the appropriateness of the method, the consequences of the transform, and the pitfalls of the technique. The mathematics is also critical to the correct implementation, but that is what one hopes is already supplied in a reliable analysis platform (such as R).
Dr. Zumel uses the expressive and graphical power of R to work through theuse of Principal Components Regression in an operational series of examples. She works through how Principal Components Regression is typically mis-applied and continues on to how to correctly apply it. Taking the extra time to work through the all too common errors allows her to demonstrate and quantify the benefits of correct technique. Dr. Zumel will soon follow part 1 later with a shorter part 2 article demonstrating important "y-aware" techniques that squeeze much more modeling power out of your data in predictive analytic situations (which is what regression actually is). Some of the methods are already in the literature, but are still not used widely enough. We hope the demonstrated techniques and included references will give you a perspective to improve how you use or even teach Principal Components Regression. Please read on here.

Computing and visualizing PCA in R
http://www.r-bloggers.com/computing-and-visualizing-pca-in-r/
Following my introduction to PCA, I will demonstrate how to apply and visualize PCA in R. There are many packages and functions that can apply PCA in R. In this post I will use the function prcomp from the stats package. I will also show how to visualize PCA in R using Base R graphics. However, my favorite visualization function for PCA is ggbiplot, which is implemented byVince Q. Vu and available on github. Please, let me know if you have better ways to visualize PCA in R.
Computing the Principal Components (PC)
I will use the classical iris dataset for the demonstration. The data contain four continuous variables which corresponds to physical measures of flowers and a categorical variable describing the flowers’ species.
	1
2
3
4
5
6
7
8
	# Load data
data(iris)
head(iris, 3)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa

We will apply PCA to the four continuous variables and use the categorical variable to visualize the PCs later. Notice that in the following code we apply a log transformation to the continuous variables as suggested by [1] and setcenter and scale. equal to TRUE in the call to prcomp to standardize the variables prior to the application of PCA:
	1
2
3
4
5
6
7
8
9
	# log transform
log.ir <- log(iris[, 1:4])
ir.species <- iris[, 5]

apply PCA - scale. = TRUE is highly
advisable, but default is FALSE.
ir.pca <- prcomp(log.ir,
 center = TRUE,
 scale. = TRUE)

Since skewness and the magnitude of the variables influence the resulting PCs, it is good practice to apply skewness transformation, center and scale the variables prior to the application of PCA. In the example above, we applied a log transformation to the variables but we could have been more general and applied a Box and Cox transformation [2]. See at the end of this post how to perform all those transformations and then apply PCA with only one call to thepreProcess function of the caret package.
Analyzing the results
The prcomp function returns an object of class prcomp, which have some methods available. The print method returns the standard deviation of each of the four PCs, and their rotation (or loadings), which are the coefficients of the linear combinations of the continuous variables.
	1
2
3
4
5
6
7
8
9
10
11
12
	# print method
print(ir.pca)

Standard deviations:
[1] 1.7124583 0.9523797 0.3647029 0.1656840

Rotation:
 PC1 PC2 PC3 PC4
Sepal.Length 0.5038236 -0.45499872 0.7088547 0.19147575
Sepal.Width -0.3023682 -0.88914419 -0.3311628 -0.09125405
Petal.Length 0.5767881 -0.03378802 -0.2192793 -0.78618732
Petal.Width 0.5674952 -0.03545628 -0.5829003 0.58044745

The plot method returns a plot of the variances (y-axis) associated with the PCs (x-axis). The Figure below is useful to decide how many PCs to retain for further analysis. In this simple case with only 4 PCs this is not a hard task and we can see that the first two PCs explain most of the variability in the data.
	1
2
	# plot method
plot(ir.pca, type = "l")

[image: http://i2.wp.com/tgmstat.files.wordpress.com/2013/11/scree.png?w=456]
The summary method describe the importance of the PCs. The first row describe again the standard deviation associated with each PC. The second row shows the proportion of the variance in the data explained by each component while the third row describe the cumulative proportion of explained variance. We can see there that the first two PCs accounts for more than [image: {95\%}] of the variance of the data.
	1
2
3
4
5
6
7
8
	# summary method
summary(ir.pca)

Importance of components:
 PC1 PC2 PC3 PC4
Standard deviation 1.7125 0.9524 0.36470 0.16568
Proportion of Variance 0.7331 0.2268 0.03325 0.00686
Cumulative Proportion 0.7331 0.9599 0.99314 1.00000

We can use the predict function if we observe new data and want to predict their PCs values. Just for illustration pretend the last two rows of the iris data has just arrived and we want to see what is their PCs values:
	1
2
3
4
5
6
7
	# Predict PCs
predict(ir.pca,
 newdata=tail(log.ir, 2))

 PC1 PC2 PC3 PC4
149 1.0809930 -1.01155751 -0.7082289 -0.06811063
150 0.9712116 -0.06158655 -0.5008674 -0.12411524

The Figure below is a biplot generated by the function ggbiplot of theggbiplot package available on github.
[image: http://i0.wp.com/tgmstat.files.wordpress.com/2013/11/ggbiplot.png?w=456]
The code to generate this Figure is given by
	1
2
3
4
5
6
7
8
9
10
11
	library(devtools)
install_github("ggbiplot", "vqv")

library(ggbiplot)
g <- ggbiplot(ir.pca, obs.scale = 1, var.scale = 1,
 groups = ir.species, ellipse = TRUE,
 circle = TRUE)
g <- g + scale_color_discrete(name = '')
g <- g + theme(legend.direction = 'horizontal',
 legend.position = 'top')
print(g)

It projects the data on the first two PCs. Other PCs can be chosen through the argument choices of the function. It colors each point according to the flowers’ species and draws a Normal contour line with ellipse.probprobability (default to [image: {68\%}]) for each group. More info about ggbiplot can be obtained by the usual ?ggbiplot. I think you will agree that the plot produced by ggbiplot is much better than the one produced by biplot(ir.pca)(Figure below).
[image: http://i1.wp.com/tgmstat.files.wordpress.com/2013/11/biplot_base.png?w=456]
I also like to plot each variables coefficients inside a unit circle to get insight on a possible interpretation for PCs. Figure 4 was generated by this code available on gist.
[image: http://i1.wp.com/tgmstat.files.wordpress.com/2013/11/loadings1.png?w=456]
PCA on caret package
As I mentioned before, it is possible to first apply a Box-Cox transformation to correct for skewness, center and scale each variable and then apply PCA in one call to the preProcess function of the caret package.
	1
2
3
4
5
	require(caret)
trans = preProcess(iris[,1:4],
 method=c("BoxCox", "center",
 "scale", "pca"))
PC = predict(trans, iris[,1:4])

By default, the function keeps only the PCs that are necessary to explain at least 95% of the variability in the data, but this can be changed through the argumentthresh.
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
	# Retained PCs
head(PC, 3)

 PC1 PC2
1 -2.303540 -0.4748260
2 -2.151310 0.6482903
3 -2.461341 0.3463921

Loadings
trans$rotation

 PC1 PC2
Sepal.Length 0.5202351 -0.38632246
Sepal.Width -0.2720448 -0.92031253
Petal.Length 0.5775402 -0.04885509
Petal.Width 0.5672693 -0.03732262

See Unsupervised data pre-processing for predictive modeling for an introduction of the preProcess function.
References:
[1] Venables, W. N., Brian D. R. Modern applied statistics with S-PLUS. Springer-verlag. (Section 11.1)
[2] Box, G. and Cox, D. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological) 211-252

Principal Components Regression, Pt.1: The Standard Method
http://www.win-vector.com/blog/2016/05/pcr_part1_xonly/

In this note, we discuss principal components regression and some of the issues with it:
· The need for scaling.
· The need for pruning.
· The lack of “y-awareness” of the standard dimensionality reduction step.
The purpose of this article is to set the stage for presenting dimensionality reduction techniques appropriate for predictive modeling, such as y-aware principal components analysis, variable pruning, L2-regularized regression, supervised PCR, or partial least squares. We do this by working detailed examples and building the relevant graphs. In our follow-up article we describe and demonstrate the idea of y-aware scaling.
Note we will try to say "principal components" (plural) throughout, following Everitt’s The Cambridge Dictionary of Statistics, though this is not the only common spelling (e.g. Wikipedia: Principal component regression). We will work all of our examples in R.
Principal Components Regression
In principal components regression (PCR), we use principal components analysis (PCA) to decompose the independent (x) variables into an orthogonal basis (the principal components), and select a subset of those components as the variables to predict y. PCR and PCA are useful techniques for dimensionality reduction when modeling, and are especially useful when the independent variables are highly colinear.
Generally, one selects the principal components with the highest variance — that is, the components with the largest singular values — because the subspace defined by these principal components captures most of the variation in the data, and thus represents a smaller space that we believe captures most of the qualities of the data. Note, however, that standard PCA is an "x-only" decomposition, and as Jolliffe (1982) shows through examples from the literature, sometimes lower-variance components can be critical for predicting y, and conversely, high variance components are sometimes not important.
Mosteller and Tukey (1977, pp. 397-398) argue similarly that the components with small variance are unlikely to be important in regression, apparently on the basis that nature is "tricky, but not downright mean". We shall see in the examples below that without too much effort we can find examples where nature is "downright mean". — Jolliffe (1982)
The remainder of this note presents principal components analysis in the context of PCR and predictive modeling in general. We will show some of the issues in using an x-only technique like PCA for dimensionality reduction. In a follow-up note, we’ll discuss some y-aware approaches that address these issues.
First, let’s build our example. In this sort of teaching we insist on toy or synthetic problems so we actually know the right answer, and can therefore tell which procedures are better at modeling the truth.
In this data set, there are two (unobservable) processes: one that produces the output yA and one that produces the output yB. We only observe the mixture of the two: y = yA + yB + eps, where eps is a noise term. Think of y as measuring some notion of success and the x variables as noisy estimates of two different factors that can each drive success. We’ll set things up so that the first five variables (x.01, x.02, x.03, x.04, x.05) have all the signal. The odd numbered variables correspond to one process (yB) and the even numbered variables correspond to the other (yA).
Then, to simulate the difficulties of real world modeling, we’ll add lots of pure noise variables (noise*). The noise variables are unrelated to our yof interest — but are related to other "y-style" processes that we are not interested in. As is common with good statistical counterexamples, the example looks like something that should not happen or that can be easily avoided. Our point is that the data analyst is usually working with data just like this.
Data tends to come from databases that must support many different tasks, so it is exactly the case that there may be columns or variables that are correlated to unknown and unwanted additional processes. The reason PCA can’t filter out these noise variables is that without use of y, standard PCA has no way of knowing what portion of the variation in each variable is important to the problem at hand and should be preserved. This can be fixed through domain knowledge (knowing which variables to use), variable pruning and y-aware scaling. Our next article will discuss these procedures; in this article we will orient ourselves with a demonstration of both what a good analysis and what a bad analysis looks like.
All the variables are also deliberately mis-scaled to model some of the difficulties of working with under-curated real world data.
build example where even and odd variables are bringing in noisy images
of two different signals.
mkData <- function(n) {
 for(group in 1:10) {
 # y is the sum of two effects yA and yB
 yA <- rnorm(n)
 yB <- rnorm(n)
 if(group==1) {
 d <- data.frame(y=yA+yB+rnorm(n))
 code <- 'x'
 } else {
 code <- paste0('noise',group-1)
 }
 yS <- list(yA,yB)
 # these variables are correlated with y in group 1,
 # but only to each other (and not y) in other groups
 for(i in 1:5) {
 vi <- yS[[1+(i%%2)]] + rnorm(nrow(d))
 d[[paste(code,formatC(i,width=2,flag=0),sep='.')]] <- ncol(d)*vi
 }
 }
 d
}
Notice the copy of y in the data frame has additional "unexplainable variance" so only about 66% of the variation in y is predictable.
Let’s start with our train and test data.
make data
set.seed(23525)
dTrain <- mkData(1000)
dTest <- mkData(1000)
Let’s look at our outcome y and a few of our variables.
summary(dTrain[, c("y", "x.01", "x.02",
 "noise1.01", "noise1.02")])
y x.01 x.02
Min. :-5.08978 Min. :-4.94531 Min. :-9.9796
1st Qu.:-1.01488 1st Qu.:-0.97409 1st Qu.:-1.8235
Median : 0.08223 Median : 0.04962 Median : 0.2025
Mean : 0.08504 Mean : 0.02968 Mean : 0.1406
3rd Qu.: 1.17766 3rd Qu.: 0.93307 3rd Qu.: 1.9949
Max. : 5.84932 Max. : 4.25777 Max. :10.0261
noise1.01 noise1.02
Min. :-30.5661 Min. :-30.4412
1st Qu.: -5.6814 1st Qu.: -6.4069
Median : 0.5278 Median : 0.3031
Mean : 0.1754 Mean : 0.4145
3rd Qu.: 5.9238 3rd Qu.: 6.8142
Max. : 26.4111 Max. : 31.8405
Usually we recommend doing some significance pruning on variables before moving on — see here for possible consequences of not pruning an over-abundance of variables, and here for a discussion of one way to prune, based on significance. For this example, however, we will deliberately attempt dimensionality reduction without pruning (to demonstrate the problem). Part of what we are trying to show is to notassume PCA performs these steps for you.
Ideal situation
First, let’s look at the ideal situation. If we had sufficient domain knowledge (or had performed significance pruning) to remove the noise, we would have no pure noise variables. In our example we know which variables carry signal and therefore can limit down to them before doing the PCA as follows.
goodVars <- colnames(dTrain)[grep('^x.',colnames(dTrain))]
dTrainIdeal <- dTrain[,c('y',goodVars)]
dTestIdeal <- dTrain[,c('y',goodVars)]
Let’s perform the analysis and look at the magnitude of the singular values.
do the PCA
dmTrainIdeal <- as.matrix(dTrainIdeal[,goodVars])
princIdeal <- prcomp(dmTrainIdeal,center = TRUE,scale. = TRUE)

extract the principal components
rot5Ideal <- extractProjection(5,princIdeal)

prepare the data to plot the variable loadings
rotfIdeal = as.data.frame(rot5Ideal)
rotfIdeal$varName = rownames(rotfIdeal)
rotflongIdeal = gather(rotfIdeal, "PC", "loading",
 starts_with("PC"))
rotflongIdeal$vartype = ifelse(grepl("noise",
 rotflongIdeal$varName),
 "noise", "signal")

plot the singular values
dotplot_identity(frame = data.frame(pc=1:length(princIdeal$sdev),
 magnitude=princIdeal$sdev),
 xvar="pc",yvar="magnitude") +
 ggtitle("Ideal case: Magnitudes of singular values")
[image: http://i0.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/idealsv-1.png?w=660]
The magnitudes of the singular values tell us that the first two principal components carry most of the signal. We can also look at the variable loadings of the principal components. The plot of the variable loadings is a graphical representation of the coordinates of the principal components. Each coordinate corresponds to the contribution of one of the original variables to that principal component.
dotplot_identity(rotflongIdeal, "varName", "loading", "vartype") +
 facet_wrap(~PC,nrow=1) + coord_flip() +
 ggtitle("x scaled variable loadings, first 5 principal components") +
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i0.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/idealsvld-1.png?w=660]
We see that we recover the even/odd loadings of the original signal variables. PC1 has the odd variables, and PC2 has the even variables. The next three principal components complete the basis for the five original variables.
Since most of the signal is in the first two principal components, we can look at the projection of the data into that plane, using color to code y.
signs are arbitrary on PCA, so instead of calling predict we pull out
(and alter) the projection by hand
projectedTrainIdeal <-
 as.data.frame(dmTrainIdeal %*% extractProjection(2,princIdeal),
 stringsAsFactors = FALSE)
projectedTrainIdeal$y <- dTrain$y
ScatterHistN(projectedTrainIdeal,'PC1','PC2','y',
 "Ideal Data projected to first two principal components")
[image: http://i0.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/idealproj-1.png?w=660]
Notice that the value of y increases both as we move up and as we move right. We have recovered two orthogonal features that each correlate with an increase in y (in general the signs of the principal components — that is, which direction is "positive" — are arbitrary, so without precautions the above graph can appear flipped). Recall that we constructed the data so that the odd variables (represented by PC1) correspond to process yB and the even variables (represented by PC2) correspond to process yA. We have recovered both of these relations in the figure.
This is why you rely on domain knowledge, or barring that, at least prune your variables. For this example variable pruning would have gotten us to the above ideal case. In our next article we will show how to perform the significance pruning.
X-only PCA
To demonstrate the problem of x-only PCA on unpruned data in a predictive modeling situation, let’s analyze the same data without limiting ourselves to the known good variables. We are pretending (as is often the case) we don’t have the domain knowledge indicating which variables are useful and we have neglected to significance prune the variables before PCA. In our experience, this is a common mistake in using PCR, or, more generally, with using PCA in predictive modeling situations.
This example will demonstrate how you lose modeling power when you don’t apply the methods in a manner appropriate to your problem. Note that the appropriate method for your data may not match the doctrine of another field, as they may have different data issues.
The wrong way: PCA without any scaling
We deliberately mis-scaled the original data when we generated it. Mis-scaled data is a common problem in data science situations, but perhaps less common in carefully curated scientific situations. In a messy data situation like the one we are emulating, the best practice is to re-scale the x variables; however, we’ll first naively apply PCA to the data as it is. This is to demonstrate the sensitivity of PCA to the units of the data.
vars <- setdiff(colnames(dTrain),'y')

duTrain <- as.matrix(dTrain[,vars])
prinU <- prcomp(duTrain,center = TRUE,scale. = FALSE)

dotplot_identity(frame = data.frame(pc=1:length(prinU$sdev),
 magnitude=prinU$sdev),
 xvar="pc",yvar="magnitude") +
 ggtitle("Unscaled case: Magnitudes of singular values")
[image: http://i2.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/noscale-1.png?w=660]
There is no obvious knee in the magnitudes of the singular values, so we are at a loss as to how many variables we should use. In addition, when we look at the variable loading of the first five principal components, we will see another problem:
rot5U <- extractProjection(5,prinU)
rot5U = as.data.frame(rot5U)
rot5U$varName = rownames(rot5U)
rot5U = gather(rot5U, "PC", "loading",
 starts_with("PC"))
rot5U$vartype = ifelse(grepl("noise",
 rot5U$varName),
 "noise", "signal")

dotplot_identity(rot5U, "varName", "loading", "vartype") +
 facet_wrap(~PC,nrow=1) + coord_flip() +
 ggtitle("unscaled variable loadings, first 5 principal components") +
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i1.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/noscaleloading-1.png?w=660]
The noise variables completely dominate the loading of the first several principal components. Because of the way we deliberately mis-scaled the data, the noise variables are of much larger magnitude than the signal variables, and so the true signal is masked when we decompose the data.
Since the magnitudes of the singular values don’t really give us a clue as to how many components to use in our model, let’s try using all of them. This actually makes no sense, because using all the principal components is equivalent to using all the variables, thus defeating the whole purpose of doing PCA in the first place. But let’s do it anyway (as many unwittingly do).
get all the principal components
not really a projection as we took all components!
projectedTrain <- as.data.frame(predict(prinU,duTrain),
 stringsAsFactors = FALSE)
vars = colnames(projectedTrain)
projectedTrain$y <- dTrain$y

varexpr = paste(vars, collapse="+")
fmla = paste("y ~", varexpr)

model <- lm(fmla,data=projectedTrain)
summary(model)

Call:
lm(formula = fmla, data = projectedTrain)

Residuals:
Min 1Q Median 3Q Max
-3.1748 -0.7611 0.0111 0.7821 3.6559

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.504e-02 3.894e-02 2.184 0.029204 *
PC1 1.492e-04 4.131e-04 0.361 0.717983
PC2 1.465e-05 4.458e-04 0.033 0.973793
PC3 -7.372e-04 4.681e-04 -1.575 0.115648
PC4 6.894e-04 5.211e-04 1.323 0.186171
PC5 7.529e-04 5.387e-04 1.398 0.162577
PC6 -2.382e-04 5.961e-04 -0.400 0.689612
PC7 2.555e-04 6.142e-04 0.416 0.677546
PC8 5.850e-04 6.701e-04 0.873 0.382908
PC9 -6.890e-04 6.955e-04 -0.991 0.322102
PC10 7.472e-04 7.650e-04 0.977 0.328993
PC11 -7.034e-04 7.839e-04 -0.897 0.369763
PC12 7.062e-04 8.039e-04 0.878 0.379900
PC13 1.098e-04 8.125e-04 0.135 0.892511
PC14 -8.137e-04 8.405e-04 -0.968 0.333213
PC15 -5.163e-05 8.716e-04 -0.059 0.952776
PC16 1.945e-03 9.015e-04 2.158 0.031193 *
PC17 -3.384e-04 9.548e-04 -0.354 0.723143
PC18 -9.339e-04 9.774e-04 -0.955 0.339587
PC19 -6.110e-04 1.005e-03 -0.608 0.543413
PC20 8.747e-04 1.042e-03 0.839 0.401494
PC21 4.538e-04 1.083e-03 0.419 0.675310
PC22 4.237e-04 1.086e-03 0.390 0.696428
PC23 -2.011e-03 1.187e-03 -1.694 0.090590 .
PC24 3.451e-04 1.204e-03 0.287 0.774416
PC25 2.156e-03 1.263e-03 1.707 0.088183 .
PC26 -6.293e-04 1.314e-03 -0.479 0.631988
PC27 8.401e-04 1.364e-03 0.616 0.538153
PC28 -2.578e-03 1.374e-03 -1.876 0.061014 .
PC29 4.354e-04 1.423e-03 0.306 0.759691
PC30 4.098e-04 1.520e-03 0.270 0.787554
PC31 5.509e-03 1.650e-03 3.339 0.000875 ***
PC32 9.097e-04 1.750e-03 0.520 0.603227
PC33 5.617e-04 1.792e-03 0.314 0.753964
PC34 -1.247e-04 1.870e-03 -0.067 0.946837
PC35 -6.470e-04 2.055e-03 -0.315 0.752951
PC36 1.435e-03 2.218e-03 0.647 0.517887
PC37 4.906e-04 2.246e-03 0.218 0.827168
PC38 -2.915e-03 2.350e-03 -1.240 0.215159
PC39 -1.917e-03 2.799e-03 -0.685 0.493703
PC40 4.827e-04 2.820e-03 0.171 0.864117
PC41 -6.016e-05 3.060e-03 -0.020 0.984321
PC42 6.750e-03 3.446e-03 1.959 0.050425 .
PC43 -3.537e-03 4.365e-03 -0.810 0.417996
PC44 -4.845e-03 5.108e-03 -0.948 0.343131
PC45 8.643e-02 5.456e-03 15.842 < 2e-16 ***
PC46 7.882e-02 6.267e-03 12.577 < 2e-16 ***
PC47 1.202e-01 6.693e-03 17.965 < 2e-16 ***
PC48 -9.042e-02 1.163e-02 -7.778 1.92e-14 ***
PC49 1.309e-01 1.670e-02 7.837 1.23e-14 ***
PC50 2.893e-01 3.546e-02 8.157 1.08e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.231 on 949 degrees of freedom
Multiple R-squared: 0.5052, Adjusted R-squared: 0.4791
F-statistic: 19.38 on 50 and 949 DF, p-value: < 2.2e-16
estimate <- predict(model,newdata=projectedTrain)
trainrsq <- rsq(estimate,projectedTrain$y)
Note that most of the variables that achieve significance are the very last ones! We will leave it to the reader to confirm that using even as many as the first 25 principal components — half the variables — explains little of the variation in y. If we wanted to use PCR to reduce the dimensionality of the problem, we have failed. This is an example of what Jolliffe would have called a "downright mean" modeling problem, which we caused by mis-scaling the data. Note the r-squared of 0.5052 for comparison, later.
So now let’s do what we should have done in the first place: scale the data.
A better way: Preparing the training data withx-only scaling
Standard practice is to center the data at mean zero and scale it to unit standard deviation, which is easy with the scale command.
dTrainNTreatedUnscaled <- dTrain
dTestNTreatedUnscaled <- dTest

scale the data
dTrainNTreatedXscaled <-
 as.data.frame(scale(dTrainNTreatedUnscaled[,colnames(dTrainNTreatedUnscaled)!='y'],
 center=TRUE,scale=TRUE),stringsAsFactors = FALSE)
dTrainNTreatedXscaled$y <- dTrainNTreatedUnscaled$y
dTestNTreatedXscaled <-
 as.data.frame(scale(dTestNTreatedUnscaled[,colnames(dTestNTreatedUnscaled)!='y'],
 center=TRUE,scale=TRUE),stringsAsFactors = FALSE)
dTestNTreatedXscaled$y <- dTestNTreatedUnscaled$y

get the variable ranges
ranges = vapply(dTrainNTreatedXscaled, FUN=function(col) c(min(col), max(col)), numeric(2))
rownames(ranges) = c("vmin", "vmax")
rframe = as.data.frame(t(ranges)) # make ymin/ymax the columns
rframe$varName = rownames(rframe)
varnames = setdiff(rownames(rframe), "y")
rframe = rframe[varnames,]
rframe$vartype = ifelse(grepl("noise", rframe$varName),
 "noise", "signal")

summary(dTrainNTreatedXscaled[, c("y", "x.01", "x.02",
 "noise1.01", "noise1.02")])
y x.01 x.02
Min. :-5.08978 Min. :-3.56466 Min. :-3.53178
1st Qu.:-1.01488 1st Qu.:-0.71922 1st Qu.:-0.68546
Median : 0.08223 Median : 0.01428 Median : 0.02157
Mean : 0.08504 Mean : 0.00000 Mean : 0.00000
3rd Qu.: 1.17766 3rd Qu.: 0.64729 3rd Qu.: 0.64710
Max. : 5.84932 Max. : 3.02949 Max. : 3.44983
noise1.01 noise1.02
Min. :-3.55505 Min. :-3.04344
1st Qu.:-0.67730 1st Qu.:-0.67283
Median : 0.04075 Median :-0.01098
Mean : 0.00000 Mean : 0.00000
3rd Qu.: 0.66476 3rd Qu.: 0.63123
Max. : 3.03398 Max. : 3.09969
barbell_plot(rframe, "varName", "vmin", "vmax", "vartype") +
 coord_flip() + ggtitle("x scaled variables: ranges") +
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i2.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/xonlyexample-1.png?w=660]
Note that the signal and noise variables now have commensurate ranges.
The principal components analysis
vars = setdiff(colnames(dTrainNTreatedXscaled), "y")

dmTrain <- as.matrix(dTrainNTreatedXscaled[,vars])
dmTest <- as.matrix(dTestNTreatedXscaled[,vars])
princ <- prcomp(dmTrain,center = TRUE,scale. = TRUE)
dotplot_identity(frame = data.frame(pc=1:length(princ$sdev),
 magnitude=princ$sdev),
 xvar="pc",yvar="magnitude") +
 ggtitle("x scaled variables: Magnitudes of singular values")
[image: http://i0.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/xscaledPCA-1.png?w=660]
Now the magnitudes of the singular values suggest that we can try to model the data with only the first twenty principal components. But first, let’s look at the variable loadings of the first five principal components.
rot5 <- extractProjection(5,princ)
rotf = as.data.frame(rot5)
rotf$varName = rownames(rotf)
rotflong = gather(rotf, "PC", "loading", starts_with("PC"))
rotflong$vartype = ifelse(grepl("noise", rotflong$varName),
 "noise", "signal")

dotplot_identity(rotflong, "varName", "loading", "vartype") +
 facet_wrap(~PC,nrow=1) + coord_flip() +
 ggtitle("x scaled variable loadings, first 5 principal components") +
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i0.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/xscaledload-1.png?w=660]
The signal variables now have larger loadings than they did in the unscaled case, but the noise variables still dominate the projection, in aggregate swamping out the contributions from the signal variables. The two processes that produced y have diffused amongst the principal components, rather than mostly concentrating in the first two, as they did in the ideal case. This is because we constructed the noise variables to have variation and some correlations with each other — but not be correlated with y. PCA doesn’t know that we are interested only in variable correlations that are due to y, so it must decompose the data to capture as much variation, and as many variable correlations, as possible.
In other words, PCA must represent all processes present in the data, regardless of whether we are trying to predict those particular processes or not. Without the knowledge of the y that we are trying to predict, PCA is forced to prepare for any possible future prediction task.
Modeling
Let’s build a model using only the first twenty principal components, as our above analysis suggests we should.
get all the principal components
not really a projection as we took all components!
projectedTrain <- as.data.frame(predict(princ,dmTrain),
 stringsAsFactors = FALSE)
projectedTrain$y <- dTrainNTreatedXscaled$y

ncomp = 20
here we will only model with the first ncomp principal components
varexpr = paste(paste("PC", 1:ncomp, sep=''), collapse='+')
fmla = paste("y ~", varexpr)

model <- lm(fmla,data=projectedTrain)
summary(model)

Call:
lm(formula = fmla, data = projectedTrain)

Residuals:
Min 1Q Median 3Q Max
-3.2612 -0.7939 -0.0096 0.7898 3.8352

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.085043 0.039391 2.159 0.031097 *
PC1 0.107016 0.025869 4.137 3.82e-05 ***
PC2 -0.047934 0.026198 -1.830 0.067597 .
PC3 0.135933 0.026534 5.123 3.62e-07 ***
PC4 -0.162336 0.026761 -6.066 1.87e-09 ***
PC5 0.356880 0.027381 13.034 < 2e-16 ***
PC6 -0.126491 0.027534 -4.594 4.92e-06 ***
PC7 0.092546 0.028093 3.294 0.001022 **
PC8 -0.134252 0.028619 -4.691 3.11e-06 ***
PC9 0.280126 0.028956 9.674 < 2e-16 ***
PC10 -0.112623 0.029174 -3.860 0.000121 ***
PC11 -0.065812 0.030564 -2.153 0.031542 *
PC12 0.339129 0.030989 10.943 < 2e-16 ***
PC13 -0.006817 0.031727 -0.215 0.829918
PC14 0.086316 0.032302 2.672 0.007661 **
PC15 -0.064822 0.032582 -1.989 0.046926 *
PC16 0.300566 0.032739 9.181 < 2e-16 ***
PC17 -0.339827 0.032979 -10.304 < 2e-16 ***
PC18 -0.287752 0.033443 -8.604 < 2e-16 ***
PC19 0.297290 0.034657 8.578 < 2e-16 ***
PC20 0.084198 0.035265 2.388 0.017149 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.246 on 979 degrees of freedom
Multiple R-squared: 0.4776, Adjusted R-squared: 0.467
F-statistic: 44.76 on 20 and 979 DF, p-value: < 2.2e-16
projectedTrain$estimate <- predict(model,newdata=projectedTrain)
ScatterHist(projectedTrain,'estimate','y','Recovered 20 variable model versus truth (train)',
 smoothmethod='identity',annot_size=3)
[image: http://i0.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/quant2-1.png?w=660]
trainrsq <- rsq(projectedTrain$estimate,projectedTrain$y)
This model explains 47.76% of the variation in the training set. We do about as well on test.
projectedTest <- as.data.frame(predict(princ,dmTest),
 stringsAsFactors = FALSE)
projectedTest$y <- dTestNTreatedXscaled$y
projectedTest$estimate <- predict(model,newdata=projectedTest)
testrsq <- rsq(projectedTest$estimate,projectedTest$y)
testrsq
[1] 0.5033022
This is pretty good; recall that we had about 33% unexplainable variance in the data, so we would not expect any modeling algorithm to get better than an r-squared of about 0.67.
We can confirm that this performance is as good as simply regressing on all the variables without the PCA, so we have at least not lost information via our dimensionality reduction.
fit a model to the original data
vars <- setdiff(colnames(dTrain),'y')
formulaB <- paste('y',paste(vars,collapse=' + '),sep=' ~ ')
modelB <- lm(formulaB,data=dTrain)
dTrainestimate <- predict(modelB,newdata=dTrain)
rsq(dTrainestimate,dTrain$y)
[1] 0.5052081
dTestestimate <- predict(modelB,newdata=dTest)
rsq(dTestestimate,dTest$y)
[1] 0.4751995
We will show in our next article how to get a similar test r-squared from this data using a model with only two variables.
Are we done?
Scaling the variables improves the performance of PCR on this data relative to not scaling, but we haven’t completely solved the problem (though some analysts are fooled into thinking thusly). We have not explicitly recovered the two processes that drive y, and recovering such structure in the data is one of the purposes of PCA — if we did not care about the underlying structure of the problem, we could simply fit a model to the original data, or use other methods (like significance pruning) to reduce the problem dimensionality.
It is a misconception in some fields that the variables must be orthogonal before fitting a linear regression model. This is not true. A linear model fit to collinear variables can still predict well; the only downside is that the coefficients of the model are not necessarily as easily interpretable as they are when the variables are orthogonal (and ideally, centered and scaled, as well). If your data has so much collinearity that the design matrix is ill-conditioned, causing the model coefficients to be inappropriately large or unstable, then regularization (ridge, lasso, or elastic-net regression) is a good solution. More complex predictive modeling approaches, for example random forest or gradient boosting, also tend to be more immune to collinearity.
So if you are doing PCR, you presumably are interested in the underlying structure of the data, and in this case, we haven’t found it. Projecting onto the first few principal components fails to show much of a relation between these components and y.
We can confirm the first two x-scaled principal components are not informative with the following graph.
proj <- extractProjection(2,princ)
apply projection
projectedTrain <- as.data.frame(dmTrain %*% proj,
 stringsAsFactors = FALSE)
projectedTrain$y <- dTrainNTreatedXscaled$y
plot data sorted by principal components
ScatterHistN(projectedTrain,'PC1','PC2','y',
 "x scaled Data projected to first two principal components")
[image: http://i2.wp.com/www.win-vector.com/dfiles/XonlyPCA_files/figure-html/xscaledplot-1.png?w=660]
We see that y is not well ordered by PC1 and PC2 here, as it was in the ideal case, and as it will be with the y-aware PCA.
In our next article we will show that we can explain almost 50% of the yvariance in this data using only two variables. This is quite good as even the "all variable" model only picks up about that much of the relation and y by design has about 33% unexplainable variation. In addition to showing the standard methods (including variable pruning) we will introduce a technique we call "y-aware scaling."
Click here for part 2.
References
Everitt, B. S. The Cambridge Dictionary of Statistics, 2nd edition, Cambridge University Press, 2005.
Jolliffe, Ian T. "A Note on the Use of Principal Components in Regression,"Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 31, No. 3 (1982), pp. 300-303
SHARE THIS:
· Click to email this to a friend (Opens in new window)
· Click to print (Opens in new window)
· 28Click to share on Facebook (Opens in new window)28
· Click to share on Tumblr (Opens in new window)
· 83Click to share on LinkedIn (Opens in new window)83
· Click to share on Reddit (Opens in new window)
· Click to share on Twitter (Opens in new window)
· Click to share on Google+ (Opens in new window)
·
RELATED
[image: Principal Components Regression, Pt. 2: Y-Aware Methods]
Principal Components Regression, Pt. 2: Y-Aware Methods
In "data science"
[image: Unprincipled Component Analysis]
Unprincipled Component Analysis
In "data science"
[image: Coming up: principal components analysis]
Coming up: principal components analysis
In "Administrativia"
Posted onMay 16, 2016AuthorNina ZumelCategoriesdata science, Expository Writing,Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTagsdimension reduction, principal components analysis, principal components regression, R, Statistics as it should be
10 thoughts on “Principal Components Regression, Pt.1: The Standard Method”
1. Vikas Agrawalsays:
May 16, 2016 at 11:19 pm
Hi, thanks for beautiful article. But I could not find extractProjection function in R. Which package was used for this function?
REPLY
1. Nina Zumelsays:
May 17, 2016 at 7:59 am
Hi Vikas — thanks for the nice comment! Our apologies, too: extractProjection is our function. You can find the definition in the R markdown document that we used to generate this article, here: https://github.com/WinVector/Examples/blob/master/PCR/XonlyPCA.Rmd
REPLY
1. Marco Antonio Mercadosays:
May 20, 2016 at 2:16 pm
Hi! I found very usefull this article, but from the link you publish, how do we “install” it on R? sorry but i’ve just installed this software :(
saludos camarada!
REPLY
1. John Mountsays:
May 20, 2016 at 2:22 pm
I’d say the easiest way is to download the contents of the link (the .Rmd) file and open it using the RStudio user interface. RStudio will then add a tiny button offering to re-render the results. The file is “R Markdown” and RStudio can use “knitr” and other packages to run the code (and RStudio has documentation on knitr).
REPLY
1. Marco Antonio Mercadosays:
May 20, 2016 at 2:36 pm
John, where can i find the re.render (or render) button?… I press Knit HTML but it show me some errors… i think it’s not in there does it?
2. John Mountsays:
May 20, 2016 at 2:58 pm
“Knit HTML” is the correct rendering button.
The proper way to download is to right-click on the “Raw” button on Github and “Download Linked File”. You then need to rename the downloaded file to end in “.Rmd” instead of “.txt”.
Likely you need to install some libraries prior to running (installing during a run is considered bad form). The canonical advice is look what libraries and “::” notations are used in the file. In our case the following should work.
install.packages(c('ggplot2','tidyr',
 'devtools','knitr'))
devtools::install_github('WinVector/WVPlots',
 build_vignettes=TRUE)
I’ve written up some help/instructions here: http://www.win-vector.com/blog/2016/05/installing-wvplots-and-knitting-r-markdown/
2. John Mountsays:
May 17, 2016 at 9:07 am
A big thank you to Revolutions/Microsoft for hosting my introduction to Nina Zumel’s articlehttp://blog.revolutionanalytics.com/2016/05/principal-components-tutorial.html . Basically I get to tell you why you should consider taking the time to read a clear and beautiful operational demonstration of principal components regression. Stay tuned next week for part 2 where Dr. Zumel describes additional more powerful modeling techniques.
REPLY
3. Ross Gaylersays:
May 18, 2016 at 7:15 pm
Thanks for the good post. Carrying on from the discussion of x-scaling, I would like to know your recommendation for dealing with disparity in the numbers of x-variables related to different y-processes. For example, there might be two y-processes, both equally influential on the y value. and there might be 5 x-variables related to process A and 50 x-variables related to process B – so even if all the x-variables are scaled to equal variance the B-related variables will dominate the x-only PCA. Of course, in general you don’t know in advance the number of y-processes and how they relate to the x-variables, so any appropriate response to this problem should be OK with the typical level of ignorance.
REPLY
1. John Mountsays:
May 18, 2016 at 8:34 pm
That is pretty close to the punchline, and next week Nina will outline techniques that try to concentrate on a single y-process of interest.
REPLY
4. John Mountsays:
May 24, 2016 at 12:07 pm
If you are trying to download the worksheets from https://github.com/WinVector/Examples/tree/master/PCR I have (with the help of reader feedback) worked on some instructions to help through the install process http://www.win-vector.com/blog/2016/05/installing-wvplots-and-knitting-r-markdown/ .

Principal Components Regression, Pt. 2: Y-Aware Methods
In our previous note, we discussed some problems that can arise when using standard principal components analysis (specifically, principal components regression) to model the relationship between independent (x) and dependent (y) variables. In this note, we present some dimensionality reduction techniques that alleviate some of those problems, in particular what we call Y-Aware Principal Components Analysis, or Y-Aware PCA. We will use our variable treatment package vtreat in the examples we show in this note, but you can easily implement the approach independently of vtreat.
What is Y-Aware PCA?
As with other geometric algorithms, principal components analysis is sensitive to the units of the data. In standard ("x-only") PCA, we often attempt to alleviate this problem by rescaling the x variables to their "natural units": that is, we rescale x by its own standard deviation. By individually rescaling each x variable to its "natural unit," we hope (but cannot guarantee) that all the data as a group will be in some "natural metric space," and that the structure we hope to discover in the data will manifest itself in this coordinate system. As we saw in the previous note, if the structure that we hope to discover is the relationship between x and y, we have even less guarantee that we are in the correct space, since the decomposition of the data was done without knowledge of y.
Y-aware PCA is simply PCA with a different scaling: we rescale the x data to be in y-units. That is, we want scaled variables x’ such that a unit change in x’ corresponds to a unit change in y. Under this rescaling, all the independent variables are in the same units, which are indeed the natural units for the problem at hand: characterizing their effect on y. (We also center the transformed variables x’ to be zero mean, as is done with standard centering and scaling).
It’s easy to determine the scaling for a variable x by fitting a linear regression model between x and y:
y = m * x + b
The coefficient m is the slope of the best fit line, so a unit change in x corresponds (on average) to a change of m units in y. If we rescale (and recenter) x as
x' := m * x - mean(m * x)
then x’ is in y units. This y-aware scaling is both complementary to variable pruning and powerful enough to perform well on its own.
In vtreat, the treatment plan created by designTreatmentsN() will store the information needed for y-aware scaling, so that if you then prepare your data with the flag scale=TRUE, the resulting treated frame will be scaled appropriately.
An Example of Y-Aware PCA
First, let’s build our example. We will use the same data set as our earlier "X only" discussion.
In this data set, there are two (unobservable) processes: one that produces the output yA and one that produces the output yB. We only observe the mixture of the two: y = yA + yB + eps, where eps is a noise term. Think of y as measuring some notion of success and the x variables as noisy estimates of two different factors that can each drive success.
We’ll set things up so that the first five variables (x.01, x.02, x.03, x.04, x.05) have all the signal. The odd numbered variables correspond to one process (yB) and the even numbered variables correspond to the other (yA). Then, to simulate the difficulties of real world modeling, we’ll add lots of pure noise variables (noise*). The noise variables are unrelated to our y of interest — but are related to other "y-style" processes that we are not interested in. We do this because in real applications, there is no reason to believe that unhelpful variables have limited variation or are uncorrelated with each other, though things would certainly be easier if we could so assume. As we showed in the previous note, this correlation undesirably out-competed the y induced correlation among signaling variables when using standard PCA.
All the variables are also deliberately mis-scaled to model some of the difficulties of working with under-curated real world data.
Let’s start with our train and test data.
make data
set.seed(23525)
dTrain <- mkData(1000)
dTest <- mkData(1000)
Let’s look at our outcome y and a few of our variables.
summary(dTrain[, c("y", "x.01", "x.02", "noise1.01", "noise1.02")])
y x.01 x.02
Min. :-5.08978 Min. :-4.94531 Min. :-9.9796
1st Qu.:-1.01488 1st Qu.:-0.97409 1st Qu.:-1.8235
Median : 0.08223 Median : 0.04962 Median : 0.2025
Mean : 0.08504 Mean : 0.02968 Mean : 0.1406
3rd Qu.: 1.17766 3rd Qu.: 0.93307 3rd Qu.: 1.9949
Max. : 5.84932 Max. : 4.25777 Max. :10.0261
noise1.01 noise1.02
Min. :-30.5661 Min. :-30.4412
1st Qu.: -5.6814 1st Qu.: -6.4069
Median : 0.5278 Median : 0.3031
Mean : 0.1754 Mean : 0.4145
3rd Qu.: 5.9238 3rd Qu.: 6.8142
Max. : 26.4111 Max. : 31.8405
Next, we’ll design a treatment plan for the frame, and examine the variable significances, as estimated by vtreat.
design treatment plan
treatmentsN <- designTreatmentsN(dTrain,setdiff(colnames(dTrain),'y'),'y',
 verbose=FALSE)

scoreFrame = treatmentsN$scoreFrame
scoreFrame$vartype = ifelse(grepl("noise", scoreFrame$varName), "noise", "signal")

dotplot_identity(scoreFrame, "varName", "sig", "vartype") +
 coord_flip() + ggtitle("vtreat variable significance estimates")+
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i2.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/design1prep-1.png?w=660]
Note that the noise variables typically have large significance values, denoting statistical insignificance. Usually we recommend doing some significance pruning on variables before moving on — see here for possible consequences of not pruning an over-abundance of variables, and here for a discussion of one way to prune, based on significance. For this example, however, we will attempt dimensionality reduction without pruning.
Y-Aware PCA
Prepare the frame with y-aware scaling
Now let’s prepare the treated frame, with scaling turned on. We will deliberately turn off variable pruning by setting pruneSig = 1. In real applications, you would want to set pruneSig to a value less than one to prune insignificant variables. However, here we turn off variable pruning to show that you can recover some of pruning’s benefits via scaling effects, because the scaled noise variables should not have a major effect in the principal components analysis. Pruning by significance is in fact a good additional precaution complementary to scaling by effects.
prepare the treated frames, with y-aware scaling
examplePruneSig = 1.0
dTrainNTreatedYScaled <- prepare(treatmentsN,dTrain,pruneSig=examplePruneSig,scale=TRUE)
dTestNTreatedYScaled <- prepare(treatmentsN,dTest,pruneSig=examplePruneSig,scale=TRUE)

get the variable ranges
ranges = vapply(dTrainNTreatedYScaled, FUN=function(col) c(min(col), max(col)), numeric(2))
rownames(ranges) = c("vmin", "vmax")
rframe = as.data.frame(t(ranges)) # make ymin/ymax the columns
rframe$varName = rownames(rframe)
varnames = setdiff(rownames(rframe), "y")
rframe = rframe[varnames,]
rframe$vartype = ifelse(grepl("noise", rframe$varName), "noise", "signal")

show a few columns
summary(dTrainNTreatedYScaled[, c("y", "x.01_clean", "x.02_clean", "noise1.02_clean", "noise1.02_clean")])
y x.01_clean x.02_clean
Min. :-5.08978 Min. :-2.65396 Min. :-2.51975
1st Qu.:-1.01488 1st Qu.:-0.53547 1st Qu.:-0.48904
Median : 0.08223 Median : 0.01063 Median : 0.01539
Mean : 0.08504 Mean : 0.00000 Mean : 0.00000
3rd Qu.: 1.17766 3rd Qu.: 0.48192 3rd Qu.: 0.46167
Max. : 5.84932 Max. : 2.25552 Max. : 2.46128
noise1.02_clean noise1.02_clean.1
Min. :-0.0917910 Min. :-0.0917910
1st Qu.:-0.0186927 1st Qu.:-0.0186927
Median : 0.0003253 Median : 0.0003253
Mean : 0.0000000 Mean : 0.0000000
3rd Qu.: 0.0199244 3rd Qu.: 0.0199244
Max. : 0.0901253 Max. : 0.0901253
barbell_plot(rframe, "varName", "vmin", "vmax", "vartype") +
 coord_flip() + ggtitle("y-scaled variables: ranges") +
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i0.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/workscaled1-1.png?w=660]
Notice that after the y-aware rescaling, the signal carrying variables have larger ranges than the noise variables.
The Principal Components Analysis
Now we do the principal components analysis. In this case it is critical that the scale parameter in prcomp is set to FALSE so that it does not undo our own scaling. Notice the magnitudes of the singular values fall off quickly after the first two to five values.
vars <- setdiff(colnames(dTrainNTreatedYScaled),'y')
prcomp defaults to scale. = FALSE, but we already scaled/centered in vtreat- which we don't want to lose.
dmTrain <- as.matrix(dTrainNTreatedYScaled[,vars])
dmTest <- as.matrix(dTestNTreatedYScaled[,vars])
princ <- prcomp(dmTrain, center = FALSE, scale. = FALSE)
dotplot_identity(frame = data.frame(pc=1:length(princ$sdev),
 magnitude=princ$sdev),
 xvar="pc",yvar="magnitude") +
 ggtitle("Y-Scaled variables: Magnitudes of singular values")
[image: http://i0.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/scaledpca-1.png?w=660]
When we look at the variable loadings of the first five principal components, we see that we recover the even/odd loadings of the original signal variables. PC1 has the odd variables, and PC2 has the even variables. These two principal components carry most of the signal. The next three principal components complete the basis for the five original signal variables. The noise variables have very small loadings, compared to the signal variables.
proj <- extractProjection(2,princ)
rot5 <- extractProjection(5,princ)
rotf = as.data.frame(rot5)
rotf$varName = rownames(rotf)
rotflong = gather(rotf, "PC", "loading", starts_with("PC"))
rotflong$vartype = ifelse(grepl("noise", rotflong$varName), "noise", "signal")

dotplot_identity(rotflong, "varName", "loading", "vartype") +
 facet_wrap(~PC,nrow=1) + coord_flip() +
 ggtitle("Y-Scaled Variable loadings, first five principal components") +
 scale_color_manual(values = c("noise" = "#d95f02", "signal" = "#1b9e77"))
[image: http://i1.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/scaledvarload-1.png?w=660]
Let’s look at the projection of the data onto its first two principal components, using color to code the y value. Notice that y increases both as we move up and as we move right. We have recovered two features that correlate with an increase in y. In fact, PC1 corresponds to the odd signal variables, which correspond to process yB, and PC2 corresponds to the even signal variables, which correspond to process yA.
apply projection
projectedTrain <- as.data.frame(dmTrain %*% proj,
 stringsAsFactors = FALSE)
plot data sorted by principal components
projectedTrain$y <- dTrainNTreatedYScaled$y
ScatterHistN(projectedTrain,'PC1','PC2','y',
 "Y-Scaled Training Data projected to first two principal components")
[image: http://i2.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/scaledplottrain-1.png?w=660]
Now let’s fit a linear regression model to the first two principal components.
model <- lm(y~PC1+PC2,data=projectedTrain)
summary(model)

Call:
lm(formula = y ~ PC1 + PC2, data = projectedTrain)

Residuals:
Min 1Q Median 3Q Max
-3.3470 -0.7919 0.0172 0.7955 3.9588

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.08504 0.03912 2.174 0.03 *
PC1 0.78611 0.04092 19.212 <2e-16 ***
PC2 1.03243 0.04469 23.101 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.237 on 997 degrees of freedom
Multiple R-squared: 0.4752, Adjusted R-squared: 0.4742
F-statistic: 451.4 on 2 and 997 DF, p-value: < 2.2e-16
projectedTrain$estimate <- predict(model,newdata=projectedTrain)
trainrsq = rsq(projectedTrain$estimate,projectedTrain$y)

ScatterHist(projectedTrain,'estimate','y','Recovered model versus truth (y aware PCA train)',
 smoothmethod='identity',annot_size=3)
[image: http://i1.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/quant1-1.png?w=660]
This model, with only two variables, explains 47.52% of the variation iny. This is comparable to the variance explained by the model fit to twenty principal components using x-only PCA (as well as a model fit to all the original variables) in the previous note.
Let’s see how the model does on hold-out data.
apply projection
projectedTest <- as.data.frame(dmTest %*% proj,
 stringsAsFactors = FALSE)
plot data sorted by principal components
projectedTest$y <- dTestNTreatedYScaled$y
ScatterHistN(projectedTest,'PC1','PC2','y',
 "Y-Scaled Test Data projected to first two principal components")
[image: http://i0.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/scaledplotest-1.png?w=660]
projectedTest$estimate <- predict(model,newdata=projectedTest)
testrsq = rsq(projectedTest$estimate,projectedTest$y)
testrsq
[1] 0.5063724
ScatterHist(projectedTest,'estimate','y','Recovered model versus truth (y aware PCA test)',
 smoothmethod='identity',annot_size=3)
[image: http://i1.wp.com/www.win-vector.com/dfiles/YAwarePCA_files/figure-html/quant1test-1.png?w=660]
We see that this two-variable model captures about 50.64% of the variance in y on hold-out — again, comparable to the hold-out performance of the model fit to twenty principal components using x-only PCA. These two principal components also do a much better job of capturing the internal structure of the data — that is, the relationship of the signaling variables to the yA and yB processes — than the first two principal components of the x-only PCA.
Is this the same as caret::preProcess?
In this note, we used vtreat, a data.frame processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner, followed by principal components regression. One could instead use caret. The caret package, as described in the documentation, "is a set of functions that attempt to streamline the process for creating predictive models."
caret::preProcess is designed to implement a number of sophisticated x alone transformations, groupings, prunings, and repairs (see caret/preprocess.html#all, which demonstrates "the function on all the columns except the last, which is the outcome" on the schedulingData dataset). So caret::preProcess is a super-version of the PCA step.
We could use it as follows either alone or before vtreat design/prepare as a initial pre-processor. Using it alone is similar to PCA for this data set, as our example doesn’t have some of the additional problems caret::preProcess is designed to help with.
library('caret')
origVars <- setdiff(colnames(dTrain),'y')
can try variations such adding/removing non-linear steps such as "YeoJohnson"
prep <- preProcess(dTrain[,origVars],
 method = c("center", "scale", "pca"))
prepared <- predict(prep,newdata=dTrain[,origVars])
newVars <- colnames(prepared)
prepared$y <- dTrain$y
print(length(newVars))
[1] 44
modelB <- lm(paste('y',paste(newVars,collapse=' + '),sep=' ~ '),data=prepared)
print(summary(modelB)$r.squared)
[1] 0.5004569
print(summary(modelB)$adj.r.squared)
[1] 0.4774413
preparedTest <- predict(prep,newdata=dTest[,origVars])
testRsqC <- rsq(predict(modelB,newdata=preparedTest),dTest$y)
testRsqC
[1] 0.4824284
The 44 caret-chosen PCA variables are designed to capture 95% of the in-sample explainable variation of the variables. The linear regression model fit to the selected variables explains about 50.05% of the y variance on training and 48.24% of the y variance on test. This is quite good, comparable to our previous results. However, note that caret picked more than the twenty principal components that we picked visually in the previous note, and needed far more variables than we needed with y-aware PCA.
Because caret::preProcess is x-only processing, the first few variables capture much less of the y variation. So we can’t model y without using a lot of the derived variables. To show this, let’s try fitting a model using only five of caret‘s PCA variables.
model5 <- lm(paste('y',paste(newVars[1:5],collapse=' + '),sep=' ~ '),data=prepared)
print(summary(model5)$r.squared)
[1] 0.1352
print(summary(model5)$adj.r.squared)
[1] 0.1308499
The first 5 variables only capture about 13.52% of the in-sample variance; without being informed about y, we can’t know which variation to preserve and which we can ignore. We certainly haven’t captured the two subprocesses that drive y in an inspectable manner.
Other Y-aware Approaches to Dimensionality Reduction
If your goal is regression, there are other workable y-aware dimension reducing procedures, such as L2-regularized regression or partial least squares. Both methods are also related to principal components analysis (see Hastie, etal 2009).
Bair, etal proposed a variant of principal components regression that they call Supervised PCR. In supervised PCR, as described in their 2006 paper, a univariate linear regression model is fit to each variable (after scaling and centering), and any variable whose coefficient (what we called m above) has a magnitude less than some threshold \(\theta\) is pruned. PCR is then done on the remaining variables. Conceptually, this is similar to the significance pruning that vtreat offers, except that the pruning criterion is "effects-based" (that is, it’s based on the magnitude of a parameter, or the strength of an effect) rather than probability-based, such as pruning on significance.
One issue with an effects-based pruning criterion is that the appropriate pruning threshold varies from problem to problem, and not necessarily in an obvious way. Bair, etal find an appropriate threshold via cross-validation. Probability-based thresholds are in some sense more generalizable from problem to problem, since the score is always in probability units — the same units for all problems. A simple variation of supervised PCR might prune on the significance of the coefficient m, as determined by its t-statistic. This would be essentially equivalent to significance pruning of the variables via vtreat before standard PCR.
Note that vtreat uses the significance of the one-variable model fits, not coefficient significance to estimate variable significance. When both the dependent and independent variables are numeric, the model significance and the coefficient significance are identical (see Weisberg,Applied Linear Regression). In more general modeling situations where either the outcome is categorical or the original input variable is categorical with many degrees of freedom, they are not the same, and, in our opinion, using the model significance is preferable.
In general modeling situations where you are not specifically interested in the structure of the feature space, as described by the principal components, then we recommend significance pruning of the variables. As a rule of thumb, we suggest setting your significance pruning threshold based on the rate at which you can tolerate bad variables slipping into the model. For example, setting the pruning threshold at \(p=0.05\) would let pure noise variables in at the rate of about 1 in 20 in expectation. So a good upper bound on the pruning threshold might be1/nvar, where nvar is the number of variables. We discuss this issue briefly here in the vtreat documentation.
vtreat does not supply any joint variable dimension reduction as we feel dimension reduction is a modeling task. vtreat is intended to limit itself to only necessary "prior to modeling" processing and includes significance pruning reductions because such pruning can be necessary prior to modeling.
Conclusion
In our experience, there are two camps of analysts: those who never use principal components regression and those who use it far too often. While principal components analysis is a useful data conditioning method, it is sensitive to distances and geometry. Therefore it is only to be trusted when the variables are curated, pruned, and in appropriate units. Principal components regression should not be used blindly; it requires proper domain aware scaling, initial variable pruning, and posterior component pruning. If the goal is regression many of the purported benefits of principal components regression can be achieved through regularization.
The general principals are widely applicable, and often re-discovered and re-formulated in useful ways (such as autoencoders).
In our next note, we will look at some ways to pick the appropriate number of principal components procedurally.
References
· Bair, Eric, Trevor Hastie, Debashis Paul and Robert Tibshirani, "Prediction by Supervised Principal Components", Journal of the American Statistical Association, Vol. 101, No. 473 (March 2006), pp. 119-137.
· Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning, 2nd Edition, 2009.
· Weisberg, Sanford, Applied Linear Regression, Third Edition, Wiley, 2005.
SHARE THIS:
· Click to email this to a friend (Opens in new window)
· Click to print (Opens in new window)
· 3Click to share on Facebook (Opens in new window)3
· Click to share on Tumblr (Opens in new window)
· 13Click to share on LinkedIn (Opens in new window)13
· Click to share on Reddit (Opens in new window)
· Click to share on Twitter (Opens in new window)
· Click to share on Google+ (Opens in new window)
·
RELATED
[image: Principal Components Regression, Pt.1: The Standard Method]
Principal Components Regression, Pt.1: The Standard Method
In "data science"
[image: Improved vtreat documentation]
Improved vtreat documentation
In "Administrativia"
[image: Unprincipled Component Analysis]
Unprincipled Component Analysis
In "data science"
Posted onMay 23, 2016AuthorNina ZumelCategoriesdata science, Exciting Techniques,Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTagsprincipal components analysis,principal components regression, R, Statistics as it should be, vtreat, y-aware methods
2 thoughts on “Principal Components Regression, Pt. 2: Y-Aware Methods”
1. Nina Zumelsays:
May 23, 2016 at 10:22 am
The R markdown document that produced this article is on GitHub, in this directory: https://github.com/WinVector/Examples/tree/master/PCR . The document includes all the code to run this example (some of which has been hidden from the posted version of the article).
The direct link is:https://github.com/WinVector/Examples/blob/master/PCR/YAwarePCA.Rmd
REPLY
2. John Mountsays:
May 24, 2016 at 12:06 pm
If you are trying to download the worksheets from https://github.com/WinVector/Examples/tree/master/PCR I have (with the help of reader feedback) worked on some instructions to help through the install process http://www.win-vector.com/blog/2016/05/installing-wvplots-and-knitting-r-markdown/ .
REPLY

How Do You Know if Your Data Has Signal?
[image: NewImage]
Image by Liz Sullivan, Creative Commons. Source: Wikimedia
An all too common approach to modeling in data science is to throw all possible variables at a modeling procedure and “let the algorithm sort it out.” This is tempting when you are not sure what are the true causes or predictors of the phenomenon you are interested in, but it presents dangers, too. Very wide data sets are computationally difficult for some modeling procedures; and more importantly, they can lead to overfit models that generalize poorly on new data. In extreme cases, wide data can fool modeling procedures into finding models that look good on training data, even when that data has no signal. We showed some examples of this previously in our “Bad Bayes” blog post.
In this latest “Statistics as it should be” article, we will look at a heuristic to help determine which of your input variables have signal.
Thought experiment: What does a pure noise variable look like?
To recognize if a variable is predictive of the outcome you are interested in, it helps to know what it looks like when a variable is completely independent of the outcome. Suppose you have a variable x that you believe predicts an outcome y — in our examples, y will be a binary outcome, TRUE or FALSE, but the idea works for general x and y.
x1 y1
x2 y2
x3 y3 …
We can make y independent of x by scrambling (or permuting) the order of x and y relative to each other:
x1 y4
x2 y7
x3 y1 …
Now fit a one variable model (say a logistic regression model) to this new no-signal data set, and compare the model’s training performance (say its deviance) to the training performance of a logistic regression model fit to the true data (x, y). If x truly has signal (as you hope), then the model on the unpermuted data should perform much better (have lower deviance) than the model fit to the no-signal (permuted) data. If xactually has no signal, then both models should look about the same.
Now do the permutation step over and over again. You will have built up a distribution of models built on no-signal data sets that “look like” the original data — that is, the data sets are the same size as the original data, and they have the same distributions of x values and of y values as your original data, just not in the same pairings. You also have the distribution of how they perform. If x truly has signal, then the model built on the real (x, y) should perform much better than the other models — its deviance should be to the left (lower) than the “hump” of deviances of the other models. If x does not predict y, then its deviance will probably sit somewhere within the range of deviances of the other models.
Let’s see what this looks like in R.
library(ggplot2)
return a frame of the deviance scores on the permuted data
permutation_test = function(dataf, ycol, nperm) {
 nrows = dim(dataf)[1]
 y = dataf[[ycol]]
 X = dataf[, setdiff(colnames(dataf), ycol), drop=FALSE]
 varnames = colnames(X)
 fmla = paste("y", paste(varnames, collapse=" + "), sep=" ~ ")
 deviances <- numeric(nperm)
 for(i in seq_len(nperm)) {
 # random order of rows
 ord = sample.int(nrows, size=nrows, replace=FALSE)
 model = glm(fmla, data=cbind(y=y[ord], X),
 family=binomial(link="logit"))
 #print(summary(model))
 deviances[[i]] =model$deviance
 }
 deviances
}

score_variable = function(dframe, ycol, var, nperm,
 title='') {
 df=data.frame(y=dframe[[ycol]], x=dframe[[var]])

 mod = glm("y~x", data=df,
 family=binomial(link="logit"))
 vdev = mod$deviance
 vperm = permutation_test(df, "y", nperm)

 # count how many times vdev >= deviances from perm test
 num = sum(vperm <= vdev)
 vscore = num/nperm
 print(ggplot(data.frame(nullperm=vperm), aes(x=nullperm)) +
 geom_density() + geom_vline(xintercept=vdev, color='red') +
 ggtitle(paste(title, "left tail area ~", vscore)))

Now we build a small data set with one predictive variable and one noise variable, and compare the performance of the two variables.
set.seed(3266)
N = 1000
s1 = rnorm(N)
n1 = rnorm(N)
y = 2*s1 + rnorm(N)
dframe = data.frame(y=y>0, s1=s1, n1=n1)

nperm=500

First, the model on the signaling variable
score_variable(dframe, "y", "s1", nperm,
 title='Signal variable deviance,')
The one-variable model built from the variable with signal has a deviance far smaller than its companion no-signal data sets.
[image: NewImage]
score_variable(dframe, "y", "n1", nperm,
 title='Noise variable deviance,')
The one-variable model built from the no-signal variable has a deviance that sits right in the middle of the distribution of no-signal data sets: about 36% of the permuted data sets produced models with training deviances lower than the model on the real data. So we have plausible evidence that this variable does not provide any signal about the outcome, and therefore isn't useful.
[image: NewImage]￼
This is what "no signal" looks like: almost usable.
This permutation test technique can be used not just for deviance, but for any metric, like accuracy, precision or recall (for classifiers), or squared error (for regression on continuous-valued outcomes). You can even, in principle, use permutation tests to evaluate whether an entire model -- not just a single variable -- is extracting useful signal from the data. The idea is the same: if your model's accuracy, or variance, or whatever, falls within the distribution of the performance of models built on permuted (no-signal) data, then the original model is not extracting meaningful, generalizable concepts from the data. The permutation test, in this situation, is directly measuring if your model isstatistically significantly different from a family of uninformative models. For shorthand, we will call this "the significance" of the model. Note that we want the significance value (the area under the left tail in the figures above) to be small.
There is a caveat here: this technique won't work on modeling algorithms that memorize their training data, like random forest (Kohavi noticed the same problem with cross-validation and bootstrap). Random forests regularly fit to perfect accuracy on training data, no matter what, so there isn't a meaningful distribution to compare against (although one can evaluate a random forest model with a permutation test of deviance). In any case, one doesn't usually have to worry about calculating the significance of a full model in a data science (data-rich) situation: if you want to determine if a full model is overfitting its training data, it's better to do that with hold-out data. So we will stick to discussing variable evaluation.
From thought experiment to practical suggestion: chi-squared and F tests
When you have very many variables, permutation tests to check which of the variables have signal can get computationally-intensive. Fortunately, there are "closed-form" statistics you can use to estimate the significance of your variables (or to be precise, the significance of the one-variable models built from your variables). Let's stick to the example of predicting a binary outcome using logistic regression. You can determine the significance of a logistic regression model by looking at the difference between the model's deviance on the training data, and the null deviance (the deviance of the best constant model: the mean ofy). In R parlance, if your glm model is called model, then you want to look at delta_deviance = model$null.deviance - model$deviance. If there is no signal in the data, then this quantity is distributed as a chi-squared distribution with degrees of freedom equal to the difference of the degrees of freedom of each model (delta_deviance will have one degree of freedom for every numerical input to the model, and k-1 degrees of freedom for every k-level categorical variable). The area under the right tail of this chi-squared distribution is the probability that no-signal data would produce delta_deviance as large as what you observed. This is the significance value of model.
get the significance of glm model
get_significance = function(model) {
 delta_deviance = model$null.deviance - model$deviance
 df = model$df.null - model$df.residual
 sig = pchisq(delta_deviance, df, lower.tail=FALSE)
}
For the example that we used above, the signal variable had a chi-squared significance of 1.9e-163, compared to 0 estimated from the permutation test; the no-signal variable had a chi-squared significance of 0.386, compared to 0.356 estimated from the permutation test.
For linear regression, there is a similar statistic called the F-statistic to determine model significance; in R, both the F-statistic and the corresponding model significance (called its p-value) are given by in the summary of a linear regression (lm()) model.
So we can heuristically determine which variables have signal for a classification model by looking for variables with small significance value (as estimated by the chi-squared distribution), and for a regression model by looking for variables with small significance value (as estimated by the F distribution). We define "small" by picking a threshold, and accepting variables whose significance value is smaller than that threshold. Most modeling algorithms can handle the presence of a few noise variables, so it's better to pick a somewhat high threshold to err on the side of accepting useless variables, rather than losing useful ones.
Let's look at a small example. We'll generate a dataframe of 1000 rows, with ten input variables: five with signal (g-variables), called gx_x, and five without (n-variables), called nx_x. The variables are either continuous-valued (gn_x or nn_x) variables with expected mean zero and unit standard deviation; or categorical variables with three levels (gc_xa, gc_xb, and so on), uniformly distributed. The g-variables are additively related to the outcome, with random coefficients. The outcome y is again binary. We'll use a threshold of 0.05. The code to generate the data set and score the variables can be found here.
The graph below shows the variable scores (significances). The threshold is shown as the dashed red line; the variables that fell below the threshold are shown in green.
[image: NewImage]
[1] "Variables selected:"
var scores
2 gn_2 3.909215e-99
3 gn_3 3.561903e-09
4 gc_1 3.906063e-06
5 gc_2 4.325259e-06
8 nn_3 1.459305e-02

[1] "True coefficients of signal variables"
print(coefs)
$gn_1
[1] 0.03406483

$gn_2
[1] -1.457936

$gn_3
[1] 0.4138757

$gc_1
gc_1a
[1] -0.504306

gc_1b
[1] -0.2303952

gc_1c
[1] -1.174718

$gc_2
gc_2a
[1] -0.2770224

gc_2b
[1] -0.1947211

gc_2c
[1] 0.2442891
In this example we picked four of the g-variables and one of the n-variables. As you can see from the coefficients above, the g-variable that we missed, gn_1 had a very small magnitude, smaller even than the noise variables (which essentially have magnitude 1), so its signal was weak.
Picking the Threshold
We'll use a larger example to illustrate picking the threshold. This data set has five signal variables and 2000 noise variables, with 2500 rows. We'll consider three thresholds: 0.01 (or 1/100), 0.025 (or 1/40) and 0.05 (or 1/20). This time, all the g-variables have appreciable coefficients except gn_2.
$gn_1
[1] 0.8907755

$gn_2
[1] 0.09630513

$gn_3
[1] 1.072262

$gc_1
gc_1a
[1] 1.371897

gc_1b
[1] -0.8606408

gc_1c
[1] -0.4705882

$gc_2
gc_2a
[1] -2.172888

gc_2b
[1] -0.9766713

gc_2c
[1] 0.9012387
Here are the counts of variables selected by each threshold, along with the variables selected by the strictest threshold, 0.01:
[1] "Variables selected, threshold = 0.01"
var scores
1 gn_1 4.744091e-40
3 gn_3 4.426174e-72
4 gc_1 3.754517e-64
5 gc_2 2.838399e-117
95 nn_90 7.278843e-03
353 nn_348 2.702906e-03
470 nn_465 3.625489e-03
617 nn_612 8.157911e-03
833 nn_828 7.904690e-03
1006 nc_1 2.983575e-03
1265 nc_260 6.512229e-03
1290 nc_285 9.559572e-03
1370 nc_365 5.091275e-03
1490 nc_485 7.549149e-03
1606 nc_601 2.689314e-03
1650 nc_645 5.622456e-03
1912 nc_907 9.193532e-03
The threshold you select indicates how much error you are willing to tolerate -- you can think of it as the false positive rate. A threshold of 0.01 is a 1 in 100 false positive rate, so you would expect from 2000 noise variables to select around 20. In this case, we got lucky and selected only 13. A threshold of 0.025 is 1 in 40, so from 2000 noise variables we'd expect around 50 false positives; we picked 42. A threshold of 0.05 is 1 in 20, so from 2000 noise variables we expect about 100 false positives; in this case, we got 98.
This indicates that when you are winnowing down a very large number of variables, if you expect that most of them are noise, then you want to use a stricter threshold.
We can also try fitting a random forest model to this example, once with all the variables, and once with the 17 variables selected by the threshold 0.01. Both models get perfect performance on training. The full model got an AUC of 0.87 on holdout data; the reduced model got an AUC of 0.93. This is clearly a somewhat labored example -- you don't want to fit a model with almost as many columns as there are datums -- but it does demonstrate that variable filtering can improve the model. You can see the code for the example here (bottom of the page).
Some Additional Points
1. Model significance is an indication of the presence of a signal, not the utility of the variable. Just because a variable passes the test doesn't mean that it is a good or useful one. There is generally a relationship between apparent effect size (strength of signal) and the significance, but the actual predictive value of a variable is for the modeling algorithm to determine. The purpose of this heuristic is to winnow down the obviously useless variables.
2. Use the model significance to threshold the variables, not to sort them. This follows from point 1. Just because variable 1 has a smaller significance value than variable 2 does not mean that variable 1 is more useful than variable 2.
3. This heuristic is based on logistic and linear models, but it isn't restricted to logistic/linear regression modeling. Once you've selected the variables, you can use any modeling procedure to fit a model: random forest, gradient boosting, SVM, whatever you like. The primary assumption of this heuristic is that a useful variable has a signal that could be detected by a linear or logistic model, which seems like a reasonable supposition.
Because you are scoring each variable by treating it as an input to a one variable linear/logistic model, you need to take care when handling variables that are in reality the output of a submodel for the outcome. An example is using impact coding to manage categorical variables with a very large number of levels. Impact coding builds a bayesian model for the outcome from a single categorical variable, then uses the output of that submodel as a numerical input to the larger model, instead of the original variable. Because the impact-coded variable is now numerical, it will appear to have one degree of freedom. This is true only if the impact-coded model was built from data distinct from the data you are using to score the variables. If you use the same data to build the impact coding as you are using to score the variables, then the impact coding can potentially memorize the scoring data; this means the impact-coded model in reality has more than one degree of freedom (k-1, where k is the number of levels of the original variable). If you build the impact-coding without looking at the scoring data, then you can't memorize the scoring data, so it's safe to assume the impact-coded variable has only one degree of freedom.
From this it follows that if you are going to impact-code, or otherwise build submodels that also predict the outcome from your variables, the submodels should be fit from a separate calibration dataset, not the training set that you will use to score the variables and to fit the full model. This is a good idea not just because of the variable scoring, but because using the same data to fit the submodels and the primary model can introduce undesirable bias into the primary model fitting. See the note at the end of this post (and this post) for more discussion.
1. No automatic variable selection approach is a substitute for domain knowledge; think of this as a tool to help focus your attention on where the information you need might be located.
A More Realistic Example
In the above examples, we had good variables with reasonably strong signals and noise variables with no signal at all. In reality, there will additionally be variables with signal so weak as to be useless -- but signal. Depending on the threshold you pick such variables can still have acceptably small significance values. Is this heuristic still useful in those situations?
We tried this approach on the 2009 KDD Cup dataset: data from about 50,000 credit card accounts. Our goal is to predict churn (account cancellation). The raw data consists of 234 anonymized inputs, both numerical and categorical. Many of the variables are sparsely populated, and there were a few categorical variables with a large number of levels. We used our vtreat package to clean the data, in particular to deal with NAs and large categoricals. This inflated the number of input columns to 448, all numerical and all clean. As recommended in point 4 above, we split the data into three sets: one for data treatment (vtreat), one for model fitting, and one for test. You can see the code for this experimenthere.
For comparison, here is the performance (ROC curve and AUC) of a logistic regression model built on all 448 variables (AUC=0.69 on test compared to 0.74 on training):
[image: NewImage]
And here is the performance of a gradient boosting model also built on all 448 variables (AUC=0.71 on test compared to 0.72 on training):
[image: NewImage]
Here's the distribution of variable scores, on a logarithmic (base 10) scale:
[image: NewImage]
The shape of the distribution suggests a mixture of different types of variables, with varying signal strengths. The rightmost population (score greater than 0.05 or so) likely have no signal; the next few populations potentially have a low signal. The shape of the graph suggests that about 3e-5 is a natural cutoff; we loosened this a bit and used a threshold of 10e-4. This reduced the number of variables down to 87. Here are a few of them:
[1] "Var6_isBAD"
[2] "Var7_clean"
[3] "Var7_isBAD"
[4] "Var13_clean"
[5] "Var13_isBAD"
[6] "Var21_isBAD"
[7] "Var22_isBAD"
[8] "Var25_isBAD"
[9] "Var28_isBAD"
[10] "Var35_isBAD"
[11] "Var38_isBAD"
[12] "Var44_isBAD"
[13] "Var65_clean"
[14] "Var65_isBAD"
[15] "Var72_clean"
[16] "Var73_clean"
...
[68] "Var218_lev_x.cJvF"
[69] "Var218_lev_x.UYBR"
[70] "Var218_catB"
[71] "Var221_lev_x.d0EEeJi"
[72] "Var221_lev_x.oslk"
The _clean variables are numeric (with bad values like NA and Infconverted to zeros); the isBAD variables are indicator variables created by vtreat to mark unpopulated or otherwise NA fields in the corresponding variable. The catB variables are impact-coded, and the_lev_ variables are indicator variables for specific levels of the corresponding categorical variable.
What is interesting is the number of isBAD variables (without their corresponding clean component) in the final set. This indicates that for these variables the signal is contained in whether or not the field was populated, rather than in the actual value.
Here's logistic regression's performance on the reduced variable set (AUC=0.71 on test vs. 0.73 in training):
[image: NewImage]
And gradient boosting (AUC=0.71 in both training and test).
[image: NewImage]
Results
Winnowing down the variables didn't improve model performance much for logistic regression, and not at all for gradient boosting, which suggests that the gradient boosting algorithm does a pretty good job of variable selection on its own. However, the variable filtering reduced the run time for gradient boosting by almost a factor of five (from 7 seconds to 1.5), and that in itself is of value.
Takeaways
We've demonstrated a heuristic for determining whether or not an input variable has signal. We derived our heuristic by empirical exploration (the permutation test), and then noticed that there is an existing standard statistical test (the chi-squared test for logistic regression model significance) that gives us the measure that we want. This is a good general practice: pick your statistical test based on what you want to measure, or what you are trying to defend against, and only then settle on a procedure.

You can find the code for these examples as R markdown, along with html of the runs, here.
SHARE THIS:
· Click to email this to a friend (Opens in new window)
· Click to print (Opens in new window)
· 20Click to share on Facebook (Opens in new window)20
· Click to share on Tumblr (Opens in new window)
· 108Click to share on LinkedIn (Opens in new window)108
· Click to share on Reddit (Opens in new window)
· Click to share on Twitter (Opens in new window)
· Click to share on Google+ (Opens in new window)
·
RELATED
[image: Principal Components Regression, Pt.1: The Standard Method]
Principal Components Regression, Pt.1: The Standard Method
In "data science"
[image: How do you know if your model is going to work? Part 2: In-training set measures]
How do you know if your model is going to work? Part 2: In-training set measures
In "Opinion"
[image: On Nested Models]
On Nested Models
In "Exciting Techniques"
Posted onAugust 10, 2015AuthorNina ZumelCategoriesdata science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, Statistics To English TranslationTagspermutation tests, R, significance, Statistics as it should be, variable selection
9 thoughts on “How Do You Know if Your Data Has Signal?”
1. Scott Locklinsays:
August 11, 2015 at 5:42 pm
“This indicates that for these variables the signal is contained in whether or not the field was populated, rather than in the actual value.”
For whatever reasons, I find this is very often the case with industrial data. There is probably some deep philosophical thing here, but is.na has become my go-to feature generation gizmo.
1. Nina Zumelsays:
August 13, 2015 at 7:02 am
We’ve found this to be the case, as well. It’s a practitioner vs. theorist thing, I think. In practice, NAs are there for a reason — often an interesting one — but much of the stat literature on missing variables wants to treat them as randomly missing data (“faulty sensor”), and impute values for them, which misses the point.
2. John R.says:
August 12, 2015 at 12:55 pm
Speaking of impact coding, I can’t find any listing of vtreat on CRAN. Is the push to get that published still moving forward?
1. jmountsays:
August 12, 2015 at 2:33 pm
Thanks for the kind question!
We cleaned up the package quite a bit, but want to firm up the variable scoring interface before submitting to CRAN. Right now vtreat uses PRESS style scoring to get an unbiased estimate of out of training performance as an effect size (even for categorical variables). Adding a significance (like a permutation test) is tempting. And honestly the convenience ofdevtools::install_github("WinVector/vtreat") slowed us down a bit.
Long story short- we are still working on getting ready to submit to CRAN. It is up! And we were able to re-work a few of Nina’s exampleshere.
3. Stephensays:
August 13, 2015 at 10:16 pm
I first saw this trick during a talk by Phil Briely an Australian based Data Miner who came first in the Heritage Health Prize a few years ago. He mentions the idea in this talk. https://youtu.be/1fIyQL9FiAk
1. jmountsays:
August 14, 2015 at 8:45 am
An interesting reference on the topic is “Permutation Tests”, 2nd edition, Philip Good, Springer 2000.
4. nowgissays:
September 3, 2015 at 1:39 am
Thanks for a great article.
5. Nicolássays:
September 16, 2015 at 3:27 pm
Thanks for the article!! Just a small precisión: in a linear regression, individual test over variables is not a F test but a t test. F test is the inference about the joint validity of all explanatory variables.
1. jmountsays:
September 16, 2015 at 4:25 pm
Actually, I think she knew of both tests and in fact applied the correct one.
In the article Nina is checking the significance of the quality of each single-variable model fit separately (under a null hypothesis). This has one asking questions about non-negative quantities (ratios of variances) and hence the F-test. Each time a model is fit using only one variable (and the dc-term), so with the right degrees of freedom it is an F-test of all “one variables” jointly.
The t-test could be used to check the significance of coefficient difference from zero (under a null hypothesis), which is an interesting but different question. And yes, when fitting many coefficients in one model you can quickly apply the t-test to get coefficient significances (and could use that to filter variables), but that isn’t what Nina happened to describe.
Now if you were to look at the quality of the best single variable model you would have to make some multiple experiment correction, but that is always the case.

vtreat significance
John Mount, Nina Zumel
2016-05-07
http://winvector.github.io/vtreathtml/vtreatSignificance.html
vtreat::prepare includes a required argument pruneSig that (if not NULL) is used to prune variables. Obviously significance depends on training set size (so is not an intrinsic property of just the variables) and there are issues of bias in the estimate (which vtreat attempts to eliminate by estimating significance of complex sub-model variables on cross-validated or out of sample data). As always there is a question of what to set a significance control to.
Our advice is the following pragmatic:
Use variable filtering on wide datasets (datasets with many columns or variables). Most machine learning algorithms can not defend themselves against large numbers of noise variables (including those algorithms that have cross-validation procedures built in). Examples are given here.
As an upper bound think of setting pruneSig below 1/numberOfColumns. Setting pruneSig to1/numberOfColumns means that (in expectation) only a constant number of pure noise variables (variables with no actual relation to the outcome we are trying to predict) should create columns. This means (under some assumptions, and in expectation) we expect only a bounded number of noisy columns to be exposed to downstream statistical and machine learning algorithms (which they can presumably handle).
As a lower bound think of what sort of good variables get thrown out at a given setting of pruneSig. For example suppose our problem is categorization in a data set with n/2 positive examples and n/2 negative examples. Consider the observed significance of a rare indicator variable that is on k times in training and is only on for positive instances. A random variable that is on k times would achieve this purity with probability 2−k2−k, so we expect it to have a -log(significance) in the ballpark of k. So a pruneSig of 2−k2−k will filter all such variables out (be they good or bad). Thus if you want levels or indicators that are on only a z fraction of the time on a training set of size n you want pruneSig >> 2−z∗n2−z∗n.
Example:
signk <- function(n,k) {
 sigTab <- data.frame(y=c(rep(TRUE,n/2),rep(FALSE,n/2)),v=FALSE)
 sigTab[seq_len(k),'v'] <- TRUE
 vtreat::designTreatmentsC(sigTab,'v','y',TRUE,verbose=FALSE)$scoreFrame[1,'sig']
}
sigTab <- data.frame(k=c(1,2,3,4,5,10,20,50,100))
If you want to see a rare but perfect indicator of positive class
that's only on k times out of 1000, this is the lower bound on pruneSig
sigTab$sigEst = vapply(sigTab$k,function(k) signk(1000,k),numeric(1))
sigTab$minusLogSig = -log(sigTab$sigEst) # we expect this to be approximately k
print(sigTab)
k sigEst minusLogSig
1 1 2.388636e-01 1.431863
2 2 9.565153e-02 2.347044
3 3 4.119677e-02 3.189395
4 4 1.836242e-02 3.997449
5 5 8.351092e-03 4.785363
6 10 1.863495e-04 8.587887
7 20 1.131954e-07 15.994150
8 50 2.209988e-17 38.350959
9 100 1.952762e-34 77.618649
For a data set with 100 variables (and 1000 rows), you might want to set pruneSig <= 0.01 to limit the number of pure noise variables that enter the model. Note that this value is smaller than the lower bounds given above for k<5k<5. This means that in a data set of this width and length, you may not be able to detect rare but perfect indicators that occur fewer than 5 times. You would have a chance of using such rare indicators in acatN or catB effects coded variable.
Below we design a data frame with a perfect categorical variable (completely determines the outcome y) where each level occurs exactly 2 times. The individual levels are insignificant, but we can still extract a significant catB effect coded variable.
set.seed(3346)
n <- 1000
k <- 4
d <- data.frame(y=rbinom(n,size=1,prob=0.5)>0)
d$catVarNoise <- rep(paste0('lev',sprintf("%03d",1:floor(n/k))),(k+1))[1:n]
d$catVarPerfect <- paste0(d$catVar,substr(as.character(d$y),1,1))
d <- d[order(d$catVarPerfect),]
head(d)
y catVarNoise catVarPerfect
1 FALSE lev001 lev001F
501 FALSE lev001 lev001F
251 TRUE lev001 lev001T
751 TRUE lev001 lev001T
2 FALSE lev002 lev002F
252 FALSE lev002 lev002F
treatmentsC <- vtreat::designTreatmentsC(d,c('catVarNoise','catVarPerfect'),'y',TRUE)
[1] "desigining treatments Sat May 7 06:23:38 2016"
[1] "design var catVarNoise Sat May 7 06:23:38 2016"
[1] "design var catVarPerfect Sat May 7 06:23:38 2016"
[1] "scoring treatments Sat May 7 06:23:38 2016"
[1] "have treatment plan Sat May 7 06:23:38 2016"
[1] "rescoring complex variables Sat May 7 06:23:38 2016"
[1] "done rescoring complex variables Sat May 7 06:23:38 2016"
Estimate effect significance (not coeficient significance).
estSigGLM <- function(xVar,yVar,numberOfHiddenDegrees=0) {
 d <- data.frame(x=xVar,y=yVar,stringsAsFactors = FALSE)
 model <- stats::glm(stats::as.formula('y~x'),
 data=d,
 family=stats::binomial(link='logit'))
 delta_deviance <- model$null.deviance - model$deviance
 delta_df <- model$df.null - model$df.residual + numberOfHiddenDegrees
 pRsq <- 1.0 - model$deviance/model$null.deviance
 sig <- stats::pchisq(delta_deviance, delta_df, lower.tail=FALSE)
 sig
}

prepD <- vtreat::prepare(treatmentsC,d,pruneSig=c())
vtreat produces good variable significances using out of sample simulation (cross frames).
print(treatmentsC$scoreFrame[c('varName','origName','sig')])
varName origName sig
1 catVarNoise_catB catVarNoise 6.394690e-01
2 catVarPerfect_catP catVarPerfect 1.268369e-01
3 catVarPerfect_catB catVarPerfect 4.744649e-208
Signal carrying complex variables can score as signficant, even those composed of rare levels.
summary(glm(y~d$catVarPerfect=='lev001T',data=d,family=binomial))

Call:
glm(formula = y ~ d$catVarPerfect == "lev001T", family = binomial,
data = d)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.152 -1.152 -1.152 1.203 1.203

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.06014 0.06334 -0.949 0.342
d$catVarPerfect == "lev001T"TRUE 13.62620 378.59287 0.036 0.971

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1385.5 on 999 degrees of freedom
Residual deviance: 1382.6 on 998 degrees of freedom
AIC: 1386.6

Number of Fisher Scoring iterations: 12
estSigGLM(prepD$catVarPerfect_catB,prepD$y,0) # wrong est
Warning: glm.fit: algorithm did not converge
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
[1] 2.958641e-303
estSigGLM(prepD$catVarPerfect_catB,prepD$y,
 numberOfHiddenDegrees=length(unique(d$catVarPerfect))-1)
Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
[1] 3.963376e-90
Noise variables (those without a relation to outcome) are also scored correctly as long was we account for the degrees of freedom.
summary(glm(y~d$catVarNoise=='lev001',data=d,family=binomial))

Call:
glm(formula = y ~ d$catVarNoise == "lev001", family = binomial,
data = d)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.177 -1.154 -1.154 1.201 1.201

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.05624 0.06340 -0.887 0.375
d$catVarNoise == "lev001"TRUE 0.05624 1.00201 0.056 0.955

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1385.5 on 999 degrees of freedom
Residual deviance: 1385.5 on 998 degrees of freedom
AIC: 1389.5

Number of Fisher Scoring iterations: 3
estSigGLM(prepD$catVarNoise_catB,prepD$y,0) # wrong est
[1] 3.293351e-59
estSigGLM(prepD$catVarNoise_catB,prepD$y,
 numberOfHiddenDegrees=length(unique(d$catVarNoise))-1)
[1] 0.2696832

Principal Components Regression, Pt. 3: Picking the Number of Components

http://www.r-bloggers.com/principal-components-regression-pt-3-picking-the-number-of-components/
In our previous note we demonstrated Y-Aware PCA and other y-aware approaches to dimensionality reduction in a predictive modeling context, specifically Principal Components Regression (PCR). For our examples, we selected the appropriate number of principal components by eye. In this note, we will look at ways to select the appropriate number of principal components in a more automated fashion.
Before starting the discussion, let’s quickly redo our y-aware PCA. Please refer to our previous post for a full discussion of this data set and this approach.
#
make data
#
set.seed(23525)
dTrain <- mkData(1000)
dTest <- mkData(1000)

#
design treatment plan
#
treatmentsN <- designTreatmentsN(dTrain,
 setdiff(colnames(dTrain),'y'),'y',
 verbose=FALSE)

#
prepare the treated frames, with y-aware scaling
#
examplePruneSig = 1.0
dTrainNTreatedYScaled <- prepare(treatmentsN,dTrain,
 pruneSig=examplePruneSig,scale=TRUE)
dTestNTreatedYScaled <- prepare(treatmentsN,dTest,
 pruneSig=examplePruneSig,scale=TRUE)

#
do the principal components analysis
#
vars <- setdiff(colnames(dTrainNTreatedYScaled),'y')
prcomp defaults to scale. = FALSE, but we already
scaled/centered in vtreat- which we don't want to lose.
dmTrain <- as.matrix(dTrainNTreatedYScaled[,vars])
dmTest <- as.matrix(dTestNTreatedYScaled[,vars])
princ <- prcomp(dmTrain, center = FALSE, scale. = FALSE)
If we examine the magnitudes of the resulting singular values, we see that we should use from two to five principal components for our analysis. In fact, as we showed in the previous post, the first two singular values accurately capture the two unobservable processes that contribute to y, and a linear model fit to these two components captures most of the explainable variance in the data, both on training and on hold-out data.
[image: http://i2.wp.com/www.win-vector.com/dfiles/YAwarePCR_pickK_files/figure-html/singularvalues-1.png?w=660]
We picked the number of principal components to use by eye; but it’s tricky to implement code based on the strategy "look for a knee in the curve." So how might we automate picking the appropriate number of components in a reliable way?
X-Only Approaches
Jackson (1993) and Peres-Neto, et.al. (2005) are two excellent surveys and evaluations of the different published approaches to picking the number of components in standard PCA. Those methods include:
1. Look for a "knee in the curve" — the approach we have taken, visually.
2. Only for data that has been scaled to unit variance: keep the components corresponding to singular values greater than 1.
3. Select enough components to cover some fixed fraction (generally 95%) of the observed variance. This is the approach taken bycaret::preProcess.
4. Perform a statistical test to see which singular values are larger than we would expect from an appropriate null hypothesis or noise process.
The papers also cover other approaches, as well as different variations of the above.
Kabakoff (R In Action, 2nd Edition, 2015) suggests comparing the magnitudes of the singular values to those extracted from random matrices of the same shape as the original data. Let’s assume that the original data has k variables, and that PCA on the original data extracts the k singular values si and the kprincipal components PCi.To pick the appropriate number of principal components:
1. For a chosen number of iterations, N (choose N >> k):
· Generate a random matrix of the correct size
· Do PCA and extract the singular values
2. Then for each of the k principal components:
· Find the mean of the ith singular value, ri
· If si > ri, then keep PCi
The idea is that if there is more variation in a given direction than you would expect at random, then that direction is probably meaningful. If you assume that higher variance directions are more useful than lower variance directions (the usual assumption), then one handy variation is to find the first i such that si < ri, and keep the first i-1 principal components.
This approach is similar to what the authors of the survey papers cited above refer to as the broken-stick method. In their research, the broken-stick method was among the best performing approaches for a variety of simulated and real-world examples.
With the proper adjustment, all of the above heuristics work as well in the y-adjusted case as they do with traditional x-only PCA.
A Y-Aware Approach: The Permutation Test
Since in our case we know y, we can — and should — take advantage of this information. We will use a variation of the broken-stick method, but rather than comparing our data to a random matrix, we will compare our data to alternative datasets where x has no relation to y. We can do this by randomly permuting they values. This preserves the structure of x — that is, the correlations and relationships of the x variables to each other — but it changes the units of the problem, that is, the y-aware scaling. We are testing whether or not a given principal component appears more meaningful in a metric space induced by the true y than it does in a random metric space, one that preserves the distribution of y, but not the relationship of y to x.
You can read a more complete discussion of permutation tests and their application to variable selection (significance pruning) in this post.
In our example, we’ll use N=100, and rather than using the means of the singular values from our experiments as the thresholds, we’ll use the 98th percentiles. This represents a threshold value that is likely to be exceeded by a singular value induced in a random space only 1/(the number of variables) (1/50=0.02) fraction of the time.
#
Resample y, do y-aware PCA,
and return the singular values
#
getResampledSV = function(data,yindices) {
 # resample y
 data$y = data$y[yindices]

 # treatment plan
 treatplan = vtreat::designTreatmentsN(data,
 setdiff(colnames(data), 'y'),
 'y', verbose=FALSE)
 # y-aware scaling
 dataTreat = vtreat::prepare(treatplan, data, pruneSig=1, scale=TRUE)

 # PCA
 vars = setdiff(colnames(dataTreat), 'y')
 dmat = as.matrix(dataTreat[,vars])
 princ = prcomp(dmat, center=FALSE, scale=FALSE)

 # return the magnitudes of the singular values
 princ$sdev
}

#
Permute y, do y-aware PCA,
and return the singular values
#
getPermutedSV = function(data) {
 n = nrow(data)
 getResampledSV(data,sample(n,n,replace=FALSE))
}

#
Run the permutation tests and collect the outcomes
#
niter = 100 # should be >> nvars
nvars = ncol(dTrain)-1
matrix: 1 column for each iter, nvars rows
svmat = vapply(1:niter, FUN=function(i) {getPermutedSV(dTrain)}, numeric(nvars))
rownames(svmat) = colnames(princ$rotation) # rows are principal components
colnames(svmat) = paste0('rep',1:niter) # each col is an iteration

plot the distribution of values for the first singular value
compare it to the actual first singular value
ggplot(as.data.frame(t(svmat)), aes(x=PC1)) +
 geom_density() + geom_vline(xintercept=princ$sdev[[1]], color="red") +
 ggtitle("Distribution of magnitudes of first singular value, permuted data")
[image: http://i2.wp.com/www.win-vector.com/dfiles/YAwarePCR_pickK_files/figure-html/permutation-1.png?w=660]
Here we show the distribution of the magnitude of the first singular value on the permuted data, and compare it to the magnitude of the actual first singular value (the red vertical line). We see that the actual first singular value is far larger than the magnitude you would expect from data where x is not related to y. Let’s compare all the singular values to their permutation test thresholds. The dashed line is the mean value of each singular value from the permutation tests; the shaded area represents the 98th percentile.
transpose svmat so we get one column for every principal component
Get the mean and empirical confidence level of every singular value
as.data.frame(t(svmat)) %>% dplyr::summarize_each(funs(mean)) %>% as.numeric() -> pmean
confF <- function(x) as.numeric(quantile(x,1-1/nvars))
as.data.frame(t(svmat)) %>% dplyr::summarize_each(funs(confF)) %>% as.numeric() -> pupper

pdata = data.frame(pc=seq_len(length(pmean)), magnitude=pmean, upper=pupper)

we will use the first place where the singular value falls
below its threshold as the cutoff.
Obviously there are multiple comparison issues on such a stopping rule,
but for this example the signal is so strong we can ignore them.
below = which(princ$sdev < pdata$upper)
lastSV = below[[1]] - 1
[image: http://i1.wp.com/www.win-vector.com/dfiles/YAwarePCR_pickK_files/figure-html/replot-1.png?w=660]
This test suggests that we should use 5 principal components, which is consistent with what our eye sees. This is perhaps not the "correct" knee in the graph, but it is undoubtably a knee.
Bootstrapping
Empirically estimating the quantiles from the permuted data so that we can threshold the non-informative singular values will have some undesirable bias and variance, especially if we do not perform enough experiment replications. This suggests that instead of estimating quantiles ad-hoc, we should use a systematic method: The Bootstrap. Bootstrap replication breaks the input to output association by re-sampling with replacement rather than using permutation, but comes with built-in methods to estimate bias-adjusted confidence intervals. The methods are fairly technical, and on this dataset the results are similar, so we don’t show them here, although the code is available in the R markdown document used to produce this note.
Significance Pruning
Alternatively, we can treat the principal components that we extracted via y-aware PCA simply as transformed variables — which is what they are — and significance prune them in the standard way. As our article on significance pruning discusses, we can estimate the significance of a variable by fitting a one variable model (in this case, a linear regression) and looking at that model’s significance value. You can pick the pruning threshold by considering the rate of false positives that you are willing to tolerate; as a rule of thumb, we suggest one over the number of variables.
In regular significance pruning, you would take any variable with estimated significance value lower than the threshold. Since in the PCR situation we presume that the variables are ordered from most to least useful, you can again look for the first position i where the variable appears insignificant, and use the first i-1 variables.
We’ll use vtreat to get the significance estimates for the principal components. We’ll use one over the number of variables (1/50 = 0.02) as the pruning threshold.
get all the principal components
not really a projection as we took all components!
projectedTrain <- as.data.frame(predict(princ,dTrainNTreatedYScaled),
 stringsAsFactors = FALSE)
vars = colnames(projectedTrain)
projectedTrain$y = dTrainNTreatedYScaled$y

designing the treatment plan for the transformed data
produces a data frame of estimated significances
tplan = designTreatmentsN(projectedTrain, vars, 'y', verbose=FALSE)

threshold = 1/length(vars)
scoreFrame = tplan$scoreFrame
scoreFrame$accept = scoreFrame$sig < threshold

pick the number of variables in the standard way:
the number of variables that pass the significance prune
nPC = sum(scoreFrame$accept)
[image: http://i0.wp.com/www.win-vector.com/dfiles/YAwarePCR_pickK_files/figure-html/plotsig-1.png?w=660]
Significance pruning picks 2 principal components, again consistent with our visual assessment. This time, we picked the correct knee: as we saw in the previous post, the first two principal components were sufficient to describe the explainable structure of the problem.
Conclusion
Since one of the purposes of PCR/PCA is to discover the underlying structure in the data, it’s generally useful to examine the singular values and the variable loadings on the principal components. However an analysis should also be repeatable, and hence, automatable, and it’s not straightforward to automate something as vague as "look for a knee in the curve" when selecting the number of principal components to use. We’ve covered two ways to programatically select the appropriate number of principal components in a predictive modeling context.
To conclude this entire series, here is our recommended best practice for principal components regression:
1. Significance prune the candidate input variables.
2. Perform a Y-Aware principal components analysis.
3. Significance prune the resulting principal components.
4. Regress.
Thanks to Cyril Pernet, who blogs at NeuroImaging and Statistics, for requesting this follow-up post and pointing us to the Jackson reference.
References
· Jackson, Donald A. "Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches", Ecology Vol 74, no. 8, 1993.
· Kabacoff, Robert I. R In Action, 2nd edition, Manning, 2015.
· Efron, Bradley and Robert J. Tibshirani. An Introduction to the Bootstrap, Chapman and Hall/CRC, 1998.
· Peres-Neto, Pedro, Donald A. Jackson and Keith M. Somers. "How many principal components? Stopping rules for determining the number of non-trivial axes revisited", Computational Statistics & Data Analysis, Vol 49, no. 4, 2005.

Страница 100
	Страница 1
image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image1.png

image29.png

image30.jpeg

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image2.png

image3.png

image42.png

image43.png

image44.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

