[image:]

MQLMySQL.mqh

Interface Library Reference
Rev.2014-04-14

Introduction
The interface library MQLMySQL.mqh consists of functions set can be used for MySQL database connectivity. Any MQL program can include interface library to make possible of using MySQL database. Simple schema of interface listed below:
 (
Metatrader

5
MQL
5
Library
MQLMySQL.mqh
MQL
MySQL.dll
libmysql.dll
MySQL
database
)

The MQL5 program make calls to interface library, then interface library calls special functions from standard libmysql.dll through the wrapper MQLMySQL.dll. The libmysql.dll dynamic link library can be found in any MySQL related software or in MySQL distribution package. It is prepare connection to the MySQL database and send queries to.
To make possible executing SELECT statements and fetching data from database, the MQLMySQL.dll library was developed. It has number of functions to handle database cursors and retrieve data using string type (char*/wchar_t* type). Maximal number of currently opened cursors is set to 256. This value can be changed by recompiling MQLMySQL.DLL library. Highly recommended to do not use so complicated SELECT statements. This can make data retrieving easy. If you need to use complex SELECT statement, you may create database view based on your query and make selection from view.
The functionality of MQLMySQL can be extended easily for other needs; in this case you may study API functions of libmysql.dll (http://dev.mysql.com/doc/refman/5.0/en/c-api-functions.html) and implement the functions you need.
Project consists of:
	Filename
	Description

	MQL5\Libraries\libmysql.dll
	MySQL standard library with C++ API.

	MQL5\Libraries\MQLMySql.dll
	Developed library to extend libmysql.dll functionality for MQL programs.

	MQL5\Libraries\MQLMySql.def
	Definition file of MQLMySql.dll library, should be located in the same directory with DLL.

	MQL5\Include\MQLMySql.mqh
	Interface library which provides access to MySQL database for MQL programs.

	MQL5\Scripts\MySQL-XXX.mq5
	Examples of using MQLMySQL.mqh interface library

	MQLMySQL Technical Reference.docx
	This document you are reading.

[bookmark: _GoBack]
Important: To enable interface between expert advisor and MySQL database you need to allow DLL imports (Expert Advisor’s properties → “Common” tab → Allow DLL imports).
Important: The Metatrader 5 has been developed for x86 platforms (32-bit) and all dynamic libraries it is used should be also built for x86 platforms. Please make sure that you are uses libmysql.dll was compiled for 32-bit environment.

Interface variables
There are some interface’s variables can be used for error handling.
	Type
	Name
	Description

	int
	MySqlErrorNumber
	The number of last MySQL error

	string
	MySqlErrorDescription
	The description of last MySQL error

Interface functions
You may create connections (up to 32) to the MySQL database server by using interface functions. The MySqlExecute function can be used to send SQL queries or special commands of MySQL database (such as USE, SET and so on) and can be called after connection was created by MySqlConnect. To close any created connection you may use MySqlDisconnect function.
	Return type
	Name
	Parameters
	Description

	int
	MySqlConnect
	This function can be used to establish connection to MySQL database server. The return value is database connection identifier. If MySqlConnect returns “-1”, this means that an error was raised, you need to check MySQLErrorNumber of MySqlErrorDescription to see the problem details.
This function can be called from OnInit() function of MQL program.

	
	
	string pHost
	DNS name or IP-address of MySQL server

	
	
	string pUser
	Database user (f.e. root)

	
	
	string pPassword
	Password of user (f.e. Zok1LmVdx)

	
	
	string pDatabase
	Database name (f.e. metatrader)

	
	
	int pPort
	TCP/IP port of database listener (f.e. 3306)

	
	
	string pSocket
	unix socket (for sockets or named pipes)

	
	
	int pClientFlag
	combination of the flags for features (usual 0)

	void
	MySqlDisconnect
	This function can be called to close database connection. It has only one parameter – database connection identifier (which can be obtained from MySqlConnect function).
This function can be called from OnDeinit() function of MQL program.

	
	
	int pConnection
	Database connection identifier

	bool
	MySqlExecute
	This function can be used for sending non-SELECT SQL queries to the MySQL database server when connection was established by MySqlConnect. When execution of SQL command succeded – this function will return “true”, otherwise – “false”. To see error details please check MySQLErrorNumber or MySqlErrorDescription variables.

	
	
	int pConnection
	Database connection identifier

	
	
	string pQuery
	An SQL query

	string
	MySqlVersion
	Function can be used to get information about version of MQLMySql.dll

	string
	MySqlGetRowField
	This function retrieves one string value from fetched row. After cursor opening, you should fetch row from database, and after that it would be possible to get value of any row’s field.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	
	
	int pField
	Field number in SELECT clause (started from 0)

	int
	MySqlCursorOpen
	This function opens cursor for SELECT statement and returns cursor identifier. You may open up to 256 concurrent cursors (this restriction was made just in MQLMySql.dll, but this value can be changed). In case when any error raised during SELECT execution, this function returns “-1”.

	
	
	int pConnection
	Database connection identifier

	
	
	string pQuery
	SQL query (SELECT command)

	void
	MySqlCursorClose
	This function used to close any opened cursor and free memory.
Important: Do not forget to close cursor after using.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	int
	MySqlCursorRows
	This function counts the number of rows was selected by cursor. It can be used for fetching all rows in cycle.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	bool
	MySqlCursorFetchRow
	This function should be used to fetch one row from cursor’s record set into temporary buffer. After this operation it would be possible to get values from row’s fields.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	int
	MySqlGetFieldAsInt
	You may use this function after row fetching to get field value, represented as INTEGER. All fetched values are stored using STRING data type, conversion of type based on MQL functions.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	
	
	int pField
	Field number in SELECT clause (started from 0)

	double
	MySqlGetFieldAsDouble
	This function returns representation of field’s value using DOUBLE data type.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	
	
	int pField
	Field number in SELECT clause (started from 0)

	datetime
	MySqlGetFieldAsDatetime
	This function returns representation of field’s value using DATETIME data type.

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	
	
	int pField
	Field number in SELECT clause (started from 0)

	string
	MySqlGetFieldAsString
	This function returns representation of field’s value using STRING data type. Synonym to MySqlGetRowField function

	
	
	int pCursorID
	Cursor identifier, returned by function MySqlCursorOpen

	
	
	int pField
	Field number in SELECT clause (started from 0)

Additions
1. Reading .ini files
Sometimes it is better to keep database credentials outside the MQL program. For this reason the function ReadIni was integrated into MQLMySQL.dll:
	Return type
	Name
	Parameters
	Description

	String
	ReadIni
	Read the data from .ini file and return the value of key.

	
	
	string pFileName
	The name of .ini file

	
	
	string pSection
	The name of section

	
	
	string pKey
	The name of key

Example: Your database credentials stored in file “C:\Metatrader5\MQL5\Experts\MyConnection.ini”
[MYSQL]
Server = 127.0.0.1
User = root
Password = Adm1n1str@t0r
Database = mysql
Port = 3306

The reading data from this .ini file into MQL variable can be done like:

string vServer = ReadIni("C:\\Metatrader5\\MQL5\\Experts\\MyConnection.ini", "MYSQL", "Server");

2. Using multi-statements query
For transferring big arrays of data from Metatrader to database and reduce the number of calls and network traffic, you may use multi-statements queries. It looks like usual queries separated by semicolon “;”:

string Query = "INSERT INTO my_table(field1) VALUES (1); UPDATE my_table SET field1 = 2;";

To execute such query you can use MySqlExecute function. But you have to open the database connection with pClientFlag = CLIENT_MULTI_STATEMENTS (decimal value 65536). For example:

int DB = MySqlConnect(vHost, vUser, vPass, vDatabase, 3306, "", CLIENT_MULTI_STATEMENTS);

Here is a list of possible pClientFlag constants:
#define CLIENT_LONG_PASSWORD 1 /* new more secure passwords */
#define CLIENT_FOUND_ROWS 2 /* Found instead of affected rows */
#define CLIENT_LONG_FLAG 4 /* Get all column flags */
#define CLIENT_CONNECT_WITH_DB 8 /* One can specify db on connect */
#define CLIENT_NO_SCHEMA 16 /* Don't allow database.table.column */
#define CLIENT_COMPRESS 32 /* Can use compression protocol */
#define CLIENT_ODBC 64 /* Odbc client */
#define CLIENT_LOCAL_FILES 128 /* Can use LOAD DATA LOCAL */
#define CLIENT_IGNORE_SPACE 256 /* Ignore spaces before '(' */
#define CLIENT_PROTOCOL_41 512 /* New 4.1 protocol */
#define CLIENT_INTERACTIVE 1024 /* This is an interactive client */
#define CLIENT_SSL 2048 /* Switch to SSL after handshake */
#define CLIENT_IGNORE_SIGPIPE 4096 /* IGNORE sigpipes */
#define CLIENT_TRANSACTIONS 8192 /* Client knows about transactions */
#define CLIENT_RESERVED 16384 /* Old flag for 4.1 protocol */
#define CLIENT_SECURE_CONNECTION 32768 /* New 4.1 authentication */
#define CLIENT_MULTI_STATEMENTS 65536 /* Enable/disable multi-stmt support */
#define CLIENT_MULTI_RESULTS 131072 /* Enable/disable multi-results */
#define CLIENT_PS_MULTI_RESULTS 262144 /* Multi-results in PS-protocol */

Examples
Include MQLMySQL into your MQL project:
#include "..\Include\MqlMySql.mqh"
Connection to MySQL:
int DBConnection = MySqlConnect("localhost", "root", "ioctrl", "metatrader", 3306, "", 0);
if (DBConnection==-1)
 {
 Print("Error #", MySqlErrorNumber, ": ", MySqlErrorDescription);
 return (1);
 }
else Print ("Connected!");

Execution of non-SELECT statements:
string query;
query = "INSERT INTO Metatrader.Ticks_" + Symbol() + " (price_ask, price_bid, spread) " +
 "VALUES (" + DoubleToString(SymbolInfoDouble(Symbol(), SYMBOL_ASK), _Digits) + ", " +
 DoubleToString(SymbolInfoDouble(Symbol(), SYMBOL_BID), _Digits) + ", " +
 DoubleToString(((double)SymbolInfoInteger(Symbol(), SYMBOL_SPREAD) / _Point), 0) + ")";
if (!MySqlExecute(DBConnection, query))
 {
 Comment("Error #", MySqlErrorNumber, ": ", MySqlErrorDescription,
 "\nProblem with query: ", query);
 }

Disconnection from MySQL:
MySqlDisconnect(DBConnection);

Selecting data from MySQL table:

int Cursor,Rows;
string Query, sub_symbol;
string time;

time = "\'" + TimeToString(TimeCurrent(), TIME_DATE|TIME_MINUTES) + "\'";
Query = "SELECT sub_symbol FROM stored_symbols " +
 "WHERE broker_id = " + IntegerToString(gBrokerID) +
 " AND symbol = \'TGH4\'" +
 " AND start_date <= " + time +
 " AND end_date > " + time + " LIMIT 1";

Cursor = MySqlCursorOpen(DBConnection, Query);
if (Cursor >= 0) // cursor opened
 {
 Rows = MySqlCursorRows(Cursor);
 if (Rows > 0) // record exists
 {
 if (MySqlCursorFetchRow(Cursor))
 {
 // retrieve sub-symbol
 sub_symbol = MySqlGetFieldAsString(Cursor, 0);
 }
 }
 MySqlCursorClose(Cursor);
 }
 (
4
)
image1.jpeg

image2.jpeg

image3.png

