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Forest Type Classification: A Hybrid
NN-GA Model Based Approach

Sankhadeep Chatterjee, Subhodeep Ghosh, Subham Dawn,
Sirshendu Hore and Nilanjan Dey

Abstract Recent researches have used geographically weighted variables calcu-
lated for two tree species, Cryptomeria japonica (Sugi, or Japanese Cedar) and
Chamaecyparis obtusa (Hinoki, or Japanese Cypress) to classify the two species
and one mixed forest class. In machine learning context it has been found to be
difficult to predict that a pixel belongs to a specific class in a heterogeneous
landscape image, especially in forest images, as ground features of nearly located
pixel of different classes have very similar spectral characteristics. In the present
work the authors have proposed a GA trained Neural Network classifier to tackle
the task. The local search based traditional weight optimization algorithms may get
trapped in local optima and may be poor in training the network. NN trained with
GA (NN-GA) overcomes the problem by gradually optimizing the input weight
vector of the NN. The performance of NN-GA has been compared with NN, SVM
and Random Forest classifiers in terms of performance measures like accuracy,
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precision, recall, F-Measure and Kappa Statistic. The results have been found to be
satisfactory and a reasonable improvement has been made over the existing per-
formances in the literature by using NN-GA.

Keywords Image classification � Neural network � Genetic algorithm � Random
forest � SVM

1 Introduction

Image classification has drawn attention of the remote-sensing researchers due to
the complexities and challenges in the context of machine learning and soft com-
puting. Most of the remote sensing research is mainly focused on reducing the
classification error due to several natural, environmental, and other effects. Several
research works have been found in this regard [1–8]. The research works have
proposed image classification using several methods and have tried to reduce the
classification error to a greater extent. In remote sensing context the image clas-
sification can formally be defined as to classify pixels of a given image into dif-
ferent regions, each of which is basically a landcover type. In satellite image, each
pixel represents a specific landcover area though it is highly likely that it may
belong to more than one land cover type. With increasing number of instances the
problem becomes more severe as the number of such pixel increases. Thus, a large
amount of uncertainty may get involved during the classification task. Several
Unsupervised learning methods have been proposed to handle this problem effi-
ciently [9–12]. Unsupervised techniques like Fuzzy c-means [13], split and merge
[14] and ANN [15–20] based methods [21] have been applied for the task. The
problem of uncertainty during classification becomes more challenging in the Forest
images as the level of variation is higher in a very small geographic area. Thus,
using traditional machine learning techniques it becomes quite challenging to
achieve reasonable amount of classification accuracy. The problem has been
overcome by applying a SVM [22] based model with assistance of geographically
weighted variables [23]. The authors have shown slight improvement over the
existing methods (without using geographically weighted variables).

In the present work the authors have proposed a GA trained Neural Network
model to tackle the task. The input weight vector of the NN has been gradually
optimized using GA to increase the performance of NN. The application of GA in
training NN has already been found to be quite satisfactory in several real life
applications [24]. The proposed model has been compared with two well-known
classifiers SVM and Random Forest [25, 26]. The performances of the proposed
models and the other models have been measured using accuracy, precision, recall,
F-Measure and Kappa Statistic.
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2 Proposed NN-GA Model

GA was proposed by Holland (1975) to implement the theory of natural selection to
solve optimization problems. The GA starts solving a problem by using a set of
initial solutions. And it continuously applies crossover and mutations on the
solutions to produce better offspring. The survival of any offspring depends on the
fitness which is decided by the problem definition of the problem being solved. GA
has lesser chance of getting trapped into local optima. Thus, it can be better choice
than the traditional methods. The method of applying GA can be summarized as
follows;

1. Generation of initial population ‘N’ numbers of chromosomes are randomly
generated. Each chromosome is actually an array of random real weight values,
biologically genes; they vary in between ‘0’ to ‘1’.

2. Calculating fitness values A fitness function has to be defined, using it the
fitness of each individual solution (chromosome) has to be evaluated. RMSE of
NN training is used as the fitness function.

3. Selection The smaller the RMSE, higher is the chance of getting selected for the
next generation. RMSEi denotes the fitness function value of ith solution. The
selection procedure works as follows:

3:1. RMSEi is calculated for each solution in population.
3:2. All RMSEi are aggregated or averaged together to find RMSEave

3:3. A random value (RMSEr) is selected from predefined closed interval
[0, RMSEave]

3:4. For all solutions RMSEr − RMSEi is calculated and if the result of the
subtraction is less than or equal to ‘0’ the ith individual is selected.

3:5. The process goes on until the number of solutions selected for next gen-
eration (mating pool) is equal to the number of solutions in the population
initially.

4. Cross-over The selected chromosomes take part in cross-over where the after
selecting cross-over points on the chromosome the genes at the right of that
point for both the chromosomes taking part get exchanged. And it creates two
new individual.

5. Mutation Genes of same chromosome take part in this phase. Genes from
randomly selected position are swapped to create new individual solution.

6. Termination condition Finally the termination condition is checked. In the
present work number of generation has been selected as terminating condition.
When the user given number of generation is reached the best possible indi-
vidual is selected as the optimized weight vector, otherwise it starts from step 2
again.

Figure 2 depicts the flowchart of NN trained with GA. The GA block in the
flowchart is separately depicted in Fig. 1.
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3 Dataset Description

The dataset [23] used in the current work includes information of forested area in
Ibaraki Prefecture, Japan (36° 57_N, 140° 38_E), approximately 13 km × 12 km.
The landscape consists mainly of Chamaecyparis obtusa (Hinoki, or Japanese
Cypress) planted forest (‘h’ class), Cryptomeria japonica (Sugi, or Japanese Cedar)
planted forest (‘s’ class) and mixed natural forest, along with other land cover types
(agriculture, roads, buildings, etc.) [23] which have been mapped based on the
spectral characteristics at visible-to-near infrared wavelengths of the satellite images
taken by ASTER satellite imagery. There are all total 27 attributes which are;
spectral information in the green, red, and near infrared wavelengths for three dates
(Sept. 26, 2010; March 19, 2011; May 08, 2011 (Total 9 attributes). Predicted
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Fig. 1 The genetic algorithm
which has been followed to
optimize the input weight
vector
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spectral values (based on spatial interpolation) minus actual spectral values for the
‘s’ class (Total 9 attributes) and Predicted spectral values (based on spatial inter-
polation) minus actual spectral values for the ‘h’ class (Total 9 attributes).

4 Experimental Methodology

The experiment is conducted on the dataset [23] obtained from UCI Machine
Learning Repository. The experiments are performed by using Support Vector
Machine (LibSVM) [27], Random Forest and real coded NN, NN-GA classifiers.
For NN scaled conjugate gradient algorithm [28] has been used as the learning
algorithm. The algorithm is well known and benchmarked against traditional
back-propagation and other algorithms. The basic flow of experiment opted in the
present work is as follows

1. Preprocessing The following preprocessing is done on the dataset before the
classification

(a) Data Cleaning—The data might contain missing values or noise. It is
important to remove noise and fill up empty entries by suitable data by
means of statistical analysis.

(b) Data Normalization—the needs to be normalized before classification task
is carried on to reduce distance between attribute values. It is generally
achieved by keeping the value range in between −1 to +1.

2. After preprocessing the datasets are divided into two parts. One of which is used
as training dataset and the other as testing dataset. In the present work two third
(70 %) of the data is used as training data and rest (30 %) as testing data.

3. In the training phase the training dataset is supplied to different algorithms
respectively to build the required classification model.

4. In the testing phase the classification models obtained from the training phase is
employed to test the accuracy of the model.

To measure the performance and to compare the performances we use several
statistical performance measures like accuracy, precision, recall, Kappa statistic
[29], True positive rate (TP rate), and F-measure. The performance measuring
parameters are calculated from the confusion matrix [30] which is a tabular rep-
resentation that provides visualization of the performance of a classification algo-
rithm. The objective function of Genetic algorithm (RMSE) is defined as follows;
RMSE [31] of a classifier prediction with respect to the computed variable vck is
determined as thesquare root of the mean-squared error and is given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
k¼1ðvdk � vckÞ2

n

s
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where, vdk denotes the originally observed value of kth object and vck denotes the
predicted value by the classifier. The genetic algorithm based optimization of input
weight vector has been implemented by following the Fig. 2. The different
parameters used as inputs are as follows (Table 1).

5 Results and Discussion

The experiments have been carried out on the dataset described in Sect. 3. The
experimental methodology has been described in Sect. 4. Table 2 reports the
experimental results for Neural Network, Support Vector Machine (LibSVM),
Random Forest and NN-GA classifiers. The experimental results suggest that the
performance of Neural Network (trained with scaled conjugate gradient descent

Start
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Compute
activation

Convergence

Use NN with 
optimized weight 

for training

Yes

No

Compute hidden 
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Fig. 2 Flowchart of NN
training using genetic
algorithm depicted in Fig. 3
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algorithm) is moderate with an accuracy of 85.35 %, precision 86.31 %, recall
82.32 %, F-Measure 84.27 % and Kappa Statistic 0.793 while the SVM (LibSVM)
has performed almost same as the NN but with negligible. The experimental results
suggest that Random Forest (which is considered to be one of the best tree based
classifiers) may not be suitable for the classification of image classification of Forest
or other areas which involves sufficient amount of uncertainty during classification.
Though, the precision (86.37 %) of the classifier is better than NN and SVM. In the
column four of Table 2 the experimental result of the proposed model has been
shown. The objective of the GA was to reduce the RMSE (as described in Sect. 4).
The model has performed significantly well than all the other classifiers in this
study with an accuracy of 95.54 %, precision 94.66 %, recall 95.67 %, F-Measure
95.21 % and Kappa Statistic 0.938. Figure 3 depicts the different performance
measures for the classifiers under consideration. The comparative analysis has
revealed that the NN-GA is superior not only in terms of accuracy but also in terms

Table 1 Genetic algorithm
setup for input weight vector
optimization

Maximum number of generation 1000

Population size 500

Crossover probability 0.2

Mutation Gaussian

Crossover Single point crossover

Selection Roulette

Stall Time Limit 75 s

Table 2 Performance
measures of different
algorithms

NN SVM Random forest NN-GA

Accuracy 85.35 85.99 82.17 95.54

Precision 86.31 84.67 86.37 94.66

Recall 82.32 82.78 78.83 95.76

F-Measure 84.27 83.71 82.59 95.21

Kappa statistic 0.793 0.804 0.746 0.938
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Fig. 3 Comparison of
performance measure of NN,
SVM, Random Forest and
NN-GA classifiers
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of precision, recall and F-Measure. Figure 4 depicts the same for Kappa Statistic.
The plot establishes the superiority of NN-GA once again.

6 Conclusion

The present work has proposed a Genetic algorithm trained Neural Network model
to classify two forest type along with one mixed class of forest of Japanese Cedar
Japanese Cypress. The experimental results have suggested the superiority of
NN-GA over the NN (trained with scaled conjugate gradient algorithm) for clas-
sification of pixels in Forest images. The study has also established that the NN-GA
is a better classifier than support vector machines for this task. A satisfactory
amount of improvement has been found over the existing work in literature. Besides
the previous works have compared the performances of algorithms mainly based on
accuracy which is not a good metric for performance measure as, accuracy of an
algorithm varies greatly if number of instances varies in different classes. The
present work have analyzed the performances of algorithms in terms of several
performance measuring parameters like accuracy, precision, recall, F-Measure and
Kappa Statistic to provide a vivid picture of the exact performance of the algorithms
and to have a fair comparison of algorithms.
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