

Causal Inference and Discovery in
Python – Machine Learning and
Pearlian Perspective

Unlock the secrets of modern causal machine learning with
DoWhy, EconML, PyTorch, and more

Aleksander Molak

BIRMINGHAM—MUMBAI

Causal Inference and Discovery in Python – Machine
Learning and Pearlian Perspective
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Ali Abidi
Publishing Product Manager: Dinesh Chaudhary
Senior Editor: Tazeen Shaikh
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor
Marketing Coordinators: Shifa Ansari and Vinishka Kalra

First published: June 2023

Production reference: 1290523

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80461-298-9

www.packtpub.com

http://www.packtpub.com

To my wife, Katia. You cause me to smile. I am grateful for every day we spend together.

Foreword

I have been following Aleksander Molak’s work on causality for a while.

I have been using libraries for causal inference, such as DoWhy, in my teaching at the University of
Oxford, and causality is one of the key topics I teach in my course.

Based on the discussions with Aleksander, I have invited him to present a session at Oxford in our
course in Fall 23.

Hence, I am pleased to write the foreword for Aleksander’s new book, Causal Inference and Discovery
in Python.

Despite causality becoming a key topic for AI and increasingly also for generative AI, most developers
are not familiar with concepts such as causal graphs and counterfactual queries.

Aleksander’s book makes the journey into the world of causality easier for developers. The book spans
both technical concepts and code and provides recommendations for the choice of approaches and
algorithms to address specific causal scenarios.

This book is comprehensive yet accessible. Machine learning engineers, data scientists, and machine
learning researchers who want to extend their data science toolkit to include causal machine learning
will find this book most useful.

Looking to the future of AI, I find the sections on causal machine learning and LLMs especially
relevant to both readers and our work.

Ajit Jaokar

Visiting Fellow, Department of Engineering Science, University of Oxford, and Course Director, Artificial
Intelligence: Cloud and Edge Implementations, University of Oxford

Contributors

About the author
Aleksander Molak is an independent machine learning researcher and consultant. Aleksander gained
experience working with Fortune 100, Fortune 500, and Inc. 5000 companies across Europe, the USA,
and Israel, helping them to build and design large-scale machine learning systems. On a mission to
democratize causality for businesses and machine learning practitioners, Aleksander is a prolific writer,
creator, and international speaker. As a co-founder of Lespire.io, an innovative provider of AI and
machine learning training for corporate teams, Aleksander is committed to empowering businesses
to harness the full potential of cutting-edge technologies that allow them to stay ahead of the curve.

This book has been co-authored by many people whose ideas, love, and support left a significant trace
in my life. I am deeply grateful to each one of you.

About the reviewers
Nicole Königstein is an experienced data scientist and quantitative researcher, currently working as
data science and technology lead at impactvise, an ESG analytics company, and as a technology lead
and head quantitative researcher at Quantmate, an innovative FinTech start-up focused on alternative
data in predictive modeling. As a guest lecturer, she shares her expertise in Python, machine learning,
and deep learning at various universities. Nicole is a regular speaker at renowned conferences, where
she conducts workshops and educational sessions. She also serves as a regular reviewer of books in her
field, further contributing to the community. Nicole is the author of the well-received online course
Math for Machine Learning, and the author of the book Transformers in Action.

Mike Hankin is a data scientist and statistician, with a B.S. from Columbia University and a Ph.D. from
the University of Southern California (dissertation topic: sequential testing of multiple hypotheses).
He spent 5 years at Google working on a wide variety of causal inference projects. In addition to causal
inference, he works on Bayesian models, non-parametric statistics, and deep learning (including
contributing to TensorFlow/Keras). In 2021, he took a principal data scientist role at VideoAmp,
where he works as a high-level tech lead, overseeing all methodology development. On the side, he
volunteers with a schizophrenia lab at the Veterans Administration, working on experiment design
and multimodal data analysis.

Amit Sharma is a principal researcher at Microsoft Research India. His work bridges causal inference
techniques with machine learning to enhance the generalization, explainability, and avoidance of hidden
biases in machine learning models. To achieve these goals, Amit has co-led the development of the
open-source DoWhy library for causal inference and the DiCE library for counterfactual explanations.
The broader theme of his work revolves around leveraging machine learning for improved decision-
making. Amit received his Ph.D. in computer science from Cornell University and his B.Tech. in
computer science and engineering from the Indian Institute of Technology (IIT) Kharagpur.

Acknowledgments

There’s only one name listed on the front cover of this book, but this book would not exist without
many other people whose names you won’t find on the cover.

I want to thank my wife, Katia, for the love, support, and understanding that she provided me with
throughout the year-long process of working on this book.

I want to thank Shailesh Jain, who was the first person at Packt with whom I shared the idea about
this book.

The wonderful team at Packt made writing this book a much less challenging experience than it would
have been otherwise. I thank Dinesh Chaudhary for managing the process, being open to non-standard
ideas, and making the entire journey so smooth.

I want to thank my editor, Tazeen Shaikh, and my project manager, Kirti Pisat. Your support, patience,
amazing energy, and willingness to go the extra mile are hard to overstate. I am grateful that I had an
opportunity to work with you!

Three technical reviewers provided me with invaluable feedback that made this book a better version of
itself. I am immensely grateful to Amit Sharma (Microsoft Research), Nicole Königstein (impactvise),
and Mike Hankin (VideoAmp) for their comments and questions that gave me valuable hints, sometimes
challenged me, and – most importantly – gave me an opportunity to see this book through their eyes.

I want to thank all the people, who provided me with clarifications, and additional information, agreed
to include their materials in the book, or provided valuable feedback regarding parts of this book
outside of the formal review process: Kevin Hillstrom, Matheus Facure, Rob Donnelly, Mehmet Süzen,
Ph.D., Piotr Migdał, Ph.D., Quentin Gallea, Ph.D., Uri Itai, Ph.D., prof. Judea Pearl, Alicia Curth.

I want to thank my friends, Uri Itai, Natan Katz, and Leah Bar, with whom we analyzed and discussed
some of the papers mentioned in this book.

Additionally, I want to thank Prof. Frank Harrell and Prof. Stephen Senn for valuable exchanges on
Twitter that gave me many insights into experimentation and causal modeling as seen through the
lens of biostatistics and medical statistics.

I am grateful to the CausalPython.io community members who shared their feedback regarding
the contents of this book: Marcio Minicz; Elie Kawerk, Ph.D.; Dr. Tony Diana; David Jensen; and
Michael Wexler.

I received a significant amount of support from causalpython.io members and people on LinkedIn
and Twitter who shared their ideas, questions, and excitement, or expressed their support for me
writing this book by following me or liking and sharing the content related to this book. Thank you!

Finally, I want to thank Rahul Limbachiya, Vinishka Kalra, Farheen Fathima, Shankar Kalbhor, and the
entire Packt team for their engagement and great work on this project, and the team at Safis Editing,
for their helpful suggestions.

I did my best not to miss anyone from this list. Nonetheless, if I missed your name, the next line is
for you.

Thank you!

I also want to thank you for buying this book.

Congratulations on starting your causal journey today!

Preface xix

Part 1: Causality – an Introduction

1
Causality – Hey, We Have Machine Learning, So Why Even Bother? 3

A brief history of causality 4
Why causality? Ask babies! 5
Interacting with the world 5
Confounding – relationships that are not real 6

How not to lose money… and
human lives 9

A marketer’s dilemma 9
Let’s play doctor! 10
Associations in the wild 12

Wrapping it up 12
References 12

2
Judea Pearl and the Ladder of Causation 15

From associations to logic and
imagination – the Ladder
of Causation 15
Associations 18
Let’s practice! 20

What are interventions? 23
Changing the world 24
Correlation and causation 26

What are counterfactuals? 28
Let’s get weird (but formal)! 28

The fundamental problem of causal inference 30
Computing counterfactuals 30
Time to code! 32

Extra – is all machine learning
causally the same? 33
Causality and reinforcement learning 33
Causality and semi-supervised and
unsupervised learning 34

Wrapping it up 34
References 35

Table of Contents

Table of Contentsx

3
Regression, Observations, and Interventions 37

Starting simple – observational data
and linear regression 37
Linear regression 37
p-values and statistical significance 41
Geometric interpretation of linear regression 42
Reversing the order 42

Should we always control for all
available covariates? 44
Navigating the maze 45

If you don’t know where you’re going, you
might end up somewhere else 45
Get involved! 48
To control or not to control? 48

Regression and structural models 49
SCMs 49
Linear regression versus SCMs 49
Finding the link 49
Regression and causal effects 51

Wrapping it up 53
References 53

4
Graphical Models 55

Graphs, graphs, graphs 55
Types of graphs 56
Graph representations 58
Graphs in Python 60

What is a graphical model? 63
DAG your pardon? Directed acyclic
graphs in the causal wonderland 64
Definitions of causality 64
DAGs and causality 65
Let’s get formal! 65
Limitations of DAGs 66

Sources of causal graphs in the
real world 66
Causal discovery 67
Expert knowledge 67
Combining causal discovery and expert
knowledge 67

Extra – is there causality
beyond DAGs? 67
Dynamical systems 67
Cyclic SCMs 68

Wrapping it up 68
References 69

Table of Contents xi

5
Forks, Chains, and Immoralities 71

Graphs and distributions and how to
map between them 71
How to talk about independence 72
Choosing the right direction 73
Conditions and assumptions 74

Chains, forks, and colliders or…
immoralities 78
A chain of events 78
Chains 79
Forks 80

Colliders, immoralities, or v-structures 82
Ambiguous cases 84

Forks, chains, colliders,
and regression 85
Generating the chain dataset 87
Generating the fork dataset 88
Generating the collider dataset 89
Fitting the regression models 90

Wrapping it up 93
References 93

Part 2: Causal Inference

6
Nodes, Edges, and Statistical (In)dependence 97

You’re gonna keep ‘em d-separated 98
Practice makes perfect – d-separation 99

Estimand first! 102
We live in a world of estimators 102
So, what is an estimand? 102

The back-door criterion 104
What is the back-door criterion? 105
Back-door and equivalent estimands 105

The front-door criterion 107
Can GPS lead us astray? 108

London cabbies and the magic pebble 109
Opening the front door 110
Three simple steps toward the front door 111
Front-door in practice 112

Are there other criteria out there?
Let’s do-calculus! 118
The three rules of do-calculus 119
Instrumental variables 120

Wrapping it up 122
Answer 122
References 123

Table of Contentsxii

7
The Four-Step Process of Causal Inference 125

Introduction to DoWhy
and EconML 126
Python causal ecosystem 126
Why DoWhy? 128
Oui, mon ami, but what is DoWhy? 128
How about EconML? 129

Step 1 – modeling the problem 130
Creating the graph 130
Building a CausalModel object 132

Step 2 – identifying the estimand(s) 133
Step 3 – obtaining estimates 134

Step 4 – where’s my validation set?
Refutation tests 135
How to validate causal models 135
Introduction to refutation tests 137

Full example 139
Step 1 – encode the assumptions 140
Step 2 – getting the estimand 142
Step 3 – estimate! 142
Step 4 – refute them! 144

Wrapping it up 149
References 149

8
Causal Models – Assumptions and Challenges 151

I am the king of the world! But am I? 152
In between 152
Identifiability 153
Lack of causal graphs 153
Not enough data 154
Unverifiable assumptions 156
An elephant in the room – hopeful
or hopeless? 156
Let’s eat the elephant 156

Positivity 157
Exchangeability 161
Exchangeable subjects 161
Exchangeability versus confounding 161

…and more 162
Modularity 162
SUTVA 164
Consistency 164

Call me names – spurious
relationships in the wild 165
Names, names, names 165
Should I ask you or someone who’s not here? 166
DAG them! 166
More selection bias 168

Wrapping it up 169
References 170

Table of Contents xiii

9
Causal Inference and Machine Learning – from Matching
to Meta-Learners 173

The basics I – matching 174
Types of matching 174
Treatment effects – ATE versus ATT/ATC 175
Matching estimators 176
Implementing matching 178

The basics II – propensity scores 183
Matching in the wild 183
Reducing the dimensionality with
propensity scores 185
Propensity score matching (PSM) 185

Inverse probability weighting (IPW) 186
Many faces of propensity scores 186
Formalizing IPW 187
Implementing IPW 187
IPW – practical considerations 188

S-Learner – the Lone Ranger 188
The devil’s in the detail 189
Mom, Dad, meet CATE 190

Jokes aside, say hi to the
heterogeneous crowd 190
Waving the assumptions flag 192
You’re the only one – modeling with
S-Learner 192
Small data 198
S-Learner’s vulnerabilities 199

T-Learner – together we can do more 200
Forcing the split on treatment 200
T-Learner in four steps and a formula 201
Implementing T-Learner 202

X-Learner – a step further 204
Squeezing the lemon 204
Reconstructing the X-Learner 205
X-Learner – an alternative formulation 207
Implementing X-Learner 208

Wrapping it up 212
References 213

10
Causal Inference and Machine Learning – Advanced Estimators,
Experiments, Evaluations, and More 215

Doubly robust methods – let’s get
more! 216
Do we need another thing? 216
Doubly robust is not equal to bulletproof… 218
…but it can bring a lot of value 218
The secret doubly robust sauce 218
Doubly robust estimator versus assumptions 220
DR-Learner – crossing the chasm 220

DR-Learners – more options 224
Targeted maximum likelihood estimator 224

If machine learning is cool, how
about double machine learning? 227
Why DML and what’s so double about it? 228
DML with DoWhy and EconML 231
Hyperparameter tuning with DoWhy and
EconML 234

Table of Contentsxiv

Is DML a golden bullet? 239
Doubly robust versus DML 240
What’s in it for me? 241

Causal Forests and more 242
Causal trees 242
Forests overflow 242
Advantages of Causal Forests 242
Causal Forest with DoWhy and EconML 243

Heterogeneous treatment
effects with experimental data – the
uplift odyssey 245
The data 245
Choosing the framework 251
We don’t know half of the story 251

Kevin’s challenge 252
Opening the toolbox 253
Uplift models and performance 257
Other metrics for continuous outcomes with
multiple treatments 262
Confidence intervals 263
Kevin’s challenge’s winning submission 264
When should we use CATE estimators for
experimental data? 264
Model selection – a simplified guide 265

Extra – counterfactual explanations 267
Bad faith or tech that does not know? 267

Wrapping it up 268
References 269

11
Causal Inference and Machine Learning – Deep Learning,
NLP, and Beyond 273

Going deeper – deep learning for
heterogeneous treatment effects 274
CATE goes deeper 274
SNet 276

Transformers and causal inference 284
The theory of meaning in five paragraphs 285
Making computers understand language 285
From philosophy to Python code 286
LLMs and causality 286
The three scenarios 288
CausalBert 292

Causality and time series – when an
econometrician goes Bayesian 297

Quasi-experiments 297
Twitter acquisition and our
googling patterns 298
The logic of synthetic controls 298
A visual introduction to the logic
of synthetic controls 300
Starting with the data 302
Synthetic controls in code 303
Challenges 308

Wrapping it up 309
References 309

Table of Contents xv

Part 3: Causal Discovery

12
Can I Have a Causal Graph, Please? 315

Sources of causal knowledge 316
You and I, oversaturated 316
The power of a surprise 317

Scientific insights 317
The logic of science 318
Hypotheses are a species 318
One logic, many ways 319
Controlled experiments 319
Randomized controlled trials (RCTs) 320

From experiments to graphs 321
Simulations 321

Personal experience and domain
knowledge 321
Personal experiences 322
Domain knowledge 323

Causal structure learning 323
Wrapping it up 324
References 324

13
Causal Discovery and Machine Learning – from Assumptions to
Applications 327

Causal discovery – assumptions
refresher 328
Gearing up 328
Always trying to be faithful… 328
…but it’s difficult sometimes 328
Minimalism is a virtue 329

The four (and a half) families 329
The four streams 329

Introduction to gCastle 331
Hello, gCastle! 331
Synthetic data in gCastle 331
Fitting your first causal discovery model 336

Visualizing the model 336
Model evaluation metrics 338

Constraint-based causal discovery 341
Constraints and independence 341
Leveraging the independence structure to
recover the graph 342
PC algorithm – hidden challenges 345
PC algorithm for categorical data 346

Score-based causal discovery 347
Tabula rasa – starting fresh 347
GES – scoring 347
GES in gCastle 348

Table of Contentsxvi

Functional causal discovery 349
The blessings of asymmetry 349
ANM model 350
Assessing independence 353
LiNGAM time 355

Gradient-based causal discovery 360
What exactly is so gradient about you? 360
Shed no tears 362

GOLEMs don’t cry 363
The comparison 363

Encoding expert knowledge 366
What is expert knowledge? 366
Expert knowledge in gCastle 366

Wrapping it up 368
References 368

14
Causal Discovery and Machine Learning – Advanced Deep
Learning and Beyond 371

Advanced causal discovery
with deep learning 372
From generative models to causality 372
Looking back to learn who you are 373
DECI’s internal building blocks 373
DECI in code 375
DECI is end-to-end 387

Causal discovery under hidden
confounding 387
The FCI algorithm 388

Other approaches to confounded data 392

Extra – going beyond observations 393
ENCO 393
ABCI 393

Causal discovery – real-world
applications, challenges, and
open problems 394
Wrapping it up! 395
References 396

15
Epilogue 399

What we’ve learned in this book 399
Five steps to get the best out of your
causal project 400
Starting with a question 400
Obtaining expert knowledge 401
Generating hypothetical graph(s) 401
Check identifiability 402
Falsifying hypotheses 402

Causality and business 403
How causal doers go from vision to
implementation 403

Toward the future of causal ML 405
Where are we now and where
are we heading? 406
Causal benchmarks 406
Causal data fusion 407

Table of Contents xvii

Intervening agents 407
Causal structure learning 408
Imitation learning 408

Learning causality 409

Let’s stay in touch 410
Wrapping it up 411
References 411

Index 413

Other Books You May Enjoy 426

Preface

I wrote this book with a purpose in mind.

My journey to practical causality was an exciting but also challenging road.

Going from great theoretical books to implementing models in practice, and from translating
assumptions to verifying them in real-world scenarios, demanded significant work.

I could not find unified, comprehensive resources that could be my guide through this journey.

This book is intended to be that guide.

This book provides a map that allows you to break into the world of causality.

We start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian
causal concepts: structural causal model, interventions, counterfactuals, and more.

Each concept comes with a theoretical explanation and a set of practical exercises accompanied by
Python code.

Next, we dive into the world of causal effect estimation. Starting simple, we consistently progress
toward modern machine learning methods. Step by step, we introduce the Python causal ecosystem
and harness the power of cutting-edge algorithms.

In the last part of the book, we sneak into the secret world of causal discovery. We explore the mechanics
of how causes leave traces and compare the main families of causal discovery algorithms to unravel
the potential of end-to-end causal discovery and human-in-the-loop learning.

We close the book with a broad outlook into the future of causal AI. We examine challenges and
opportunities and provide you with a comprehensive list of resources to learn more.

Who this book is for
The main audience I wrote this book for consists of machine learning engineers, data scientists, and
machine learning researchers with three or more years of experience, who want to extend their data
science toolkit and explore the new unchartered territory of causal machine learning.

People familiar with causality who have worked with another technology (e.g., R) and want to switch
to Python can also benefit from this book, as well as people who have worked with traditional causality
and want to expand their knowledge and tap into the potential of causal machine learning.

Finally, this book can benefit tech-savvy entrepreneurs who want to build a competitive edge for their
products and go beyond the limitations of traditional machine learning.

Prefacexx

What this book covers
Chapter 1, Causality: Hey, We Have Machine Learning, So Why Even Bother?, briefly discusses the history
of causality and a number of motivating examples. This chapter introduces the notion of spuriousness
and demonstrates that some classic definitions of causality do not capture important aspects of causal
learning (which human babies know about). This chapter provides the basic distinction between
statistical and causal learning, which is a cornerstone for the rest of the book.

Chapter 2, Judea Pearl and the Ladder of Causation, provides us with a definition of the Ladder of
Causation – a crucial concept introduced by Judea Pearl that emphasizes the differences between
observational, interventional, and counterfactual queries and distributions. We build on top of these
ideas and translate them into concrete code examples. Finally, we briefly discuss how different families
of machine learning (supervised, reinforcement, semi-, and unsupervised) relate to causal modeling.

Chapter 3, Regression, Observations, and Interventions, prepares us to take a look at linear regression
from a causal perspective. We analyze important properties of observational data and discuss the
significance of these properties for causal reasoning. We re-evaluate the problem of statistical control
through the causal lens and introduce structural causal models (SCMs). These topics help us build
a strong foundation for the rest of the book.

Chapter 4, Graphical Models, starts with a refresher on graphs and basic graph theory. After refreshing
the fundamental concepts, we use them to define directed acyclic graphs (DAGs) – one of the most
crucial concepts in Pearlian causality. We briefly introduce the sources of causal graphs in the real
world and touch upon causal models that are not easily describable using DAGs. This prepares us
for Chapter 5.

Chapter 5, Forks, Chains, and Immoralities, focuses on three basic graphical structures: forks, chains,
and immoralities (also known as colliders). We learn about the crucial properties of these structures
and demonstrate how these graphical concepts manifest themselves in the statistical properties of the
data. The knowledge we gain in this chapter will be one of the fundamental building blocks of the
concepts and techniques that we introduced in Part 2 and Part 3 of this book.

Chapter 6, Nodes, Edges, and Statistical (In)Dependence, builds on top of the concepts introduced in
Chapter 5 and takes them a step further. We introduce the concept of d-separation, which will allow
us to systematically evaluate conditional independence queries in DAGs, and define the notion of
estimand. Finally, we discuss three popular estimands and the conditions under which they can
be applied.

Chapter 7, The Four-Step Process of Causal Inference, takes us to the practical side of causality. We
introduce DoWhy – an open source causal inference library created by researchers from Microsoft – and
show how to carry out a full causal inference process using its intuitive APIs. We demonstrate how to
define a causal model, find a relevant estimand, estimate causal effects, and perform refutation tests.

Preface xxi

Chapter 8, Causal Models – Assumptions and Challenges, brings our attention back to the topic of
assumptions. Assumptions are a crucial and indispensable part of any causal project or analysis. In this
chapter, we take a broader view and discuss the most important assumptions from the point of view of
two causal formalisms: the Pearlian (graph-based) framework and the potential outcomes framework.

Chapter 9, Causal Inference and Machine Learning – from Matching to Meta-learners, opens the door
to causal estimation beyond simple linear models. We start by introducing the ideas behind matching
and propensity scores and discussing why propensity scores should not be used for matching. We
introduce meta-learners – a class of models that can be used for the estimation of conditional average
treatment effects (CATEs) and implement them using DoWhy and EconML packages.

Chapter 10, Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations,
and More, introduces more advanced estimators: DR-Learner, double machine learning (DML), and
causal forest. We show how to use CATE estimators with experimental data and introduce a number
of useful evaluation metrics that can be applied in real-world scenarios. We conclude the chapter with
a brief discussion of counterfactual explanations.

Chapter 11, Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond, introduces
deep learning models for CATE estimation and a PyTorch-based CATENets library. In the second
part of the chapter, we take a look at the intersection of causal inference and NLP and introduce
CausalBert – a Transformer-based model that can be used to remove spurious relationships present
in textual data. We close the chapter with an introduction to the synthetic control estimator, which
we use to estimate causal effects in real-world data.

Chapter 12, Can I Have a Causal Graph, Please?, provides us with a deeper look at the real-world
sources of causal knowledge and introduces us to the concept of automated causal discovery. We
discuss the idea of expert knowledge and its value in the process of causal analysis.

Chapter 13, Causal Discovery and Machine Learning – from Assumptions to Applications, starts with
a review of assumptions required by some of the popular causal discovery algorithms. We introduce
four main families of causal discovery methods and implement key algorithms using the gCastle
library, addressing some of the important challenges on the way. Finally, we demonstrate how to
encode expert knowledge when working with selected methods.

Chapter 14, Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond, introduces
an advanced causal discovery algorithm – DECI. We implement it using the modules coming from an
open source Microsoft library, Causica, and train it using PyTorch. We present methods that allow us
to work with datasets with hidden confounding and implement one of them – fast causal inference
(FCI) – using the causal-learn library. Finally, we briefly discuss two frameworks that allow us
to combine observational and interventional data in order to make causal discovery more efficient
and less error-prone.

Chapter 15, Epilogue, closes Part 3 of the book with a summary of what we’ve learned, a discussion
of causality in business, a sneak peek into the (potential) future of the field, and pointers to more
resources on causal inference and discovery for those who are ready to continue their causal journey.

Prefacexxii

To get the most out of this book
The code for this book is provided in the form of Jupyter notebooks. To run the notebooks, you’ll
need to install the required packages.

The easiest way to install them is using Conda. Conda is a great package manager for Python. If you
don’t have Conda installed on your system, the installation instructions can be found here: https://
bit.ly/InstallConda.

Note that Conda’s license might have some restrictions for commercial use. After installing Conda,
follow the environment installation instructions in the book’s repository README.md file (https://
bit.ly/InstallEnvironments).

If you want to recreate some of the plots from the book, you might need to additionally install
Graphviz. For GPU acceleration, CUDA drivers might be needed. Instructions and requirements for
Graphviz and CUDA are available in the same README.md file in the repository (https://bit.
ly/InstallEnvironments).

The code for this book has been only tested on Windows 11 (64-bit).

Software/hardware covered in the book Operating system requirements
Python 3.9 Windows, macOS, or Linux
DoWhy 0.8 Windows, macOS, or Linux
EconML 0.12.0 Windows, macOS, or Linux
CATENets 0.2.3 Windows, macOS, or Linux
gCastle 1.0.3 Windows, macOS, or Linux
Causica 0.2.0 Windows, macOS, or Linux
Causal-learn 0.1.3.3 Windows, macOS, or Linux
Transformers 4.24.0 Windows, macOS, or Linux

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Causal-Inference-and-Discovery-in-Python. If there’s an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://bit.ly/InstallConda
https://bit.ly/InstallConda
https://bit.ly/InstallEnvironments
https://bit.ly/InstallEnvironments
https://bit.ly/InstallEnvironments
https://bit.ly/InstallEnvironments
https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python
https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xxiii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We’ll
model the adjacency matrix using the ENCOAdjacencyDistributionModule object.”

A block of code is set as follows:

preds = causal_bert.inference(
 texts=df['text'],
 confounds=df['has_photo'],
)[0]

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Prefacexxiv

Share Your Thoughts
Once you’ve read Causal Inference and Discovery in Python, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-804-61298-7

Preface xxv

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804612989

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804612989

Part 1:
Causality – an

Introduction

Part 1 of this book will equip us with a set of tools necessary to understand and tackle the challenges
of causal inference and causal discovery.

We’ll learn about the differences between observational, interventional, and counterfactual queries and
distributions. We’ll demonstrate connections between linear regression, graphs, and causal models.

Finally, we’ll learn about the important properties of graphical structures that play an essential role
in almost any causal endeavor.

This part comprises the following chapters:

• Chapter 1, Causality – Hey, We Have Machine Learning, So Why Even Bother?

• Chapter 2, Judea Pearl and the Ladder of Causation

• Chapter 3, Regression, Observations, and Interventions

• Chapter 4, Graphical Models

• Chapter 5, Forks, Chains, and Immoralities

1
Causality – Hey, We Have

Machine Learning,
So Why Even Bother?

Our journey starts here.

In this chapter, we’ll ask a couple of questions about causality.

What is it? Is causal inference different from statistical inference? If so – how?

Do we need causality at all if machine learning seems good enough?

If you have been following the fast-changing machine learning landscape over the last 5 to 10 years,
you have likely noticed many examples of – as we like to call it in the machine learning community
– the unreasonable effectiveness of modern machine learning algorithms in computer vision, natural
language processing, and other areas.

Algorithms such as DALL-E 2 or GPT-3/4 made it not only to the consciousness of the research
community but also the general public.

You might ask yourself – if all this stuff works so well, why would we bother and look into something else?

We’ll start this chapter with a brief discussion of the history of causality. Next, we’ll consider a couple of
motivations for using a causal rather than purely statistical approach to modeling and we’ll introduce
the concept of confounding.

Finally, we’ll see examples of how a causal approach can help us solve challenges in marketing and
medicine. By the end of this chapter, you will have a good idea of why and when causal inference can
be useful. You’ll be able to explain what confounding is and why it’s important.

Causality – Hey, We Have Machine Learning, So Why Even Bother?4

In this chapter, we will cover the following:

• A brief history of causality

• Motivations to use a causal approach to modeling

• How not to lose money… and human lives

A brief history of causality
Causality has a long history and has been addressed by most, if not all, advanced cultures that we know
about. Aristotle – one of the most prolific philosophers of ancient Greece – claimed that understanding
the causal structure of a process is a necessary ingredient of knowledge about this process. Moreover,
he argued that being able to answer why-type questions is the essence of scientific explanation (Falcon,
2006; 2022). Aristotle distinguishes four types of causes (material, formal, efficient, and final), an idea
that might capture some interesting aspects of reality as much as it might sound counterintuitive to
a contemporary reader.

David Hume, a famous 18th-century Scottish philosopher, proposed a more unified framework
for cause-effect relationships. Hume starts with an observation that we never observe cause-effect
relationships in the world. The only thing we experience is that some events are conjoined:

“We only find, that the one does actually, in fact, follow the other. The impulse of one billiard-ball is
attended with motion in the second. This is the whole that appears to the outward senses. The mind
feels no sentiment or inward impression from this succession of objects: consequently, there is not, in any
single, particular instance of cause and effect, any thing which can suggest the idea of power or necessary
connexion” (original spelling; Hume & Millican, 2007; originally published in 1739).

One interpretation of Hume’s theory of causality (here simplified for clarity) is the following:

• We only observe how the movement or appearance of object A precedes the movement or
appearance of object B

• If we experience such a succession a sufficient number of times, we’ll develop a feeling of expectation

• This feeling of expectation is the essence of our concept of causality (it’s not about the world;
it’s about a feeling we develop)

Hume’s theory of causality
The interpretation of Hume’s theory of causality that we give here is not the only one. First, Hume
presented another definition of causality in his later work An Enquiry Concerning the Human
Understanding (1758). Second, not all scholars would necessarily agree with our interpretation
(for example, Archie (2005)).

Why causality? Ask babies! 5

This theory is very interesting from at least two points of view.

First, elements of this theory have a high resemblance to a very powerful idea in psychology called
conditioning. Conditioning is a form of learning. There are multiple types of conditioning, but they
all rely on a common foundation – namely, association (hence the name for this type of learning
– associative learning). In any type of conditioning, we take some event or object (usually called
stimulus) and associate it with some behavior or reaction. Associative learning works across species.
You can find it in humans, apes, dogs, and cats, but also in much simpler organisms such as snails
(Alexander, Audesirk & Audesirk, 1985).

Conditioning
If you want to learn more about different types of conditioning, check this https://bit.
ly/MoreOnConditioning or search for phrases such as classical conditioning
versus operant conditioning and names such as Ivan Pavlov and Burrhus
Skinner, respectively.

Second, most classic machine learning algorithms also work on the basis of association. When we’re
training a neural network in a supervised fashion, we’re trying to find a function that maps input to the
output. To do it efficiently, we need to figure out which elements of the input are useful for predicting
the output. And, in most cases, association is just good enough for this purpose.

Why causality? Ask babies!
Is there anything missing from Hume’s theory of causation? Although many other philosophers
tried to answer this question, we’ll focus on one particularly interesting answer that comes from…
human babies.

Interacting with the world

Alison Gopnik is an American child psychologist who studies how babies develop their world models.
She also works with computer scientists, helping them understand how human babies build common-
sense concepts about the external world. Children – to an even greater extent than adults – make use
of associative learning, but they are also insatiable experimenters.

Have you ever seen a parent trying to convince their child to stop throwing around a toy? Some
parents tend to interpret this type of behavior as rude, destructive, or aggressive, but babies often have
a different set of motivations. They are running systematic experiments that allow them to learn the
laws of physics and the rules of social interactions (Gopnik, 2009). Infants as young as 11 months
prefer to perform experiments with objects that display unpredictable properties (for example, can pass
through a wall) than with objects that behave predictably (Stahl & Feigenson, 2015). This preference
allows them to efficiently build models of the world.

https://bit.ly/MoreOnConditioning
https://bit.ly/MoreOnConditioning

Causality – Hey, We Have Machine Learning, So Why Even Bother?6

What we can learn from babies is that we’re not limited to observing the world, as Hume suggested. We
can also interact with it. In the context of causal inference, these interactions are called interventions,
and we’ll learn more about them in Chapter 2. Interventions are at the core of what many consider the
Holy Grail of the scientific method: randomized controlled trial, or RCT for short.

Confounding – relationships that are not real

The fact that we can run experiments enhances our palette of possibilities beyond what Hume thought
about. This is very powerful! Although experiments cannot solve all of the philosophical problems
related to gaining new knowledge, they can solve some of them. A very important aspect of a properly
designed randomized experiment is that it allows us to avoid confounding. Why is it important?

A confounding variable influences two or more other variables and produces a spurious association
between them. From a purely statistical point of view, such associations are indistinguishable from
the ones produced by a causal mechanism. Why is that problematic? Let’s see an example.

Imagine you work at a research institute and you’re trying to understand the causes of people drowning.
Your organization provides you with a huge database of socioeconomic variables. You decide to run
a regression model over a large set of these variables to predict the number of drownings per day in
your area of interest. When you check the results, it turns out that the biggest coefficient you obtained
is for daily regional ice cream sales. Interesting! Ice cream usually contains large amounts of sugar, so
maybe sugar affects people’s attention or physical performance while they are in the water.

This hypothesis might make sense, but before we move forward, let’s ask some questions. How about
other variables that we did not include in the model? Did we add enough predictors to the model to
describe all relevant aspects of the problem? What if we added too many of them? Could adding just
one variable to the model completely change the outcome?

Adding too many predictors
Adding too many predictors to the model might be harmful from both statistical and causal
points of view. We will learn more on this topic in Chapter 3.

Why causality? Ask babies! 7

It turns out that this is possible.

Let me introduce you to daily average temperature – our confounder. Higher daily temperature makes
people more likely to buy ice cream and more likely to go swimming. When there are more people
swimming, there are also more accidents. Let’s try to visualize this relationship:

Figure 1.1 – Graphical representation of models with two (a) and three variables

(b). Dashed lines represent the association, solid lines represent causation.

ICE = ice cream sales, ACC = the number of accidents, and TMP = temperature.

In Figure 1.1, we can see that adding the average daily temperature to the model removes the relationship
between regional ice cream sales and daily drownings. Depending on your background, this might or
might not be surprising to you. We’ll learn more about the mechanism behind this effect in Chapter 3.

Before we move further, we need to state one important thing explicitly: confounding is a strictly
causal concept. What does it mean? It means that we’re not able to say much about confounding using
purely statistical language (note that this means that Hume’s definition as we presented it here cannot
capture it). To see this clearly, let’s look at Figure 1.2:

Causality – Hey, We Have Machine Learning, So Why Even Bother?8

Figure 1.2 – Pairwise scatterplots of relations between a, b, and c.

 The code to recreate the preceding plot can be found in the Chapter_01.ipynb notebook

(https://github.com/PacktPublishing/Causal-Inference-

and-Discovery-in-Python/blob/main/Chapter_01.ipynb).

In Figure 1.2, blue points signify a causal relationship while red points signify a spurious relationship,
and variables a, b, and c are related in the following way:

• b causes a and c

• a and c are causally independent

Figure 1.3 presents a graphical representation of these relationships:

Figure 1.3 – Relationships between a, b, and c

https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python/blob/main/Chapter_01.ipynb
https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python/blob/main/Chapter_01.ipynb

How not to lose money… and human lives 9

The black dashed line with the red cross denotes that there is no causal relationship between a and
c in any direction.

Hey, but in Figure 1.2 we see some relationship! Let’s unpack it!

In Figure 1.2, non-spurious (blue) and spurious (red) relationships look pretty similar to each other
and their correlation coefficients will be similarly large. In practice, most of the time, they just cannot
be distinguished based on solely statistical criteria and we need causal knowledge to distinguish
between them.

Asymmetries and causal discovery
If fact, in some cases, we can use noise distribution or functional asymmetries to find out
which direction is causal. This information can be leveraged to recover causal structure from
observational data, but it also requires some assumptions about the data-generating process.
We’ll learn more about this in Part 3, Causal Discovery (Chapter 13).

Okay, we said that there are some spurious relationships in our data; we added another variable to the
model and it changed the model’s outcome. That said, I was still able to make useful predictions without
this variable. If that’s true, why would I care whether the relationship is spurious or non-spurious?
Why would I care whether the relationship is causal or not?

How not to lose money… and human lives
We learned that randomized experiments can help us avoid confounding. Unfortunately, they are
not always available. Sometimes, experiments can be too costly to perform, unethical, or virtually
impossible (for example, running an experiment where the treatment is a migration of a large
group of some population). In this section, we’ll look at a couple of scenarios where we’re limited to
observational data but we still want to draw causal conclusions. These examples will provide us with
a solid foundation for the next chapters.

A marketer’s dilemma

Imagine you are a tech-savvy marketer and you want to effectively allocate your direct marketing
budget. How would you approach this task? When allocating the budget for a direct marketing
campaign, we’d like to understand what return we can expect if we spend a certain amount of money
on a given person. In other words, we’re interested in estimating the effect of our actions on some
customer outcomes (Gutierrez, Gérardy, 2017). Perhaps we could use supervised learning to solve this
problem? To answer this question, let’s take a closer look at what exactly we want to predict.

We’re interested in understanding how a given person would react to our content. Let’s encode it in
a formula:

 τ i = Y i (1) − Y i (0)

Causality – Hey, We Have Machine Learning, So Why Even Bother?10

In the preceding formula, the following applies:

• τ i is the treatment effect for person i

• Y i (1) is the outcome for person i when they received the treatment T (in our example, they
received marketing content from us)

• Y i (0) is the outcome for the same person i given they did not receive the treatment T

What the formula says is that we want to take the person i ’s outcome Y i when this person does not
receive treatment T and subtract it from the same person’s outcome when they receive treatment T .

An interesting thing here is that to solve this equation, we need to know what person i ’s response is
under treatment and under no treatment. In reality, we can never observe the same person under
two mutually exclusive conditions at the same time. To solve the equation in the preceding formula,
we need counterfactuals.

Counterfactuals are estimates of how the world would look if we changed the value of one or more
variables, holding everything else constant. Because counterfactuals cannot be observed, the true
causal effect τ is unknown. This is one of the reasons why classic machine learning cannot solve this
problem for us. A family of causal techniques usually applied to problems like this is called uplift
modeling, and we’ll learn more about it in Chapter 9 and 10.

Let’s play doctor!

Let’s take another example. Imagine you’re a doctor. One of your patients, Jennifer, has a rare disease, D.
Additionally, she was diagnosed with a high risk of developing a blood clot. You study the information
on the two most popular drugs for D. Both drugs have virtually identical effectiveness on D, but you’re
not sure which drug will be safer for Jennifer, given her diagnosis. You look into the research data
presented in Table 1.1:

Drug A B
Blood clot Yes No Yes No
Total 27 95 23 99
Percentage 22% 78% 19% 81%

Table 1.1 – Data for drug A and drug B

The numbers in Table 1.1 represent the number of patients diagnosed with disease D who were
administered drug A or drug B. Row 2 (Blood clot) gives us information on whether a blood clot
was found in patients or not. Note that the percentage scores are rounded. Based on this data, which
drug would you choose? The answer seems pretty obvious. 81% of patients who received drug B did
not develop blood clots. The same was true for only 78% of patients who received drug A. The risk
of developing a blood clot is around 3% lower for patients receiving drug B compared to patients
receiving drug A.

How not to lose money… and human lives 11

This looks like a fair answer, but you feel skeptical. You know that blood clots can be very risky and
you want to dig deeper. You find more fine-grained data that takes the patient’s gender into account.
Let’s look at Table 1.2:

Drug A B
Blood clot Yes No Yes No
Female 24 56 17 25
Male 3 39 6 74
Total 27 95 23 99
Percentage 22% 78% 18% 82%
Percentage (F) 30% 70% 40% 60%
Percentage (M) 7% 93% 7.5% 92.5%

Table 1.2 – Data for drug A and drug B with gender-specific results added.

F = female, M = male. Color-coding added for ease of interpretation, with

better results marked in green and worse results marked in orange.

Something strange has happened here. We have the same numbers as before and drug B is still preferable
for all patients, but it seems that drug A works better for females and for males! Have we just found a
medical Schrödinger’s cat (https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_
cat) that flips the effect of a drug when a patient’s gender is observed?

If you think that we might have messed up the numbers – don’t believe me, just check the data for
yourself. The data can be found in data/ch_01_drug_data.csv (https://github.com/
PacktPublishing/Causal-Inference-and-Discovery-in-Python/blob/main/
data/ch_01_drug_data.csv).

What we’ve just experienced is called Simpson’s paradox (also known as the Yule-Simpson effect).
Simpson’s paradox appears when data partitioning (which we can achieve by controlling for the
additional variable(s) in the regression setting) significantly changes the outcome of the analysis. In
the real world, there are usually many ways to partition your data. You might ask: okay, so how do I
know which partitioning is the correct one?

We could try to answer this question from a pure machine learning point of view: perform cross-
validated feature selection and pick the variables that contribute significantly to the outcome. This
solution is good enough in some settings. For instance, it will work well when we only care about
making predictions (rather than decisions) and we know that our production data will be independent
and identically distributed; in other words, our production data needs to have a distribution that is
virtually identical (or at least similar enough) to our training and validation data. If we want more
than this, we’ll need some sort of a (causal) world model.

https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python/blob/main/data/ch_01_drug_data.csv
https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python/blob/main/data/ch_01_drug_data.csv
https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python/blob/main/data/ch_01_drug_data.csv

Causality – Hey, We Have Machine Learning, So Why Even Bother?12

Associations in the wild

Some people tend to think that purely associational relationships happen rarely in the real world
or tend to be weak, so they cannot bias our results too much. To see how surprisingly strong and
consistent spurious relationships can be in the real world, visit Tyler Vigen’s page: https://www.
tylervigen.com/spurious-correlations. Notice that relationships between many variables
are sometimes very strong and they last for long periods of time! I personally like the one with space
launches and sociology doctorates and I often use it in my lectures and presentations. Which one is
your favorite? Share and tag me on LinkedIn, Twitter (See the Let’s stay in touch section in Chapter 15
to connect!) so we can have a discussion!

Wrapping it up
“Let the data speak” is a catchy and powerful slogan, but as we’ve seen earlier, data itself is not always
enough. It’s worth remembering that in many cases “data cannot speak for themselves” (Hernán, Robins,
2020) and we might need more information than just observations to address some of our questions.

In this chapter, we learned that when thinking about causality, we’re not limited to observations, as
David Hume thought. We can also experiment – just like babies.

Unfortunately, experiments are not always available. When this is the case, we can try to use observational
data to draw a causal conclusion, but the data itself is usually not enough for this purpose. We also
need a causal model. In the next chapter, we’ll introduce the Ladder of Causation – a neat metaphor
for understanding three levels of causation proposed by Judea Pearl.

References
Alexander, J. E., Audesirk, T. E., & Audesirk, G. J. (1985). Classical Conditioning in the Pond Snail Lymnaea
stagnalis. The American Biology Teacher, 47(5), 295–298. https://doi.org/10.2307/4448054

Archie, L. (2005). Hume’s Considered View on Causality. [Preprint] Retrieved from: http://
philsci-archive.pitt.edu/id/eprint/2247 (accessed 2022-04-23)

Falcon, A. “Aristotle on Causality”, The Stanford Encyclopedia of Philosophy (Spring 2022 Edition),
Edward N. Zalta (ed.). https://plato.stanford.edu/archives/spr2022/entries/
aristotle-causality/. Retrieved 2022-04-23

Gopnik, A. (2009). The philosophical baby: What children’s minds tell us about truth, love, and the
meaning of life. New York: Farrar, Straus and Giroux

https://www.tylervigen.com/spurious-correlations
https://www.tylervigen.com/spurious-correlations
https://doi.org/10.2307/4448054
http://philsci-archive.pitt.edu/id/eprint/2247
http://philsci-archive.pitt.edu/id/eprint/2247
https://plato.stanford.edu/archives/spr2022/entries/aristotle-causality/
https://plato.stanford.edu/archives/spr2022/entries/aristotle-causality/

References 13

Gutierrez, P., & Gérardy, J. (2017). Causal Inference and Uplift Modelling: A Review of the Literature.
Proceedings of The 3rd International Conference on Predictive Applications and APIs in Proceedings
of Machine Learning Research, 67, 1-13

Hernán M. A., & Robins J. M. (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC

Hume, D., & Millican, P. F. (2007). An enquiry concerning human understanding. Oxford: Oxford
University Press

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux

Lorkowski, C. M. https://iep.utm.edu/hume-causation/. Retrieved 2022-04-23

Stahl, A. E., & Feigenson, L. (2015). Cognitive development. Observing the unexpected enhances
infants’ learning and exploration. Science, 348(6230), 91–94. https://doi.org/10.1126/
science.aaa3799

https://iep.utm.edu/hume-causation/
https://doi.org/10.1126/science.aaa3799
https://doi.org/10.1126/science.aaa3799

2
Judea Pearl and the

Ladder of Causation

In the last chapter, we discussed why association is not sufficient to draw causal conclusions. We talked
about interventions and counterfactuals as tools that allow us to perform causal inference based on
observational data. Now, it’s time to give it a bit more structure.

In this chapter, we’re going to introduce the concept of the Ladder of Causation. We’ll discuss
associations, interventions, and counterfactuals from theoretical and mathematical standpoints.
Finally, we’ll implement a couple of structural causal models in Python to solidify our understanding
of the three aforementioned concepts. By the end of this chapter, you should have a firm grasp of
the differences between associations, interventions, and counterfactuals. This knowledge will be
a foundation of many of the ideas that we’ll discuss further in the book and allow us to understand
the mechanics of more sophisticated methods that we’ll introduce in Part 2, Causal Inference, and
Part 3, Causal Discovery.

In this chapter, we will cover the following topics:

• The concept of the Ladder of Causation

• Conceptual, mathematical, and practical differences between associations, interventions,
and counterfactuals

From associations to logic and imagination – the Ladder
of Causation
In this section, we’ll introduce the concept of the Ladder of Causation and summarize its building
blocks. Figure 2.1 presents a symbolic representation of the Ladder of Causation. The higher the rung,
the more sophisticated our capabilities become, but let’s start from the beginning:

Judea Pearl and the Ladder of Causation16

Figure 2.1 – The Ladder of Causation. Image by the author, based on a picture by Laurie Shaw

(https://www.pexels.com/photo/brown-wooden-door-frame-804394/)

The Ladder of Causation, introduced by Judea Pearl (Pearl, Mackenzie, 2019), is a helpful metaphor
for understanding distinct levels of relationships between variables – from simple associations to
counterfactual reasoning. Pearl’s ladder has three rungs. Each rung is related to different activity
and offers answers to different types of causal questions. Each rung comes with a distinct set of
mathematical tools.

Judea Pearl
Judea Pearl is an Israeli-American researcher and computer scientist, who devoted a large part
of his career to researching causality. His original and insightful work has been recognized by
Association for Computing Machinery (ACM), who awarded him with the Turing Award
– considered by many the equivalent of the Nobel Prize in computer science. The Ladder
of Causation was introduced in Pearl’s popular book on causality, The Book of Why (Pearl,
Mackenzie, 2019).

Rung one of the ladder represents association. The activity that is related to this level is observing.
Using association, we can answer questions about how seeing one thing changes our beliefs about
another thing – for instance, how observing a successful space launch by SpaceX changes our belief
that SpaceX stock price will go up.

https://www.pexels.com/photo/brown-wooden-door-frame-804394/

From associations to logic and imagination – the Ladder of Causation 17

Rung two represents intervention. Remember the babies from the previous chapter? The action
related to rung two is doing or intervening. Just like babies throwing their toys around to learn about
the laws of physics, we can intervene on one variable to check how it influences some other variable.
Interventions can help us answer questions about what will happen to one thing if we change another
thing – for instance, if I go to bed earlier, will I have more energy the following morning?

Rung three represents counterfactual reasoning. Activities associated with rung three are imagining
and understanding. Counterfactuals are useful to answer questions about what would have happened
if we had done something differently. For instance, would I have made it to the office on time if I took
the train rather than the car?

Table 2.1 summarizes the three rungs of the Ladder of Causation:

Rung Action Question
Association (1) Observing How does observing X change my belief in Y?
Intervention (2) Doing What will happen to Y if I do X?

Counterfactual (3) Imagining If I had done X, what would Y be?

Table 2.1 – A summary of the three rungs of the Ladder of Causation

To cement our intuitions, let’s see an example of each of the rungs.

Imagine that you’re a doctor and you consider prescribing drug D to one of your patients. First, you
might recall hearing other doctors saying that D helped their patients. It seems that in the sample of
doctors you heard talking about D, there is an association between their patients taking the drug and
getting better. That’s rung one. We are skeptical about the rung one evidence because it might just be
the case that these doctors only treated patients with certain characteristics (maybe just mild cases
or only patients of a certain age). To overcome the limitation of rung one, you decide to read articles
based on randomized clinical trials.

Randomized controlled trials
Randomized controlled trials (RCTs), sometimes referred to as randomized experiments, are often
considered the gold standard for causal inference. The key idea behind RCTs is randomization.
We randomly assign subjects in an experiment to treatment and control groups, which helps
us achieve deconfounding. There are many possible RCT designs. For an introduction and
discussion, check out Matthews (2006). We also briefly discuss RCTs in Chapter 12.

These trials were based on interventions (rung two) and – assuming that they were properly designed
– they can be used to determine the relative efficacy of the treatment. Unfortunately, they cannot
tell us whether a patient would be better off if they had taken the treatment earlier, or which of two
available treatments with similar relative efficacy would have worked better for this particular patient.
To answer this type of question, we need rung three.

Judea Pearl and the Ladder of Causation18

Now, let’s take a closer look at each of the rungs and their respective mathematical apparatus.

Associations
In this section, we’ll demonstrate how to quantify associational relationships using conditional
probability. Then, we’ll briefly introduce structural causal models. Finally, we’ll implement conditional
probability queries using Python.

We already learned a lot about associations. We know that associations are related to observing and
that they allow us to generate predictions. Let’s take a look at mathematical tools that will allow us to
talk about associations in a more formal way.

We can view the mathematics of rung one from a couple of angles. In this section, we’ll focus on the
perspective of conditional probability.

Conditional probability
Conditional probability is the probability of one event, given that another event has occurred.
A mathematical symbol that we use to express conditional probability is | (known as a pipe
or vertical bar). We read P (X | Y) as a probability of X given Y. This notation is a bit simplified
(or abused if you will). What we usually mean by P (X | Y) is P (X = x | Y = y) , the probability
that the variable X takes the value x , given that the variable Y takes the value y . This notation
can also be extended to continuous cases, where we want to work with probability densities –
for example, P (0 < X < 0.25 | Y > 0.5) .

Imagine that you run an internet bookstore. What is the probability that a person will buy book
A, given that they bought book B? This question can be answered using the following conditional
probability query:

 P (book A| book B)

Note that the preceding formula does not give us any information on the causal relationship between
both events. We don’t know whether buying book A caused the customer to buy book B, buying book
B caused them to buy book A, or there is another (unobserved) event that caused both. We only get
information about non-causal association between these events. To see this clearly, we will implement our
bookstore example in Python, but before we start, we’ll briefly introduce one more important concept.

Structural causal models (SCMs) are a simple yet powerful tool to encode causal relationships between
variables. You might be surprised that we are discussing a causal model in the section on association.
Didn’t we just say that association is usually not enough to address causal questions? That’s true. The
reason why we’re introducing an SCM now is that we will use it as our data-generating process. After
generating the data, we will pretend to forget what the SCM was. This way, we’ll mimic a frequent
real-world scenario where the true data-generating process is unknown, and the only thing we have
is observational data.

Let’s take a small detour from our bookstore example and take a look at Figure 2.2:

Associations 19

 Figure 2.2 – A graphical representation of a structural causal model

Circles or nodes in the preceding figure represent variables. Lines with arrows or edges represent
relationships between variables.

As you can see, there are two types of variables (marked with dashed versus regular lines). Arrows at
the end of the lines represent the direction of the relationship.

Nodes A, B, and C are marked with solid lines. They represent the observed variables in our model.
We call this type of variable endogenous. Endogenous variables are always children of at least one
other variable in a model.

The other type of nodes (UX nodes) are marked with dashed lines. We call these variables exogenous,
and they are represented by root nodes in the graph (they are not descendants of any other variable;
Pearl, Glymour, and Jewell, 2016). Exogenous variables are also called noise variables.

Noise variables
Note that most causal inference and causal discovery methods require that noise variables are
uncorrelated with each other (otherwise, they become unobserved confounders). This is one
of the major difficulties in real-world causal inference, as sometimes, it’s very hard to be sure
that we have met this assumption.

An SCM can be represented graphically (as in Figure 2.2) or as a series of equations. These two
representations have different properties and might require different assumptions (we’ll leave this
complexity out for now), but they refer to the same object – a data-generating process.

Judea Pearl and the Ladder of Causation20

Let’s return to the SCM from Figure 2.2. We’ll define the functional relationships in this model in the
following way:

 A ≔ f A (U 0)

 B ≔ f B (A, U 1)

 C ≔ f C (A, B, U 2)

 A , B , C, and U X represent the nodes in Figure 2.1, and ≔ is an assignment operator, also known as a
walrus operator. We use it here to emphasize that the relationship that we’re describing is directional
(or asymmetric), as opposed to the regular equal sign that suggests a symmetric relation. Finally, f A ,
f B , f C represent arbitrary functions (they can be as simple as a summation or as complex as you want).
This is all we need to know about SCMs at this stage. We will learn more about them in Chapter 3.

Equipped with a basic understanding of SCMs, we are now ready to jump to our coding exercise in
the next section.

Let’s practice!

For this exercise, let’s recall our bookstore example from the beginning of the section.

First, let’s define an SCM that can generate data with a non-zero probability of buying book A, given
we bought book B. There are many possible SCMs that could generate such data. Figure 2.3 presents
the model we have chosen for this section:

Figure 2.3 – A graphical model representing the bookstore example

Associations 21

To precisely define causal relations that drive our SCM, let’s write a set of equations:

 U 0 ~ U (0, 1)

 U 1 ~ N (0, 1)

 A : = 1 { U 0 >.61}

 B ≔ 1 { (A+ .5* U 1) > .2}

In the preceding formulas, U 0 is a continuous random variable uniformly distributed between 0 and
1. U 1 is a normally distributed random variable, with a mean value of 0 and a standard deviation of
1. A and B are binary variables, and 1 {f} is an indicator function.

The indicator function
The notation for the indicator function might look complicated, but the idea behind it is very
simple. The indicator function returns 1 when the condition in the curly braces is met and
returns 0 otherwise. For instance, let’s take the following function:

 X = 1 {Z>0}

If Z > 0 then X = 1 , otherwise X = 0 .

Now, let’s recreate this SCM in code. You can find the code for this exercise in the notebook for this
chapter https://bit.ly/causal-ntbk-02:

1. First, let’s import the necessary libraries:

import numpy as np
from scipy import stats

2. Next, let’s define the SCM. We will use the object-oriented approach for this purpose, although
you might want to choose other ways for yourself, which is perfectly fine:

class BookSCM:

 def __init__(self, random_seed=None):
 self.random_seed = random_seed
 self.u_0 = stats.uniform()
 self.u_1 = stats.norm()

 def sample(self, sample_size=100):
 """Samples from the SCM"""
 if self.random_seed:
 np.random.seed(self.random_seed)

 u_0 = self.u_0.rvs(sample_size)

https://bit.ly/causal-ntbk-02

Judea Pearl and the Ladder of Causation22

 u_1 = self.u_1.rvs(sample_size)
 a = u_0 > .61
 b = (a + .5 * u_1) > .2

 return a, b

Let’s unpack this code. In the __init__() method of our BookSCM, we define the distributions for
U 0 and U 1 and set a random seed for reproducibility; the .sample() method samples from U 0 and
U 1 , computes values for A and B (according to the formulas specified previously), and returns them.

Great! We’re now ready to generate some data and quantify an association between the variables using
conditional probability:

1. First, let’s instantiate our SCM and set the random seed to 45:

scm = BookSCM(random_seed=45)

2. Next, let’s sample 100 samples from it:

buy_book_a, buy_book_b = scm.sample(100)

Let’s check whether the shapes are as expected:
buy_book_a.shape, buy_book_b.shape

The output is as follows:
((100,), (100,))

The shapes are correct. We generated the data, and we’re now ready to answer the question
that we posed at the beginning of this section – what is the probability that a person will buy
book A, given that they bought book B?

3. Let’s compute the P (book A| book B) conditional probability to answer our question:

proba_book_a_given_book_b = buy_book_a[buy_book_b].sum() / buy_
book_a[buy_book_b].shape[0]
print(f'Probability of buying book A given B: {proba_book_a_
given_book_b:0.3f}')

This returns the following result:
Probability of buying book A given B: 0.638

As we can see, the probability of buying book A, given we bought book B, is 63.8%. This indicates a
positive relationship between both variables (if there was no association between them, we would
expect the result to be 50%). These results inform us that we can make meaningful predictions using
observational data alone. This ability is the essence of most contemporary (supervised) machine
learning models.

What are interventions? 23

Let’s summarize. Associations are useful. They allow us to generate meaningful predictions of
potentially high practical significance in the absence of knowledge of the data-generating process.
We used an SCM to generate hypothetical data for our bookstore example and estimated the strength
of association between book A and book B sales, using a conditional probability query. Conditional
probability allowed us to draw conclusions in the absence of knowledge of the true data-generating
process, based on the observational data alone (note that although we knew the true SCM, we did not
use any knowledge about it when computing the conditional probability query; we virtually forgot
anything about the SCM before generating the predictions). That said, associations only allow us to
answer rung one questions.

Let’s climb to the second rung of the Ladder of Causation to see how to go beyond some of these limitations.

What are interventions?
In this section, we’ll summarize what we’ve learned about interventions so far and introduce
mathematical tools to describe them. Finally, we’ll use our newly acquired knowledge to implement
an intervention example in Python.

The idea of intervention is very simple. We change one thing in the world and observe whether and
how this change affects another thing in the world. This is the essence of scientific experiments.
To describe interventions mathematically, we use a special do -operator. We usually express it in
mathematical notation in the following way:

 P (Y = 1 | do (X = 0))

The preceding formula states that the probability of Y = 1 , given that we set X to 0. The fact that we
need to change X ’s value is critical here, and it highlights the inherent difference between intervening
and conditioning (conditioning is the operation that we used to obtain conditional probabilities in
the previous section). Conditioning only modifies our view of the data, while intervening affects the
distribution by actively setting one (or more) variable(s) to a fixed value (or a distribution). This is
very important – intervention changes the system, but conditioning does not. You might ask, what
does it mean that intervention changes the system? Great question!

The graph saga – parents, children, and more
When we talk about graphs, we often use terms such as parents, children, descendants, and
ancestors. To make sure that you can understand the next subsection clearly, we’ll give you a
brief overview of these terms here.

We say that the node X is a parent of the node Y and that Y is a child of X when there’s a direct
arrow from X to Y. If there’s also an arrow from Y to Z, we say that Z is a grandchild of X and
that X is a grandparent of Z. Every child of X, all its children and their children, their children’s
children, and so on are descendants of X, which is their ancestor. For a more formal explanation,
check out Chapter 4.

Judea Pearl and the Ladder of Causation24

Changing the world

When we intervene in a system and fix a value or alter the distribution of some variable – let’s call it
X – one of three things can happen:

• The change in X will influence the values of its descendants (assuming X has descendants and
excluding special cases where X ’s influence is canceled – for example, f (x) = x − x)

• X will become independent of its ancestors (assuming that X has ancestors)

• Both situations will take place (assuming that X has descendants and ascendants, excluding
special cases)

Note that none of these would happen if we conditioned on X , because conditioning does not change
the value of any of the variables – it does not change the system.

Let’s translate interventions into code. We will use the following SCM for this purpose:

 U 0 ~ N (0, 1)

 U 1 ~ N (0, 1)

 A ≔ U 0

 B ≔ 5A + U 1

The graphical representation of this model is identical to the one in Figure 2.3. Its functional assignments
are different though, and – importantly – we set A and B to be continuous variables (as opposed to
the model in the previous section, where A and B were binary; note that this is a new example, and
the only thing it shares with the bookstore example is the structure of the graph):

1. First, we’ll define the sample size for our experiment and set a random seed for reproducibility:

SAMPLE_SIZE = 100
np.random.seed(45)

2. Next, let’s build our SCM. We will also compute the correlation coefficient between A and B
and print out a couple of statistics:

u_0 = np.random.randn(SAMPLE_SIZE)
u_1 = np.random.randn(SAMPLE_SIZE)
a = u_0
b = 5 * a + u_1

r, p = stats.pearsonr(a, b)
print(f'Mean of B before any intervention: {b.mean():.3f}')
print(f'Variance of B before any intervention: {b.var():.3f}')
print(f'Correlation between A and B:\nr = {r:.3f}; p =
{p:.3f}\n')

What are interventions? 25

We obtain the following result:
Mean of B before any intervention: -0.620
Variance of B before any intervention: 22.667
Correlation between A and B:
r = 0.978; p = 0.000

As we can see, the correlation between values of A and B is very high (r = .978; p < .001). It’s
not surprising, given that B is a simple linear function of A . The mean of B is slightly below
zero, and the variance is around 22.

3. Now, let’s intervene on A by fixing its value at 1.5:

a = np.array([1.5] * SAMPLE_SIZE)
b = 5 * a + u_1

We said that an intervention changes the system. If that’s true, the statistics for B should change
as a result of our intervention. Let’s check it out:

print(f'Mean of B after the intervention on A: {b.mean():.3f}')
print(f'Variance of B after the intervention on A:
{b.var():.3f}\n')

The result is as follows:
Mean of B after the intervention on A: 7.686
Variance of B after the intervention on A: 0.995

Both the mean and variance have changed. The new mean of B is significantly greater than the previous
one. This is because the value of our intervention on A (1.5) is much bigger than what we’d expect
from the original distribution of A (centered at 0). At the same time, the variance has shrunk. This is
because A became constant, and the only remaining variability in B comes from its stochastic parent, U 1 .

What would happen if we intervened on B instead? Let’s see and print out a couple of statistics:

a = u_0
b = np.random.randn(SAMPLE_SIZE)

r, p = stats.pearsonr(a, b)

print(f'Mean of B after the intervention on B: {b.mean():.3f}')
print(f'Variance of B after the intervention on B: {b.var():.3f}')
print(f'Correlation between A and B after intervening on B:\nr =
{r:.3f}; p = {p:.3f}\n')

This results in the following output:

Mean of B after the intervention on B: 0.186
Variance of B after the intervention on B: 0.995
Correlation between A and B after intervening on B:
r = -0.023; p = 0.821

Judea Pearl and the Ladder of Causation26

Note that the correlation between A and B dropped to almost zero (r = − .023), and the corresponding
p -value indicates a lack of significance (p = .821). This indicates that after the intervention, A and
B became (linearly) independent. This result suggests that there is no causal link from B to A . At the
same time, previous results demonstrated that intervening on A changes B , indicating that there is
a causal link from A to B (we’ll address what a causal link means more systematically in Chapter 4).

Before we conclude this section, we need to mention one more thing.

Correlation and causation

You might have heard the phrase that correlation is not causation. That’s approximately true.

How about the opposite statement? Is causation correlation?

Let’s see.

Figure 2.4 presents the data generated according to the following set of structural equations:

 X ≔ 𝒰 (− 2, 2)

 Y : = X 2 + 0.2 × 𝒩 (0, 1)

Figure 2.4 – A scatter plot of the data from a causal data-generating process

Although from the structural point of view, there’s a clear causal link between X and Y, the correlation
coefficient for this dataset is essentially equal to 0 (you can experiment with this data in the notebook:
https://bit.ly/causal-ntbk-02). The reason for this is that the relationship between X
and Y is not monotonic, and popular correlation metrics such as Pearson’s r or Spearman’s rho cannot
capture non-monotonic relationships. This leads us to an important realization that a lack of traditional
correlation does not imply independence between variables.

https://bit.ly/causal-ntbk-02

What are interventions? 27

A number of tools for more general independence testing exist. For instance, information-theoretic
metrics such as the maximal information coefficient (MIC) (Reshef et al., 2011; Reshef et al., 2015;
Murphy, 2022, pp. 217–219) work for non-linear, non-monotonic data out of the box. The same goes
for the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2007) and a number of
other metrics.

Another scenario where you might see no correlation although causation is present is when your
sampling does not cover the entire support of relevant variables. Take a look at Figure 2.5.

Figure 2.5 – A scatterplot of data with selective sampling.

This data is a result of exactly the same process as the data presented in Figure 2.4. The only difference
is that we sampled according to the following condition:

 X sample = 1.9 < X < − 1.9

It’s virtually impossible to estimate the true relationship between X and Y from this data, even with
sophisticated tools.

Situations such as these can happen in real life. Everything from faulty sensors to selection bias in
medical studies can remove a substantial amount of information from observational data and push
us toward wrong conclusions.

In this section, we looked into interventions in greater detail. We introduced the do -operator and
discussed how it differs from conditioning. Finally, we implemented a simple SCM in Python and
demonstrated how interventions on one variable affect the distribution of other variables.

If all of this makes you a little dizzy, don’t worry. For the vast majority of people coming from a
statistical background, conversion to causal thinking takes time. This is because causal thinking requires
breaking certain habits we all pick up when we learn statistical thinking. One such habit is thinking in
terms of variables as basic entities rather than in terms of the process that generated these variables.

Judea Pearl and the Ladder of Causation28

Ready for more? Let’s step up to rung three – the world of counterfactuals!

What are counterfactuals?
Have you ever wondered where you would be today if you had chosen something different in your
life? Moved to another city 10 years ago? Studied art? Dated another person? Taken a motorcycle
trip in Hawaii? Answering these types of questions requires us to create alternative worlds, worlds
that we have never observed. If you’ve ever tried doing this for yourself, you already know intuitively
what counterfactuals are.

Let’s try to structure this intuition. We can think about counterfactuals as a minimal modification to a
system (Pearl, Glymour, and Jewell, 2016). In this sense, they are similar to interventions. Nonetheless,
there is a fundamental difference between the two.

Counterfactuals can be thought of as hypothetical or simulated interventions that assume a particular
state of the world (note that interventions do not require any assumptions about the state of the world).
For instance, answering a counterfactual question such as “Would John have bought the chocolate last
Friday had he seen the ad last week?” requires us to know many things about John (and his environment)
in the past. On the other hand, we don’t need to know anything about John’s life or environment from
last week in order to perform an intervention (show John an ad and see whether he buys).

Contrary to interventions, counterfactuals can never be observed.

We can also view the difference between counterfactuals and interventions from another angle – two
different counterfactual causal models can lead to the same interventional distribution.

For instance, Pearl (2009) describes a two-model scenario where the average (interventional) causal
effect for a drug is equal to 0. This is true for both models.

The difference is that in one model, no patient is affected by the drug, while in the second model,
all patients are affected by the drug – a pretty striking difference. As you can expect, counterfactual
outcomes for both models differ (for more details, check out Pearl (2009, pp. 33–38)).

One idea that emphasizes the fundamental difference between counterfactuals and interventions is
that interventional queries can be computed as the expected value of counterfactual queries over the
population (Huszár, 2019). This fact further underlines the asymmetry between the two and, at the
same time, reveals the deep, beautiful structure of Pearlian causal formalism.

Let’s get weird (but formal)!

Now, it’s time to express counterfactuals mathematically. Before we do so, let’s set up an example so
that we can refer to something familiar, while exploring the inherent weirdness of the Counterfactual
Wonderland. Imagine you had a coffee this morning and now you feel bad in your stomach. Would
you feel the same or better if you hadn’t had your coffee?

What are counterfactuals? 29

Note that we cannot answer this question with interventions. A randomized experiment would only
allow us to answer questions such as “What is the probability that people similar to you react to coffee
the way you reacted, given similar circumstances?” or “What is the probability that you’ll feel bad after
drinking a coffee in the morning on a day similar to today, given similar circumstances?”

Counterfactuals are trying to answer a different question: “Given an alternative world that is identical to
ours and only differs in the fact that you did not drink coffee this morning (plus the necessary consequences
of not drinking it), what is the probability that you’d feel bad in your stomach?”

Let’s try to formalize it. We’ll denote the fact that you drank coffee this morning by X = 1 and the
fact that you now feel bad as Y X=1 = 1 . The . X=1 subscript informs us that the outcome, Y , happened
in the world where you had your coffee in the morning (X = 1). The quantity we want to estimate,
therefore, is the following:

 P (Y X=0 = 1 | X = 1, Y X=1 = 1)

We read this as the probability that you’d feel bad if you hadn’t had your coffee, given you had your
coffee and you feel bad.

Let’s unpack it:

• P (Y X=0 = 1) stands for the probability that you’d feel bad (in the alternative world) if you
hadn’t had your coffee

• X = 1 denotes that you had your coffee in the real world

• Y X=1 = 1 says that you had your coffee and you felt bad (in the real world)

Note that everything on the right side of the conditioning bar comes from the actual observation.
The expression on the left side of the conditional bar refers to the alternative, hypothetical world.

Many people feel uncomfortable seeing this notation for the first time. The fact that we’re conditioning
on X = 1 to estimate the quantity in the world where X = 0 seems pretty counterintuitive. On a deeper
level, this makes sense though. This notation makes it virtually impossible to reduce counterfactuals
to do expressions (Pearl, Glymour, and Jewell, 2016). This reflects the inherent relationship between
interventions and counterfactuals that we discussed earlier in this section.

Counterfactual notation
In this book, we follow the notation used by Pearl, Glymour, and Jewell (2016). There are also
other options available in the literature. For instance, Peters, Janzing, and Schölkopf propose
(2017) using different style of notation. Another popular choice is notation related to Donald
Rubin’s potential outcomes framework. It is worth making sure you understand the notation
well. Otherwise, it can be a major source of confusion.

Judea Pearl and the Ladder of Causation30

The fundamental problem of causal inference

Counterfactuals make it very clear that there’s an inherent and fundamental problem with causal
inference. Namely, we can never observe the same object (or subject) receiving two mutually exclusive
treatments at the same time in the same circumstances.

You may wonder, given the fundamental problem of causal inference (Holland, 1986), whether there
is any way to compute counterfactuals. It turns out that there is.

Computing counterfactuals

The basic idea behind computing counterfactuals is simple in theory, but the goal is not always easily
achievable in practice. This is because computing counterfactuals requires an SCM that is fully specified
at least for all the relevant variables. What does it mean? It means that we need to have full knowledge
about functions that relate to relevant variables in the SCM and full knowledge about the values of
all relevant exogenous variables in a system. Fortunately, if we know structural equations, we can
compute noise variables describing the subject in the abduction step (see the following Computing
counterfactuals step by step callout).

Computing counterfactuals step by step
Judea Pearl and colleagues (Pearl, Glymour and Jewell, 2016) proposed a three-step framework
for computing counterfactuals:

• Abduction: Using evidence to calculate values of exogenous variables

• Modification (originally called an action): Replacing the structural equation for the
treatment with a counterfactual value

• Prediction: Using the modified SCM to compute the new value of the outcome under
the counterfactual

We will apply this framework soon.

Let’s take our coffee example. Let T denote our treatment – drinking coffee, while U will characterize
you fully as an individual in our simplified world. U = 1 stands for coffee sensitivity, while U = 0
stands for a lack thereof. Additionally, let’s assume that we know the causal mechanism for reaction
to coffee. The mechanism is defined by the following SCM:

 T : = t

 Y ≔ TU + (T − 1) (U − 1)

Great! We know the outcome under the actual treatment, Y T=1 = 1 (you drank the coffee and you felt
bad), but we don’t know your characteristics (U). Can we do something about it?

What are counterfactuals? 31

It turns out that our model allows us to unambiguously deduct the value of U (that we’ll denote as u),
given we know the values of Y and T . Let’s solve for u by transforming our structural equation for Y :

 u = T + Y − 1 _ 2T − 1

Now, let’s assign the values for T and Y :

 u = 1 + 1 − 1 _ 2 * 1 − 1 = 2 − 1 _ 2 − 1 = 1

The value we obtained for U reveals that you’re a coffee-sensitive person.

This step (solving for the values of exogenous variables U) is called abduction.

Now, we have all the elements necessary to compute counterfactual outcomes at our disposal – a causal
model and knowledge about your personal characteristics.

We’re ready for the next step, modification. We will fix the value of our treatment at the counterfactual
of interest, (T = 0):

 T ≔ 0

 Y ≔ 0U + (0 − 1) (U − 1)

Finally, we’re ready for the last step, prediction. To make a prediction, we need to substitute U with
the value(s) of your personal characteristic(s) that we computed before:

 Y ≔ 0 * 1 + (0 − 1) (1 − 1) = 0

And here is the answer – you wouldn’t feel bad if you hadn’t had your coffee!

Neat, isn’t it?

Deterministic and probabilistic counterfactuals
You might have noticed that when we introduced our coffee example, we were speaking in terms
of probability, although we solved it deterministically. That’s a great observation!

In the real world, we are not always able to compute counterfactuals deterministically. Fortunately,
the three-step framework that we introduced earlier generalizes well for probabilistic settings.
To learn more on how to compute probabilistic counterfactuals, please refer to Chapter 4 of
Causal inference in statistics: A primer (Pearl, Glymour, and Jewell, 2016) or an excellent YouTube
video by Brady Neal (Neal, 2020).

Judea Pearl and the Ladder of Causation32

Time to code!

The last thing we’ll do before concluding this section is to implement our counterfactual computation
in Python:

1. First, we’ll create a CounterfactualSCM class with three methods corresponding to the
three steps of counterfactual computation – abduction, modification, and prediction:

class CounterfactualSCM:

 def abduct(self, t, y):
 return (t + y - 1)/(2*t - 1)

 def modify(self, t):
 return lambda u: t * u + (t - 1) * (u - 1)

 def predict(self, u, t):
 return self.modify(t)(u)

Note that each method implements the steps that we performed in the preceding code:

 � .abduct() computes the value of U , given the values for treatment and the actual outcome

 � .modify() modifies the SCM by assigning t to T

 � .predict() takes the modified SCM and generates the counterfactual prediction by
assigning the actual value of U to the modified SCM

2. Let’s instantiate the SCM and assign the known treatment and outcome values to the t and y
variables respectively:

coffee = CounterfactualSCM()
t = 1
y = 1

3. Next, let’s obtain the value of U by performing abduction and print out the result:

u = coffee.abduct(t=t, y=y)
u

The result is congruent with our computations:
1.0

4. Finally, let’s compute the counterfactual prediction:

coffee.predict(u=u, t=0)

Et voila! Here’s our answer:
0.0

Extra – is all machine learning causally the same? 33

If you hadn’t had your coffee in the morning, you’d feel better now.

This concludes our section on counterfactuals. We learned that counterfactuals are different than
interventions. At the same time, there’s a deeper link between rung two and rung three of the Ladder
of Causation. We learned about the fundamental problem of causal inference, and we’ve seen that
even though it’s hard, we can compute counterfactuals when we meet certain assumptions. Finally,
we practiced computing counterfactuals using mathematical tools and Python code.

Counterfactuals will briefly return in Part 2, Causal Inference, where we’ll see them in the context of
counterfactual explanations.

Extra – is all machine learning causally the same?
So far, when we have spoken about machine learning, we mainly mean supervised methods. You might
wonder what the relationship is between other types of machine learning and causality.

Causality and reinforcement learning

For many people, the first family of machine learning methods that come to mind when thinking
about causality is reinforcement learning (RL).

In the classic formulation of RL, an agent interacts with the environment. This suggests that an RL
agent can make interventions in the environment. Intuitively, this possibility moves RL from an
associative rung one to an interventional rung two. Bottou et al. (2013) amplify this intuition by
proposing that causal models can be reduced to multiarmed bandit problems – in other words, that
RL bandit algorithms are special cases of rung two causal models.

Although the idea that all RL is causal might seem intuitive at first, the reality is more nuanced. It
turns out that even for certain bandit problems, the results might not be optimal if we do not model
causality explicitly (Lee and Bareinboim, 2018).

Moreover, model-based RL algorithms can suffer from confounding. This includes models such as
the famous DeepMind’s MuZero (Schrittwieser et al., 2019), which was able to master games such as
Chess, Go, and many others without explicitly knowing the rules.

Rezende and colleagues (2020) proposed to deconfound these models by using back-door criterion
(we will learn more about back-door criterion in Chapter 6. Wang et al. (2022) proposed adding a
causal model to the RL algorithm and using a ratio between causal and non-causal terms in a reward
function, in order to encourage an agent to explore the space where the non-causal term is larger,
which suggests that the causal model might be causally biased.

For a comprehensive overview of the literature on the relationships between causality and RL, check
Kaddour et al. (2022), pp. 70–98.

Judea Pearl and the Ladder of Causation34

Causality and semi-supervised and unsupervised learning

Peters et al. (2017, pp. 72–74) proposed that semi-supervised methods can be used for causal
discovery, leveraging the information-theoretic asymmetry between conditional and unconditional
probabilities. Based on a similar idea, Sgouritsa et al. (2015) proposed unsupervised inverse regression
as a method to discover which causal direction between two variables is the correct one. Wu et al.
(2022) explored the links between causality and semi-supervised learning in the context of domain
adaptation, while Vowels et al. (2021) used unsupervised neural embeddings for the causal discovery
of video representations of dynamical systems.

Furthermore, data augmentation in semi-supervised learning can be seen as a form of representation
disentanglement, making the learned representations less confounded. As deconfounding is only
partial in this case, these models cannot be considered fully causal, but perhaps we could consider
putting these partially deconfounded representations somewhere between rungs one and two of the
Ladder of Causation (Berrevoets, 2023).

In summary, the relationship between different branches of contemporary machine learning and
causality is nuanced. That said, most broadly adopted machine learning models operate on rung one,
not having a causal world model. This also applies to large language models such as GPT-3, GPT-4,
LlaMA, or LaMDA, and other popular generative models such as DALL-E 2. Models such as GPT-4 can
sometimes correctly answer causal or counterfactual queries, yet their general performance suggests
that these abilities do not always generalize well (for a brief discussion and references check Chapter 11).

Wrapping it up
In this chapter, we introduced the concept of the Ladder of Causation. We discussed each of the three
rungs of the ladder: associations, interventions, and counterfactuals. We presented mathematical
apparatus to describe each of the rungs and translated the ideas behind them into code. These ideas
are foundational for causal thinking and will allow us to understand more complex topics further
on in the book.

Additionally, we broadened our perspective on causality by discussing the relationships between
causality and various families of machine learning algorithms.

In the next chapter, we’ll take a look at the link between observations, interventions, and linear
regression to see the differences between rung one and rung two from yet another perspective. Ready?

References 35

References
Berrevoets, J., Kacprzyk, K., Qian, Z., & van der Schaar, M. (2023). Causal Deep Learning. arXiv
preprint arXiv:2303.02186.

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X., Chickering, D. M., Portugaly, E., Ray,
D., Simard, P., & Snelson, E. (2013). Counterfactual Reasoning and Learning Systems: The Example of
Computational Advertising. J. Mach. Learn. Res., 14 (1), 3207–3260.

Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. (2007). A Kernel Statistical
Test of Independence. NIPS.

Holland, P. (1986). Statistics and Causal Inference. Journal of the American Statistical Association,
81, 945–960.

Huszár, F. (2019, January 24). Causal Inference 3: Counterfactuals. https://www.inference.
vc/causal-inference-3-counterfactuals/.

Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J., & Silva, R. (2022). Causal Machine Learning: A Survey
and Open Problems. arXiv, abs/2206.15475

Lee, S., & Bareinboim, E. (2018). Structural Causal Bandits: Where to Intervene? Proceedings of the
32nd International Conference on Neural Information Processing Systems, 2573–2583.

Matthews, J. N. S. (2006). Introduction to Randomized Controlled Clinical Trials (2nd ed.). Chapman
and Hall/CRC.

Murphy, K. (2022). Probabilistic Machine Learning. MIT Press.

Neal, B. (2020, December 9). 14.2 - Computing Counterfactuals [Video]. YouTube. https://www.
youtube.com/watch?v=wuYda40rqgo.

Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd. Ed.). Cambridge University Press.

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.

Pearl, J., & Mackenzie, D. (2019). The book of why. Penguin Books.

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander,
E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science,
334 (6062), 1518–1524. https://doi.org/10.1126/science.1205438.

https://www.inference.vc/causal-inference-3-counterfactuals/
https://www.inference.vc/causal-inference-3-counterfactuals/
https://www.youtube.com/watch?v=wuYda40rqgo
https://www.youtube.com/watch?v=wuYda40rqgo
https://doi.org/10.1126/science.1205438

Judea Pearl and the Ladder of Causation36

Reshef, D.N., Reshef, Y.A., Sabeti, P.C., & Mitzenmacher, M. (2015). An Empirical Study of Leading
Measures of Dependence. arXiv, abs/1505.02214.

Jimenez Rezende, D., Danihelka, I., Papamakarios, G., Ke, N.R., Jiang, R., Weber, T., Gregor, K., Merzic,
H., Viola, F., Wang, J.X., Mitrovic, J., Besse, F., Antonoglou, I., & Buesing, L. (2020). Causally Correct
Partial Models for Reinforcement Learning. arXiv, abs/2002.02836.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T. & Silver, D. (2019). Mastering Atari, Go, Chess and Shogi by
Planning with a Learned Model. Nature.

Sgouritsa, E., Janzing, D., Hennig, P., & Schölkopf, B. (2015). Inference of Cause and Effect with
Unsupervised Inverse Regression. AISTATS.

Vowels, M. J., Camgoz, N. C., & Bowden, R. (2021). Shadow-Mapping for Unsupervised Neural Causal
Discovery. arXiv, 2104.08183

Wang, Z., Xiao, X., Xu, Z., Zhu, Y. ; Stone, P.. (2022). Causal Dynamics Learning for
Task-Independent State Abstraction. Proceedings of the 39th International Conference on Machine
Learning, in Proceedings of Machine Learning Research, 162, 23151–23180.

Wu, X., Gong, M., Manton, J. H., Aickelin, U., & Zhu, J. (2022). On Causality in Domain Adaptation
and Semi-Supervised Learning: an Information-Theoretic Analysis. arXiv. 2205.04641

3
Regression, Observations,

and Interventions

In this chapter, we’re going to build a link between associations, interventions, and regression models.
We’ll look into the logic of statistical control – a tool used by scientists in the hopes of making their
models more robust. Finally, we’ll look into the connection between regression and structural models.

By the end of this chapter, you should have a solid understanding of statistical control and how it can
help in estimating causal effects from observational data. This knowledge will allow us to build the
more complex non-linear models introduced in Part 2, Causal Inference.

In this chapter, we’ll cover the following topics:

• Associations in observational data versus linear regression

• Causal perspective on statistical control

• Regression and structural models

Starting simple – observational data and linear regression
In previous chapters, we discussed the concept of association. In this section, we’ll quantify associations
between variables using a regression model. We’ll see the geometrical interpretation of this model and
demonstrate that regression can be performed in an arbitrary direction. For the sake of simplicity,
we’ll focus our attention on linear cases. Let’s start!

Linear regression

Linear regression is a basic data-fitting algorithm that can be used to predict the expected value
of a dependent (target) variable, Y , given values of some predictor(s), X . Formally, this is written as
 ̂ Y X=x = E [Y | X = x] .

Regression, Observations, and Interventions38

In the preceding formula, ̂ Y X=x is the predicted value of Y given that X takes the value(s) x . E [.] is the
expected value operator. Note that X can be multidimensional. In such cases, X is usually represented
as a matrix, X, with shape N × D , where N is the number of observations and D is the dimensionality
of X (the number of predictor variables). We call the regression model with multidimensional X a
multiple regression.

An important feature of linear regression is that it allows us to easily quantify the strength of the
relationship between predictors and the target variable by computing regression coefficients. Intuitively,
regression coefficients can be thought of as the amount of change in the predicted output variable
relative to a unit change in the input variable.

Coefficients and multiple regression
In multiple regression with k predictors X 1 , … , X k , each predictor, X j , has its respective coefficient,
β j . Each coefficient, β j , represents the relative contribution of X j to the change in the predicted
target, ̂ Y , holding everything else constant.

Let’s take a model with just one predictor, X . Such a model can be described by the following formula:

 ̂ y i = α+ β x i

In the preceding formula, ̂ y i is a predicted value for observation i , α is a learned intercept term, x i is
the observed value of X , and β is the regression coefficient for X . We call α and β model parameters.

Let’s build a simple example:

1. First, we’ll define our data-generating process. We’ll make the process follow the (preceding)
linear regression formula and assign arbitrary values to the (true) parameters α * and β * . We’ll
choose 1.12 as the value of α * and 0.93 as the value of β * (you can use other values if you want).
We will also add noise to the model and mark it as ϵ . We choose ϵ to be normally distributed
with zero mean and a standard deviation of one. Additionally, we’ll scale ϵ by 0.5. With these
values, our data-generating formula becomes the following:

 y i = 1.12 + 0.93 x i + 0.5 ϵ i

Non-linear associations and interactions
Non-linear associations are also quantifiable. Even linear regression can be used to model some
non-linear relationships. This is possible because linear regression has to be linear in parameters,
not necessarily in the data. More complex relationships can be quantified using entropy-based
metrics such as mutual information (Murphy, 2022; pp. 213-218). Linear models can also
handle interaction terms. We talk about interaction when the model’s output depends on a
multiplicative relationship between two or more variables. In linear regression, we model the
interaction between two predictors by adding an additional multiplicative term to the equation.
For instance, if we want to model an interaction between two features, X 1 and X 2 , we add the
multiplication of X 1 and X 2 to the equation: Y = X 1 + X 2 + X 1 X 2 .

Starting simple – observational data and linear regression 39

2. Next, we’ll translate our data-generating formula into code in order to generate the data.
The code for this chapter is in the Chapter_03.ipynb notebook (https://bit.ly/
causal-ntbk-03).

Let’s put it to work!

1. We’ll start by importing the libraries that we’re going to use in this chapter. We’re going to use
statsmodels to fit our linear regression model:

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')

statsmodels
statsmodels is a popular statistical library in Python that offers support for R-like syntax
and R-like model summaries (in case you haven’t heard of R, it is a popular open source
statistical programming language). statsmodels is a great choice if you want to work with
traditional statistical models. The package offers convenient model summaries that contain p
-values and other useful statistics. If you come from a Scikit-learn background, you might find
the statsmodels API a bit confusing. There are several key differences between the two
libraries. One of them is the .fit() method, which in statsmodels returns an instance
of a wrapper object that can be further used to generate predictions. For more details on
statsmodels, refer to the documentation: https://bit.ly/StatsmodelsDocs.

2. Next, we’ll set a random seed for reproducibility and define the number of samples that we’re
going to generate:

np.random.seed(45)
N_SAMPLES = 5000

3. Then, we’ll define our model parameters, α ̂ * and β ̂ * :

alpha = 1.12
beta = 0.93
epsilon = np.random.randn(N_SAMPLES)

4. Finally, we’ll use our model formula to generate the data:

X = np.random.randn(N_SAMPLES)
y = alpha + beta * X + 0.5 * epsilon

5. There’s one more step that we need to take before fitting the model. statsmodels requires
us to add a constant feature to the data. This is needed to perform the intercept computations.
Many libraries perform this step implicitly; nonetheless, statsmodels wants us to do it

https://bit.ly/causal-ntbk-03
https://bit.ly/causal-ntbk-03
https://bit.ly/StatsmodelsDocs

Regression, Observations, and Interventions40

explicitly. To make our lives easier, the authors have provided us with a convenient method,
.add_constant(). Let’s apply it!

X = sm.add_constant(X)

Now, our X has got an extra column of ones at column index 0. Let’s print the first five rows
of X to see it:

print(X[:5, :])

The result is as follows:
[[1. 0.11530002]
 [1. -0.43617719]
 [1. -0.54138887]
 [1. -1.64773122]
 [1. -0.32616934]]

Now, we’re ready to fit the regression model using statsmodels and print the summary:
model = sm.OLS(y, X)
fitted_model = model.fit()
print(fitted_model.summary())

The output of the model summary is presented in Figure 3.1. We marked the estimated coefficients
with a red ellipse:

Figure 3.1 – A summary of the results of a simple linear regression model

Starting simple – observational data and linear regression 41

The coefficient marked const is α , the estimate of the true α * parameter, while the coefficient
marked x1 is β , the estimate of β * . They are slightly different from their true counterparts (α * = 1.12,
β * = 0.93). This is because we made our model noisy by adding the ϵ term. You can see that both
coefficients are associated with p-values below 0.001 (check the column named P>|t|), which
indicates that they are statistically significant at the customary p < .05 level.

p-values and statistical significance

Broadly speaking, the p-value is a statistical device meant to help distinguish between the signal and
the noise in statistical comparisons or summaries. More precisely, the p-value is the probability of
observing data at least as extreme as we observed, given that the null hypothesis is true.

The null hypothesis usually states that there is no effect or no difference between two or more objects
that we compare. In the context of linear regression, we test two types of null hypotheses:

• Null hypotheses for coefficients (including the intercept)

• A null hypothesis for the entire model

The null hypothesis for a given coefficient states that this coefficient is not significantly different from
zero. The null hypothesis for the model states that the entire model is not significantly different from
the null model (in the context of simple regression analysis, the null model is usually represented as
an intercept-only model).

If you want to learn more about null hypotheses and hypothesis testing, check out this video series
from Khan Academy: https://bit.ly/KhanHypothesisTesting.

Given a null hypothesis, p-values are used as a convenient quantitative summary that helps us
understand whether we can safely reject this null hypothesis for some threshold value (a good practice
is to pick the threshold value before starting the analysis or – preferably – before starting the data
collection process).

Because p-values are the probability of observing data at least as extreme as ours under the null
hypothesis, the lower the p-value, the less likely the null hypothesis is. In other words, the lower the
p-value, the less comfortable we are in holding that the null hypothesis is true, and the more likely we
are to agree that it should be rejected. If the p-value is lower than the threshold that we picked, we
say that we reject the null hypothesis (note that we don’t say that we’ve proven an alternative to the
null hypothesis).

Although p-values have been widely adopted in modern statistics and science, they have also been
widely abused. This has led to multiple severe critiques of p-values and statistical significance,
highlighting that they are frequently misused and misinterpreted, which can lead to detrimental
real-world consequences. For a critical overview, check out Wasserstein and Lazar (2016).

https://bit.ly/KhanHypothesisTesting

Regression, Observations, and Interventions42

Geometric interpretation of linear regression

Linear regression can also be viewed from a geometric point of view. Let’s plot the data we generated
alongside the fitted regression line:

Figure 3.2 – Generated data and fitted regression line

Each blue dot in Figure 3.2 represents a single observation, while the red line represents the best-fit
line found by the linear regression algorithm. In the case of multiple regression, the line becomes
a hyperplane.

Regression and correlation
If we imagine the plot in Figure 3.2 without the red line, we are still able to recognize a strong
linear relationship between X and Y. This might remind some of you of the concept of correlation.
In fact, there are a number of similarities between Pearson’s correlation coefficient and linear
regression. For instance, if we standardize a coefficient of X in the regression model Y ~ X , it
will have the same value as Pearson’s r between X and Y. There are also some differences. For
instance, Pearson’s r between X and Y will be the same as Pearson’s r between Y and X, yet
unstandardized coefficients in regression models Y ~ X and X ~ Y will typically differ.

Reversing the order

Regression is a purely statistical rung 1 model and we can use it to quantify the association between
X and Y as well as between Y and X . In other words, regression does not say anything about the data’s
causal structure. In particular, there might be no causal link between two variables at all but we can
still find a relationship between them using a regression model.

Starting simple – observational data and linear regression 43

In the first chapter, we discussed the example of an association between ice cream sales and drownings.
We showed that this association was spurious, but the regression model would still quantify it as existing
(assuming that the association would be strong enough and possible to express using the model of
choice, in our case linear regression). This is the nature of the first rung of The Ladder of Causation
and – as we mentioned in Chapter 2 – it can be very useful in certain cases.

More on regression vocabulary
When we use X as a predictor and Y as a target variable (also called the dependent variable),
we say that we regress Y on X . If we use Y as a predictor of X , we say that we regress X on Y .
Regressing Y on X can be also expressed in R-style notation as Y ~ X , and regressing X on Y
as X ~ Y . We will use this notation across the book to describe various models. We decided to
use R-style notation because of its neatness and simplicity. In some cases, though, it might be
clearer to just say that we regress Y on X rather than using a formula. We’ll use this descriptive
style where clarity demands it.

To make it more hands-on, let’s see what the reversed regression model looks like. We will now
regress X on Y . The code to build the reversed model is very similar to the code to build the original
model, so we won’t discuss it here. If you want to examine the code for yourself, you can find it in the
Chapter_03.ipynb notebook (https://bit.ly/causal-ntbk-03).

Let’s take a look at the results summary in Figure 3.3:

Figure 3.3 – Results summary for the reversed model

https://bit.ly/causal-ntbk-03

Regression, Observations, and Interventions44

As we can see, the coefficients have changed. In particular, the intercept is now negative. As we’re now
regressing X on Y , the intercept became the point where the fitted line crosses the X axis (rather than
the Y axis as in the original model). You can verify that the fitted line crosses the X axis below 0 by
looking at Figure 3.4 (the reversed model) and Figure 3.2 (the original model):

Figure 3.4 – Visualization of the reversed model

The regression model itself cannot help us understand which variable is the cause and which is the
effect. To determine this, we need some sort of external knowledge.

Causal attributions become even more complicated in multiple regression, where each additional
predictor can influence the relationship between the variables in the model. For instance, the learned
coefficient for variable X might be 0.63, but when we add variable Z to the model, the coefficient for
X changes to -2.34. A natural question in such cases is: if the coefficient has changed, what is the true
effect here?

Let’s take a look at this issue from the point of view of statistical control.

Should we always control for all available covariates?
Multiple regression provides scientists and analysts with a tool to perform statistical control – a
procedure to remove unwanted influence from certain variables in the model. In this section, we’ll
discuss different perspectives on statistical control and build an intuition as to why statistical control
can easily lead us astray.

Should we always control for all available covariates? 45

Let’s start with an example. When studying predictors of dyslexia, you might be interested in understanding
whether parents smoking influences the risk of dyslexia in their children. In your model, you might
want to control for parental education. Parental education might affect how much attention parents
devote to their children’s reading and writing, and this in turn can impact children’s skills and other
characteristics. At the same time, education level might decrease the probability of smoking, potentially
leading to confounding. But how do we actually know whether it does lead to confounding?

In some cases, we can refer to previous research to find an answer or at least a hint. In other cases, we
can rely on our intuition or knowledge about the world (for example, we know that a child’s current
skills cannot cause the parent’s past education). However, in many cases, we will be left without a clear
answer. This inevitable uncertainty led to the development of various heuristics guiding the choice of
variables that should be included as statistical controls.

Navigating the maze

One of the existing heuristics is to control for as many variables as possible. This idea is based on
“the (…) assumption that adding CVs [control variables] necessarily produces more conservative tests of
hypotheses” (in: Becker et al., 2016). Unfortunately, this is not true. Moreover, controlling for wrong
variables can lead to severely distorted results, including spurious effects and reversed effect signs.

Some authors offer more fine-grained heuristics. For example, Becker and colleagues (Becker et
al., 2016; https://bit.ly/BeckersPaper) shared a set of 10 recommendations on how to
approach statistical control. Some of their recommendations are as follows (the original ordering is
given in parentheses):

• If you are not sure about a variable, don’t use it as a control (1)

• Use conceptually meaningful control variables (3)

• Conduct comparative tests of relationships between the independent variables and control
variables (7)

• Run results with and without the control variables and contrast the findings (8)

We’ll see a couple of examples of scenarios leading to confounding in a while, but first, let’s take a look
at some of the author’s recommendations.

If you don’t know where you’re going, you might end up
somewhere else

Recommendations (1) and (3) discourage adding variables to the model. This might sound reasonable
– if you’re not sure, don’t add, because you might break something by accident. It seems rational,
perhaps because most of us have seen or participated in situations like this in real life – someone does
not understand how something works, they do something that seems sensible to them, but they are
not aware of their own blind spots and the thing is now broken.

https://bit.ly/BeckersPaper

Regression, Observations, and Interventions46

An important aspect of this story is that the thing is now broken. This suggests that it worked properly
before. This is not necessarily a valid assumption to make from a causal point of view. Not including
a variable in the model might also lead to confounding and spuriousness. This is because there are
various patterns of independence structure possible between any three variables. Let’s consider the
structural causal model (SCM) presented in Figure 3.5:

Figure 3.5 – An example SCM with various patterns leading to spurious associations

More on SCM graphical representations
The representation of the SCM in Figure 3.5 differs slightly from the representations we used in
the previous chapter. First, it does not contain noise variables. You can think of this representation
as a simplified version with implicit noise variables – clearer and more focused. Second, nodes
are represented as ellipses rather than circles. This is because we used the default mode of the
graphviz library to generate them. The difference in the shapes does not have any particular
meaning in our case. However, this is a great opportunity to introduce graphviz – a software
package and a Python library for graph visualization. It’s a useful tool when you work with
causal models and smaller graphs or networks. To learn the basic graphviz syntax, you can
refer to the notebooks accompanying this book. For a more comprehensive introduction, check
out https://bit.ly/GraphvizDocs.

From the model structure, we can clearly see that X and Y are causally independent. There’s no arrow
between them, nor is there a directed path that would connect them indirectly. Let’s fit four models
and analyze which variables, when controlled for, lead to spurious relationships between X and Y :

1. First, we’ll start simple with a model that regresses Y on X .

2. Then, we’ll add A to this model.

3. Next, we’ll fit a model without A , but with B .

4. Finally, we’ll build a model with all four variables.

https://bit.ly/GraphvizDocs

Should we always control for all available covariates? 47

What is your best guess – out of the four models, which ones will correctly capture causal independence
between X and Y ? I encourage you to write your hypotheses down on a piece of paper before we reveal
the answer. Ready? Let’s find out!

The code for this experiment is in the Chapter_03.ipynb notebook (https://bit.ly/
causal-ntbk-03). Follow these steps:

1. First, let’s define the SCM:

a = np.random.randn(N_SAMPLES)
x = 2 * a + 0.5 * np.random.randn(N_SAMPLES)
y = 2 * a + 0.5 * np.random.randn(N_SAMPLES)
b = 1.5 * x + 0.75 * y

Note that all the coefficients that we use to scale the variables are arbitrarily chosen.

2. Next, let’s define four model variants and fit the models iteratively:

Define four model variants
variants = [
 [x],
 [x, a],
 [x, b],
 [x, a, b]
]

Fit models iteratively and store the results
for variant in variants:
 X = sm.add_constant(np.stack(variant).T)
 model = sm.OLS(y, X)
 fitted_model = model.fit()

3. Finally, let’s examine the results in Table 3.1:

Model

 X A B
 p -value Coefficient p -value Coefficient p -value Coefficient

 Y ~ X < .001 0.947 - - - -
 Y ~ X + A .6565 0.014 <.001 1.967 - -
 Y ~ X + B < .001 -2.000 - - < .001 1.333

 Y ~ X + A + B < .001 -2.000 <.001 0.000 < .001 1.333

Table 3.1 – Summary of the results of four regression models

https://bit.ly/causal-ntbk-03
https://bit.ly/causal-ntbk-03

Regression, Observations, and Interventions48

What we see in Table 3.1 is that the only model that recognized the causal independence of
 X and Y correctly (large p-value for X , suggesting the lack of significance) is the second model
(Y ~ X + A). This clearly shows us that all other statistical control schemes led to invalid results,
including the model that does not control for any additional variables.

Why did controlling for A work while all other schemes did not? There are three elements to the answer:

• First, A is a confounder between X and Y and we need to control for it in order to remove
confounding. This situation is structurally identical to the one in the ice cream example in the
first chapter.

• Second, X , Y , and B form a pattern that we call a collider or immorality. This pattern has
a very interesting behavior – it enables the flow of information between the parent variables
(X and Y in our case) when we control for the child variable (B in our example). This is exactly
the opposite of what happened when we controlled for A !

• Third, not controlling for any variable leads to the same result in terms of the significance of
X as controlling for A and B (note that the results are different in terms of coefficients, yet as
we’re now interested in the structural properties of the system, this is of secondary importance).
This is precisely because the effects of controlling for A and controlling for B are exactly the
opposite from a structural point of view and they cancel each other out!

We’ll devote the whole of Chapter 5, to a detailed discussion on the collider and two other graphical
patterns (you already know their names, don’t you?).

Get involved!

Now, let’s get back to the recommendations given by Becker and colleagues. Recommendations (7)
and (8) are interesting. Running comparative tests between variables can be immensely helpful in
discovering causal relationships between them. Although Becker proposes to run these tests only
between independent and control variables, we do not have to (and should not) restrict ourselves to
this. In fact, comparative independence tests are an essential ingredient of some of the causal discovery
methods that we’ll discuss in Part 3, Causal Discovery.

To control or not to control?

The fact that smart people all over the world create heuristics to decide whether a given variable should
be included in the model highlights how difficult it is to understand causal relationships between
variables in complex and noisy real-world scenarios.

If we have full knowledge about the causal graph, the task of deciding which variables we should
control for becomes relatively easy (and after reading the next couple of chapters, you might even
find it almost trivial). If the true causal structure is unknown, the decision is fundamentally difficult.

There’s no one-size-fits-all solution to the control-or-not-to-control question, but understanding
causality will help you make much better decisions in this regard.

Regression and structural models 49

Causality does not give you a new angle on statistical control; it gives you new eyes that allow you to
see what’s invisible from the perspective of rung 1 of The Ladder of Causation. For a summary of what
constitutes good and bad controls, check out the excellent paper by Cinelli et al. (2022; https://
bit.ly/GoodBadControls).

Regression and structural models
Before we conclude this chapter, let’s take a look at the connection between regression and SCMs. You
might already have an intuitive understanding that they are somehow related. In this section, we’ll
discuss the nature of this relationship.

SCMs

In the previous chapter, we learned that SCMs are a useful tool for encoding causal models. They consist
of a set of variables (exogenous and endogenous) and a set of functions defining the relationships
between these variables. We saw that SCMs can be represented as graphs, with nodes representing
variables and directed edges representing functions. Finally, we learned that SCMs can produce
interventional and counterfactual distributions.

SCM and structural equations
In causal literature, the names structural equation model (SEM) and structural causal model
(SCM) are sometimes used interchangeably (e.g., Peters et al., 2017). Others refer to SEMs as
a family of specific multivariate modeling techniques with latent variables (e.g., Bollen and
Noble, 2011). SEM as a modeling technique is a vast and rich topic. For a good introduction,
check out the book by Kline (2015); for Judea Pearl’s account on SEM and causality, check out
Pearl (2012).

Linear regression versus SCMs

Linear regression is a model that allows us to quantify the (relative) strength of a (linear in parameters)
relationship between two or more variables. There is no notion of causal directionality in linear
regression, and in this sense, we don’t know which direction (if any) is the causally correct one. This
condition is known as observational equivalence (Peters et al., 2017).

Finding the link

In the previous section, we used linear regression to estimate coefficients that we interpreted as causal
estimates of the strength of a relationship between variables.

When fitting the four models describing the SCM from Figure 3.5, we saw that in the correct model
(Y ~ X + A), the estimate of the coefficient for A was equal to 1.967. That’s very close to the true
coefficient, which was equal to 2. This result shows the direction of our conclusion.

https://bit.ly/GoodBadControls
https://bit.ly/GoodBadControls

Regression, Observations, and Interventions50

Linear regression can be used to estimate causal effects, given that we know the underlying causal
structure (which allows us to choose which variables we should control for) and that the underlying
system is linear in terms of parameters.

Linear models can be a useful microscope for causal analysis (Pearl, 2013).

To cement our intuition regarding the link between linear regression and SCMs, let’s build one
more SCM that will be linear in terms of parameters but non-linear in terms of data and estimate its
coefficients with linear regression:

1. As usual, let’s first start by defining the causal structure. Figure 3.6 presents a graphical
representation of our model.

Figure 3.6 – Graphical representation of an example SCM

2. Next, let’s define the functional assignments (we’ll use the same settings for sample size and
random seed as previously):

a = np.random.randn(N_SAMPLES)
x = 2 * a + .7 * np.random.randn(N_SAMPLES)
y = 2 * a + 3 * x + .75 * x**2

3. Let’s add a constant and then initialize and fit the model:

X = sm.add_constant(np.stack([x, x**2, a]).T)
model = sm.OLS(y, X)
fitted_model = model.fit()
print(fitted_model.summary(xname=['const', 'x',
 'x^2', 'a']))

Note that our functional assignment contained not only X but also X 2 . We want to make sure that
we add the square term to the model as well. This is the simplest way to introduce non-linearity
into a linear regression model. Also, note that the model is still linear in parameters (we only
use addition and multiplication).

Another important thing to notice is that we included A in the model. The reason for this is
that A is a confounder in our dataset and – as we learned before – we need to control for a
confounder in order to get unbiased estimates.

Regression and structural models 51

Great, let’s see the results!

Figure 3.7 – The results of the model with a non-linear term

Figure 3.7 presents the results of our regression analysis. The coefficient for X is marked as x, the
coefficient for X 2 as x^2, and the coefficient for A as a. If we compare the coefficient values to the
true coefficients in our SCM, we can notice that they are exactly the same! This is because we modeled
Y as a deterministic function of X and A , not adding any noise.

We can also see that the model correctly decoded the coefficient for the non-linear term (X 2). Although
the relationship between X 2 and Y is non-linear, they are related by a linear functional assignment.

Regression and causal effects

We’ve seen an example of linear regression with a single predictor and an example with an additional
quadratic term. In the purely linear case, the causal interpretation of the regression result is straightforward:
the coefficient of X represents the magnitude of the causal impact of X on Y .

To solidify our intuition, let’s see an example.

If the coefficient of X is equal to 6.7, we expect that by increasing the value of X by 1, we will see an
increase of 6.7 in Y .

Regression, Observations, and Interventions52

This also generalizes to multiple regression. If we had three predictors, X 1 , X 2 , and X 3 , each of their
respective coefficients would have an analogous interpretation. The coefficient of X 1 would quantify
the causal effect of X 1 on Y (holding everything else constant) and so on.

When we add a transformed version of a variable to the model (as we did by adding X 2), the interpretation
becomes slightly less intuitive.

To understand how to interpret the coefficients in such a model, let’s get back to the simple univariate
case first.

Let’s represent the univariate case with the following simplified formula (we omit the intercept and noise):

 Y = β 1 X 1

We said before that the coefficient quantifies the magnitude of X 1 ’s impact on Y . This can be understood
as a derivative of Y with respect to X 1 .

If you know a thing or two about calculus, you will quickly notice that this derivative is equal to β 1 –
our coefficient. If you don’t, don’t worry.

Now, let’s add the quadratic term to our equation:

 Y = β 1 X 1 + β 2 X 1
2

Taking the derivative of this expression with respect to X 1 will give us the following:

 dY _ d X 1
 = β 1 + 2 β 2 X 1

Note that we can get this result by applying a technique called the power rule (https://bit.ly/
MathPowerRule) to our equation.

An interesting thing is that now the magnitude of X 1 ’s impact on Y depends on the value of X 1 . It’s
no longer quantified solely by its coefficient. When the effect of a variable on the outcome depends
on this variable’s value, we say that the effect is heterogeneous. We’ll discuss heterogeneous effects
in Part 2, Causal Inference.

Note that another perspective on the quadratic term is that this is a special case of interaction between
X 1 and itself. This is congruent with the multiplicative definition of interaction that we presented earlier
in this chapter. In this light, the quadratic term can be seen as X 1 ⋅ X 1 .

To summarize, adding non-linear terms to linear regression models makes the interpretation of
these models more difficult (although not impossible). This is true in both – associational and causal
– approaches.

The causal interpretation of linear regression only holds when there are no spurious relationships in your
data. This is the case in two scenarios: when you control for a set of all necessary variables (sometimes
this set can be empty) or when your data comes from a properly designed randomized experiment.

https://bit.ly/MathPowerRule
https://bit.ly/MathPowerRule

Wrapping it up 53

Any time you run regression analysis on arbitrary real-world observational data, there’s a significant
risk that there’s hidden confounding in your dataset and so causal conclusions from such analysis are
likely to be (causally) biased.

Additionally, remember that in order to obtain a valid regression model, a set of core regression
assumptions should be met (linearity in parameters, homoscedasticity of variance, independence of
observations, and normality of Y for any fixed value of X). To learn more about these assumptions,
check out Westfall & Arias (2022, pp. 17-19).

Wrapping it up
That was a lot of material! Congrats on reaching the end of Chapter 3!

In this chapter, we learned about the links between regression, observational data, and causal models.
We started with a review of linear regression. After that, we discussed the concept of statistical control
and demonstrated how it can lead us astray. We analyzed selected recommendations regarding statistical
control and reviewed them from a causal perspective. Finally, we examined the links between linear
regression and SCMs.

A solid understanding of the links between observational data, regression, and statistical control will
help us move freely in the world of much more complex models, which we’ll start introducing in
Part 2, Causal Inference.

We’re now ready to take a more detailed look at the graphical aspect of causal models. See you in the
next chapter!

References
Becker, T. E., Atinc, G., Breaugh, J. A., Carlson, K. D., Edwards, J. R., & Spector, P. E. (2016). Statistical
control in correlational studies: 10 essential recommendations for organizational researchers. Journal of
Organizational Behavior, 37(2), 157–167.

Bollen, K. A. & Noble, M. D. (2011). Structural equation models and the quantification of behavior.
PNAS Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl
3), 15639–15646.

Cinelli, C., Forney, A., & Pearl, J. (2022). A Crash Course in Good and Bad Controls. Sociological
Methods & Research, 0 (0), 1-34.

Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling. Guilford Press.

Murphy, K. P. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.

Pearl, J. (2012). The causal foundations of structural equation modeling. In Hoyle, R. H. (Ed.), Handbook
of structural equation modeling (pp. 68–91). Guilford Press.

Regression, Observations, and Interventions54

Pearl, J. (2013). Linear Models: A Useful “Microscope” for Causal Analysis. Journal of Causal Inference,
1(1), 155-170.

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Wasserstein, R. L. & Lazar, N. A. (2016) The ASA Statement on p-Values: Context, Process, and Purpose.
The American Statistician, 70(2), 129-133

Westfall, P. H. & Arias, A. L. (2022). Understanding Regression Analysis: A Conditional Distribution
Approach. CRC Press LLC.

4
Graphical Models

Welcome to Chapter 4!

So far, we have used graphs mainly to visualize our models. In this chapter, we’ll see that from the
causal point of view, graphs are much more than just a visualization tool. We’ll start with a general
refresher on graphs and basic graph theory. Next, we’ll discuss the idea of graphical models and the
role of directed acyclic graphs (DAGs) in causality. Finally, we’ll look at how to talk about causality
beyond DAGs. By the end of this chapter, you should have a solid understanding of what graphs are
and how they relate to causal inference and discovery.

This knowledge will give us the foundations to understand Chapter 5. This and the next chapter are
critical to understanding the very essence of causal inference as understood in this book.

In this chapter, we’ll cover the following:

• A refresher on graphs

• Graphical models in causality

• Causal directed acyclic graphs (DAGs)

• Causality beyond DAGs

Graphs, graphs, graphs
This section will be a quick refresher on graphs and basic graph theory. If you’re not familiar with
graphs – don’t worry – you can treat this section as a crash course on the topic.

Let’s start!

Graphs can be defined in multiple ways. You can think of them as discrete mathematical structures,
abstract representations of real-world entities and relations between them, or computational data
structures. What all of these perspectives have in common are the basic building blocks of graphs:
nodes (also called vertices) and edges (links) that connect the nodes.

Graphical Models56

Types of graphs

We can divide graphs into types based on several attributes. Let’s discuss the ones that are the most
relevant from the causal point of view.

Undirected versus directed

Directed graphs are graphs with directed edges, while undirected graphs have undirected edges.
Figure 4.1 presents an example of a directed and undirected graph:

Figure 4.1 – Directed (a) and undirected (b) graphs

As we saw in the previous chapter, we mark the edge direction with an arrow. Lines without arrows
denote undirected edges. In the literature, we sometimes also see a line with two arrows (in both
directions) to denote an undirected edge or to denote correlation rather than causation (for example,
in structural equation models).

In certain cases, we might not have full knowledge of the orientation of all the edges in a graph of interest.

When we know all the edges in the graph, but we are unsure about the direction of some of them, we
can use complete partially directed acyclic graphs (CPDAGs) to represent such cases.

CPDAGs are a special case of a broader class of partially directed graphs.

We’ll see in Part 3, Causal Discovery, that some causal discovery methods can in certain cases only recover
partial causal structures from the data. Such structures can be encoded as partially directed graphs.

In general, you can also see graphs with different types of edges, denoting different types of relations
between nodes. This is often the case in knowledge graphs, network science, and in some applications
of graph neural networks. In this book, we’ll focus almost exclusively on graphs with one edge type.

Cyclic versus acyclic

Cyclic graphs are graphs that allow for loops. In general, loops are paths that lead from a given node
to itself. Loops can be direct (from a node to itself; so-called self-loops) or indirect (going through
other nodes).

Graphs, graphs, graphs 57

Figure 4.2 presents an example of an acyclic graph and a cyclic one:

Figure 4.2 – Acyclic (a) and cyclic (b) graphs

The graph on the right side of Figure 4.2 (b) contains two types of loops. There’s a self-loop between
node B and itself and there are two other larger loops. Can you find them?

Let’s start from A. There are two paths we can take. If we move to B, we can either stay at B (via its
self-loop) or move to C. From C, we can only get back to A.

If we move from A to D instead, this will also lead us to C and back to A from there.

Most methods that we’ll present in this book will assume that the underlying system can be accurately
represented by an acyclic graph. That said, there also exist causal methods that support cyclic
relationships. We’ll discuss them briefly in the last section of this chapter.

Connected versus disconnected

In connected graphs, every node has an edge with at least one other node (for example, Figure 4.3
(a)). A fully-connected graph contains edges between all possible pairs of variables. Disconnected
graphs contain no edges:

Figure 4.3 – Connected (a) and partially connected (b) graphs

Graphical Models58

In Figure 4.3, we can see a fully-connected graph on the left (a) and a partially connected one on the
right (b). Note that real-world causal graphs are rarely fully connected (that would mean that everything
is directly causally related to everything else either as a cause or as an effect).

Weighted versus unweighted

Weighted graphs contain additional information on the edges. Each edge is associated with a number
(called a weight), which may represent the strength of connection between two nodes, distance, or
any other metric that is useful in a particular case. In certain cases, weights might be restricted to be
positive (for example, when modeling distance). Unweighted graphs have no weights on the edges;
alternatively, we can see them as a special case of a weighted graph with all edge weights set to 1. In
the context of causality, edge weights can encode the strength of the causal effect (note that it will
only make sense in the linear case with all the structural equations being linear with no interactions).

Graph representations

Now we’re ready to talk about various ways we can represent a graph.

We’ve seen enough graphs so far to understand how to present them visually. This representation
is very intuitive and easy to work with for humans (at least for small graphs), but not very efficient
for computers.

People figured out a couple of ways to represent graphs in a computer-readable form. One pretty intuitive
way is to represent a graph as a list of nodes and a list of edges. One of the advantages of this method
is that it can be easily expanded to add extra information about nodes or edges. It’s also relatively
human-readable for small graphs. At the same time, it’s not very efficient computationally speaking.

To optimize certain types of computations, we can represent a graph as an adjacency matrix. This
representation preserves the information about the graph structure and – possibly – the strength of
connections between the nodes. A limitation of adjacency matrices is that they cannot contain any
metadata about nodes or edges, but this can be easily overcome.

Adjacency matrices

An unweighted adjacency matrix is a matrix that only contains zeros and ones. One represents an
edge, and zero represents a lack of an edge. Nodes are encoded as row and column indices. We usually
use zero-indexing, which means that we start counting from zero (we’ll refer to the first row of the
matrix as the 0th row).

Adjacency matrices are square M × M matrices where M is the number of nodes. Each positive entry
in the matrix encodes an edge between a pair of nodes.

Let’s see a couple of examples to make it clearer. We’ll start with something very simple:

Graphs, graphs, graphs 59

Figure 4.4 – A 2 × 2 adjacency matrix and the corresponding graph

Figure 4.4 presents a 2 × 2 adjacency matrix and its corresponding graph. The only non-zero element
(1) in the matrix is located in the upper-right corner. Its index is (0, 1) because the element is in the
0th row and the first column. It means that there’s only one edge in the graph that goes from node 0
(the row index) to node 1 (the column index). You can verify this in the graph on the right.

Let’s see another example:

Figure 4.5 – A 3 × 3 adjacency matrix and the corresponding graph

In Figure 4.5, we see a 3 × 3 adjacency matrix with three non-zero entries. Their respective indices
are (0, 1), (2, 0), and (2, 1). This translates to three edges: from node 0 to node 1, from node 2 to node
0, and from node 2 to node 1.

You can see the respective edges in the corresponding graph. We added color-coding to make the
correspondence between the matrix and the graph easier to identify.

Figure 4.6 – A 4 × 4 adjacency matrix and the corresponding graph

Graphical Models60

Figure 4.6 presents a larger 4 × 4 matrix and the corresponding 4-node graph:

There are four 1-entries that translate to four edges in the graph: from 0 to 2, from 1 to 3, from 3 to
0, and from 3 to 2. The non-zero entries in the matrix and the respective edges are color-coded for
your convenience.

Directed and acyclic

Have you noticed that all the matrices in our examples had zeros on the diagonal?

This is not by accident. All the preceding matrices represent valid DAGs – a type of graph with no
cycles and with directed edges only.

How is it related to the values on the diagonal?

Any diagonal entry in a matrix will have an index in the (i, i) form, denoting an edge from node i to itself.

In other words, any 1-entry on the diagonal would denote a self-loop.

This means that a valid DAG should always have zeros on the diagonal. Self-loops, represented by ones
in the diagonal would lead to cyclicity and DAGs are acyclic by definition.

If you’re familiar with matrix linear algebra, you might have thought that the fact that a matrix has
only zeros in the diagonal provides us with important information about its trace and eigenvalues.

That’s great intuition!

This idea is leveraged by some of the causal discovery methods to make sure that a graph that we’re
trying to find is a valid DAG. We’ll learn more about these methods in Part 3, Causal Discovery.

Graphs in Python

Now we’re ready for some practice.

There are many options to define graphs in Python and we’re going to practice two of them: using
graph modeling language (GML) and using adjacency matrices. Figure 4.7 presents a GML definition
of a three-node graph with two edges and the resulting graph. The code from Figure 4.7 and the
remaining part of this section is available in the notebook for Chapter 4 in the Graphs in Python
section (https://bit.ly/causal-ntbk-04):

https://bit.ly/causal-ntbk-04):

Graphs, graphs, graphs 61

Figure 4.7 – GML definition of a graph and the resulting graph

Graph languages in Python
The GML language is supported by the NetworkX and DoWhy Python libraries. More details
on GML and its syntax can be found here: https://bit.ly/GMLDocs.

Another popular graph language is DOT. A dedicated Python library called pydot (https://
bit.ly/PyDOTDocs) allows you to easily read, write, and manipulate DOT graphs in pure
Python. DOT is used by graphviz and can be used with NetworkX and DoWhy.

GML syntax can be parsed using the NetworkX parse_gml() function, which returns a networkx.
classes.digraph.DiGraph instance (digraph is shorthand for directed graph). The usage is
very simple:

graph = nx.parse_gml(sample_gml)

https://bit.ly/GMLDocs
https://bit.ly/PyDOTDocs
https://bit.ly/PyDOTDocs

Graphical Models62

GML is pretty flexible, but also pretty verbose. Let’s define the same graph using an adjacency matrix:

Figure 4.8 – Adjacency matrix of a graph and the resulting graph

Figure 4.8 presents an adjacency matrix created using NumPy and the resulting graph. As you can see,
this definition is much more compact. It’s also directly usable (without additional parsing) by many
algorithms. To build a NetworkX graph from an adjacency matrix, we need just one line of code:

graph = nx.DiGraph(adj_matrix)

By using nx.DiGraph, we tell NetworkX that we want to get a directed graph. To create an undirected
one, use the nx.Graph object.

To get some practice, create the following graph using GML and an adjacency matrix yourself and
visualize it using NetworkX:

• Directed acyclic graph

• Six nodes

• Six edges: (0, 1), (0, 3), (0, 5), (3, 2), (2, 4), (4, 5)

You should get a result similar to the one presented in Figure 4.9:

What is a graphical model? 63

Figure 4.9 – The resulting graph

In this section, we discussed various types of graphs. We learned what a DAG is and how to construct it
in Python. We’ve seen that graphs can be represented in many different ways and used two of these ways
(GML and adjacency matrices) to build our own graphs. We’re now ready to discuss graphical models.

What is a graphical model?
In this section, we’re going to discuss what graphical causal models (GCMs) are and how they can
help in causal inference and discovery.

GCMs can be seen as a useful framework that integrates probabilistic, structural, and graphical aspects
of causal inference.

Formally speaking, we can define a graphical causal model as a set consisting of a graph and a set of
functions that induce a joint distribution over the variables in the model (Peters et al., 2017).

The basic building blocks of GCM graphs are the same as the basic elements of any directed graph:
nodes and directed edges. In a GCM, each node is associated with a variable.

Importantly, in GCMs, edges have a strictly causal interpretation, so that A → B means that A causes
B (this is one of the differentiating factors between causal models and Bayesian networks; Pearl &
Mackenzie, 2019, pp. 111-113). GCMs are very powerful because certain combinations of nodes and
edges can reveal important information about the data. In other words, the sheer graph structure is
in some cases enough to decode information about statistical relationships between variables.

Graphical Models64

This also works in the other direction – in certain cases, we can infer the true causal graph structure
by looking at the statistical relationships alone. The latter is possible when a special assumption
called the faithfulness assumption and some other conditions are met. Although faithfulness seems
a relatively light assumption on face value, a deeper examination reveals underlying challenges (Uhler
et al., 2013). We’ll learn more about faithfulness in Chapter 5.

These properties of GCMs are the basis of many causal inference and discovery methods and can also
be leveraged for domain adaptation even in the presence of unobserved confounders (Magliacane et
al., 2018) – a flexible and very practical extension of the causal discovery toolbox.

To summarize, GCMs can be seen as a useful and powerful framework that unifies probabilistic,
structural, and graphical perspectives on causal inference. GCMs are powerful because they offer
the possibility to translate between the graphical properties of a model and the statistical properties
of the data.

All that said, definitions of GCMs are not entirely consistent in the literature. In most places in this
book, we’ll talk about SCMs as consisting of a graph and a set of functional assignments. This will
allow us to avoid the confusion related to the inconsistencies in the literature, while preserving the
most important elements of the graphical and functional representations.

Now, let’s solidify our knowledge of DAGs.

DAG your pardon? Directed acyclic graphs in the causal
wonderland
We’ll start this section by reviewing definitions of causality. Then, we’ll discuss the motivations behind
DAGs and their limitations. Finally, we’ll formalize the concept of a DAG.

Definitions of causality

In the first chapter, we discussed a couple of historical definitions of causality. We started with Aristotle,
then we briefly covered the ideas proposed by David Hume. We’ve seen that Hume’s definition (as
we presented it) was focused on associations. This led us to look into how babies learn about the
world using experimentation. We‘ve seen how experimentation allows us to go beyond the realm of
observations by interacting with the environment. The possibility of interacting with the environment
is at the heart of another definition of causality that comes from Judea Pearl.

Pearl proposed something very simple yet powerful. His definition is short, ignores ontological
complexities of causality, and is pretty actionable. It goes as follows: A causes B if B listens to A (Pearl
& Mackenzie, 2019).

What does it mean that one variable listens to another? In Pearlian terms, it means that if we change
A , we also observe a change in B .

DAG your pardon? Directed acyclic graphs in the causal wonderland 65

The concept of a change in one variable leading to a change in another one is inherently related to the
logic of interventions. Let’s see what happens when we combine this definition with the idea of a DAG.

DAGs and causality

Visualize a simple DAG: A → B → C . Now imagine that we perform an intervention on node B and
now the value of B entirely depends on our decision.

In such a case, we expect that C will change its value accordingly, as C listens to B.

On the other hand, under the intervention, A will no longer influence B , because our intervention
fully controls the value of B . To reflect this in the graph, we remove the edge from A to B .

The operation of removing the incoming edges from a node that we intervene upon is sometimes
referred to as graph mutilation.

Graph mutilation is an intuitive way of presenting the impact of intervention and it reveals a deep
insight – that an intervention changes the structure of information flow between variables.

The good news is that we don’t always need interventions to alter the information flow in the data. If
we know which paths in the graph should remain open and which should be closed, we can leverage
the power of d-separation and statistical control to close and open the paths in the graph, which will
allow us to describe causal quantities in purely statistical terms under certain conditions. Moreover,
in some scenarios, it will allow us to learn the structure of the data-generating process from the data
generated by this process. We’ll learn more about d-separation in Chapter 6, and more about learning
the structure of the data-generating process in Part 3, Causal Discovery.

Before we continue, let’s formally define DAGs.

Let’s get formal!

DAG G consists of a set of vertices V and a set of directed edges E . Each node V i is associated with
a random variable X i . Let’s denote an edge from a vertex i to another vertex j as i → j . We call V i a
parent of V j and we call V j a child of V i . For any directed path i → … → j , with k ∈ ℤ 0

+ (non-negative)
vertices between i and j , we call V i an ancestor of V j and we call V j a descendant of V i . Note that
because k ≥ 0 , parents are a special case of ancestors and children are a special case of descendants.

By definition, in a DAG, there are no paths that start at vertex i that lead back to vertex i (either
directly or indirectly).

Graphical Models66

Limitations of DAGs

DAGs seem to capture certain intuitions about causality really well. My best guess is that most people
would agree that talking about the direction of causal influence makes sense (can you think of undirected
causality?). At the same time, I believe that fewer people would agree that causal influence cannot be
cyclic. Let’s see an example.

Imagine an interaction between two partners. One partner says something at time t 0 , the other partner
responds at time t 1 . We could build a simple model of a conversation between the partners in the
following way:

 P X=1 (t j) ≔ f (P X=2 (t j−1) , I X=1 (t j−1))

 P X=2 (t j+1) ≔ f (P X=1 (t j) , I X=2 (t j))

In the preceding formula, P X (t j) is partner X ’s utterance at time t j , I X is partner X ’s internal state at
time t j , and f (.) is some function (for the sake of this example, we don’t care what function exactly).

To be precise, we should also model changes in I X (internal states of partners), but we’ll leave it out
for simplicity.

If we run these equations sequentially for a number of steps, we’ll see that what partner 1 said at time
t j will become dependent on what they said at time t j−2 .

The same is true for partner 2. This constitutes an (indirect) cycle.

Another example – perhaps more intuitive for some readers – comes from the field of economics.
When demand for product P grows, the producer might increase the supply in the hope of collecting
potential profits from the market. Increased supply might cause a price drop, which in turn can
increase demand further.

Theoretically, we could try to model both examples as an unrolled sequence of variables, but there are
potential problems with this approach. The main one is that we need to produce a new variable for
each timestep, creating a very inefficient representation.

Taking a more general perspective, causal DAGs in particular, and SCMs in general, have limitations.
As expressed by Peters and colleagues: SCMs are an “abstraction of underlying physical processes –
abstraction whose domain of validity as causal models is limited” (Peters et al., 2017). That said, SCMs
(but not DAGs) can be adapted to work with cycles (e.g. Mooji & Classen, 2020).

Sources of causal graphs in the real world
We have discussed graphs from several perspectives now, yet we haven’t tackled an important practical
question: what is the source of causal graphs in the real world?

In this section, we’ll provide a brief overview of such sources and we’ll leave a more detailed discussion
for Part 3 of the book.

Extra – is there causality beyond DAGs? 67

On a high level, we can group the ways of obtaining causal graphs into three classes:

• Causal discovery

• Expert knowledge

• A combination of both

Let’s discuss them briefly.

Causal discovery

Causal discovery and causal structure learning are umbrella terms for various kinds of methods
used to uncover causal structure from observational or interventional data. We devote the entirety
of Part 3 of this book to this topic.

Expert knowledge

Expert knowledge is a term covering various types of knowledge that can help define or disambiguate
causal relations between two or more variables. Depending on the context, expert knowledge might
refer to knowledge from randomized controlled trials, laws of physics, a broad scope of experiences
in a given area, and more.

Combining causal discovery and expert knowledge

Some causal discovery algorithms allow us to easily incorporate expert knowledge as a priority. This
means that we can either freeze certain edges in the graph or suggest the existence or direction of these
edges. We will discuss some such approaches in Part 3 of the book.

Extra – is there causality beyond DAGs?
In this extra section, we’ll give a brief overview of some non-DAG-based approaches to causality. This
is definitely an incomplete and somehow subjective guide.

Dynamical systems

The scenario with two interacting partners that we discussed in the previous section describes a
dynamical system. This particular example is inspired by the research by an American ex-rabbi turned
psychologist called John Gottman, who studies human romantic relationships from a dynamical
systems point of view (for an overview: Gottman & Notarius, 2000; Gottman et al., 1999).

Dynamical systems are often described using differential equations and cannot be solved analytically
(for a toy example of differential equations applied to romantic relationships, check Strogatz, 1988).

Graphical Models68

Dynamical systems have been extensively studied in physics (Strogatz, 2018), biology (Cosentino &
Bates, 2011), and psychology (Nowak & Vallacher, 1998), among other fields.

The dynamical approach is closely related to non-linear dynamics, simulation, chaos theory, and
complexity science. Research in these fields is often focused on system-level effects rather than
interactions between single variables. An important concept in complexity science is emergence – a
phenomenon in which we can observe certain properties at the system level that cannot be observed
at its constituent parts’ level. This property is sometimes described as a system being more than the
sum of its parts.

Cyclic SCMs

Because SCMs constitute a very useful framework for causal inference, there are many attempts
to generalize it to cyclic cases. For instance, Forré, & Mooij (2017) proposed σ -separation – a
generalization of d-separation for cyclical systems. Moreover, the same authors presented a causal
discovery algorithm that not only works with cycles, but can also handle latent confounders (Forré,
& Mooij, 2018). Interestingly, Mooij & Classen (2020) showed that FCI (which stands for fast causal
inference) – a popular causal discovery algorithm – also gives correct results for data generated with
cyclical systemsunder certain circumstances.

Wrapping it up
We started this chapter by refreshing our knowledge of graphs and learned how to build simple graphs
using Python and the NetworkX library. We introduced GCMs and DAGs and discussed some common
limitations and challenges that we might face when using them.

Finally, we examined selected approaches to model causal systems with cycles.

Now you have the ability to translate between the visual representation of a graph and an adjacency matrix.
The basic DAG toolkit that we’ve discussed in this chapter will allow you to work smoothly with many
causal inference and causal discovery tools and will help you represent your own problems as graphs,
which can bring a lot of clarity – even in your work with traditional (non-causal) machine learning.

The knowledge you gained in this chapter will be critical to understanding the next chapter and the
next two parts of this book. Feel free to review this chapter anytime you need.

In the next chapter, we’ll learn how to use basic graphical structures to understand the fundamental
mechanics of causal inference and causal discovery.

References 69

References
Cosentino, C., & Bates, D. (2011). Feedback control in systems biology. CRC Press.

Forré, P., & Mooij, J. M. (2017). Markov properties for graphical models with cycles and latent variables.
arXiv preprint arXiv:1710.08775.

Forré, P., & Mooij, J. M. (2018). Constraint-based causal discovery for non-linear structural causal
models with cycles and latent confounders. arXiv preprint arXiv:1807.03024.

Gottman, J. M., & Notarius, C. I. (2000). Decade review: Observing marital interaction. Journal of
marriage and family, 62(4), 927-947.

Gottman, J., Swanson, C., & Murray, J. (1999). The mathematics of marital conflict: Dynamic mathematical
nonlinear modeling of newlywed marital interaction. Journal of Family Psychology, 13(1), 3.

Magliacane, S., Van Ommen, T., Claassen, T., Bongers, S., Versteeg, P., & Mooij, J. M. (2018). Domain
adaptation by using causal inference to predict invariant conditional distributions. Advances in neural
information processing systems, 31.

Mooij, J. M., & Claassen, T. (2020). Constraint-based causal discovery using partial ancestral graphs in
the presence of cycles. In Conference on Uncertainty in Artificial Intelligence (pp. 1159-1168). PMLR.

Nowak, A., & Vallacher, R. R. (1998). Dynamical social psychology (Vol. 647). Guilford Press.

Pearl, J., & Mackenzie, D. (2019). The book of why. Penguin Books.

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Strogatz, S. H. (1988). Love affairs and differential equations. Mathematics Magazine, 61(1), 35-35.

Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC Press.

Uhler, C., Raskutti, G., Bühlmann, P., & Yu, B. (2013). Geometry of the faithfulness assumption in
causal inference. The Annals of Statistics, 436-463.

5
Forks, Chains, and Immoralities

Welcome to Chapter 5!

In the previous chapter, we discussed the basic characteristics of graphs and showed how to use graphs
to build graphical models. In this chapter, we will dive deeper into graphical models and discover
their powerful features.

We’ll start with a brief introduction to the mapping between distributions and graphs. Next, we’ll learn
about three basic graphical structures – forks, chains, and colliders – and their properties.

Finally, we’ll use a simple linear example to show in practice how the graphical properties of a system
can translate to its statistical properties.

The material discussed in this chapter will provide us with a solid foundation for understanding classic
causal inference and constraint-based discovery methods and will prepare us for understanding other
families of algorithms that we’ll introduce in Parts 2 and 3 of this book.

In this chapter, we cover the following key topics:

• Graphs and distributions and how to map between them

• Forks, chains, and colliders or…immoralities

• Forks, chains, colliders, and regression

Graphs and distributions and how to map between them
In this section, we will focus on the mappings between the statistical and graphical properties of a system.

To be more precise, we’ll be interested in understanding how to translate between graphical and
statistical independencies. In a perfect world, we’d like to be able to do it in both directions: from
graph independence to statistical independence and the other way around.

It turns out that this is possible under certain assumptions.

The key concept in this chapter is one of independence. Let’s start by reviewing what it means.

Forks, Chains, and Immoralities72

How to talk about independence

Generally speaking, we say that two variables, X and Y , are independent when our knowledge about
X does not change our knowledge about Y (and vice versa). In terms of probability distributions, we
can express it in the following way:

 P (Y) = P (Y | X)

 P (X) = P (X | Y)

In other words: the marginal probability of Y is the same as the conditional probability of Y given X
and – respectively – the marginal probability of X is the same as the conditional probability of X given Y .

In plain English: learning something new about X will not change our beliefs about Y (and the other
way around).

Probabilities and beliefs
You might have noticed that we talk about “knowledge” and “beliefs” in the context of probability
here. This vocabulary is usually associated with the Bayesian approach to probability (as opposed
to the frequentist approach). We use the Bayesian approach here because we believe it brings
a more intuitive perspective on independence. At the same time, we use both frequentist and
Bayesian concepts in this book (and discuss them where we believe it’s important). Bayesian
and frequentist are two different approaches to statistics. They converge to virtually identical
results in large sample sizes but put accents slightly differently (e.g., we can sensibly talk about
beliefs in the Bayesian framework but not really in the frequentist framework).

For an introduction to some of the fundamental differences between the two approaches, check
out Jake VanderPlas’ talk (https://bit.ly/BayesianVsFrequentsist). For slightly
more formal treatment, check out the Massachusetts Institute of Technology (MIT) course
notes PDF (https://bit.ly/BayesVsFreqMIT).

One interesting consequence of the independence between two variables is that their joint distribution
factorizes into the product of the marginals (Bishop, 2006):

 P (X, Y) = P (X) P (Y)

More general notation for independence involves the symbol, ⫫ (usually called double up tack), whose
form visually encodes the notion of orthogonality (https://bit.ly/OrthogonalityMath).
Using ⫫ , we can express the fact that X and Y are independent in the following way:

 X ⫫ Y

https://bit.ly/BayesianVsFrequentsist
https://bit.ly/BayesVsFreqMIT
https://bit.ly/OrthogonalityMath

Graphs and distributions and how to map between them 73

The concept of independence plays a vital role in statistics and causality. As we will learn soon, its
generalization – conditional independence – is even more important. We say that X and Y are
conditionally independent given Z , when X does not give us any new information about Y assuming
that we observed Z .

Let’s see how to encode conditional independence using the notation we just introduced.

We can express the fact that X is independent of Y given Z in the following way:

 X ⫫ Y | Z

Equivalently, in terms of probabilities:

 P (X, Y | Z) = P (X | Z) P (Y | Z)

Note that we factorized the joint distribution of X and Y (given Z) into a product of two simple
conditionals (X | Z and Y | Z) using the property introduced earlier (P (X, Y) = P (X) P (Y)).

Now, let’s introduce a simple yet useful distinction. We will use the symbol, ⫫ P , to denote independence
in the distribution and ⫫ G to denote independence in the graph. To say that X and Y are independent
in their distributions, we’ll use the following:

 X ⫫ P Y

On the other hand, to say that X and Y are independent in the graph, we’ll say:

 X ⫫ G Y

Equipped with this new shiny notation, let’s discuss why mapping between graphical and distributional
independence might be important to us.

Choosing the right direction

The basic goal of causal inference is to estimate the causal effect of one set of variables on another. In
most cases, to do it accurately, we need to know which variables we should control for. We’ve seen
in previous chapters that to accurately control for confounders, we need to go beyond the realm of
pure statistics and use the information about the data-generating process, which can be encoded as
a (causal) graph. In this sense, the ability to translate between graphical and statistical properties is
central to causal inference.

Having the translation ability in the other direction – from statistical to graphical properties – is
essential for causal discovery, a process that aims at recreating the causal graph from observational
and/or interventional data.

To enable the mappings in both directions, we need to meet certain criteria. Let’s revise them.

Forks, Chains, and Immoralities74

Independence in a graph – a working definition
We say that two nodes are unconditionally (or marginally) independent in the graph when there’s
no open path that connects them directly or indirectly.

We say that two nodes, X and Y, are conditionally independent given (a set of) node(s) Z when
Z blocks all open paths that connect X and Y.

In other words, (in)dependence in the graph is a function of open paths between nodes in
this graph. We’ll use and enrich this intuition in the current chapter and build a more formal
perspective on top of it in Chapter 6.

Conditions and assumptions

We’ll start the discussion with assumptions that are important from the causal inference point of view.
After this, we’ll move to assumptions related to causal discovery, and we’ll finish with a brief overview
of a more general concept of causal sufficiency.

Conditions for causal inference

From the causal inference point of view, we need to make sure that we can map the graphical (conditional)
independencies into statistical (conditional) independencies.

In order to achieve this we need to satisfy the causal Markov condition (also known as the causal
Markov assumption or (local) Markov property).

The causal Markov condition states that the node, V i , is independent of all its non-descendants (excluding
its parents) given its parents. Therefore, formally, it can be presented as follows:

 V i ⫫ G V j | PA (V i) ∀ j≠i∈G (V,E) \ { DE (V i) , PA (V i) }

This formula might look discouraging, but in fact, it says something relatively simple. Let’s dissect
and analyze it step by step:

• We start with V i ⫫ G V j . The symbol, ⫫ G , denotes independence in the graph. Therefore, the
statement says that nodes, V i and V j , are independent in the graph or – in other words – that
there are no open paths between them.

Next, we have the conditioning bar, | , and PA (V i) . The latter stands for parents of node V i . These are
all the nodes that have edges directed at V i . This conditioning part of the formula informs us that the
independence between V i and V j only holds when we control for (the set of) parents of the node, V i .

Next, we have ∀ j≠i∈G (V, E) . The ∀ symbol means “for all”. What we say here is that the node, V i , is
independent of all other nodes (j ≠ i) in the graph G (V, E) , where G represents our graph (directed
acyclic graph (DAG)) of interest, V is a set of all vertices (nodes) in this graph, and E is a set of all
edges in this graph.

Graphs and distributions and how to map between them 75

Finally, we have the cryptic \ { DE (V i) , PA (V i) } . Let’s start with the \ symbol. We read it as “excluding”.
Curly brackets denote a set, and we have two elements in this set:

• DE (V i) , which represents a set of all descendants of the node, V i

• PA (V i) , which represents a set of parents of V i

Putting it all together: the node, V i , is independent of all other nodes in the graph, G , excluding the
descendants and parents of this node, given its parents. If this is not entirely clear to you at this stage,
that’s perfectly fine. We’ll reiterate this concept while discussing d-separation in the next chapter.

In the meantime, feel free to take a look at Figure 5.1 and Figure 5.2, which depict two examples of
graphs in which the causal Markov condition holds. In both cases controlling for PA (V i) – the parent
node of the node, V i , removes the association between nodes V i and V j . Note that the relationships
between V i and V j are different in both figures. In Figure 5.1, the nodes, V i and V j , have a common
cause (PA (V i)), in Figure 5.2, the node, V j is a grandparent of V i . If the causal Markov condition
holds, the association between the nodes V i and V j should be removed in both cases. Note that if there
was an unobserved common cause of both nodes (V i and V j) in any of the scenarios, controlling for
PA (V i) would not render the nodes independent, and the condition would be violated:

Figure 5.1 – Causal Markov condition – example one

Forks, Chains, and Immoralities76

Figure 5.2 – Causal Markov condition – example two

The important statement is that when the causal Markov condition holds, the following is true:

 X ⫫ G Y | Z ⇒ X ⫫ P Y | Z

We read it as: X and Y are independent in the graph given Z , then they are also statistically independent
given Z . This is known as the global Markov property. In fact, we could show that the global Markov
property, the local Markov property, and another property called the Markov factorization property are
equivalent (Lauritzen 1996, pp. 51-52 for a formal proof; Peters et al., 2017, pp. 101 for an overview).

Assumptions for causal discovery

So far, we have discussed the importance of mapping between graphical and distributional independence
structures. Now, let’s reverse the direction. Causal discovery aims at discovering (or learning) the true
causal graph from observational and/or (partially) interventional data. In general, this task is difficult.
Nonetheless, it’s possible when certain conditions are met.

Causal discovery has a couple of different flavors. In this section, we’ll focus on a family of methods
called constrain-based causal discovery (sometimes also called independence-based causal discovery).
These methods are designed to find statistical independencies in the observational data and try to
recreate the true causal graph from these independencies. One of the main assumptions behind this
family of methods is called the faithfulness assumption. Its simplest formulation is the following:

 X ⫫ P Y | Z ⇒ X ⫫ G Y | Z

Graphs and distributions and how to map between them 77

This might look familiar. Note that it’s the exact reverse of the global Markov property that we discussed
in the previous section. The formula says that if X and Y are independent in the distribution given
 Z , they will also be independent in the graph given Z .

As we mentioned in the previous chapter, the faithfulness assumption might be difficult to fulfill
sometimes. The most critical reason for this is the estimation error when testing for conditional
independence in the finite sample size regime (Uhler et al., 2013). Moreover, it’s not very difficult to
find situations where the assumption is violated. Intuitively, any situation where one variable influences
another through two different paths and these paths cancel each other out completely would lead to
the violation of faithfulness. That said, although it’s relatively easy to come up with such examples
(for example, Neal, 2020, pp. 100-101; Peters et al., 2017, pp. 107-108), the probability of encountering
them in the real world is very small (Sprites et al., 2000, pp. 68-69). Therefore, the first problem is
much more serious and more difficult to tackle in practice than the second one.

The last assumption that we will discuss in this section is called the causal minimality condition
(also known as the causal minimality assumption).

Although the global Markov property that we discussed earlier is pretty powerful, it leaves us with
some uncertainty regarding the true structure of a graph we’re trying to retrieve.

It turns out that there might be more than one graph that entails the same distribution! That’s
problematic when we want to recover causal structure (represented as a causal graph) because the
mapping between the graph and the distribution is ambiguous. To address this issue, we use the causal
minimality condition.

The causal minimality assumption states that DAG G is minimal to distribution, P , if and only if G
induces P , but no proper sub-graph of G induces P . In other words, if graph G induces P , removing
any edge from G should result in a distribution that is different than P .

Causal minimality can be seen from various perspectives (Neal, 2020, pp. 21-22; Pearl, 2009, p. 46;
Peters & Schölkopf, 2017, pp. 107-108). Although the assumption is usually perceived as a form of
Ockham’s razor, its implications have practical significance for constraint-based causal discovery
methods and their ability to recover correct causal structures.

Other assumptions

Before we conclude this section, let’s discuss one more important assumption that is very commonly
used in causal discovery and causal inference. It’s an assumption of no hidden confounding (sometimes
also referred to as causal sufficiency). Although meeting this assumption is not necessary for all causal
methods, it’s pretty common.

Note that causal sufficiency and the causal Markov condition are related (and have some practical
overlap), but they are not identical. For further details, check out Scheines (1996).

Forks, Chains, and Immoralities78

In many real-world scenarios, we might find it challenging to verify whether hidden confounding
exists in a system of interest.

In this section, we reviewed the concept of statistical and graphical independence, discussed the
motivations for mapping between graphical and statistical independencies, and examined conditions
that allow us to perform such mappings.

Now, let’s discuss three basic graphical structures that are immensely helpful in determining sets of
conditional independencies.

Ready?

Chains, forks, and colliders or…immoralities
On a sunny morning of June 1, 2020, Mr. Huang was driving his gleaming white Tesla on one of Taiwan’s
main highways. The day was clear, and the trip was going smoothly. Mr. Huang engaged the autopilot
and set the speed to 110 km/h. While approaching the road’s 268-kilometer mark, he was completely
unaware that only 300 meters ahead, something unexpected was awaiting him. Nine minutes earlier,
another driver, Mr. Yeh, had lost control of his vehicle. His white truck was now overturned, almost
fully blocking two lanes of the highway right at the 268.3-kilometer mark.

Around 11 seconds later, to Mr. Huang’s dismay, his Tesla crashed into the overturned truck’s rooftop.
Fortunately, the driver, Mr. Huang, survived the crash and came out of the accident without any serious
injuries (Everington, 2020).

A chain of events

Many modern cars are equipped with some sort of collision warning or collision prevention system.
At a high level, a system like this consists of a detector (or detector module) and an alerting system
(sometimes also an automatic driving assistance system). When there’s an obstacle on the collision
course detected by the detector, it sends a signal that activates the alerting system. Let’s say that the
detector is in state 1 when it detects an obstacle and it’s in state 0 when it detects no obstacles.

Figure 5.3 presents a DAG representing our collision warning system:

Figure 5.3 – A DAG representing a collision warning system

Chains, forks, and colliders or…immoralities 79

An important fact about a system such as the one presented in Figure 5.3 is that the existence of the
obstacle does not give us any new information about the alert when we know the detector state. The
obstacle and the alert are independent, given the detector state.

In other words, when the detector thinks there is a pedestrian in front of the car, the alarm will set
off even if there’s no pedestrian in front of the car. Similarly, if there’s an obstacle on the road and the
detector does not recognize it as an obstacle, the alert will remain silent.

In particular, if a detector is based on a computer vision system and the model hallucinates a pedestrian
on the car’s course, the alert will set off. On the other hand, when there’s a real pedestrian in front of
the car and the model fails to recognize them, the alert will remain silent.

An example of an unexpected detector system behavior went viral in August 2022. A TikToker,
RealRusty, shared a video showing how his car’s object detection system reacted to a horse-drawn
carriage (https://bit.ly/HorseVsTesla).

Another great example of a chain of causally-linked events comes from Judea Pearl’s and Dana Mackenzie’s
The Book of Why (Pearl & Mackenzie, 2019, pp. 113-114). The authors discuss the mechanics of a fire
alarm. The chain is fire → smoke → alarm because the alarm is actually controlled by a smoke particle
detector rather than any other indicator of fire such as temperature.

Let’s abstract the structure that these two examples share.

Chains

First, let’s replace the variables in the graph from Figure 5.3 with A , B, and C . This general structure
is called a chain, and you can see it in Figure 5.4:

Figure 5.4 – A chain structure

We can generalize the independence property from our collision warning example to all chain structures.
It means that in every structure that can be encoded as A → B → C , A and C are independent in the
graph given B . Therefore, formally, it can be presented as follows:

 A ⫫ G C | B

https://bit.ly/HorseVsTesla

Forks, Chains, and Immoralities80

Intuitively, controlling for B closes the only open path that exists between A and C . Note that A and
C become dependent when we do not control for B .

Translating this back to our object detection system: if we do not observe the detector state, the
presence of the obstacle within the system’s range becomes correlated with the safety response (alarm
and emergency breaking).

You might already see where it’s going. If we’re able to fulfill the assumptions that we discussed in the
previous section (causal Markov condition, no hidden confounding), we can now predict conditional
independence structure in the data from the graph structure itself (and if that’s true we can also figure
out which variables we should control for in our model to obtain valid causal effect estimates(!) – we’ll
learn more on this in the next chapter). Moreover, predicting the graph structure from the observational
data alone also becomes an option. That’s an exciting possibility, but let’s take it slowly.

Now, let’s see what happens if we change the direction of one of the edges in our chain structure.

Forks

Figure 5.5 represents a fork. A fork is a structure where the edge between nodes A and B is reversed
compared to the chain structure:

Figure 5.5 – A fork structure

In the fork, node B becomes what we usually call a common cause of nodes A and C .

Imagine you’re driving your car, and you suddenly see a llama in the middle of the road.

The detector recognizes the llama as an obstacle. The emergency brake kicks in before you even
realize it. At the same time, a small subcortical part of your brain called the amygdala sends a signal
to another structure, the hypothalamus, which in turn activates your adrenal glands. This results in
an adrenaline injection into your bloodstream. Before you even notice, your body has entered a state
that is popularly referred to as a fight-or-flight mode.

The presence of a llama on the road caused the detector to activate the emergency brake and caused
you to develop a rapid response to this potentially threatening situation.

Chains, forks, and colliders or…immoralities 81

This makes the llama on the road a common cause of your stress response and the detector’s response.

However, when we control for the llama on the road, your threat response and the detector’s response
become independent. You might feel stressed because you’re running late for an important meeting or
because you had a tough conversation with your friend, and this has zero connection to the detector state.

Note that in the real world, you would also likely react with a fight-or-flight response to the mere fact
that the emergency brakes were activated. The path, llama → detector → brakes → fight-or-flight, will
introduce a spurious connection between llama and flight-or-fight that can be removed by controlling
for the brakes variable.

Let’s build a more formal example to clear any confusion that can come from this connection.

Let’s take a look at Figure 5.5 once again and think about conditional independencies. Are A and C
unconditionally dependent?

In other words: are A and C dependent when we do not control for B ? The answer is yes.

Why are they dependent? They are dependent because they both inherit some information from B .
At the same time, the information inherited from B is all they have in common.

Let’s take a look at a simple structural model that describes a fork structure to see how independence
manifests itself in the distribution:

 U A ~ 𝒩 (0, 1)

 U B ~ 𝒩 (0, 1)

 U C ~ 𝒩 (0, 1)

 B : = U B

 A : = B + U A

 C : = B + U C

In the preceding formula, U X∈ { A, B, C } represents independently distributed noise variables (here, they
follow a normal distribution, but they don’t have to in general) and : = is the assignment operator that
you might remember from previous chapters.

Now imagine that we only look at observations where B = 0 .

What would happen?

When B = 0 , then A and C will only be influenced by their respective noise terms that are independent
by definition.

We can therefore conclude that in forks, A and C are conditionally independent given B . Formally,
it can be presented as follows:

 A ⫫ C | B

Forks, Chains, and Immoralities82

In case we do not control for B , A and C are dependent. This independence pattern is identical to the
one that we’ve obtained from the chain structure.

This is not great news.

It seems that chains and forks lead to the same pattern of conditional independence, and if we want
to recreate a true graph from the data, we end up not knowing how to orient the edges in the graph!

This might sound disappointing, but before we let the disappointment take over, let’s examine the
last structure in this section.

Colliders, immoralities, or v-structures

As you can see, the collider has many names. Is that the only thing that makes this structure special?
Let’s check!

Let’s take a look at Figure 5.6. In the collider, causal influence flows from two different parents into a
single child node:

Figure 5.6 – A collider structure

The most important characteristic of a collider is that its independence pattern is reversed compared
to chains and forks. So, what does it mean?

In colliders, A and C are unconditionally independent. Formally speaking, this can be represented
as follows:

 A ⫫ C

When we control for B , they become dependent! Formally represented as follows:

 A ⫫̸ C |B

In the preceding formula, the slashed ⫫̸ symbol reads is dependent. As you can see, this pattern is
exactly the reverse of the one that we’ve seen for chains and forks!

And this time that’s great news!

Chains, forks, and colliders or…immoralities 83

We can leverage the collider structure to unambiguously orient edges in a graph every time we see it
(there might be some challenges to this, but we skip them for now). Moreover, if we’re lucky, colliders can
help us orient ambiguous edges coming from chains and forks. We’ll see an example of such behavior in
Part 3, Causal Discovery.

To extend our series of driving examples, let’s think about llamas on the road and driving against the
sun. I think that most people would agree it’s reasonable to say that whether you drive against the sun
is independent of whether there’s a llama on the road.

Now, let’s assume that your detector reacts with some probability to the sun reflexes as if there was
an obstacle on the road.

In this case, whether there’s a llama on the road becomes (negatively) correlated with whether you
drive against the sun if you only control for the detector reaction.

Figure 5.7 symbolically demonstrates the loss of independence between the two when we control for
the detector state:

Figure 5.7 – A visual representation of independence structures in the collider example

The loss of independence between two variables, when we control for the collider, sounds surprising
to many people at first. It was also my experience.

I found that for many people, examples involving real-world objects (even if these objects are llamas)
bring more confusion than clarity when it comes to colliders.

Let’s build a slightly more abstract yet very simple example to make sure that we clarify any confusion
you might still have.

Forks, Chains, and Immoralities84

Take a look at Figure 5.6 once again to refresh the graphical representation of the problem.

Now, let’s imagine that both A and C randomly generate integers between 1 and 3. Let’s also say that B
is a sum of A and C . Now, let’s take a look at values of A and C when the value of B = 4 . The following
are the combinations of A and C that lead to B = 4 :

• A = 1, C = 3

• A = 2, C = 2

• A = 3, C = 1

Can you see the pattern? Although A and C are unconditionally independent (there’s no correlation
between them as they randomly and independently generate integers), they become correlated when
we observe B ! The reason for this is that when we hold B constant and the value of A increases, the
value of C has to decrease if we want to keep the value of B constant.

If you want to make it more visual, you can think about two identical glasses of water. If you randomly
pour some water from one glass to the other, the total amount of water in both glasses will remain the
same (assuming that we don’t spill anything). If you repeat this n times and measure the amount of water
in both glasses at each stage, the amount of water between the glasses will become negatively correlated.

I hope that this example will help you cement your intuition about colliders’ conditional
independence properties.

Thanks to the unique properties of colliders, they can be immensely helpful when we’re trying to recover
graph structures from observational data. Moreover, we can sometimes use colliders to disambiguate
neighboring structures (we’ll see an example of this in Part 3, Causal Discovery).

Unfortunately, this is not always the case. Let’s discuss these scenarios now.

Ambiguous cases

As we’ve seen earlier, various graphical configurations might lead to the same statistical independence
structure. In some cases, we might get lucky and have enough colliders in the graph to make up for
it. In reality, though, we might often not be that fortunate.

Does this mean that the discussion we have had so far leads us to the conclusion that, in many cases,
we simply cannot recover the graph from the data?

That’s not entirely true. Even in cases where some edges cannot be oriented using constraint-based
methods, we can still obtain some useful information!

Let’s introduce the concept of the Markov equivalence class (MEC). A set of DAGs, 𝒟 = { G 0 (V, E 0)
, … , G n (V, E n) } , is Markov equivalent if and only if all DAGs in 𝒟 have the same skeleton and the
same set of colliders (Verma & Pearl, 1991).

Forks, chains, colliders, and regression 85

A skeleton is basically an undirected version of a DAG – all the edges are in place, but we have no
information on the arrows. If we add the edges for all the collider structures that we’ve found, we will
obtain a complete partially-directed acyclic graph (CPDAG).

If we take the CPDAG and generate a set of all possible DAGs from it, we’ll obtain a MEC. MECs can
be pretty useful. Even if we cannot recover a full DAG, a MEC can significantly reduce our uncertainty
about the causal structure for a given dataset.

Before we conclude this section, let’s take a look at Figure 5.8, which presents a simple MEC:

Figure 5.8 – An example of a MEC

The graphs in Figure 5.8 have the same set of edges. If we removed the arrows and left the edges
undirected, we would obtain two identical graphs, which is an indicator that both graphs have the
same skeleton.

The collider (A → B ← C) is present in both graphs. The only difference between the two graphs
is the direction of the edge between nodes A and C . We can conclude that – consistently with our
definition – the graphs in Figure 5.8 meet the criteria for constituting a MEC.

Great!

Now, having a solid understanding of the three basic conditional independence structures – chains,
forks, and colliders – we’re ready to put this knowledge into action!

Forks, chains, colliders, and regression
In this section, we will see how the properties of chains, forks, and colliders manifest themselves in
regression analysis. The very type of analysis that we’ll conduct in this section is actually at the heart
of some of the most classic methods of causal inference and causal discovery that we’ll be working
with in the next two parts of this book.

Forks, Chains, and Immoralities86

What we’re going to do now is to generate three datasets, each with three variables, A , B , and C . Each
dataset will be based on a graph representing one of the three structures: a chain, a fork, or a collider.
Next, we’ll fit one regression model per dataset, regressing C on the remaining two variables, and analyze
the results. On the way, we’ll plot pairwise scatterplots for each dataset to strengthen our intuitive
understanding of a link between graphical structures, statistical models, and visual data representations.

Let’s start with graphs. Figure 5.9 presents chain, fork, and collider structures:

Figure 5.9 – Graphical representations of chain, fork, and collider structures

We will use the graphs from Figure 5.9 to guide our data-generating process. Note that we omitted
the noise variables for clarity of presentation.

The code for this section can be found in the Chapter_05.ipynb notebook (https://bit.
ly/causal-ntbk-05).

First, let’s define the general parameters:

NOISE_LEVEL = .2
N_SAMPLES = 1000

NOISE_LEVEL will determine the standard deviation of noise variables in our datasets. N_SAMPLES
simply determines the sample size.

https://bit.ly/causal-ntbk-05
https://bit.ly/causal-ntbk-05

Forks, chains, colliders, and regression 87

Generating the chain dataset

Now, we’re ready to generate the data for the chain structure:

a = np.random.randn(N_SAMPLES)
b = a + NOISE_LEVEL*np.random.randn(N_SAMPLES)
c = b + NOISE_LEVEL*np.random.randn(N_SAMPLES)

Our code follows the logic of a chain-structured graph – A directly influences B (but not C) and B
influences C (but not A). C does not have any further influence.

Let’s plot pairwise scatterplots for this dataset. We present them in Figure 5.10:

Figure 5.10 – Pairwise scatterplots for the dataset generated according to a chain-structured graph

Forks, Chains, and Immoralities88

We can see that all the scatterplots in Figure 5.10 are very similar. The pattern is virtually identical for
each pair of variables, and the correlation is consistently pretty strong. This reflects the characteristics
of our data-generating process, which is linear and only slightly noisy.

How to read scatterplots
Scatterplots are a popular way to visualize bivariate data. Visual examination can help us
quickly assess what kind of relationship (if any) exists between variables. A plot in this box
shows us five different scatterplots with varying strengths of relationships between variables.
In the leftmost panel, we see an almost perfect positive correlation (Pearson’s r = 0.99), in the
middle panel, there’s virtually no relation between the variables. In the rightmost panel, there
is an almost perfect negative correlation (Pearson’s r = -0.99)

Note that the correlation metric that we used – Pearson’s r – can only capture linear relationships
between two variables. Metrics for non-linear relationships are also available, but we won’t
discuss them here.

Generating the fork dataset

Now, let’s do the same for the fork structure. We’ll start with generating the data:

b = np.random.randn(N_SAMPLES)
a = b + NOISE_LEVEL*np.random.randn(N_SAMPLES)
c = b + NOISE_LEVEL*np.random.randn(N_SAMPLES)

In Figure 5.11, we can see pairwise scatterplots for the fork. What’s your impression? Do they look
similar to the ones in Figure 5.10?

Forks, chains, colliders, and regression 89

Figure 5.11 – Pairwise scatterplots for the dataset generated according to a fork-structured graph

Both figures (Figure 5.10 and Figure 5.11) might differ in detail (note that we generate independent
noise variables for each dataset), but the overall pattern seems very similar between the chain and
fork datasets.

That’s an interesting observation! What do you expect to see for colliders?

Let’s see!

Generating the collider dataset

Let’s start with the data:

a = np.random.randn(N_SAMPLES)
c = np.random.randn(N_SAMPLES)
b = a + c + NOISE_LEVEL*np.random.randn(N_SAMPLES)

Forks, Chains, and Immoralities90

Figure 5.12 presents pairwise scatterplots for the collider dataset:

Figure 5.12 – Pairwise scatterplots for the dataset generated according to a collider-structured graph

This time the pattern is pretty different! Relationships between a and b (top left) and b and c (bottom
left) seem to be noisier. Moreover, it seems there’s no correlation between A and C (top right). Note
that this result is congruent with what we said about the nature of colliders earlier in this chapter.
Additionally, when we take a look at the data-generating process, this shouldn’t be very surprising
because the data generating process renders A and C entirely independent, evidence for, which you
can also see in the code.

Fitting the regression models

Now, let’s take all three datasets we generated and model them using multiple linear regression.

In each case, we’ll regress C on A and B . We’ll use statsmodels to fit the regression models. The
code for each of the three models is identical:

X = pd.DataFrame(np.vstack([a, b]).T, columns=['A', 'B'])
X = sm.add_constant(X, prepend=True)
model = sm.OLS(c, X)
results = model.fit()

Forks, chains, colliders, and regression 91

In the first line, we create a pandas dataframe using NumPy arrays containing our predictors (A and B).
This will make statsmodels automatically assign the correct variable names in the model summary.

After fitting the models (for the full flow, check out the code in the notebook (https://bit.ly/
causal-ntbk-05)), we’re ready to print the model summaries and compare the results.

Figure 5.13 provides us with a compact summary of all three models. We used yellow and red ellipses
to mark the p-values for each of the models:

Figure 5.13 – The results of regression analysis of three basic conditional independence structures

In Figure 5.13, there are three rows printed out for each model. The top row is marked as const,
and we’ll ignore it. The remaining two rows are marked with A and B, which denote our variables, A
and B , respectively.

For the sake of our analysis, we’ll use the customary threshold of 0.05 for p-values. We’ll say that
p-values greater than 0.05 indicate a non-significant result (no influence above the noise level), and
p-values lower than or equal to 0.05 indicate a significant result.

We can see that for the chain model, only one predictor (B) is significant.

Why is that?

We’ve seen a clear linear relationship between A and C in Figure 5.10. It turns out that these two
observations are consistent. Multiple linear regression computes the effects of predictors on the
expected value of the dependent variable, given all other variables.

It means that we no longer look at pairwise relationships (such as in the scatterplots earlier in this
section) but rather at conditional pairwise relationships. The result of the regression analysis is also
congruent with the intuition that we’ve built in the example at the beginning of this chapter.

https://bit.ly/causal-ntbk-05
https://bit.ly/causal-ntbk-05

Forks, Chains, and Immoralities92

When we look at the results for the fork, we see the same pattern.

Again, only one predictor is significant, and again it turns out to be B . The logic behind the difference
between the pairwise scatterplot and regression result is virtually identical to the one that we just
discussed for the chain.

The model for the collider gives us a different pattern. For this model, both A and B are significant
predictors of C . If you now take a look at Figure 5.12 again, you can clearly see that there’s no relationship
between A and C .

This non-existing relationship between A and C is the essence of spurious relationships! They are
an artifact, but – interestingly – this artifact is not only a side-effect of the method we used, and you
can observe them in real life!

Spurious relationships in real life
Many companies might hire people based on their skills and their personality traits. Imagine
that company X quantifies a person’s coding skills on a scale from one to five. They do the
same for the candidate’s ability to cooperate and hire everyone who gets a total score of at least
seven. Assuming that coding skills and ability to cooperate are independent in the population
(which doesn’t have to be true in reality), you’ll observe that in company X, people who are
better coders are less likely to cooperate on average, and those who are more likely to cooperate
have fewer coding skills. You could conclude that being non-cooperative is related to being
a better coder, yet this conclusion would be incorrect in the general population. To see why
this happens, recall the water glasses example from the Colliders, immoralities, or v-structures
section and think of coding skills and cooperativeness as water. Controlling for the hiring status
is like keeping the total amount of water (coding skills + cooperation skills) constant. Pouring
some water from one glass (e.g., coding skills glass) into another (cooperativeness glass) makes
them negatively correlated when controlling for the hiring status (the total amount of water).

Before we conclude this section, I want to ask you to recall our discussion on statistical control from
Chapter 3, and think again about the question that we asked in one of the sections – should we always
control for all the available variables? – knowing what we’ve learned in this chapter.

We will see how to methodologically address the to-control-or-not-to-control question in the next chapter.

In this section, we saw how the properties of chains, forks, and colliders manifest themselves in the
realm of statistical analysis. We examined pairwise relationships between variables and compared
them to conditional relationships that we observed as a result of multiple regression analysis. Finally,
we deepened our understanding of confounding.

Wrapping it up 93

Wrapping it up
This chapter introduced us to the three basic conditional independence structures – chains, forks,
and colliders (the latter also known as immoralities or v-structures). We studied the properties of
these structures and demonstrated that colliders have unique properties that make constraint-based
causal discovery possible. We discussed how to deal with cases when it’s impossible to orient all the
edges in a graph and introduced the concept of MECs. Finally, we got our hands dirty with coding the
examples of all the structures and analyzed their statistical properties using multiple linear regression.

This chapter concludes the first, introductory part of this book. The next chapter starts on the other
side, in the fascinating land of causal inference. We’ll go beyond simple linear cases and see a whole
new zoo of models.

Ready?

References
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Everington, K. (2020, Jun 2). Video shows Tesla on autopilot slam into truck on Taiwan highway. Taiwan
News. https://www.taiwannews.com.tw/en/news/3943199.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.

Neal, B. (2020, December, 17). Introduction to Causal Inference from a Machine Learning Perspective
[Lecture notes]. https://www.bradyneal.com/Introduction_to_Causal_Inference-
Dec17_2020-Neal.pdf.

Pearl, J. (2009). Causality. Cambridge, UK: Cambridge University Press.

Peters, J., Janzing, D. & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Pearl, J., & Mackenzie, D. (2019). The Book of Why. Penguin Books.

Scheines, R. (1996). An introduction to causal inference. [Manuscript]

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search. MIT Press.

Uhler, C., Raskutti, G., & Bühlmann, P., & Yu, B. (2013). Geometry of the faithfulness assumption in
causal inference. The Annals of Statistics, 436-463.

Verma, T., & Pearl, J. (1991). Equivalence and synthesis of causal models. UCLA.

https://www.taiwannews.com.tw/en/news/3943199
https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf

Part 2:
Causal Inference

In the first chapter of Part 2, we will deepen and strengthen our understanding of the important
properties of graphical models and their connections to statistical quantities.

In Chapter 7, we’ll introduce the four-step process of causal inference that will help us translate what
we’ve learned so far into code in a structured manner.

In Chapter 8, we’ll take a deeper look at important causal inference assumptions, which are critical
to run unbiased causal analysis.

In the last two chapters, we’ll introduce a number of causal estimators that will allow us to estimate
average and individualized causal effects.

This part comprises the following chapters:

• Chapter 6, Nodes, Edges, and Statistical (In)dependence

• Chapter 7, The Four-Step Process of Causal Inference

• Chapter 8, Causal Models – Assumptions and Challenges

• Chapter 9, Causal Inference and Machine Learning – from Matching to Meta-Learners

• Chapter 10, Causal Inference and Machine Learning – Advanced Estimators, Experiments,
Evaluations, and More

• Chapter 11, Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond

6
Nodes, Edges, and

Statistical (In)dependence

Welcome to Part 2 of our book! Congratulations on getting this far!

In this part, we’ll dive into the world of causal inference. We’ll combine all the knowledge that we’ve
gained so far and start building on top of it. This chapter will introduce us to two powerful concepts
– d-separation and estimands.

Combining these two concepts with what we’ve learned so far will equip us with a flexible toolkit to
compute causal effects.

Further down the road, we’ll discuss back-door and front-door criteria – two powerful methods to
identify causal effects – and introduce a more general notion of Judea Pearl’s do-calculus. Finally,
we’ll present instrumental variables – a family of techniques broadly applied in econometrics,
epidemiology, and social sciences.

After reading this chapter and working through the exercises, you will be able to take a simple dataset
and – assuming that the data meets necessary assumptions – compute causal effect estimates yourself.

In this chapter, we will cover the following topics:

• The notion of d-separation

• The notion of an estimand

• Back-door and front-door criteria

• Do-calculus

• Instrumental variables

Ready? Let’s go!

Nodes, Edges, and Statistical (In)dependence98

You’re gonna keep ‘em d-separated
In the previous chapter, we learned that colliders have a unique conditional independence pattern
that sets them apart from chains and forks. The idea of d -separation builds on these properties. In
general, we say that two nodes in a directed acyclic graph (DAG) G are d -separated when all paths
between them are blocked. When is a path between two nodes blocked?

A simple answer is when there’s a collider on a path between them or if there’s a fork or a chain that
contains another variable that we control for (or a descendant of such a variable).

Let’s formalize this definition and make it a little bit more general at the same time. Instead of talking
about blocking a path between two nodes with another node, we will talk about paths between sets of
nodes blocked by another set of nodes. We will denote sets of nodes with capital cursive script letters,
𝒳 , 𝒴 , and 𝒵 .

Thinking in terms of sets of nodes rather than single nodes is useful when we work with scenarios
with multiple predictors and/or multiple confounders. If you prefer thinking in terms of single nodes
X, Y, and Z, imagine these nodes as a single-element set, and the same definition will work for you!

Let’s go!

For any three disjoint sets of nodes 𝒳 , 𝒴, and 𝒵 , a path between 𝒳 and 𝒴 is blocked by 𝒵 in the
following scenarios:

• If there’s a fork, i ← j → k, or a chain, i → j → k, in this path such that the middle node is j ∈ 𝒵

• If there’s a collider, i → j ← k, on this path such that neither j nor any of its descendants belong
to 𝒵 (Pearl, 2009)

In other words, if there’s a chain or fork between 𝒳 and 𝒴 , we need to control for the middle node to
close the path between 𝒳 and 𝒴 . If there’s a collider between 𝒳 and 𝒴 , we should leave it uncontrolled
altogether with all its descendants. That’s it!

Information flow in a graph
Note, that sometimes, when talking about d-separation, we might refer to information flow
in a graph. An important thing to remember is that this information flow is non-directional.
This lack of directionality is closely related to the notions of correlation and confounding.
D-separation allows us to control the information flow in the graph. We’ll learn more about
this topic in the next section.

Now, let’s do some practice!

You’re gonna keep ‘em d-separated 99

Practice makes perfect – d-separation

When learning a new concept, a good intellectual understanding is often necessary, but it’s practicing
that makes us retain knowledge in the long term. To strengthen our understanding of d -separation,
let’s play a game. We’ll call it Keep ‘em d -separated.

I’ll generate five graphs of increasing complexity for you and ask you to indicate which nodes we need
to observe (or control for) to d -separate X and Y . In other words, your task is to decide which nodes
should become the members of the set 𝒵 in order for X and Y to be d -separated. You will find the
correct answers at the end of this section.

Figure 6.1 presents our two first examples:

Figure 6.1 – The first two DAGs in the Keep ‘em d-separated game

Which nodes of DAGs a and b from Figure 6.1 should be observed in order to make the X and Y nodes
d-separated? I encourage you to write your answers down on a piece of paper and then compare them
with the answers at the end of the chapter.

OK, let’s add some more complexity! Figure 6.2 presents the third DAG in our game:

Figure 6.2 – DAG number 3 in our Keep ‘em d-separated game

Got your answers?

Great, let’s make it more fun! Figure 6.3 presents the fourth example in Keep ‘em d -separated:

Figure 6.3 – DAG number 4 in our Keep ‘em d-separated game

Nodes, Edges, and Statistical (In)dependence100

DAGs similar to DAG d in Figure 6.3 are often more challenging, but I am sure you’ll find the right answer!

OK, now, it’s time for something more advanced! Figure 6.4 presents the last example in our game:

Figure 6.4 – The final DAG in the Keep ‘em d-separated game

Do you have your answers ready?

If you found some of the DAGs challenging, that’s completely natural.

I am sure that, with practice, you’ll feel more confident about them! You can find more similar DAG
games on the pgmpy web page (https://bit.ly/CausalGames).

It’s time to reveal the answers now!

Figure 6.5 contains all five DAGs for your reference.

Figure 6.5 – All DAGs from the Keep ‘em d-separated game

https://bit.ly/CausalGames

You’re gonna keep ‘em d-separated 101

Let’s start with DAG a.

DAG a is a chain. To block the path between X and Y , we need to control for B .

DAG b is a collider. This means that the path is already blocked by the middle node, and we don’t
need to do anything.

In DAG c, we can find two paths connecting X and Y :

• X → A → Y

• X → B ← Y

The first path is a chain. In order to block it, we need to control for A . The second path is a collider,
and we don’t need to do anything to block it, as it’s already blocked.

Note that you can view DAG c as a combination of DAGs a and b.

Let’s get another one. We can see that in DAG d, there are two overlapping structures:

• A collider, X → A ← B

• A fork, A ← B → Y

There are several options for how to approach DAG d:

• The simplest one is to do nothing (the collider blocks the path).

• We can also control for B – there’s no benefit to this, but it also does not harm us (except that
it increases model complexity).

• Finally, we can control for A (which will open the path) and for B , which will close the path.

If we’re only interested in estimating the effect of X on Y , most of the time, we would likely choose
the first answer as the simplest one.

Okay, let’s jump to our last friend, DAG e.

Let’s unpack it. There are essentially two paths from X to Y :

• X → A → Y

• X → B ← C → Y

We can see right away that the first path represents a chain. Controlling for A closes this path. The second
path contains a collider, so not controlling for anything keeps the path closed. Another solution is to
block for A, B, and C (note how controlling for C closes the path that we opened by controlling for B).

With this exercise, we conclude the first section of Chapter 6. Let’s review what we’ve learned.

Nodes, Edges, and Statistical (In)dependence102

We introduced the notion of d-separation. We saw that d-separation is all about blocking paths between
(sets of) nodes in a DAG. Paths in a graph can be blocked by using the fundamental logic of the tools
that we already have in our toolbox, the three basic conditional independence structures – chains,
forks, and colliders (or immoralities).

The knowledge of d-separation effectively enables us to build estimands – an essential step in the
four-step causal inference process. Let’s learn more!

Estimand first!
In this section, we’re going to introduce the notion of an estimand – an essential building block in
the causal inference process.

We live in a world of estimators

In statistical inference and machine learning, we often talk about estimates and estimators. Estimates
are basically our best guesses regarding some quantities of interest given (finite) data. Estimators are
computational devices or procedures that allow us to map between a given (finite) data sample and
an estimate of interest.

Let’s imagine you just got a new job. You’re interested in estimating how much time you’ll need to get
from your home to your new office. You decide to record your commute times over 5 days. The data
you obtain looks like this:

 [22.1, 23.7, 25.2, 20.0, 21.8]

One thing you can do is to take the arithmetic average of these numbers, which will give you the
so-called sample mean - your estimate of the true average commute time. You might feel that this is
not enough for you and you’d prefer to fit a distribution to this data rather than compute a point-wise
estimate (this approach is commonly used in Bayesian statistics).

The arithmetic mean of our data, as well as the parameters of the distribution that we might have decided
to fit to this data, are estimates. A computational device that we use to obtain estimates is an estimator.

Estimators might be as simple as computing the arithmetic mean and as complex as a 550 billion-
parameter language model. Linear regression is an estimator, and so is a neural network or a random
forest model.

So, what is an estimand?

The basic answer is that an estimand is a quantity that we’re interested in estimating. If an estimator
is the how, an estimand is the what.

Let’s get some context to understand the significance of estimands in causal inference.

Estimand first! 103

In Chapter 1, we said that confounding is a causal concept, and to discuss it, we need to go beyond
the realm of sheer data. In Chapter 4, we learned that graphical causal models can encode the causal
structure of a system that we’re modeling. In the first section of this chapter, we learned that an
important property of d-separation is that it allows us to control the flow of information in a graph.

Let’s try to stretch our thinking about confounding a bit for a minute. What does it mean that a
relationship between two variables is confounded?

Can you recall the example from the first chapter (ice cream, drownings, and temperature, presented
in Figure 1.1)? You can use Figure 6.6 as a quick refresher:

Figure 6.6 – A graphical representation of the problem from Chapter 1 (Figure 1.1)

In this example, we perceived ice cream sales (ICE) and the number of accidents with drownings
(ACC) as related although, actually, they were not (causally) related. We said that this relationship
was spurious.

We can think of this type of relationship as a result of the unconstrained (undirected) flow of information
in the graph. This is great news because now we have a d-separation that can help us constrain this flow
and – as a consequence – deconfound the relationship between the variables that we’re interested in.

Getting back to our example from the first chapter, we could naively choose to define our model as
the following:

 ACC ~ ICE

Let’s translate this model syntax to mathematical notation.

What we want to estimate is the causal effect of ICE on ACC . In other words, we want to understand
what the change would be in ACC if we intervened on ICE . Therefore, the quantity we’re interested in
is the following (for the sake of simplicity, we will assume that all our variables are discrete):

 P (ACC = acc | do (ICE = ice))

If we used our naïve model, our estimand would look like this:

 P (ACC = acc | do (ICE = ice)) = P (ACC = acc | ICE = ice)

Nodes, Edges, and Statistical (In)dependence104

We already know that this is incorrect in our case. We know that the relationship between ACC and
ICE is spurious! To get the correct estimate of the causal effect of ICE on ACC , we need to control for
temperature (TMP). The correct way to model our problem is, therefore, the following:

 ACC ~ ICE + TMP

This translates to the following:

 P (ACC = acc | do (ICE = ice)) = ∑
tmp

 P (ACC = acc | ICE = ice, TMP = tmp) P (TMP = tmp)

To make it a bit more readable, we can simplify the notation:

 P (ACC | do (ICE)) = ∑
tmp

 P (ACC | ICE, TMP) P (TMP)

This formula is an example of the so-called causal effect rule, which states that given a graph, G , and
a set of variables, Pa , that are (causal) parents of X , the causal effect of X on Y is given by the following
(Pearl, Glymour, and Jewell, 2016):

 P (Y = y | do (X = x)) = ∑
z
 P (Y = y | X = x, Pa = z) P (Pa = z)

Note that what we’re doing in our example is congruent with point 1 in our definition of d-separation
– if there’s a fork between the two variables, X and Y , we need to control for the middle node in this
fork in to order block a path between X and Y .

In our example, TMP is the middle node in the fork between ICE and ACC , and so controlling for it
blocks the non-causal path between ICE and ACC . This is how we obtain a correct estimand for our
model (sometimes, there might be more than one correct estimand per model).

All that we’ve done so far in this section has one essential goal – to find an estimand that allows us to
compute unbiased causal effects from observational data. Although it won’t be always possible, it will
be possible sometimes. And sometimes, it can bring us tremendous benefits.

Let’s summarize this section.

In this section, we learned what estimands are and how they are different from estimators and
estimates. We built a correct estimand for our ice cream example from the first chapter and showed
how this estimand is related to a more general causal effect rule. Finally, we discussed the links between
estimands, d-separation, and confounding.

In the following sections, we’ll focus on techniques that allow us to obtain causal estimands, given
complete or partially complete graphs.

The back-door criterion
The back-door criterion is most likely the best-known technique to find causal estimands given a
graph. And the best part is that you already know it!

The back-door criterion 105

In this section, we’re going to learn how the back-door criterion works. We’ll study its logic and learn
about its limitations. This knowledge will allow us to find good causal estimands in a broad class of
cases. Let’s start!

What is the back-door criterion?

The back-door criterion aims at blocking spurious paths between our treatment and outcome nodes.
At the same time, we want to make sure that we leave all directed paths unaltered and are careful not
to create new spurious paths.

Formally speaking, a set of variables, 𝒵 , satisfies the back-door criterion, given a graph G , and a pair
of variables, if no node in 𝒵 is a descendant of X , and 𝒵 blocks all the paths between X and Y that
contain an arrow into X (Pearl, Glymour, and Jewell, 2016).

In the preceding definition, X → … → Y means that there is a directed path from X to Y . This path
might be direct or pass through other nodes.

You can see that when we looked for the estimand in our ice cream example, we did precisely this – we
blocked all the paths between ICE and ACC that contained an arrow into ICE . TMP is not a descendant
of ICE , so we also met the second condition. Finally, we haven’t opened any new spurious paths
(in our very simple graph, there was not even the opportunity to do so).

Back-door and equivalent estimands

Let’s consider the graph in Figure 6.7:

Figure 6.7 – A graph with a confounding pattern

Given the model presented in Figure 6.7, which nodes should we control for in order to estimate the
causal effect of X on Y ?

Nodes, Edges, and Statistical (In)dependence106

According to our definition of the back-door criterion, we need to block all the paths that have an
arrow into X . We should not control for any descendants of X nor open any new paths. We can fulfill
these conditions in three different ways:

• Controlling for A

• Controlling for B

• Controlling for both – A and B

They will all provide us with different but equivalent estimands. In particular, the following equality
is true for our model (again, assuming discrete variables for simplicity):

 P (Y = y | do (X = x)) = ∑
a
 P (Y = y | X = x, A = a) P(A = a) = ∑

b
 P (Y = y | X = x, B = b) P (B = b)

This equality opens a very interesting possibility to us (note that we omitted the third case (controlling
for A and B) in the equality for the sake of readability).

If it is sufficient to only control for one of the variables (A or B) to obtain a correct estimand for X → Y ,
we can essentially estimate the causal effect of X on Y even if one of the variables remains unobserved!

Equivalent estimands versus equal estimates
Although for certain models we might find two or more equivalent estimands, estimates
computed based on these (equivalent) estimands might differ slightly. This is natural in a finite
sample size regime. Nonetheless, if your sample size is big enough, the differences should be
negligible. Big differences might suggest an erroneous estimand, a lack of model convergence,
or errors in the model code.

Let’s consider a modified model from Figure 6.7, where one of the variables is unobserved. Figure 6.8
presents this model:

Figure 6.8 – A graph with a confounding pattern and one unobserved variable

The front-door criterion 107

The node A and two edges (A → B and A → X) marked with dashed lines are all unobserved, yet we
assume that the overall causal structure is known (including the two unobserved edges).

In other words, we don’t know anything about A or what the functional form of A ’s influence on X
or B is. At the same time, we assume that A exists and has no other edges than the one presented in
Figure 6.8.

A refresher on the do-operator
The do-operator informs us that we’re working with interventional rather than observational
distribution. In certain cases, interventional and observational distributions might be the same.
For instance, if your true causal graph has a form of X → Y , then P (Y = y | do (X = x)) = P
(Y = y| X = x) , yet whenever confounding appears, we need to adjust for the confounders’
effects by controlling for additional variables in the right-hand side of the equation.

Our estimand for the model presented in Figure 6.8 would be identical to the second estimand for
the fully observed model:

 P (Y = y | do (X = x)) = ∑
b
 P (Y = y | X = x, B = b) P(B = b)

That’s powerful! Imagine that recording A is the most expensive part of your data collection process.
Now, understanding the back-door criterion, you can essentially just skip recording this variable!
How cool is that?

One thing we need to remember is that to keep this estimand valid, we need to be sure that the overall
causal structure holds. If we changed the structure a bit by adding a direct edge from A to Y , the
preceding estimand would lose its validity.

That said, if we completely removed A and all its edges from the model, our estimand would still hold.
Can you explain why? (Check the Answers section at the end of the chapter for the correct answer.)

Let’s summarize.

In this section, we learned about the back-door criterion and how it can help us build valid causal
estimands. We saw that, in some cases, we might be able to build more than one valid estimand for
a single model. We also demonstrated that the back-door criterion can be helpful in certain cases of
unobserved confounding.

Although the back-door criterion is powerful, it has its limitations.

The front-door criterion
In this section, we’re going to discuss the front-door criterion – a device that allows us to obtain valid
causal estimands in (some) cases where the back-door criterion fails.

Nodes, Edges, and Statistical (In)dependence108

Can GPS lead us astray?

In their 2020 study, Louisa Dahmani and Véronique Bohbot from McGill University showed that there’s
a link between GPS usage and spatial memory decline (Dahmani and Bohbot, 2020). Moreover, the
effect is dose-dependent, which means that the more you use GPS, the more spatial memory decline
you experience.

The authors argue that their results suggest a causal link between GPS usage and spatial memory
decline. We already know that something that looks connected does not necessarily have to be
connected in reality.

The authors also know this, so they decided to add a longitudinal component to their design. This
means that they observed people over a period of time, and they noticed that those participants who
used more GPS had a greater decline in their memory.

Imagine that you decide to discuss this study with your colleague Susan. The time component seems
promising to you, but Susan is somehow critical about the results and interpretation and proposes
another hypothesis – the link between GPS usage and spatial memory decline is purely spurious.

They seem related – argues Susan – because there’s a common cause for using GPS and memory decline
– low global motivation (Pelletier et al., 2007). Susan argues that people with low global motivation are
reluctant to learn new things (so they are not interested in remembering new information, including
spatial information) and they try to avoid effort (hence, they prefer to use GPS more often, as it allows
them to avoid the effortful process of decision-making while driving).

She also claims that low global motivation tends to expand – unmotivated people look for solutions
that can take the burden of doing stuff from them, and if these solutions work, they use them more
often. They are also less and less interested in learning new things with age.

Inspired by Susan’s proposition, you search through studies on the effects of GPS on spatial memory,
but you cannot find one that would control for global motivation. The situation seems hopeless – if
global motivation is a confounder, it’s an unobserved one, and so, we cannot use the back-door criterion
to deconfound the relationship between GPS usage and spatial memory decline.

Let’s encode Susan’s model graphically alongside the model containing both hypotheses (motivation
and GPS usage). Figure 6.9 presents both models:

Figure 6.9 – A model presenting Susan’s hypothesis (a) and the “full” hypothesis (b)

The front-door criterion 109

As we can see, none of the two models can be deconfounded because the confounder is unobserved
(dashed lines).

In such a case, the back-door criterion cannot help us, but there’s another criterion we could possibly
use that relies on the concept of mediation. This would require us to find a variable that mediates the
relationship between GPS usage and memory decline.

Let’s look for one!

Mediators and mediation
We can say that the influence of one variable (X) on another (Y) is mediated by a third variable,
Z (or a set of variables, 𝒵), when at least one path from X to Y goes through Z . We can say
that Z fully mediates the relationship between X and Y when the only path from X to Y goes
through Z . If there are paths from X to Y that do not pass through Z , the mediation is partial.

London cabbies and the magic pebble

In their famous 2000 study of London cab drivers, Eleanor A. Maguire and her colleagues from
University College London demonstrated that experience as a taxi driver is related to hippocampus’s
volume (Maguire et al., 2000). The hippocampus is a pebble-sized (40-55 mm) brain structure,
responsible for creating new memories – in particular, spatial memories (O’Keefe and Nadel, 1978).

London cab drivers need to pass a very restrictive exam checking their spatial knowledge and are not
allowed to use any external aids in the process.

The exam is preceded by an extensive training period, which typically takes between 3 and 4 years.
The drivers are required to memorize and be able to navigate over “26,000 streets and thousands of
points of interest in London” (Griesbauer et al., 2021).

One study (Woollett and Maguire, 2011) showed that drivers who failed this exam did not show
an increase in hippocampal volume. At the same time, in those who passed the exam, a systematic
increase in hippocampal volume was observed. During the continuing training over a 4-year period,
hippocampal volume was associated with an improvement in spatial memory (only in those who
were in continuous training).

Let’s try to incorporate these results into our model. We’ll hypothesize that GPS usage negatively
impacts the relative volume of the hippocampus, which in turn impacts spatial memory. Figure 6.10
presents the updated model:

Nodes, Edges, and Statistical (In)dependence110

Figure 6.10 – An updated model, including hippocampal volume as a mediator

In our new hypothetical model, we assume that hippocampal volume fully mediates the effects of GPS
usage on a decline in spatial memory.

The second important assumption we make is that motivation can only affect hippocampal volume
indirectly through GPS usage. This assumption is critical in order to make the criterion that we’re going
to introduce next – the front-door criterion – useful to us.

If motivation would be able to influence hippocampal volume directly, front-door would be of no help.
Luckily enough, the assumption that motivation cannot directly change the volume of the hippocampus
seems reasonable (though perhaps you could argue against it!).

Opening the front door

The front-door criterion is an example of a divide-and-conquer strategy. It divides a graph into two
parts, uses relatively simple rules to determine the causal effects in these sub-parts, and combines
them together again.

Let’s see it step by step.

To make the notation more readable, we’ll replace variable names with symbols. Figure 6.11 presents
the graph with updated variable names:

Figure 6.11 – A model with updated variable names

The front-door criterion 111

First, let’s take a look at the relationship between X and Z . There’s one back-door path between them,
X ← U → Y ← Z , but it’s already blocked. Can you see how?

There’s a collider, U → Y ← Z , that blocks the flow of the information. Therefore, we can identify the
causal effect of X on Z in the following way:

 P (Z = z | do (X = x)) = P (Z = z | X = x)

That’s great!

How about the effect of Z on Y ?

There’s one open back-door path, Z ← X ← U → Y . There’s no collider on this path and U is unobserved,
so we cannot control for it. Fortunately, we can control for the other variable, X . A valid estimand of
the causal effect of Z on Y is, therefore, the following:

 P (Y = y | do (Z = z)) = ∑
x
 P (Y = y | Z = z, X = x) P(X = x)

That’s pretty awesome! We just blocked the back-door path from Z to Y by simply controlling for X .
Now, we’re ready to combine both estimands back together:

 P (Y = y | do (X = x)) = ∑
z
 P (Y = y | do (Z = z)) P (Z = z | do (X = x))

Now, let’s drop do-operators from the right-hand side by substituting them according to the preceding
equalities. This leads us to the following:

 P (Y = y | do (X = x)) = ∑
z
 P (Z = z | X = x) ∑

x′
 P (Y = y | X = x ′ , Z = z) P (X = x′)

This formula is called the front-door formula (Pearl et al., 2016) or front-door adjustment.

It might look a little discouraging, perhaps because of the cryptic x′ in the index of the second sum.
We need this unfriendly x′ because we’re combining two different formulas, and we want to hold X
from one formula constant when we’re iterating over (the same) X from the other formula.

You can think about it as seeing X from two different angles or – perhaps – as X being in two different
places at the same time (I guess in sci-fi movies they usually call it bilocation).

Three simple steps toward the front door

In general, we can say that a set of variables, 𝒵 , satisfies the front-door criterion, given the graph, G,
and a pair of variables, X → … → Y , if the following applies (Pearl et al., 2016):

• 𝒵 intercepts all directed paths from X to Y

• There are no open back-door paths from X to 𝒵

• All back-door paths from 𝒵 to Y are blocked by X

Nodes, Edges, and Statistical (In)dependence112

Front-door in practice

Let’s implement a hypothetical model of our GPS example. You can find the code for this chapter in
the following notebook: https://bit.ly/causal-ntbk-06.

First, let’s define a structural causal model (SCM) that will generate hypothetical data for us. We’re
going to implement it as a Python class, similar to what we did in Chapter 2. Let’s start with the imports:

import numpy as np
import pandas as pd
from scipy import stats
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')

We import basic scientific packages. Note that this time we did not import Statsmodels’ (Seabold and
Perktold, 2010) linear regression module but, rather, the implementation from Scikit-learn (Pedregosa
et al., 2011).

We did this on purpose to leverage the simple and intuitive interface that Scikit-learn offers. At the
same time, we’ll be less interested in the well-formatted output of the model results – a great feature
of Statsmodels.

Perfect! Let’s define our SCM!

class GPSMemorySCM:

 def __init__(self, random_seed=None):
 self.random_seed = random_seed
 self.u_x = stats.truncnorm(0, np.infty, scale=5)
 self.u_y = stats.norm(scale=2)
 self.u_z = stats.norm(scale=2)
 self.u = stats.truncnorm(0, np.infty, scale=4)

In the .init() method, we define the distributions for all the exogenous variables in the model
(we omitted them for readability in the preceding figures). We use a truncated normal distribution
for u_x and u to restrict them to positive values and normal distribution for u_y and u_z

For clarity, you might want to take a look at Figure 6.12, which shows our full graphical model with
exogenous variables:

https://bit.ly/causal-ntbk-06

The front-door criterion 113

Figure 6.12 – A full model with exogenous variables

Next, we define the .sample() method.

Calling this method will return an observational distribution from our system. Note that all the
coefficients are hypothetical and not based on actual research:

 def sample(self, sample_size=100, treatment_value=None):
 """Samples from the SCM"""
 if self.random_seed:
 np.random.seed(self.random_seed)

 u_x = self.u_x.rvs(sample_size)
 u_y = self.u_y.rvs(sample_size)
 u_z = self.u_z.rvs(sample_size)
 u = self.u.rvs(sample_size)

 if treatment_value:
 gps = np.array([treatment_value]*sample_size)
 else:
 gps = u_x + 0.7*u

 hippocampus = -0.6*gps + 0.25*u_z
 memory = 0.7*hippocampus + 0.25*u

 return gps, hippocampus, memory

Nodes, Edges, and Statistical (In)dependence114

First, we fix the random seed if a user provided a value for it.

Next, we sample exogenous variables.

Finally, we compute the values of the three observed variables in our model, gps, hippocampus, and
memory, which represent GPS usage, hippocampal volume, and spatial memory change respectively.

You might have noticed that there’s an additional if statement that checks for treatment_value.
It allows us to generate interventional distribution from the model if a value for treatment_value
is provided.

The last method in our SCM implementation is .intervene(). It’s a syntactic sugar wrapper around
.sample(). The .intervene() method returns an interventional distribution from our model:

 def intervene(self, treatment_value, sample_size=100):
 """Intervenes on the SCM"""
 return self.sample(treatment_value=treatment_value, sample_
size=sample_size)

Its purpose is to make the code cleaner and our process more explicit.

Note that passing either None or 0 as a treatment value will result in a special case of null intervention,
and the outcome will be identical to the observational sample.

Great! Let’s instantiate the model and generate some observational data:

scm = GPSMemorySCM()
gps_obs, hippocampus_obs, memory_obs = scm.sample(600)

Generating observational data is as simple as calling the .sample() method.

Next, let’s run an experiment. We will use a range of treatments from 1 to 20 units of GPS usage:

treatments = []
experiment_results = []

Sample over a range of treatments
for treatment in np.arange(1, 21):
 gps_hours, hippocampus, memory = scm.intervene(treatment_
value=treatment, sample_size=30)
 experiment_results.append(memory)
 treatments.append(gps_hours)

For each treatment value, we sample 30 observations. We store treatment values and outcome values
in the treatments and experiment_results lists respectively.

Figure 6.13 presents the relationship between GPS usage and spatial memory change in observational
and interventional samples:

The front-door criterion 115

Figure 6.13 – Scatterplots of GPS usage versus spatial memory change

As you can see, the distributions in the scatterplots differ.

Let’s fit two linear regression models – one on the observational data and one on the interventional
data – and compare the results. What results do you expect?

Let’s check your guess!

First, let’s instantiate two regression models and train them:

lr_naive = LinearRegression()
lr_naive.fit(
 X=gps_obs.reshape(-1, 1),
 y=memory_obs
)

We train the first model, lr_naive, on the observational data. We regress spatial memory change
on GPS usage.

You might have noticed that when we pass gps_obs to the .fit() method, we change the array’s
shape. This is because sklearn models require 2D arrays of shape (n, d) , where n is the number of
observations and d is the dimensionality of the design matrix (or a number of features if you will),
and our original array was 1D with shape (n,) as we only have one feature.

The second model will use the same variables but generated in our experiment, rather than recorded
from observations.

Before we train it, we need to unpack our treatment (GPS usage) and outcome (spatial memory
change). This is because we generated 30 samples for each of the 20 intervention levels, and we stored
them as a nested list of lists.

Nodes, Edges, and Statistical (In)dependence116

For ease of comparison with the observational models, we want to reshape the model to have 600
observations rather than 20*30 observations:

treatments_unpack = np.array(treatments).flatten()
results_unpack = np.array(experiment_results).flatten()

lr_experiment = LinearRegression()
lr_experiment.fit(
 X=treatments_unpack.reshape(-1, 1),
 y=results_unpack
)

Perfect. Now, let’s generate predictions from both models on test data:

X_test = np.arange(1, 21).reshape(-1, 1)

preds_naive = lr_naive.predict(X_test)
preds_experiment = lr_experiment.predict(X_test)

We start by generating test data. It’s as simple as generating a sequence between 1 and 20. These
numbers quantify the number of units of GPS usage.

Next, we query both models to generate predictions on test data. Figure 6.14 presents a scatterplot of
the interventional distribution and predictions from both models:

Figure 6.14 – A scatterplot of the interventional distribution and two fitted regression lines

We can see pretty clearly that the naive model does not fit the experimental data very well.

The front-door criterion 117

Let’s compare the values for the regression coefficients for both models:

print(f'Naive model:\n{lr_naive.coef_}\n')
print(f'Experimental model:\n{lr_experiment.coef_}')

This results in the following output:

Naive model:
-0.3246130171160016

Experimental model:
-0.4207238110947806

As expected, the coefficient values for both models differ.

Let’s figure out how to get a valid causal coefficient from observational data using the front-door
criterion in three simple steps.

The linear bridge to the causal promised land

It turns out that when we’re lucky enough that our model of interest is linear and the front-door criterion
can be applied, we can compute the valid estimate of the causal effect of X on Y in three simple steps:

• Fit a model, Z ~ X

• Fit a model, Y ~ Z + X

• Multiply the coefficients from model 1 and model 2

Let’s code it:

1. First, we train the model to regress Z on X (Z ~ X). Note that we only use observational data
to fit this (and the following) model:

lr_zx = LinearRegression()
lr_zx.fit(
 X=gps_obs.reshape(-1, 1),
 y=hippocampus_obs
)

2. Next, let’s train the model to regress Y on X and Z . Note that in both cases, we follow the same
logic that we followed in the continuous case described previously:

lr_yxz = LinearRegression()
lr_yxz.fit(
 X=np.array([gps_obs, hippocampus_obs]).T,
 y=memory_obs
)

Nodes, Edges, and Statistical (In)dependence118

3. Finally, let’s multiply the coefficients for both models:

lr_zx.coef_[0] * lr_yxz.coef_[1]

We take the 0th coefficient from the first model (there’s just one coefficient, for GPS usage) and the
1st coefficient for the second model (because we’re interested in the effect of hippocampal volume on
spatial memory given GPU usage), and we multiply them together.

This gives us the following estimate of the causal effect:

−0.43713599902679

Good job! This is pretty close to the experimental model!

Values estimated from experiments and values estimated from observational data may differ in finite
sample regimes, and that’s utterly natural. The larger the sample size, the smaller the discrepancy
between them we should expect on average.

Great!

We saw that the front-door-adjusted estimate was pretty close to the estimate obtained from the
experimental data, but what actually is the true effect that we’re trying to estimate, and how close are we?

We can answer this question pretty easily if we have a full linear SCM. The true effect in a model
such as ours is equal to the product of coefficients on causal paths from X → Z and Z → Y . The idea
of multiplying the coefficients on a directed causal path can be traced back to Sewall Wright’s path
analysis, introduced as early as 1920 (Wright, 1920).

In our case, the true causal effect of GPS usage on spatial memory will be -0.6 * 0.7 = -0.42. The
coefficients (-0.6 and 0.7) can be read from the definition of our SCM.

It turns out that our front-door-adjusted and experimental estimates were pretty close (~4% and <1%
errors respectively), while the naïve estimate was more than 22% off. Imagine that you can improve
the conversion rate of a marketing campaign by 20% for your client – an actual result that one of the
causal machine learning companies where a colleague of mine used to work demonstrated.

It’s time to conclude this section. We learned what the front-door criterion is. We discussed three
conditions (and one additional assumption) necessary to make the criterion work and showed how
to derive an adjustment formula from the basic principles. Finally, we built an SCM and generated
observational and interventional distributions to show how the front-door criterion can be used to
accurately approximate experimental results from observational data.

Are there other criteria out there? Let’s do-calculus!
In the real world, not all causal graphs will have a structure that allows the use of the back-door or
front-door criteria. Does this mean that we cannot do anything about them?

Are there other criteria out there? Let’s do-calculus! 119

Fortunately, no. Back-door and front-door criteria are special cases of a more general framework
called do-calculus (Pearl, 2009). Moreover, do-calculus has been proven to be complete (Shpitser and
Pearl, 2006), meaning that if there is an identifiable causal effect in a given DAG, G , it can be found
using the rules of do-calculus.

What are these rules?

The three rules of do-calculus

Before we can answer the question, we need to define some new helpful notation.

Given a DAG G , we can say that G _ X is a modification of G , where we removed all the incoming edges
to the node X . We will call G X _ a modification of G , where we removed all the outgoing edges from
the node X .

For example, G _ X Z _ will denote a DAG, G , where we removed all the incoming edges to the node X and
all the outgoing edges from the node Z .

Perfect. Now, let’s see the rules (Pearl, 2009, and Malina, 2020):

• Rule 1: When an observation can be ignored:

 P (Y = y | do (X = x) , Z = z, W = w) = P (Y = y | do (X = x) , W = w) if (Y ⫫ Z | X, W) G _ X

• Rule 2: When intervention can be treated as an observation:

 P (Y = y | do (X = x) , do (Z = z) , W = w) = P (Y = y | do (X = x) , Z = z, W = w) if (Y ⫫ Z | X, W) G _ X Z _

• Rule 3: When intervention can be ignored:

 P (Y = y | do (X = x) , do (Z = z) , W = w) = P (Y = y | do (X = x) , W = w) if (Y ⫫ Z | X, W) G ‾ X,Z (W)

In rule 3, Z (W) is the set of Z -nodes that are not ancestors of any W -nodes in the altered DAG, G _ X .

These rules might look pretty overwhelming! Let’s try to decode their meaning.

Rule 1 tells us that we can ignore any observational (set of) variable(s), Z, when Z and the outcome,
Y, are independent, given X and W in a modified DAG, G _ X .

Rule 2 tells us that any intervention over a (set of) variable(s), Z, can be treated as an observation when
Z and the outcome Y are independent given X and W in a modified DAG G _ X Z _ .

Finally, rule 3 tells us that any intervention over a (set of) variable(s), Z, can be ignored when Z and
the outcome, Y, are independent, given X and W in a modified DAG, G ‾ X, Z (W) .

All this might sound complicated at first, until you realize that what it requires in practice is to take
your DAG, find the (set of) confounders (denoted as Z in our rules), and check whether any of the
rules apply. Plus, you can stack the transformations into arbitrary long sequences if this helps! The
good part is that this work can also be automated.

Nodes, Edges, and Statistical (In)dependence120

It might take some time to fully digest the rules of do-calculus, and that’s OK. Once you get familiar
with them, you’ll have a very powerful tool in your toolbox.

If you want to learn more about do-calculus, check out Pearl (2009) for formal definitions and step-
by-step examples, Spitser and Pearl (2006) for the proof of completeness, and Stephen Malina’s blog
for intuitive understanding (Malina, 2020 – https://stephenmalina.com/post/2020-
03-09-front-door-do-calc-derivation/).

Before we conclude this section, let’s see one more popular method that can be used to identify
causal effects.

Instrumental variables

Instrumental variables (IVs) are a family of deconfounding techniques that are hugely popular in
econometrics. Let’s take a look at the DAG in Figure 6.15:

Figure 6.15 – An example DAG for the IV technique

We’re interested in estimating the causal effect of X on Y . You can see that we cannot use the back-
door criterion here because U is unobserved. We cannot use the front-door criterion either because
there’s no mediator between X and Y .

Not all is lost though! It turns out that we can use the IV technique to estimate our causal effect of
interest. Let’s see how to do it.

The three conditions of IVs

Instrumental variable methods require a special variable called an instrument to be present in a graph.
We will use Z to denote the instrument. Our effect of interest is the causal effect of X on Y .

An instrument needs to meet the following three conditions (Hernán and Robins, 2020):

• The instrument, Z, is associated with X

• The instrument, Z, doesn’t affect Y in any way except through X

• There are no common causes of Z and Y

https://stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/
https://stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/

Are there other criteria out there? Let’s do-calculus! 121

The first condition talks about association rather than causation. The nature of the relationship between
Z and X determines how much information we’ll be able to extract from our instrument. Theoretically
speaking, we can even use instruments that are only weakly (non-directly) associated with X (in such
a case, they are called proxy instruments), yet there’s a cost to this.

In certain cases, the only thing we’ll be able to obtain will be the lower and upper bounds of the effect,
and in some cases, these bounds might be very broad and, therefore, not very useful (Hernán and
Robins, 2020).

We’re lucky though!

Calculating causal effects with IVs

Let’s take a look at Figure 6.15 once again. The variable Z is associated with X , it does not affect Y other
than through X , and there are no common causes of Z and Y ; therefore, Z meets all of the criteria of
being an instrument. Moreover, in our DAG, the relationship between Z and X is causal and direct,
which allows us to approximate the exact causal effect (as opposed to just bounds)!

To calculate the causal effect of X on Y in a linear case, all we need to do is fit two linear regression
models and compute the ratio of their coefficients!

The two models are as follows:

• Y ~ Z

• Y ~ X

We compute the ratio by dividing the coefficient for the first model by the coefficient from the
second model.

Et voilà!

To see a step-by-step example of computing the IV estimation in a linear model, check the notebook
accompanying this chapter (https://bit.ly/causal-ntbk-06).

Estimation using IVs can be extended to non-linear and non-parametric cases (for example, Li et al.,
2022, and Carroll et al., 2004).

All this makes IVs pretty flexible and broadly adopted, yet in practice, it might be difficult to find
good instruments or verify that the necessary assumptions (for instance, a lack of influence of Z on
Y other than through X) are met.

There are a couple of resources if you want to dive deeper into IVs. For a great technical and formal
overview, check out Chapter 16 of the excellent book Causal Inference: What If? by Miguel Hernán
and James Robbins from the Harvard School of Public Health (Hernán and Robins, 2020).

https://bit.ly/causal-ntbk-06

Nodes, Edges, and Statistical (In)dependence122

For practical advice on how to find good instruments, intuitions, and great real-world examples, check
out Chapter 7 of Scott Cunningham’s Causal Inference: The Mixtape (Cunningham, 2021). I am sure
you’ll love the latter, in particular if you’re a hip-hop aficionado.

In this section, we learned about do-calculus, a flexible framework to identify causal effects that
generalizes back-door and front-door criteria. We discussed the three rules of do-calculus that allow
us to find causal effects in any DAG that is identifiable (hence, the completeness of do-calculus).

In the second part of this section, we introduced the IV technique – a popular method of causal
effect identification and estimation that has been widely adopted in econometrics, epidemiology,
and social sciences.

Finally, we learned how to use IVs in a linear case and linked to the resources demonstrating how the
method can be extended to non-linear and non-parametric cases.

Wrapping it up
We learned a lot in this chapter, and you deserve some serious applause for coming this far!

In this chapter, we learned a lot. We started with the notion of d-separation. Then, we showed how
d-separation is linked to the idea of an estimand. We discussed what causal estimands are and what
their role is in the causal inference process.

Next, we discussed two powerful methods of causal effect identification, the back-door and front-door
criteria, and applied them to our ice cream and GPS usage examples.

Finally, we presented a generalization of front-door and back-door criteria, the powerful framework
of do-calculus, and introduced a family of methods called instrumental variables, which can help us
identify causal effects where other methods fail.

The set of methods we learned in this chapter gives us a powerful causal toolbox that we can apply
to real-world problems.

In the next chapter, we’ll demonstrate how to properly structure an end-to-end causal inference
process using the DoWhy library (Sharma and Kiciman, 2020), and we will get ready to set sail for
the journey into the stormy waters of causal machine learning.

Answer
Controlling for B (Figure 6.7) essentially removes A’s influence on X and Y. If we remove A from the
graph, it will not change anything (up to noise) in our estimate of the relationship strength between
X and Y. Note that in a graph with a removed node A, controlling for B becomes irrelevant (it does
not hurt us to do so, but there’s no benefit to it either).

References 123

References
Carroll, R. J., Ruppert, D., Crainiceanu, C. M., Tosteson, T. D., and Karagas, M. R. (2004). Nonlinear and
Nonparametric Regression and Instrumental Variables. Journal of the American Statistical Association,
99(467), 736-750.

Cunningham, S. (2021). Causal Inference: The Mixtape. Yale University Press.

Dahmani, L., and Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during
self-guided navigation. Scientific reports, 10(1), 6310.

Griesbauer, E. M., Manley, E., Wiener, J. M., and Spiers, H. J. (2022). London taxi drivers: A review of
neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus,
32(1), 3-20.

Hernán M. A., Robins J. M. (2020). Causal Inference: What If. Boca Raton: Chapman and Hall/CRC.

Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., and Fajnerová, I. (2018). Spatial knowledge
impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of
Human-Computer Studies, 116, 15-24.

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Li, C., Rudin, C., and McCormick, T. H. (2022). Rethinking Nonlinear Instrumental Variable Models
through Prediction Validity. Journal of Machine Learning Research, 23(96), 1-55.

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., and Frith,
C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the
National Academy of Sciences of the United States of America, 97(8), 4398-4403.

Malina, S. (2020, March 9). Deriving the front-door criterion with the do-calculus. https://
stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/.

Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press.

O’Keefe, J., Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.

Pearl, J. (2009). Causality: Models, reasoning, and inference. Cambridge University Press.

Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.

Pearl, J., and Mackenzie, D. (2019). The Book of Why. Penguin.

Pelletier, L. G., Sharp, E., Blanchard, C., Lévesque, C. Vallerand, R. J., and Guay, F. (2007). The general
motivation scale (GMS): Its validity and usefulness in predicting success and failure at self-regulation.
Manuscript in preparation. University of Ottawa.

https://stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/
https://stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/

Nodes, Edges, and Statistical (In)dependence124

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,
12, 2825-2830.

Seabold, S., and Perktold, J. (2010). statsmodels: Econometric and statistical modeling with Python. 9th
Python in Science Conference.

Sharma, A., and Kiciman, E. (2020). DoWhy: An End-to-End Library for Causal Inference. arXiv
Preprint arXiv:2011.04216.

Shpitser, I., and Pearl, J. (2006). Identification of conditional interventional distributions. In Proceedings
of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006 (pp. 437-444).

Shpitser, I., VanderWeele, T., and Robins, J. M. (2010). On the validity of covariate adjustment for
estimating causal effects. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence,
UAI 2010, 527-536. AUAI Press.

Woollett, K., and Maguire, E. A. (2011). Acquiring “the Knowledge” of London’s layout drives structural
brain changes. Current Biology, 21(24), 2109-2114.

Wright, S. (1920). The Relative Importance of Heredity and Environment in Determining the Piebald
Pattern of Guinea-Pigs. Proceedings of the National Academy of Sciences, 6(6), 320–332.

7
The Four-Step Process

of Causal Inference

Welcome to Chapter 7!

This is a true milestone in our journey. In this chapter, we’ll learn how to neatly structure the entire causal
inference process using the DoWhy library (Sharma & Kiciman, 2020). By the end of this chapter, you’ll
be able to write production-ready causal inference pipelines using linear and non-linear estimators.

We’ll start with an introduction to DoWhy and its sister library, EconML (Battochi et al., 2019).
After that, we’ll see how to use the graph modeling language (GML), which we introduced briefly
in Chapter 4 to translate our assumptions regarding the data-generating process into graphs. Then,
we’ll see how to compute causal estimands and causal estimates using DoWhy. Finally, we’ll introduce
refutation tests and see how to apply them to our models. We’ll conclude the chapter with an example
of a complete causal inference process. By the end of this chapter, you’ll have a solid understanding
of the mechanics of the causal inference process and be able to carry it out for your own problems.

In this chapter, we’ll cover the following topics:

• Introduction to DoWhy and EconML

• Practical GML and graphs

• Causal estimands and estimates in DoWhy

• Refutation tests

• A full causal process example using DoWhy and EconML

The Four-Step Process of Causal Inference126

Introduction to DoWhy and EconML
In this section, we’ll introduce the DoWhy and EconML packages.

We’ll start with an overview of the Python causal ecosystem and then discuss what DoWhy and
EconML are.

Then, we’ll share why they are the packages of choice for this book.

Finally, we’ll dive deeper into DoWhy’s APIs and look into the integration between DoWhy and EconML.

Yalla!

Python causal ecosystem

The Python causal ecosystem is dynamically expanding. It is becoming increasingly rich and powerful.
At the same time, it can also be confusing, especially when you’re just starting your causal journey.

The following list presents a selection of actively developed Python causal packages that I am aware
of at the time of writing this book:

• CATENets: A package implementing a number of neural network-based conditional
average treatment effect estimators in JAX and PyTorch. We introduce CATENets in
Chapter 11: https://github.com/AliciaCurth/CATENets.

• causal-learn: A causal discovery package from Carnegie-Mellon University. It is a Python
translation and extension of the famous Java library Tetrad. It includes implementations
of a number of conditional independence tests: https://github.com/cmu-phil/
causal-learn.

• causalimpact: This package is a port to its R counterpart. It uses structural Bayesian models
to estimate causal effects in quasi-experimental time series data: https://github.com/
jamalsenouci/causalimpact.

• causalinference: A causal inference package implementing a number of basic causal
estimators: https://causalinferenceinpython.org/.

• causallib: This package provides a suite of causal methods, encapsulated in an sklearn-style
API. It includes meta-algorithms and an evaluation suite. It is an intuitive and flexible API that
is supported by IBM: https://github.com/IBM/causallib.

• CausalPy: Four popular quasi-experimental methods implemented on top of the PyMC
Python Bayesian framework. The package offers synthetic control, interrupted time series,
difference-in-differences, and regression discontinuity methods: https://github.com/
pymc-labs/CausalPy.

https://github.com/AliciaCurth/CATENets
https://github.com/cmu-phil/causal-learn
https://github.com/cmu-phil/causal-learn
https://github.com/jamalsenouci/causalimpact
https://github.com/jamalsenouci/causalimpact
https://causalinferenceinpython.org/
https://github.com/IBM/causallib
https://github.com/pymc-labs/CausalPy
https://github.com/pymc-labs/CausalPy

Introduction to DoWhy and EconML 127

• CausalML: A library for uplift modeling and causal inference backed by Uber. The authors
declare that it’s stable and incubated for long-term support. Algorithms can be integrated into
DoWhy’s flow: https://github.com/uber/causalml.

• Causica: A package implementing an end-to-end causal algorithm, DECI. We discuss DECI
in Part 3, Causal Discovery: https://github.com/microsoft/causica.

• CDT: A library with a broad selection of causal discovery methods. Some methods are ported from
R packages. At the time of writing (September 2022), it does not include methods created later
than 2019: https://fentechsolutions.github.io/CausalDiscoveryToolbox/
html/index.html.

• Differences: A package that implements a number of quasi-experimental techniques based
on the difference-in-differences technique: https://github.com/bernardodionisi/
differences.

• DoubleML: A Python and R package implementing a set of methods based on double machine
learning (DML): https://docs.doubleml.org/stable/index.html.

• DoWhy: A complete framework for DAG-based causal inference. Causal discovery is on the
roadmap: https://py-why.github.io/dowhy.

• EconML: A library focused on modeling heterogeneous treatment effects using machine learning.
It is similar in scope to CausalML. It is supported by Microsoft and deeply integrated with
DoWhy: https://github.com/microsoft/EconML.

• gCastle: A comprehensive library for causal discovery. It contains implementations of many
classic causal discovery algorithms as well as some of the most recent ones. It was developed
by Huawei’s Noah’s Ark Lab. We’ll use it in Part 3, Causal Discovery: https://github.
com/huawei-noah/trustworthyAI/tree/master/gcastle.

• GRAPL (grapl-causal): A computational library for working with causal graphs. It includes
advanced identification algorithms, such as directed acyclic graphs (DAGs): https://
github.com/max-little/GRAPL.

• LiNGAM : A causal discovery package implementing a number of LiNGAM-family
algorithms: https://lingam.readthedocs.io/en/latest/index.html.

• PySensemakr: A Python implementation of the R sensemakr library. It implements a
number of causal sensitivity analysis tools for regression models: https://github.com/
nlapier2/PySensemakr.

• Semopy: A package for structural equation modeling in Python: https://semopy.com/.

• scikit-uplift: A library focused on uplift modeling using an sklearn-style API: https://
www.uplift-modeling.com/en/latest/user_guide/index.html.

https://github.com/uber/causalml
https://github.com/microsoft/causica
https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html
https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html
https://github.com/bernardodionisi/differences
https://github.com/bernardodionisi/differences
https://docs.doubleml.org/stable/index.html
https://py-why.github.io/dowhy
https://github.com/microsoft/EconML
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle
https://github.com/max-little/GRAPL
https://github.com/max-little/GRAPL
https://lingam.readthedocs.io/en/latest/index.html
https://github.com/nlapier2/PySensemakr
https://github.com/nlapier2/PySensemakr
https://semopy.com/
https://www.uplift-modeling.com/en/latest/user_guide/index.html
https://www.uplift-modeling.com/en/latest/user_guide/index.html

The Four-Step Process of Causal Inference128

• tfcausalimpact: A native Python implementation of R’s causalimpact built on top of
TensorFlow Probability. It provides a flexible framework for estimating causal effects in quasi-
experimental time series data using structural Bayesian models: https://github.com/
WillianFuks/tfcausalimpact.

• YLearn: A package containing a mixture of causal methods, such as a number causal effect
estimators, one causal discovery algorithm (at the time of writing), and other utilities: https://
ylearn.readthedocs.io/en/latest/.

As you can see, we have many options to choose from. You might be wondering – what’s so special
about DoWhy and EconML that we’ve chosen to use these particular packages in the book?

Why DoWhy?

There are at least six reasons why I think choosing DoWhy as the foundation of your causal ecosystem
is a great idea. Let me share them with you:

• DoWhy offers a well-designed, consistent, and practical API

• DoWhy is designed in a way that enables you to run the entire causal inference process in four
clearly defined and easily reproducible steps

• DoWhy integrates smoothly with many other libraries (such as EconML, scikit-learn,
and CausalML)

• DoWhy is actively maintained by a team of seasoned researchers and developers

• DoWhy is supported by organizations such as Microsoft and AWS, which increases the chances
for long-term stable development

• DoWhy looks into the future with a frequently updated roadmap

Oui, mon ami, but what is DoWhy?

The official documentation (https://bit.ly/DoWhyDocs) describes DoWhy as an end-to-end
causal inference library. I like to think of it as a framework. DoWhy offers a comprehensive toolkit
for causal inference. In most cases, you won’t need to go for another package to address your causal
inference problem.

With the new experimental GCM API (Blobaum et al., 2022; for more details, see https://bit.
ly/DoWhyGCM), DoWhy becomes even more powerful! Another great thing about DoWhy is that
it translates a complex process of causal inference into a set of simple and easily reproducible steps.

https://github.com/WillianFuks/tfcausalimpact
https://github.com/WillianFuks/tfcausalimpact
https://ylearn.readthedocs.io/en/latest/
https://ylearn.readthedocs.io/en/latest/
https://bit.ly/DoWhyDocs
https://bit.ly/DoWhyGCM
https://bit.ly/DoWhyGCM

Introduction to DoWhy and EconML 129

DoWhy’s API zoo
The version of DoWhy that we use across the book (0.8) offers three ways to work with causal
models: the main API based on the CausalModel class; the high-level pandas API, which
allows you to perform interventions directly on pandas DataFrames; and an experimental GCM
API that allows us to easily estimate causal effects and compute interventions, counterfactuals,
and attribute distributional changes between datasets in just a couple lines of code.

How about EconML?

EconML is a Python package built as a part of Microsoft Research’s ALICE project (https://bit.
ly/MsftAlice). Its main goal is to estimate causal effects from observational data via machine
learning (Battochi et al., 2019). The package provides us with a scikit-learn-like API for fitting causal
machine learning estimators. On top of this, we get a series of very useful methods for obtaining
causal effects, confidence intervals, and integrated interpretability tools such as tree interpreters or
Shapley values.

One of the great things about EconML is that it’s deeply integrated with DoWhy. This integration allows
us to call EconML estimators from within DoWhy code without even explicitly importing EconML.
This is a great advantage, especially when you’re in the early experimental stage of your project and
your code does not have a strong structure. The integration allows you to keep your code clean and
compact and helps to avoid excessive clutter.

Great, now that we’ve had a short introduction, let’s jump in and see how to work with DoWhy and
EconML. We’ll learn more about both libraries on the way.

In the next four sections, we’ll see how to use the main DoWhy API to perform the following four
steps of causal inference:

1. Modeling the problem

2. Finding the estimand(s)

3. Computing the estimates

4. Validating the model

Before we start, let’s generate some data.

We’re going to use the GPSMemorySCM class from Chapter 6 for this purpose. The code for this
chapter is in the Chapter_07.ipynb notebook (https://bit.ly/causal-ntbk-07).

Let’s initialize our SCM, generate 1,000 observations, and store them in a data frame:

scm = GPSMemorySCM()
gps_obs, hippocampus_obs, memory_obs = scm.sample(1000)

df = pd.DataFrame(np.vstack([gps_obs, hippocampus_obs,
 memory_obs]).T, columns=['X', 'Z', 'Y'])

https://bit.ly/MsftAlice
https://bit.ly/MsftAlice
https://bit.ly/causal-ntbk-07

The Four-Step Process of Causal Inference130

Note that we denoted the columns for GPS with X, hippocampal volume with Z, and spatial memory
with Y.

Naturally, in most real-world scenarios, we’ll work with real-world data rather than generated data.
Nonetheless, in both cases, it’s important to keep your naming conventions clean and consistent
between your data frame, your graph, and your CausalModel object. Any inconsistencies might
result in distorted or unexpected results.

Great, we’re now ready to take the first step!

Step 1 – modeling the problem
In this section, we’ll discuss and practice step 1 of the four-step causal inference process: modeling
the problem.

We’ll split this step into two substeps:

1. Creating a graph representing our problem

2. Instantiating DoWhy’s CausalModel object using this graph

Creating the graph

In Chapter 3, we introduced a graph language called GML. We’ll use GML to define our data-generating
process in this section.

Figure 7.1 presents the GPS example from the previous chapter, which we’ll model next. Note that we
have omitted variable-specific noise for clarity:

Figure 7.1 – The graphical model from Chapter 6

Step 1 – modeling the problem 131

Note that the graph in Figure 7.1 contains an unobserved variable, U. We did not include this variable
in our dataset (it’s unobserved!), but we’ll include it in our graph. This will allow DoWhy to recognize
that there’s an unobserved confounder in the graph and find a relevant estimand for us automatically.

Great! Let’s translate the model from Figure 7.1 into a GML graph:

gml_graph = """
graph [
 directed 1

 node [
 id "X"
 label "X"
]
 node [
 id „Z"
 label „Z"
]
 node [
 id "Y"
 label "Y"
]
 node [
 id „U"
 label „U"
]

 edge [
 source "X"
 target "Z"
]
 edge [
 source "Z"
 target "Y"
]
 edge [
 source "U"
 target "X"
]
 edge [
 source "U"
 target "Y"
]
]
"""

The Four-Step Process of Causal Inference132

Our definition starts with the directed keyword. It tells the parser that all edges in the graph should
be directed. To obtain an undirected graph, you can use undirected instead.

Next, we define the nodes. Each node has a unique ID and a label. Finally, we define the edges. Each
edge has a source and a target. The entire definition is encapsulated in a Python multiline string.

Let’s put our graph into action!

Building a CausalModel object

To instantiate a CausalModel object for our problem, we need to provide the constructor with
four things: data as a pandas data frame, a GML graph, the name of the treatment variable in the data
frame, and the name of the outcome variable in the data frame.

We denoted GPS – our treatment – with X. Our outcome – memory change – was denoted by Y. Our
data is represented by a pandas data frame, df, and our graph is assigned to the gml_graph variable.

We’re ready to instantiate CausalModel:

model = CausalModel(
 data=df,
 treatment='X',
 outcome='Y',
 graph=gml_graph
)

To make sure everything works as expected, let’s plot the model:

model.view_model()

This should result in a visualization similar to the one in Figure 7.2:

Figure 7.2 – A visualization of our model

Step 2 – identifying the estimand(s) 133

In this section, we’ve learned how to create a GML graph to model our problem and how to pass this
graph into the CausalModel object. In the next section, we’ll see how to use DoWhy to automatically
find estimands for our graph.

Step 2 – identifying the estimand(s)
This short section is all about finding estimands with DoWhy. We’ll start with a brief overview of
estimands supported by the library and then jump straight into practice!

DoWhy offers three ways to find estimands:

• Back-door

• Front-door

• Instrumental variable

We know all of them from the previous chapter. To see a quick practical introduction to all three
methods, check out my blog post Causal Python — 3 Simple Techniques to Jump-Start Your Causal
Inference Journey Today (Molak, 2022; https://bit.ly/DoWhySimpleBlog).

Let’s see how to use DoWhy in order to find a correct estimand for our model.

It turns out it is very easy! Just see for yourself:

estimand = model.identify_effect()

Yes, that’s all!

We just call the .identify_effect() method of our CausalModel object and we’re done!

Let’s print out our estimand to see what we can learn:

print(estimand)

This results in the following output:

Estimand type: nonparametric-ate

Estimand : 1
Estimand name: backdoor
No such variable(s) found!

Estimand : 2
Estimand name: iv
No such variable(s) found!

Estimand : 3

https://bit.ly/DoWhySimpleBlog

The Four-Step Process of Causal Inference134

Estimand name: frontdoor
Estimand expression:
Expectation(Derivative(Y, [Z])*Derivative([Z], [X]))
Estimand assumption 1, Full-mediation: Z intercepts (blocks) all
directed paths from X to Y.
Estimand assumption 2, First-stage-unconfoundedness: If U→{X} and
U→{Z} then P(Z|X,U) = P(Z|X)
Estimand assumption 3, Second-stage-unconfoundedness: If U→{Z} and U→Y
then P(Y|Z, X, U) = P(Y|Z, X)

We see that DoWhy prints out three different estimands. There’s the estimand’s name and information
if a given type of estimand has been found for our model.

For the estimand that has been found, there’s information about it printed out; for estimands that
haven’t been found, there’s a No such variable(s) found! string printed out.

You can see that DoWhy has found only one estimand for our graph: frontdoor. As you might
remember from the previous chapter, this is the correct one for our model!

Before we finish this section, I want to reiterate one thing. The capabilities of DoWhy are really great, yet
it will only be able to find estimands for us if our model is identifiable using one of the three supported
methods. For more advanced identification strategies, check out the grapl-causal library created by
Max Little of the University of Birmingham and MIT (https://bit.ly/GRAPLCausalRepo).

In this section, we learned how to find estimands automatically using DoWhy. Now, we’re ready to
compute the estimates!

Step 3 – obtaining estimates
In this section, we’ll compute causal effect estimates for our model.

Computing estimates using DoWhy is as simple as it can be. To do it, we need to call the .estimate_
effect() method of our CausalModel object:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='frontdoor.two_stage_regression')

We pass two arguments to the method:

• Our identified estimand

• The name of the method that will be used to compute the estimate

https://bit.ly/GRAPLCausalRepo

Step 4 – where’s my validation set? Refutation tests 135

You might recall from Chapter 6 that we needed to fit two linear regression models, get their coefficients,
and multiply them in order to obtain the final causal effect estimate. DoWhy makes this process much
easier for us.

Let’s print out the result:

print(f'Estimate of causal effect (
 linear regression): {estimate.value}')

This gives us the following output:

Estimate of causal effect (linear regression): -0.4201729192182768

That’s almost identical to the true causal effect of -0.42!

Note that we haven’t set the random seed, so your results might slightly differ.

Currently, DoWhy only supports one estimator for the front-door criterion (frontdoor.two_
stage_regression), but many more estimators are available in general. We’ll introduce some
of them soon.

In this short section, we learned how to compute causal estimates using DoWhy.

Let’s think about how to validate our causal model.

Step 4 – where’s my validation set? Refutation tests
In this section, we’ll discuss ideas regarding causal model validation. We’ll introduce the idea behind
refutation tests. Finally, we’ll implement a couple of refutation tests in practice.

How to validate causal models

One of the most popular ways to validate machine learning models is through cross-validation (CV).
The basic idea behind CV is relatively simple:

1. We split the data into k folds (subsets).

2. We train the model on k − 1 folds and validate it on the remaining fold.

3. We repeat this process k times.

4. At every step, we train on a different set of k − 1 folds and evaluate on the remaining fold (which
is also different at each step).

The Four-Step Process of Causal Inference136

Figure 7.3 presents a schematic visualization of a five-fold CV scheme:

Figure 7.3 – Schematic of five-fold CV

In Figure 7.3, the blue folds denote validation sets, while the white ones denote training sets. We train
a new model at each iteration using white folds for training and evaluate using the remaining blue fold.
We collect metrics over iterations and compute a statistic summary (most frequently, the average).

CV is a widely adopted method to estimate prediction errors in statistical learning (yet it turns out
that it’s much less understood than we tend to think; Bates et al., 2021).

It would be great if we could use CV for causal models as well! Its simplicity and accessibility of
implementations would make model evaluation really easy!

Unfortunately, this approach cannot provide us with any guarantees regarding the causal structure of
the model (although it can be useful when working with and evaluating causal estimators, assuming
that we know the correct causal structure; more on this in Chapter 10).

Why?

Although CV can provide us with some information about the estimator fit, this approach will not
work in general as a causal model evaluation technique. The reason is that CV operates on rung 1
concepts. Let’s think of an example.

Do you recall Markov equivalence classes (MECs), which we discussed in Chapter 5? All graphs
within one MEC encode the same statistical independence structure. One consequence of this is that
unless we intervene on critical nodes, all graphs belonging to the same MEC could generate virtually
the same observational data. This means that we could have a wrong causal model that behaves very
well in terms of CV prediction errors. This is problematic. Is there anything we can do to mitigate
the limitation of CV?

Step 4 – where’s my validation set? Refutation tests 137

Introduction to refutation tests

In 1935, the Austrian philosopher Karl Popper published his seminal book Logik der Forschung
(Popper, 1935; rewritten English version: Popper, 1959). In the book, Popper wrestles with the idea
of induction – generalizing knowledge from a finite sample of observations. He concludes (following
our friend David Hume from Chapter 1) that sentences such as all Xs are A that are trying to capture
the underlying principles of some phenomenon of interest can never be unambiguously proven. For
instance, the sentence the sun always rises in the east might always be true for me in my lifetime, yet
we can imagine a scenario where one day it does not. We have never observed this scenario, but it is
physically possible.

Compare this example with another one: the train always passes the station within five minutes after I
hear the morning weather forecast on the radio (do you remember Hume’s association-based definition
of causality?). Popper says that we never observe all Xs and therefore it’s impossible to prove a theory.
He finds this problematic because he wants to see a difference between science and non-science (this
is known as the demarcation problem). To solve this tension, Popper proposes that instead of proving
a theory, we can try to disprove it.

His logic is simple. He says that “all Xs are A” is logically equivalent to “no X is not-A.” Therefore, if
we find X that is not A, we can show that the theory is false. Popper proposes that scientific theories
are falsifiable – we can define a set of conditions in which the theory would fail. On the other hand,
non-scientific theories are non-falsifiable – for instance, the existence of a higher intelligent power
that cannot be quantified in any systematic way.

Can Popperian ideas help us with evaluating causal models?

Let’s get Popperian!

Every statistical model can be thought of as a hypothesis regarding some process. In particular, a
causal model is a hypothesis regarding some data-generating process. In this sense, any model is an
embodiment of a micro-theory of some real-world phenomenon and such a theory can be falsified.

Refutation tests aim to achieve this by modifying the model or the data. There are two types of
transformations available in DoWhy (Sharma & Kiciman, 2020):

• Invariant transformations

• Nullifying transformations

Invariant transformations change the data in such a way that the result should not change the estimate.
If the estimate changes significantly, the model fails to pass the test.

Nullifying transformations change the data in a way that should cause the estimated effect to be
zero. If the result significantly differs from zero, the model fails the test.

The Four-Step Process of Causal Inference138

The basic idea behind refutation tests is to modify an element of either the model or a dataset and
see how it impacts the results.

For instance, a random common cause refuter adds a new confounding variable to the dataset and
controls for it. If the original model is correctly specified, we expect that such an addition will not lead
to significant changes in the model estimates (therefore, this test belongs to the invariant transformations
category). We’ll see a couple of refutation tests in action in this chapter.

Now, let’s see how one of them – the data subset refuter – works.

Let’s refute!

Let’s apply some refutation tests to our model. Note that in DoWhy 0.8, not all tests will work with
front-door estimands.

We apply data_subset_refuter in the following way:

refute_subset = model.refute_estimate(
 estimand=estimand,
 estimate=estimate,
 method_name="data_subset_refuter",
 subset_fraction=0.4)

This test removes a random subset of the data and re-estimates the causal effect. In expectation, the new
estimate (on the subset) should not significantly differ from the original one. Let’s print out the results:

print(refute_subset)

This gives us the following output:

Refute: Use a subset of data
Estimated effect:-0.4201729192182768
New effect:-0.41971603098814647
p value:0.98

As you can see, the original and newly estimated effects are very close and the p-value is high,
indicating that there’s likely no true difference between the two estimates. This result does not falsify
our hypothesis and perhaps makes us a bit more confident that our model might be correct.

In this section, we discussed the basic challenges of validating causal models. We introduced the logic
behind refutation tests and learned how to apply them in practice using DoWhy.

In the next section, we’ll practice our DoWhy causal inference skills and see more refutation tests
in action.

Full example 139

Full example
This section is here to help us solidify our newly acquired knowledge. We’ll run a full causal inference
process once again, step by step. We’ll introduce some new exciting elements on the way and – finally
– we’ll translate the whole process to the new GCM API. By the end of this section, you will have the
confidence and skills to apply the four-step causal inference process to your own problems.

Figure 7.4 presents a graphical model that we’ll use in this section:

Figure 7.4 – A graphical model that we’ll use in this section

We’ll generate 1,000 observations from an SCM following the structure from Figure 7.4 and store
them in a data frame:

SAMPLE_SIZE = 1000

S = np.random.random(SAMPLE_SIZE)
Q = 0.2*S + 0.67*np.random.random(SAMPLE_SIZE)
X = 0.14*Q + 0.4*np.random.random(SAMPLE_SIZE)
Y = 0.7*X + 0.11*Q + 0.32*S +
 0.24*np.random.random(SAMPLE_SIZE)
P = 0.43*X + 0.21*Y + 0.22*np.random.random(SAMPLE_SIZE)

Build a data frame
df = pd.DataFrame(np.vstack([S, Q, X, Y, P]).T,
 columns=['S', 'Q', 'X', 'Y', 'P'])

Great, now we’re ready to build a graph.

The Four-Step Process of Causal Inference140

Step 1 – encode the assumptions

As the graph in Figure 7.4 is big enough to make writing its GML definition manually daunting, we’ll
automate it with two simple for loops. Feel free to steal this trick and use it in your own projects:

nodes = ['S', 'Q', 'X', 'Y', 'P']
edges = ['SQ', 'SY', 'QX', 'QY', 'XP', 'YP', 'XY']

gml_string = 'graph [directed 1\n'

for node in nodes:
 gml_string += f'\tnode [id "{node}" label "{node}"]\n'

for edge in edges:
 gml_string += f'\tedge [source "{edge[0]}" target
 "{edge[1]}"]\n'

gml_string += ']'

Let’s unpack this code quickly:

1. First, we define two lists: a list of nodes (nodes) and a list of edges (edges).

2. Next, we create the gml_string variable, which contains the opening bracket, [, the
directed keyword, and our graph’s ID (number 1).

3. Then, we run the first for loop over the nodes. At each step, we append a new line to our
gml_string representing a node and specifying its ID and label (we’ve also added tabulation
and newlines to make it more readable, but this is not necessary).

4. After the first loop is done, we run the second for loop over edges. We append a new line at
each step again. This time, each line contains information about the edge source and target.

5. Finally, we append the closing bracket,], to our gml_string.

Let’s print out our definition to see whether it’s as expected:

print(gml_string)

This gives us the following output:

graph [directed 1
 node [id "S" label "S"]
 node [id "Q" label "Q"]
 node [id "X" label "X"]
 node [id "Y" label "Y"]
 node [id "P" label "P"]
 edge [source "S" target "Q"]

Full example 141

 edge [source "S" target "Y"]
 edge [source "Q" target "X"]
 edge [source "Q" target "Y"]
 edge [source "X" target "P"]
 edge [source "Y" target "P"]
 edge [source "X" target "Y"]
]

Beautiful! The GML part is correct.

Let’s instantiate the CausalModel object:

model = CausalModel(
 data=df,
 treatment='X',
 outcome='Y',
 graph=gml_string
)

Let’s visualize the model to make sure that our graph’s structure is as expected:

model.view_model()

You should see a plot similar to the one in Figure 7.5:

Figure 7.5 – A visualization of our DoWhy CausalModel

The graph in Figure 7.5 has the same set of nodes and edges that the graph in Figure 7.4 has. It confirms
that our GML definition is correct.

We’re now ready to find the estimand(s) for our model.

The Four-Step Process of Causal Inference142

Step 2 – getting the estimand

Before we move on to coding, can you figure out what estimand we expect here? How many confounders
are there between X and Y? What will happen if we control for Q? Or for P? Or for S?

Let’s see what DoWhy’s view on this is:

estimand = model.identify_effect()
print(estimand)

The estimand output is the following:

Estimand type: nonparametric-ate

Estimand : 1
Estimand name: backdoor
Estimand expression:
 d
────(E[Y|Q])
d[X]
Estimand assumption 1, Unconfoundedness: If U→{X} and U→Y then
P(Y|X,Q,U) = P(Y|X,Q)

Estimand : 2
Estimand name: iv
No such variable(s) found!

Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

We can see that DoWhy proposed one valid estimand – backdoor. Although our graph looks a
bit complex, it contains only one back-door path. Controlling for Q deconfounds the relationship
between X and Y.

Step 3 – estimate!

Although our SCM is pretty simple and we could model it using linear regression, we’ll use a more
advanced estimator this time. Along the way, we’ll learn how to leverage DoWhy‘s integration with other
packages in the Python machine learning ecosystem to build advanced multicomponent estimators.

First, let’s import some models from scikit-learn. We picked LassoCV and
GradientBoostingRegressor. Both are rather overkill for our simple problem, but we
picked them on purpose so we can see DoWhy’s flexibility and integration capabilities in action:

from sklearn.linear_model import LassoCV
from sklearn.ensemble import GradientBoostingRegressor

Full example 143

Now, let’s build an estimator.

We will use a DML estimator from the EconML package. DML is a family of methods for estimating
causal effects that was originally proposed by Victor Chernozhukov and colleagues (Chernozhukov
et al., 2016).

Behind the scenes, DML fits three machine learning models to compute de-biased estimates of treatment
effects. First, it predicts the outcome from the controls. Then, it predicts the treatment from the
controls. Finally, it fits the model that regresses residuals from the second model on the residuals
from the first model.

We will discuss DML in greater detail in Chapter 10.

Let’s see how to leverage the power of DML using DoWhy:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dml.DML',
 method_params={
 'init_params': {
 'model_y': GradientBoostingRegressor(),
 'model_t': GradientBoostingRegressor(),
 'model_final': LassoCV(fit_intercept=False),
 },
 'fit_params': {}}
)

Let’s unpack this code:

1. First, we provided the estimate_effect() method with the estimand.

2. After that, we pointed to what method we want to use. Here, we’ve chosen one of EconML’s
DML estimators. As you can see, we haven’t even imported EconML in our session. We passed a
'backdoor.econml.dml.DML' string instead. This is an example of the deep integration
between DoWhy and EconML.

3. Then, we defined the models we want to use for each of the three stages of DML estimation.
We use regression models only as our treatment and outcome are both continuous.

4. We left the fit_params dictionary empty because we didn’t want to specify any initial
parameters for our models.

Let’s see how well DML handled the task:

print(f'Estimate of causal effect (DML): {estimate.value}')

This results in the following output:

Estimate of causal effect (DML): 0.6998599202773215

The Four-Step Process of Causal Inference144

Good job! The true effect is 0.7 and so we are really close!

Before we move further, let’s see a simpler model in action.

A simple linear regression would likely be sufficient to model our problem in this section.

For the sake of comparison, let’s see the results of linear regression:

estimate_lr = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.linear_regression')

print(f'Estimate of causal effect (linear regression): {
 estimate_lr.value}')

This gives us the following:

Estimate of causal effect (linear regression): 0.688147600764658

In this comparison, a complex DML model did a slightly better job than a simple linear regression,
but it’s hard to say whether this effect is anything more than noise (feel free to refit both models a
couple of times to see how stable these results are; you can also re-generate or bootstrap the data to
get even more reliable information).

Before we jump to refutation tests, I want to share one more thing with you. We had enough data to
feed a complex DML estimator and the results are really good, but if you have a smaller dataset, a
simpler method could be a better choice for you. If you’re not sure what to choose, it’s always a great
idea to run a couple of quick experiments to see which methods are behaving better for your problem
(or a similar problem represented by simulated data).

Step 4 – refute them!

As we’ve just seen, our DML model worked pretty well.

Let’s check how robust it is.

We’ll start by adding a random common cause:

random_cause = model.refute_estimate(
 estimand=estimand,
 estimate=estimate,
 method_name='random_common_cause'
)
print(random_cause)

Full example 145

This results in the following:

Refute: Add a random common cause
Estimated effect:0.6981455013596706
New effect:0.6691543110272069
p value:0.1399999999999999

We see that there is a difference between the estimated effect (0.69814…) and the new effect (0.66915…),
yet according to the provided p-value, this difference is not significant at the customary 0.05 level. If
we accept this rule, we need to agree that the model has passed the test.

Let’s try one more refutation test. This time, we’ll replace our treatment variable with a random
placebo variable:

placebo_refuter = model.refute_estimate(
 estimand=estimand,
 estimate=estimate,
 method_name='placebo_treatment_refuter'
)
print(placebo_refuter)

This gives us the following:

Refute: Use a Placebo Treatment
Estimated effect:0.6981455013596706
New effect:0.0
p value:2.0

This result is a clear indication that the placebo treatment had zero effect, which is the expected result
for a healthy model.

It seems that our model passed both tests! Note that the first test (random common cause) belonged
to the category of invariant transformations, while the second (placebo treatment) belonged to the
category of nullifying transformations.

At the time of writing this chapter (September 2022), there are more refutation tests available for
back-door criterion than there are for the front-door criterion.

For an up-to-date list of refutation tests available in DoWhy, visit https://bit.ly/
DoWhyRefutation.

Now, let’s switch to the experimental GCM API.

https://bit.ly/DoWhyRefutation
https://bit.ly/DoWhyRefutation

The Four-Step Process of Causal Inference146

Extra – full example using the GCM API

The purpose of this subsection is to demonstrate the flexibility in structuring the causal inference
process. APIs and tools will change with time, but a good understanding of the basics and the ability
to translate your skills between different APIs, systems, or platforms are universal.

Note on the GCM API
At the time of writing (September 2022), the GCM API is still experimental. This means that
there might be some changes to this API that will break the backward compatibility.

To work with the GCM API, we need to import networkx and the gcm subpackage:

import networkx as nx
from dowhy import gcm

We will reuse the data from our previous example. I’ll put the data-generating code here as a refresher:

SAMPLE_SIZE = 1000

S = np.random.random(SAMPLE_SIZE)
Q = 0.2*S + 0.67*np.random.random(SAMPLE_SIZE)
X = 0.14*Q + 0.4*np.random.random(SAMPLE_SIZE)
Y = 0.7*X + 0.11*Q + 0.32*S
 + 0.24*np.random.random(SAMPLE_SIZE)
P = 0.43*X + 0.21*Y + 0.22*np.random.random(SAMPLE_SIZE)

df = pd.DataFrame(np.vstack([S, Q, X, Y, P]).T,
 columns=['S', 'Q', 'X', 'Y', 'P'])

The next step is to generate the graph describing the structure of our data-generating process. The
GCM API uses nx.DiGraph rather than GML strings as a graph representation.

Let’s generate a graph:

edges = ['SQ', 'SY', 'QX', 'QY', 'XP', 'YP', 'XY']
graph_nx = nx.DiGraph([(edge[0],
 edge[1]) for edge in edges])

We used list comprehension to automate the edge creation process. This is an analog of what we’ve
done earlier with the two for loops. That said, defining a graph with NetworkX is simpler because
we don’t need to specify all the nodes explicitly.

Full example 147

To make sure that everything is as expected, let’s plot the graph (Figure 7.6):

Figure 7.6 – A networkx representation of our graph

Now, let’s define a causal model. It’s very simple with the GCM API:

causal_model = gcm.InvertibleStructuralCausalModel(
 graph_nx)

There are many different causal models available in the GCM API. We picked the invertible SCM,
since this is the only model that allows us to generate counterfactuals without manually providing
values for all noise variables.

Now it’s time to define causal mechanisms for each variable:

causal_model.set_causal_mechanism('S', gcm.EmpiricalDistribution())
causal_model.set_causal_mechanism('X', gcm.AdditiveNoiseModel(gcm.
ml.create_linear_regressor()))
causal_model.set_causal_mechanism('Y', gcm.AdditiveNoiseModel(gcm.
ml.create_linear_regressor()))
causal_model.set_causal_mechanism('P', gcm.AdditiveNoiseModel(gcm.
ml.create_linear_regressor()))
causal_model.set_causal_mechanism('Q', gcm.AdditiveNoiseModel(gcm.
ml.create_linear_regressor()))

We use gcm.EmpiricalDistribution() for S because it’s the only variable that does not
have parents among endogenous variables. For all other variables, we set the causal mechanism to an
additive causal model and use linear regression to model it.

The Four-Step Process of Causal Inference148

We’ll learn more about additive noise models (ANMs) in Part 3, Causal Discovery. For a detailed
discussion on ANMs, check out Peters et al. (2017).

Let’s fit the model to the data and estimate causal effects strengths:

gcm.fit(causal_model, df)
gcm.arrow_strength(causal_model, 'Y')

This results in the following:

{('Q', 'Y'): 0.0006632517083816319,
 ('S', 'Y'): 0.008486091866545382,
 ('X', 'Y'): 0.006866684034567223}

As you can see, the GCM API returns estimates for all the variables with the incoming edges to the
variable of interest (Y in our case; see Figure 7.6 for reference).

These results are different from what we’ve seen before. The reason for this is that the GCM API by
default returns results in terms of the outcome variable variance change given we remove the edge
from the source variable. This behavior can be changed and you can define your own estimation
functions. To learn more, refer to the GCM API documentation, available here: https://bit.
ly/DoWhyArrowStrength.

A great feature of the GCM API is that when you create and fit a model, you can easily answer different
types of causal queries using this model.

For instance, you can generate counterfactuals:

gcm.counterfactual_samples(
 causal_model,
 {'X': lambda x: .21},
 observed_data=pd.DataFrame(data=dict(X=[.5],
 Y=[.75], S=[.5], Q=[.4], P=[.34])))

This gives us the following result (Figure 7.7):

Figure 7.7 – Counterfactuals from our GCM when X is set to 0.21

To learn more about the GCM API, please refer to the documentation.

https://bit.ly/DoWhyArrowStrength
https://bit.ly/DoWhyArrowStrength

Wrapping it up 149

Wrapping it up
In this chapter, we discussed the Python causal ecosystem. We introduced the DoWhy and EconML
libraries and practiced the four-step causal inference process using DoWhy’s CausalModel API. We
learned how to automatically obtain estimands and how to use different types of estimators to compute
causal effect estimates. We discussed what refutation tests are and how to use them in practice. Finally,
we introduced DoWhy’s experimental GCM API and showed its great capabilities when it comes to
answering various causal queries. After working through this chapter, you have the basic skills to apply
causal inference to your own problems. Congratulations!

In the next chapter, we’ll summarize common assumptions for causal inference and discuss some
limitations of the causal inference framework.

References
Bates, S., Hastie, T., & Tibshirani, R. (2021). Cross-validation: what does it estimate and how well does
it do it?. arXiv preprint. https://doi.org/10.48550/ARXIV.2104.00673

Battocchi, K., Dillon, E., Hei, M., Lewis, G., Oka, P., Oprescu, M., & Syrgkanis, V. (2019). EconML:
A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.
com/microsoft/EconML

Blobaum, P., Götz, P., Budhathoki, K., Mastakouri, A., & Janzing, D. (2022). DoWhy-GCM: An extension
of DoWhy for causal inference in graphical causal models. arXiv.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2016).
Double/Debiased Machine Learning for Treatment and Causal Parameters. arXiv preprint. https://
doi.org/10.48550/ARXIV.1608.00060

Molak, A. (2022, September 27). Causal Python: 3 Simple Techniques to Jump-Start Your Causal Inference
Journey Today. Towards Data Science. https://towardsdatascience.com/causal-kung-
fu-in-python-3-basic-techniques-to-jump-start-your-causal-inference-
journey-tonight-ae09181704f7

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Popper, K. (1935). Logik der Forschung. Springer.

Popper, K. (1959). The Logic of Scientific Discovery. Basic Books.

Sharma, A. & Kiciman, E. (2020). DoWhy: An End-to-End Library for Causal Inference. arXiv
preprint. arXiv:2011.04216.

Shimoni, Y., Karavani, E., Ravid, S., Bak, P., Ng, T. H., Alford, S. H., Meade, D., & Goldschmidt, Y.
(2019). An Evaluation Toolkit to Guide Model Selection and Cohort Definition in Causal Inference.
arXiv preprint. arXiv:1906.00442.

https://doi.org/10.48550/ARXIV.2104.00673
https://github.com/microsoft/EconML
https://github.com/microsoft/EconML
https://doi.org/10.48550/ARXIV.1608.00060
https://doi.org/10.48550/ARXIV.1608.00060
https://towardsdatascience.com/causal-kung-fu-in-python-3-basic-techniques-to-jump-start-your-causal-inference-journey-tonight-ae09181704f7
https://towardsdatascience.com/causal-kung-fu-in-python-3-basic-techniques-to-jump-start-your-causal-inference-journey-tonight-ae09181704f7
https://towardsdatascience.com/causal-kung-fu-in-python-3-basic-techniques-to-jump-start-your-causal-inference-journey-tonight-ae09181704f7

8
Causal Models – Assumptions

and Challenges

Welcome to Chapter 8.

In Chapter 7, we demonstrated how to leverage the power of the DoWhy library to estimate causal
effects. The goal of this chapter is to deepen our understanding of when and how to use causal
inference methods.

We’ll review some of the assumptions that we introduced earlier in Chapter 5 and we’ll discuss some
more assumptions in order to get a clearer picture of the challenges and limitations that we might
face when working with causal models.

By the end of this chapter, you will have a good understanding of the challenges that you may face
when implementing causal models in real life and possible solutions to these challenges.

In this chapter, we will cover the following:

• The challenges of causal inference methods

• Identifiability

• Positivity assumption

• Exchangeability/ignorability assumption

• Modularity (independent mechanisms)

• Consistency

• SUTVA

• Selection bias

Causal Models – Assumptions and Challenges152

I am the king of the world! But am I?
So far, we’ve seen what we can achieve by using causal models on observational data and we promised
that we’ll see them do even more impressive things. All this might feel pretty powerful!

In this section, we’re going to discuss important challenges that we might face when using causal
inference methods in practice.

We’ll start by sketching a broader context. After that, we’ll explicitly define the concept of identifiability.
Finally, we’ll discuss some popular challenges faced by practitioners:

• A lack of a priori knowledge of causal graphs

• Insufficient sample sizes

• Difficulties with verifying the assumptions

In between

Ancient Greek mythology provides us with a story of Ikaros (also known as Icarus) and his father,
the Athenian inventor Daidalos (also known as Daedalus). Daidalos wants to escape from Crete – a
Greek island where he’s trapped. He builds two sets of wings using feathers and wax. He successfully
tests his wings first before passing the other set to his son.

Before they fly, Daidalos advises his son not to fly too low, nor too high: “for the fogs about the earth
may weigh you down and the blaze from the sun are going to melt your feathers apart” (Graves, 1955).
Ikaros does not listen. He’s excited by his freedom. Consumed by ecstatic feelings, he ascends toward
the sun. The wax in his wings starts melting and – tragically – he falls into the sea and drowns.

The history of causality starts in a place of big dreams and seemingly impossible goals. From broad
Aristotelian concepts of four causes, through the ages of religious and philosophical reflection, through
David Hume’s ideas, up to modern econometrics and Pearl’s do-calculus, we’ve come a long way, and,
just like Daidalos, we learned to fly.

It’s likely that we haven’t yet reached the Causal Promised Land and that we will continue to learn and
grow in our causal journey in the coming years.

In the meantime, we have an amazing set of causal tools in our hands. In order to use them effectively,
we need the awareness of their strengths and their limitations. The path is somewhere in between. By
knowing the assumptions behind causal methods and the challenges that we might face on our way,
we can improve our businesses and our communities, bringing more growth, more knowledge, and
more insights.

Understanding the assumptions that we discuss in this chapter will help you achieve two things:

• Become a better (data) scientist (even if your primary goal is not to conduct causal analyses)

• Learn how to effectively use causality without over- or undervaluing its potential

I am the king of the world! But am I? 153

Ready?

Let’s go!

Identifiability

One of the core concepts that we’ll use in this chapter is identifiability. The good news is that you
already know what identifiability is.

We say that a causal effect (or any other causal quantity) is identifiable when it can be computed
unambiguously from a set of (passive) observations summarized by a distribution P (V) and a causal
graph G (Pearl, 2009).

In other words, if we have (1) enough information to control for non-causal information flow in the
graph and (2) enough data to estimate the effect of interest, the effect is identifiable.

Let’s unpack that.

Do you remember Chapter 6 and our conversation on d-separation and do-calculus?

The first condition is achievable by blocking all the paths that are leaking non-causal information
using the rules of do-calculus and the logic of d-separation. This is often possible using the back-door
criterion, the front-door criterion, instrumental variables, or the general rules of do-calculus.

That said, sometimes it is just impossible.

The important thing is not to pretend that it’s possible when we know it’s not. In such a case, using
causal methods can bring more harm than good. One of the main challenges is that sometimes we
simply don’t know. We’ll learn more about this in the last part of this section.

The second condition has two faces.

First, any estimator needs to have a large enough sample size to return meaningful estimates. Second,
we need to make sure that the probability of every possible value of treatment in our dataset (possibly
conditioned on all important covariates) is greater than 0. This is known as the positivity assumption
and we’ll discuss it in the next section.

Now, let’s talk about a couple of challenges causal data scientists face.

Lack of causal graphs

In a recent survey that I conducted on LinkedIn, I asked the participants to imagine that they could
ask a world-class causality expert one question. 28% chose to ask a question related to obtaining causal
graphs in real-world scenarios.

The lack of a causal model can be a major challenge in implementing causal inference techniques
in practice.

Causal Models – Assumptions and Challenges154

There are three things that people usually do to obtain a causal graph for a problem with an unknown
causal structure:

• Use domain expertise

• Use causal discovery techniques

• Use a combination of both of the above

High quality trustworthy domain expertise is often the least risky option yet might be the hardest to
obtain. Causal discovery methods are usually cheaper, but verifying their results can be challenging.

In many cases, a combination of domain knowledge and structure learning algorithms might be the
best option. Some causal discovery methods allow us to easily incorporate our domain knowledge
and then they perform the search over the remaining parts of graph search space for us (more on this
topic in Part 3, Causal Discovery). This can lead to truly amazing results, yet there are no guarantees.

If your data comes from a natural experiment, you can also try some of the methods from the field
of econometrics, such as synthetic controls, regression discontinuity, or difference-in-differences.
We’ll briefly discuss one of them (with a Bayesian flavor) in Chapter 11.

Not enough data

An insufficiently large sample size is not a uniquely causal problem. Any statistical parameter estimate
becomes biased under an insufficiently large sample size.

Depending on the method we choose, some causal methods might require more data than others. If
we use the double machine learning (DML) technique with neural network estimators, we need to
be prepared for neural-network-style sample sizes.

Nonetheless, sample size can also be an issue in the case of very simple models. I conducted a simple
experiment so we could see it in action. The full code for this experiment is in the notebook for Chapter 8
(https://bit.ly/causal-ntbk-08). Here we only present the methodology and the results.

Let’s take the graphical model from the previous chapter (check Figure 8.1 for a refresher).

Understanding the sample size – methodology

Let’s take four different sample sizes (30, 100, 1,000, and 10,000), and for each sample size, generate
20 datasets from the model presented in Figure 8.1. We fit two models for each dataset: one based
on simple linear regression and one based on a DML estimator, powered by two gradient-boosting
models and a cross-validated lasso regression:

https://bit.ly/causal-ntbk-08

I am the king of the world! But am I? 155

Figure 8.1 – The graphical model that we use in the experiment

Understanding the sample size – results

The results are presented in Figure 8.2. We see sample size on the x axis and percentage error on the
y axis. 100% error means that the coefficient returned by the model was twice the size of the true
coefficient; negative 100% means that the estimated effect was 0 (the true effect minus 100% of the
true effect is 0):

Figure 8.2 – The results of the sample size experiment

Causal Models – Assumptions and Challenges156

As we can see, for the smallest sample size, both models perform pretty poorly (despite the fact that
the causal effect is identifiable in graphical terms). That said, the error variance of the DML model
is significantly higher than the error variance of the simple linear model. At 100 observations, both
models’ performance match closely, and at 1,000 and 10,000 observations, the performance seems to
converge. Note that we used a back-door criterion to identify estimands in this experiment. Back-door
is computationally simple and much less challenging than front-door or other approaches.

To make the most out of smaller sample sizes, a good idea would be to bootstrap your results, if you
can afford it.

Unverifiable assumptions

In some cases, it might be very difficult to find out whether you’re meeting your assumptions. Let’s
start with confounding.

Imagine that you’re trying to use the back-door criterion for your problem. In certain cases, you’ll
be able to rule out the possibility that there are other unobserved variables introducing confounding
between your treatment and your outcome, but in many cases, it might be very difficult. In particular,
when your research involves human interactions, financial markets, or other complex phenomena,
making sure that the effects of interest are identifiable can be difficult if not impossible. That’s likely one
of the reasons for the huge popularity of instrumental variable techniques in contemporary applied
econometrics. Although good instruments have a reputation of being notoriously hard to find, they
might be easier to find than the certainty that we meet the back-door criterion.

An elephant in the room – hopeful or hopeless?

Some people reading about the challenges in causal inference from observational data might ask, “Is
there anything we can do?”

I like the idea presented by James Altucher and Claudia Altucher in their book, The Power of No: if
you cannot come up with 10 creative ideas, you should come up with 20 (Altucher & Altucher, 2014).

Let’s see whether there’s anything we can do to overcome these obstacles.

Let’s eat the elephant

Let’s talk about creative ideas for evaluating causal models.

The first level of creativity is to use the refutation tests that we described in the previous chapter.
You already know how they work. One challenge with these tests is that they check for the overall
correctness of the model structure, but they do not say much about how good the obtained estimate is.

By the way, if you have an idea for a new refutation test, go to https://bit.ly/DoWhyRepo and
propose it in the discussion section or open a new pull request. You can help the causal community
to move one step forward!

https://bit.ly/DoWhyRepo

Positivity 157

The second level of creativity is available when you have access to historical data coming from
randomized experiments. You can compare your observational model with the experimental results
and try to adjust your model accordingly.

The third level of creativity is to evaluate your modeling approach on simulated data with known
outcomes. This might sound easy, but… if we had a reliable simulator of the process of interest, would
we need machine learning in the first place?

Instead of building a simulator, we can try to learn it using generative neural networks. One such approach
– RealCause – has been proposed by Brady Neal and colleagues (Neal et al., 2020). This approach
certainly does not solve all your problems but can help you be more realistic, at least to an extent (for
example, you can understand how your estimator behaves under positivity assumption violation).

An important fact about RealCause is that it generates realistic data distributions. It has been demonstrated
that synthetic data can lead us astray when assessing the performance of causal models (Reisach et
al., 2021; Curth et al., 2021). The good news is that the Python implementation of RealCause is open
sourced and available at https://bit.ly/RealCause.

The fourth level of creativity is sensitivity analysis. In certain cases, we might have some idea about
the magnitude of possible hidden confounding. In these cases, we can bound the error and check
whether the estimated causal effect still holds if the confounders’ influence reaches the maximum
level that we think is reasonable to assume.

In other words, we can virtually check whether our effect would still hold in the worst-case scenario.
Sensitivity analysis for regression models can be performed using the Python PySensemakr package
(Cinelli and Hazlett, 2020; https://bit.ly/PySensemakr) or even using the online Sensemakr
app (https://bit.ly/SensemakrApp).

Even better, the sensitivity analysis framework has been recently extended for a broad class of causal
models (check Chernozhukov et al. (2022) for details).

In this section, we talked about the challenges that we can face when working with causal models
and we discussed some creative ways to overcome them. We talked about the lack of causal graphs,
insufficient sample sizes, and uncertainty regarding assumptions. We’ve seen that although there
might not be a universal cure for all causal problems, we can definitely get creative and gain a more
realistic understanding of our position.

In the next section, we’ll discuss the positivity assumption.

Positivity
In this short section, we’re going to learn about the positivity assumption, sometimes also called
overlap or common support.

First, let’s think about why this assumption is called positivity. It has to do with (strictly) positive
probabilities – in other words, probabilities greater than zero.

https://bit.ly/RealCause
https://bit.ly/PySensemakr
https://bit.ly/SensemakrApp

Causal Models – Assumptions and Challenges158

What needs to have a probability greater than zero?

The answer to that is the probability of your treatment given all relevant control variables (the variables
that are necessary to identify the effect – let’s call them Z). Formally:

 P (T = t | Z = z) > 0

The preceding formula must hold for all values of Z that are present in the population of interest
(Hernán & Robins, 2020) and for all values of treatment T .

Let’s imagine a simple example. In our dataset, we have 30 subjects described by one continuous
feature Z . Each subject either received or did not receive a binary treatment T , and each subject has
some continuous outcome Y . Additionally, let’s assume that in order to identify the causal effect, we
need to control for Z , which confounds the relationship between T and Y .

We can estimate the causal effect by computing:

 E [Y | do (T = 1)] − E [Y | do (T = 0)]

Using the adjustment formula (Pearl et al., 2016), to compute these quantities from observational
data, we need to control for Z .

Now imagine an extreme case where the support of Z (in other words, values of Z) does not overlap
at all with the treatment values (hence the names overlap and common support; Neal, 2020). Figure 8.3
presents a graphical representation of such a case:

Figure 8.3 – Positivity violation example

Positivity 159

In order to estimate the causal effect of the treatment T given Z , our estimator would need to extrapolate
the red dots to the left (in the range between 2 and 5, where the support of Z for T = 0 is) and the
blue dots to the right (in the range between 5 and 9, where the support of Z for T = 1 is). It’s highly
unlikely that any machine learning model would perform such an extrapolation realistically. Figure 8.4
presents a possible extrapolation trajectory:

Figure 8.4 – Possible extrapolation trajectories (lines)

The red and blue lines in Figure 8.4 represent possible extrapolation trajectories. How accurate do
they seem to you?

To me, not very. They look like simple linear extrapolations, not capturing the non-linear qualities
of the original functions.

Causal Models – Assumptions and Challenges160

Let’s compare it to Figure 8.5 where positivity is met:

Figure 8.5 – Positivity assumption met

As you can see, here the model has a much easier task as it only needs to interpolate between the points.

Our example is very simple: we only have one confounder. In the real world, the data is often
multidimensional, and making sure that P (T = t | Z = z) > 0 becomes more difficult. Think about
a three-dimensional example. How about a 100-dimensional example?

As a side note, extrapolation and interpolation in high-dimensional spaces bring their own challenges
(what does it mean to interpolate in an extremely high-dimensional space?). If this idea seems
interesting to you, you might want to check the paper Learning in High Dimension Always Amounts
to Extrapolation (Balestriero et al., 2021) or listen to episode 86 of the Machine Learning Street Talk
podcast with two of the authors of this paper – Randall Balestriero and Yann LeCun (Machine Learning
Street Talk, 2022).

In this section, we learned about the positivity assumption. We demonstrated two cases using a
one-dimensional example: when the assumption is violated and when it holds. We also discussed how
positivity is related to estimation and briefly noted the challenges that we can face in higher dimensions.

In the next section, we’ll discuss the exchangeability assumption.

Exchangeability 161

Exchangeability
In this section, we’ll introduce the exchangeability assumption (also known as the ignorability
assumption) and discuss its relation to confounding.

Exchangeable subjects

The main idea behind exchangeability is the following: the treated subjects, had they been untreated,
would have experienced the same average outcome as the untreated did (being actually untreated)
and vice versa (Hernán & Robins, 2020).

Formally speaking, exchangeability is usually defined as:

 { Y 0 , Y 1 } ⫫ T | Z

In the preceding formula, Y 0 and Y 1 are counterfactual outcomes under T = 0 and T = 1 respectively,
and Z is a vector of control variables. If you’re getting a feeling of confusion or even circularity when
thinking about this definition, you’re most likely not alone. According to Pearl (2009), many people
see this definition as difficult to understand.

At the same time, the core idea behind it is simple: the treated and the untreated need to share all the
relevant characteristics that can influence the outcome.

Can we express this in simpler terms?

Exchangeability versus confounding

Exchangeability is an idea that comes from the potential outcomes framework. Potential outcomes
is a causal framework introduced by Donald Rubin in the 1970s (Rubin, 1974), but the core ideas go
back to the 1920s and Polish statistician Jerzy Neyman’s master thesis (Neyman, 1923).

In fact, the potential outcomes framework aims to achieve the same goals as SCM/do-calculus-based
causal inference, just using different means (see Pearl, 2009, pp. 98-102, 243-245).

Pearl argues that both frameworks are logically equivalent and can be used interchangeably or
symbiotically, pointing out that graphical models can help clearly address challenges that might be
difficult to spot using the potential outcomes formalism (see https://bit.ly/POvsSCM for
examples). I wholeheartedly agree with the latter.

We will not go deep into exchangeability/ignorability definitions here. Instead, we’ll assume that –
in general – exchangeability can be reduced to unconfoundedness. This means that we can achieve
exchangeability using any of the deconfounding techniques we have introduced so far. This view is
not always accepted, but further details are beyond the scope of this book.

For a more detailed discussion on the relationship between exchangeability and confounding, see
Pearl (2009, pp. 196-199, 341-344) and Hernán & Robins (2020, pp. 27-31).

https://bit.ly/POvsSCM

Causal Models – Assumptions and Challenges162

In this section, we discussed the exchangeability assumption. We introduced the potential outcomes
definition of exchangeability and sketched its connection to the concept of confounding. In the next
section, we’re going to discuss three other assumptions that you can find in the causality literature.

…and more
In this short section, we’ll introduce and briefly discuss three assumptions: the modularity assumption,
stable unit treatment value assumption (SUTVA), and the consistency assumption.

Modularity

Imagine that you’re standing on the rooftop of a tall building and you’re dropping two apples. Halfway
down, there’s a net that catches one of the apples.

The net performs an intervention for one of the apples, yet the second apple remains unaffected.

That’s the essence of the modularity assumption, also known as the independent mechanisms assumption.

Speaking more formally, if we perform an intervention on a single variable X , the structural equation
for this variable will be changed (for example, set to a constant), yet all other structural equations in
our system of interest will remain untouched.

Modularity assumption is central to do-calculus as it’s at the core of the logic of interventions.

Let’s see an example.

Consider the following SCM 𝒮 :

 X : = 𝒩 (0, 1)

 Z ≔ 𝒩 (0, 1)

 R ≔ X + Z

 Y ≔ R + X

Figure 8.6 presents a graphical representation of 𝒮 .

Figure 8.6 – The modularity example SCM 𝓢

…and more 163

The modularity assumption says that if we intervene on node R by setting its value to r , the only
equation that will change in 𝒮 is the following:

 R ≔ r

All the other structural equations will remain the same.

The SCM 𝒮 after the intervention, let’s call it 𝒮 M (we often add a subscript M (modified) to denote
an SCM after intervention), is presented in Figure 8.7:

Figure 8.7 – The modified SCM 𝓢 M

There are no longer edges from X and Z to R because we forced R to take value r and therefore any
change in X or Z won’t affect the value of R (this is known as a perfect intervention).

At the same time, the edge from X to Y is untouched (despite our intervention on R , changes in X will
still affect the value of Y) in accordance with the modularity assumption.

Removing edges from the graph when we intervene on (a set of) variable(s) is sometimes called graph
mutilation. I don’t like this name too much. A more neutral term is graph modification.

From a graphical perspective, modularity can be summarized in the following way:

• When we perform a perfect intervention on node V, all V’s incoming edges are deleted in the
modified graph

• No incoming edges to other (unintervened) nodes are modified

Causal Models – Assumptions and Challenges164

Another way to think about modularity is that changes caused by interventions are local: only the
mechanism for the intervened variables change (we remove the incoming edges), but other mechanisms
in the system remain unchanged.

Modularity might seem challenging to understand at first, but at its core, it’s deeply intuitive.

Let’s imagine a world where modularity does not hold.

In this world, you’d make an intervention on your web page by changing the button shape and as a
result, your web page will also automatically be translated into Portuguese, while your computer will
automatically start playing Barbra Streisand songs and your lawyer will immediately color their hair
green – all without any other changes in the world besides your button shape. Such a world might be
interesting but hard to navigate in terms of understanding causal mechanisms.

In this sense, modularity is a common sense assumption.

To summarize, the modularity assumption states that when we perform a (perfect) intervention on
one variable in the system, the only structural change that takes place in this system is the removal of
this variable’s incoming edges (which is equivalent to the modification of its structural equation) and
the rest of the system remains structurally unchanged.

SUTVA

The SUTVA is another assumption coming from the potential outcomes framework.

The assumption states that the fact that one unit (individual, subject, or object) receives treatment
does not influence any other units.

This assumption might often be challenged in the context of interacting subjects. For instance, if one
person in a household decides to start psychotherapy, other household members will likely also be
affected (when one person changes their thinking and/or behavior, their environment usually reacts
to this change in one way or another). Similarly, if you encourage some users of a social network to
send more messages, the recipients of these messages are also likely to start sending more messages
(not because they were encouraged by you, but rather because they want to respond to the senders).

At the experimental level, researchers are trying to overcome these challenges using various techniques
such as cluster-level (rather than individual-level) randomization or so-called ego-randomization (Gui et
al., 2015; Saint-Jacques et al., 2018). Some of these techniques can also be applied to observational data.

Consistency

The last assumption that we’re going to discuss in this section is the consistency assumption. Consistency
comes from the potential outcomes framework.

The assumption is also known as no multiple versions of treatment and is sometimes included as the
second part of the SUTVA assumption (yes, I know, this might be confusing).

Call me names – spurious relationships in the wild 165

Let’s get to the point.

Imagine that the treatment is to win a car. There are two levels of treatment: you either get a car or don’t.

Some people in the treatment group win a brand-new electric BMW while others get a rusty, 20-year-old
Mazda without wheels. If our outcome variable is the level of excitement, we’d expect that on average
the same person’s level of excitement would differ between the two versions of treatment. That would
be an example of a violation of consistency as we essentially encode two variants of treatment as one.

Another way of looking at consistency comes from Pearl and Mackenzie. In their interpretation,
consistency means that the experiment is “free of placebo effect and other imperfections” (Pearl &
Mackenzie, 2019, p. 281).

If you only take two things out of our discussion on consistency, it should be these:

• Treatments should be well defined

• There should not be hidden versions of treatments

These are the two essential characteristics of consistency.

In this section, we discussed three assumptions: modularity (independent mechanisms), SUTVA, and
consistency. The first one comes from the graphical/do-calculus framework, while the remaining two
have their source in the potential outcomes framework.

In the next section, we’ll shed some new light on the topic of unobserved variables.

Call me names – spurious relationships in the wild
Don’t you feel that when we talk about spurious relationships and unobserved confounding, it’s almost
like we’re talking about good old friends now? Maybe they are trouble sometimes, yet they just feel
so familiar it’s hard to imagine the future without them.

We will start this section with a reflection on naming conventions regarding bias/spurious relationships/
confounding across the fields. In the second part of the section, we’ll discuss selection bias as a special
subtype of spuriousness that plays an important role in epidemiology.

Names, names, names

Oh boy! Reading about causality across domains can be a confusing experience! Some authors suggest
using the term confounding only when there’s a common cause of the treatment and the outcome
(Peters et al., 2017, p. 172; Hernán & Robins, 2020, p. 103); others allow using this term also in other
cases of spuriousness (Pearl & Mackenzie, 2019, p. 161).

Another term popular in the literature is selection bias. Definitions of selection bias differ between
fields. Hernán & Robins (2020) advocate for a clear distinction between confounding (understood
by them in terms of common causes) and selection bias (understood in terms of common outcomes).

Causal Models – Assumptions and Challenges166

Note that in the field of econometrics, the term selection bias might be used to describe any type of
confounding bias.

Although it might be challenging sometimes, it’s good to understand which convention a person you
talk to (or read) uses.

Let’s review what Hernán and Robins (2020) call a selection bias and learn two valuable lessons.

Should I ask you or someone who’s not here?

It’s 1943. American military planes are engaged in numerous missions and many of them are not
coming back home. The ones that are coming back are often damaged.

An interesting fact is that the damage does not look random. It seems that there’s a clear pattern to it.
Bullet holes are concentrated around the fuel system and fuselage, but not so much around the engines.

The military engineers decide to consult a renowned group of statisticians called the Statistical
Research Group (SRG) to help them figure out how to optimally distribute the armor so that the
places that are at the highest risk of damage are protected.

A person who was faced with this question was Abraham Wald, a Hungarian-born Jewish mathematician,
who worked at Columbia University and was a part of the SRG at the time.

Instead of providing the army with the answer, Wald asked a question.

It was a seemingly simple one: “Where are the missing holes?”

Missing holes?

What Wald meant were the holes that we’ve never observed. The ones that were in the planes that
never came back.

DAG them!

What Wald pointed out is so-called survivorship bias. It’s a type of selection bias where the effects
are estimated only on a subpopulation of survivors with an intention to generalize them to the entire
population. The problem is that the population might differ from the selected sub-sample. This bias
is well known in epidemiology (think about disease survivors, for instance).

Let’s put a hypothetical SCM together to represent the problem that Wald was facing.

Figure 8.8 is a graphical representation of this SCM:

Figure 8.8 – An SCM representation of Wald’s problem

Call me names – spurious relationships in the wild 167

We have three nodes: T , Y , and C . T represents the treatment, the number of enemy bullets shot at
the engines, Y stands for the severity of plane damage, and C is a binary variable encoding whether
a plane came back home (1) or not (0).

Note that what we do by only looking at planes that came back home is implicitly conditioning on C .

Two factors influence C : the number of bullets shot at the engines (T) and the overall damage severity
(Y), which also depends on T . If the number of bullets shot at the engines is high enough, the plane is
not coming back home regardless of other damage. It can also be the case that the number of bullets shot
at engines is not that high, but the overall damage is so severe that the plane does not make it anyway.

Note that conditioning on C opens a spurious path, T → C ← Y . This is precisely the source of bias
because C is a collider on this path and – as you might remember – conditioning on a collider opens
the information flow (as opposed to conditioning on chains and forks).

Let’s translate our example into Python to see how this logic works on an actual dataset.

First, let’s define the sample size and the set of structural assignments that defines our SCM:

SAMPLE_SIZE = 1000

A hypothetical SCM
T = np.random.uniform(20, 110, SAMPLE_SIZE)
Y = T + np.random.uniform(0, 40, SAMPLE_SIZE)
C = (T + Y < 100).astype('int')

Let’s put all the variables in a pandas DataFrame for easier manipulation:

df = pd.DataFrame(np.stack([T, Y, C]).T, columns=['T',
 'Y', 'C'])

Finally, let’s condition on C and plot the results:

Compare average damage (biased vs unbiased)
plt.figure(figsize=(8, 4))

plt.hist(df[df['C'] == 1]['Y'], label='Came back = 1',
 color=COLORS[0], alpha=.5)
plt.hist(df[df['C'] == 0]['Y'], label='Came back = 0',
 color=COLORS[1], alpha=.5, bins=25)

plt.xlabel('$Damage$ $severity$', alpha=.5, fontsize=12)
plt.ylabel('$Frequency$', alpha=.5, fontsize=12)

plt.legend()
plt.show()

Causal Models – Assumptions and Challenges168

Figure 8.9 presents the output of this block:

Figure 8.9 – A histogram of plane damage conditioned on C

The data in blue represents the damage severity for the planes that came back home. The data in red
denotes the damage severity of the planes that did not come back.

As you can see, the severity is much higher for the planes that did not make it back home and there’s
only a small overlap between the two sets around the value of 60 .

Although our example is simplified (we don’t take the damage location into account in our histogram),
the conclusion is the same as Wald’s – what matters the most are the missing holes, not the ones that
we’ve observed. The first lesson is: look at what’s missing.

If you want to understand the original solution proposed by Wald, you can find it in Wald (1980).

More selection bias

The DAG in Figure 8.8 represents just one possible combination of nodes leading to selection bias.
Before we conclude this chapter, let’s see some more examples. I picked something a bit spicier this
time. Let’s start with Figure 8.10:

Figure 8.10 – An example of selection bias

Wrapping it up 169

The DAG in Figure 8.10 is interesting. There is no connection between treatment T and the outcome
 Y , yet conditioning on C opens a path between the two. This is sometimes called selection bias under
the null (Hernán and Robins, 2020).

Let’s see one more example (Figure 8.11):

Figure 8.11 – An example of selection bias without the edge between T and C

The DAG in Figure 8.11 is even more interesting. There are no edges directly connecting T and C or
Y and C . Can you guess what’s the source of spuriousness here?

Note that C is a child of Z . Controlling for C (by using it as a selection criterion) partially opens the
path T → Z ← W → Y . We say partially because C usually contains some of Z ’s variability.

This is a fact worth remembering – conditioning on descendants (yes, it’s not only about children) of
colliders usually partially opens the path on which the collider resides (in very special cases, conditioning
on descendants could leave the path closed, but these cases are rather rare). The second lesson is look
further than you think is necessary.

In this section, we discussed the concepts of selection bias, confounding, and spuriousness. We showed
that naming conventions regarding these concepts differ across disciplines and subfields.

In the second part of the section, we focused on selection bias and recalled the story of Abraham
Wald. We cast this story into the language of DAGs and translated it into Python to see how selection
bias works in practice.

Two lessons we learned in this section are look at what’s missing and look further than you think
is necessary.

Wrapping it up
In this chapter, we talked about the challenges that we face while using causal inference methods
in practice. We discussed important assumptions and proposed potential solutions to some of the
discussed challenges. We got back to the topic of confounding and showed examples of selection bias.

Causal Models – Assumptions and Challenges170

The four most important concepts from this chapter are identifiability, the positivity assumption,
modularity, and selection bias.

Are you ready to add some machine learning sauce to all we’ve learned so far?

References
Altucher, J., Altucher C. A. (2014). The Power of No: Because One Little Word Can Bring Health,
Abundance, and Happiness. Hay House.

Balestriero, R., Pesenti, J., and LeCun, Y. (2021). Learning in High Dimension Always Amounts to
Extrapolation. arXiv, abs/2110.09485.

Cinelli, C., Hazlett, C. (2020). Making Sense of Sensitivity: Extending Omitted Variable Bias. Journal
of the Royal Statistical Society, Series B: Statistical Methodology 81(1), 39-67.

Curth, A., Svensson, D., Weatherall, J., and van der Schaar, M. (2021). Really Doing Great at Estimating
CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation. Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks.

Chernozhukov, V., Cinelli, C., Newey, W., Sharma, A., and Syrgkanis, V. (2022). Long Story Short:
Omitted Variable Bias in Causal Machine Learning (Working Paper No. 30302; Working Paper Series).
National Bureau of Economic Research.

Donnely, R. (2022, October 2). One of the big challenges with causal inference is that we can’t easily
prove which approach produced the best estimate of the true causal effect… [Post]. LinkedIn. https://
www.linkedin.com/posts/robert-donnelly-4376579_evaluating-the-
econometric-evaluations-of-activity-6979849583241609216-7iXQ?utm_
source=share&utm_medium=member_desktop

Graves, R. (1955). Daedalus and Talus. The Greek Myths. Penguin Books.

Gordon, B. R., Moakler, R., and Zettelmeyer, F. (2022). Close Enough? A Large-Scale Exploration of
Non-Experimental Approaches to Advertising Measurement. arXiv. https://doi.org/10.48550/
ARXIV.2201.07055

Gui, H., Xu, Y., Bhasin, A., and Han, J. (2015). Network A/B Testing: From Sampling to Estimation.
Proceedings of the 24th International Conference on World Wide Web, 399–409. https://doi.
org/10.1145/2736277.2741081

Hernán M. A., Robins J. M. (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Intellectual Ventures. (March 10, 2016). Failing for Success: The Wright Brothers. https://www.
intellectualventures.com/buzz/insights/failing-for-success-the-
wright-brothers/

https://www.linkedin.com/posts/robert-donnelly-4376579_evaluating-the-econometric-evaluations-of-activity-6979849583241609216-7iXQ?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/robert-donnelly-4376579_evaluating-the-econometric-evaluations-of-activity-6979849583241609216-7iXQ?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/robert-donnelly-4376579_evaluating-the-econometric-evaluations-of-activity-6979849583241609216-7iXQ?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/robert-donnelly-4376579_evaluating-the-econometric-evaluations-of-activity-6979849583241609216-7iXQ?utm_source=share&utm_medium=member_desktop
https://doi.org/10.48550/ARXIV.2201.07055
https://doi.org/10.48550/ARXIV.2201.07055
https://doi.org/10.1145/2736277.2741081
https://doi.org/10.1145/2736277.2741081
https://www.intellectualventures.com/buzz/insights/failing-for-success-the-wright-brothers/
https://www.intellectualventures.com/buzz/insights/failing-for-success-the-wright-brothers/
https://www.intellectualventures.com/buzz/insights/failing-for-success-the-wright-brothers/

References 171

Library of Congress. (n.d.). Collection. Wilbur and Orville Wright Papers at the Library of
Congress. https://www.loc.gov/collections/wilbur-and-orville-wright-
papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-
1846-to-1948/1901-to-1910/

Machine Learning Street Talk. (2022, January 4). #61: Prof. YANN LECUN: Interpolation, Extrapolation
and Linearisation (w/ Dr. Randall Balestriero) [Video]. YouTube. https://www.youtube.com/
watch?v=86ib0sfdFtw

Neal, B. (2020, September 7). 2.7 - Positivity/Overlap and Extrapolation [Video]. YouTube. https://
www.youtube.com/watch?v=4xc8VkrF98w

Neal, B., Huang, C., and Raghupathi, S. (2020). RealCause: Realistic Causal Inference Benchmarking.
arXiv, abs/2011.15007.

Neyman, J. (1923). Sur les applications de la theorie des probabilites aux experiences agricoles: Essai
des principes.

Pearl, J. (2009). Causality. Cambridge, UK: Cambridge University Press.

Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.

Pearl, J., and Mackenzie, D. (2019). The Book of Why. Penguin.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Reisach, A.G., Seiler, C., & Weichwald, S. (2021). Beware of the Simulated DAG! Varsortability in
Additive Noise Models. arXiv, abs/2102.13647.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology, 66(5), 688–701.

Saint-Jacques, G., Varshney, M., Simpson, J., and Xu, Y. (2019). Using Ego-Clusters to Measure Network
Effects at LinkedIn. arXiv, abs/1903.08755.

Wald, A. (1980). A Reprint of ‘A Method of Estimating Plane Vulnerability Based on Damage of Survivors’.
Center for Naval Analyses.

https://www.loc.gov/collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-1846-to-1948/1901-to-1910/
https://www.loc.gov/collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-1846-to-1948/1901-to-1910/
https://www.loc.gov/collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-1846-to-1948/1901-to-1910/
https://www.youtube.com/watch?v=86ib0sfdFtw
https://www.youtube.com/watch?v=86ib0sfdFtw
https://www.youtube.com/watch?v=4xc8VkrF98w
https://www.youtube.com/watch?v=4xc8VkrF98w

9
Causal Inference and Machine

Learning – from Matching
to Meta-Learners

Welcome to Chapter 9!

In this chapter, we’ll see a number of methods that can be used to estimate causal effects in non-linear
cases. We’ll start with relatively simple methods and then move on to more complex machine
learning estimators.

By the end of this chapter, you’ll have a good understanding of what methods can be used to estimate
non-linear (and possibly heterogeneous (or individualized)) causal effects. We’ll learn about the
differences between four different ways to quantify causal effects: average treatment effect (ATE),
average treatment effect on the treated (ATT), average treatment effect on the control (ATC), and
conditional average treatment effect (CATE).

In this chapter, we will cover the following key topics:

• ATE, ATT, ATC, and CATE

• Matching

• Propensity scores

• Inverse probability weighting

• Meta-learners

Causal Inference and Machine Learning – from Matching to Meta-Learners174

The basics I – matching
In this section, we’ll discuss the basics of matching. We’ll introduce ATE, ATT, and ATC. We’ll define
a basic matching estimator and implement an (approximate) matching estimator using DoWhy’s
four-step causal process.

Matching is a family of methods for estimating causal effects by matching similar observations (or
units) in the treatment and non-treatment groups. The goal of matching is to make comparisons
between similar units in order to achieve as precise an estimate of the true causal effect as possible.

Some authors, including Stuart (2010) and Sizemore & Alkurdi (2019), suggest that matching should
be treated as a data preprocessing step, on top of which any estimator can be used. This view is also
emphasized by Andrew Gelman and Jennifer Hill: “Matching refers to a variety of procedures that
restrict and reorganize the original sample” (Gelman & Hill, 2006).

If you have enough data to potentially discard some observations, using matching as a preprocessing
step is typically beneficial. One important point here is that it only makes sense for observational data
(without unobserved confounding) but not for experimental data.

To keep consistency with other methods, we will use matching as a complete causal estimator in
this chapter.

Types of matching

There are many variants of matching. First, we have exact versus inexact (approximate) matching.
The former requires that treated observations and their respective untreated pairs have exactly the
same values for all relevant variables (which includes confounders). As you can imagine, this might
be extremely hard to achieve, especially when your units are complex entities such as humans, social
groups, or organizations (Stuart, 2010). Inexact matching, on the other hand, allows for pairing
observations that are similar. Many different metrics can be used to determine the similarity between
two observations. One common choice is Euclidean distance or its generalizations: Mahalanobis
distance (https://bit.ly/MahalanobisDistance) and Minkowski distance (https://
bit.ly/MinkowskiDistance). Matching can be performed in the raw feature space (directly
on your input variables) or other spaces, for instance, the propensity score space (more on propensity
scores in the next section). One thing that you need to figure out when using inexact matching is the
maximal distance that you’ll accept to match two observations – in other words: how close is close enough.

https://bit.ly/MahalanobisDistance
https://bit.ly/MinkowskiDistance
https://bit.ly/MinkowskiDistance

The basics I – matching 175

More on matching
A detailed discussion of different variants of matching is beyond the scope of this book. If this
particular family of methods seems interesting to you, you can start with a great summary
article by Elizabeth A. Stuart (Stuart, 2010; https://bit.ly/StuartOnMatching)
or a (more recent) blog post by Samantha Sizemore and Raiber Alkurdi from the Humboldt
University in Berlin (Sizemore & Alkurdi, 2019; https://bit.ly/SizemoreAlkurdi).
The latter contains code examples in R, leverages some more recent machine learning methods
(such as XGBoost), and provides you with an experimental evaluation of different approaches.
To learn about matching in the multiple treatment scenarios, check out Lopez & Guttman
(2017) for similarities between matching and regression, Angrist & Pischke (2008, pp. 51–59)
for matching in the historical context of subclassification, Cunningham (2021, pp. 175–198)
or Facure (2020, Chapter 10).

As is the case for all other methods we have discussed so far, matching requires that the relationship
between the treatment and the outcome is unconfounded. Therefore, we need to make sure that all
confounders are observed and present in the matching feature set if we want to obtain unbiased
estimates of causal effects. Moreover, it’s good to draw a directed acyclic graph (DAG) to make sure
we don’t introduce bias by controlling for colliders.

Note that matching does not care about linearity in the data – it can be used for linear as well as
non-linear data.

Treatment effects – ATE versus ATT/ATC

Using matching, we can compute a variety of causal effects. So far in the book, when computing
treatment effects, we implicitly and consistently chose ATE. Let’s define ATE formally:

 ATE = 1 _ N ∑
i
 τ i

In the preceding formula, N is the total number of observations, and τ i is the treatment effect for the
unit i defined as:

 τ i = Y i
1 − Y i

0

The superscripted Y i in the preceding formula stands for counterfactual outcomes for the unit i: Y i
1

is the outcome under treatment and Y i
0 is the outcome under no treatment. Of course, both of these

outcomes cannot be observed at the same time for the same unit (remember the fundamental problem
of causal inference from Chapter 2?), and that’s the reason why we need to estimate them.

Another quantity that we can estimate is ATT. It is defined in the following way:

 ATT = 1 _ N T=1
 ∑

 i T=1
 τ i

ATT looks very similar to ATE. The key difference is that we do not sum over all observations but
rather only over the treated units (units that received the treatment). In the preceding formula, N T=1
represents the number of units that received the treatment (hence T=1), and i T=1 represents the indices
of these units.

https://bit.ly/StuartOnMatching
https://bit.ly/SizemoreAlkurdi

Causal Inference and Machine Learning – from Matching to Meta-Learners176

ATC is a mirror reflection of ATT; the only thing we need to change is the value of T:

 ATC = 1 _ N T=0
 ∑

 i T=0
 τ i

Note that ATE is the average of ATT and ATC.

Matching estimators

The type of causal effect that we want to estimate will influence the definition of the matching
estimator itself.

A basic matching estimator for ATT can be defined as follows:

 ̂ τ ATT = 1 _ N T=1
 ∑

 i T=1
 Y i − Y j (i)

In the preceding formula, Y i stands for the value of the outcome of the i-th treated observation, and
Y j (i) represents the outcome of a matched observation from the untreated group (I borrowed the Y j (i)
notation from Scott Cunningham (2021)).

The matching estimator for ATE can be defined in the following way:

 ̂ τ ATE = 1 _ N ∑
i
 (2 T i − 1) (Y i − Y j (i))

This time, we iterate over all observations and find matches for them within the other group. For each
treated observation i, we match an untreated observation, j(i), and vice versa. Note that in the ATT
estimator, j(i) always belonged to the untreated group, while i was always treated. When estimating
ATE, i can be treated or untreated, and j(i) simply belongs to the other group (if i is treated, j(i) is
not and vice versa).

The (2 T i − 1) part of the ATE equation is a neat mathematical trick. T i represents the treatment
value for observation i. If the treatment is 1, then the value of this expression will also be 1. When
the treatment is 0, then the value is -1. Therefore, the expression flips the sign of the remaining part
of the equation. This sign flipping helps us keep the result of the (Y i − Y j (i)) part correct regardless of
the unit i‘s actual treatment status.

Note that this formula only works for binary treatments (it needs to be further adapted to work with
multiple-level treatments; for some further ideas on this, check out Lopez & Gutman, 2017).

Let’s see a quick example. Imagine that we only have two units in our dataset, represented in Table 9.1:

Unit Covariate Treatment Outcome
A 33 1 9
B 33 0 1.5

Table 9.1 – Example data

The basics I – matching 177

Let’s compute a matching ATE for this dataset. For the first unit, we have the following equation:

 (2 × 1 − 1) (9 − 1.5) = 1 × 7.5 = 7.5

For the second observation, we have the following equation:

 (2 × 0 − 1) (1.5 − 9) = − 1 × − 7.5 = 7.5

Now, we sum both results, which gives us 15, and divide by the total number of observations, which
gives us 7.5. Et voila! Note how the sign-flipping trick makes the subtraction operation order invariant.
For clarity, the computation with color coding is also presented in Figure 9.1.

Figure 9.1 – Visual representation of matching formula computations with data from Table 9.1

Now, you might ask, what if we have observations without good matches in our dataset? The traditional
answer to this question is that we need to discard them! In case of approximate (inexact) matching,
you can try extending your criteria of similarity in order to retain some of these observations, but keep
in mind that this will likely increase the bias in your estimates (especially if your sample size is small).

What if we end up with more than one good match per observation? Do we also need to discard it?

It turns out that we can be more efficient than that! One thing we can do to avoid discarding the
observations is to average over them. For each i, we collect all j(i)s that meet our similarity criteria
and simply take the average of their outcomes. This is presented formally as follows:

 ̂ τ ATE = 1 _ N ∑
i
 (2 T i − 1) (Y i − (1 _ M ∑

m
 Y j m (i)))

In the preceding formula, M is the number of samples that we matched to sample i. We could also
compute an analogous quantity for ATT.

Causal Inference and Machine Learning – from Matching to Meta-Learners178

Implementing matching

Great, we’re ready to get some data and see matching in action! We’ll follow DoWhy’s four-step
procedure and use the approximate matching estimator.

The code for this chapter can be found in the Chapter_09.ipynb notebook (https://bit.
ly/causal-ntbk-09).

For our analysis, we’ll use a simplified synthetic dataset (n=200) inspired by the famous dataset used
in Robert LaLonde’s seminal paper Evaluating the Econometric Evaluations of Training Programs with
Experimental Data (1986). Our dataset consists of three variables:

• A binary indicator of a training program participation

• The subject’s age

• The subject’s yearly earnings 18 months after the training took place (in United States
Dollar (USD))

We’re interested in estimating the effect of training on participants’ earnings 18 months after the training.

First, let’s read in the data (we omit library imports here for a better reading experience – please refer
to the notebook for the more details):

earnings_data = pd.read_csv(r'./data/ml_earnings.csv')

Let’s print out a couple of rows:

earnings_data.head()

Figure 9.2 – The first five rows of the earnings dataset

We can see in Figure 9.2 that the data has expected data types. Note that DoWhy (0.8) requires that
the treatment variable is encoded as Boolean.

Let’s try to group subjects by age:

earnings_data.groupby(['age', 'took_a_course']).mean()

https://bit.ly/causal-ntbk-09
https://bit.ly/causal-ntbk-09

The basics I – matching 179

Figure 9.3 – Selected rows of the data grouped by age

Although we only printed out a couple of rows in Figure 9.3, you can see that for some age groups
(for instance, 36 or 38), there are observations only for one of the values of the treatment. This means
that we won’t be able to compute the exact effects for these groups. We’ll leave it to our matching
estimator to handle this for us, but first, let’s compute the naïve estimate of the causal effect of training
on earnings using the treatment and control group means:

treatment_avg = earnings_data.query('took_a_course==1')[
 'earnings'].mean()
cntrl_avg = earnings_data.query('took_a_course==0')[
 'earnings'].mean()

treatment_avg - cntrl_avg

This gives us the following result:

6695.57088285231

The naïve estimate of the effect of our training is a bit over 6,695 USD per year.

Let’s see whether, and, if so, how the approximate matching estimate differs.

Step 1 – representing the problem as a graph

Let’s start by constructing a graph modeling language (GML) graph:

nodes = ['took_a_course', 'earnings', 'age']
edges = [
 ('took_a_course', 'earnings'),
 ('age', 'took_a_course'),
 ('age', 'earnings')
]

Causal Inference and Machine Learning – from Matching to Meta-Learners180

Generate the GML graph
gml_string = 'graph [directed 1\n'

for node in nodes:
 gml_string += f'\tnode [id "{node}" label "{node}"]\n'

for edge in edges:
 gml_string += f'\tedge [source "{edge[0]}" target
 "{edge[1]}"]\n'

gml_string += ']'

Because we know the data-generating process, we know that age is a confounder, and we encode this
knowledge by adding an edge from age to both the treatment and the outcome.

Let’s wrap our graph in DoWhy’s CausalModel object:

model = CausalModel(
 data=earnings_data,
 treatment='took_a_course',
 outcome='earnings',
 graph=gml_string
)

As a sanity check, let’s view the model:

model.view_model()

Figure 9.4 – A graphical representation of the earnings data model

The basics I – matching 181

The model looks as expected. Let’s move to step 2.

Step 2 – getting the estimand

In order to get the estimand, we call the .identify_effect() method on our model object:

estimand = model.identify_effect()

Now, let’s print it:

print(estimand)

This gives us the following output:

Estimand type: nonparametric-ate

Estimand : 1
Estimand name: backdoor
Estimand expression:
 d
────────────────(E[earnings|age])
d[took_a_course]
Estimand assumption 1, Unconfoundedness: If U→{took_a_course} and
U→earnings then P(earnings|took_a_course,age,U) = P(earnings|took_a_
course,age)

Estimand : 2
Estimand name: iv
No such variable(s) found!

Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

We correctly identified the backdoor estimand.

Let’s compute the effect!

Step 3 – computing the effect

In order to compute the effect, we need to specify a couple of details. First, we need to pass the estimator’s
name. We want to use matching, so we’ll pick DoWhy’s backdoor.distance_matching estimator.
We’ll set target units to ATE (for consistent comparisons with other methods) and the distance metric
to Minkowski with p set to 2 (which is equivalent to simple Euclidean distance):

estimate = model.estimate_effect(
 identified_estimand=estimand,

Causal Inference and Machine Learning – from Matching to Meta-Learners182

 method_name='backdoor.distance_matching',
 target_units='ate',
 method_params={'distance_metric': 'minkowski', 'p': 2})

One thing I’d like to add here is that we haven’t standardized our matching variable (age). This is
fine because we have just one variable, yet in a multivariable case, many people would recommend
normalizing or standardizing your variables to keep their scales similar. This helps to avoid a scenario
where variables with larger values disproportionally outweigh other variables in the distance computation.
Many machine learning resources follow this advice, and it’s often considered a standard practice in
multivariate problems involving distance computations.

Contrary to this recommendation, Harvard’s Gary King has repeatedly recommended not to standardize
your variables for matching (and not to use standardized distance metrics such as Mahalonobis either)
because – as he says – it throws away the substance (for instance: King, 2018, p. 12). I am not entirely
convinced by this argument, but I'll leave it to you to decide for yourself. While making the decision,
keep in mind that Gary King spent a significant amount of time working with matching. Much more
time than I did.

OK, back to our effect computation, let’s see our estimate:

estimate.value

This gives us:

10118.445

Now, let’s reveal the true effect size! The true effect size for our data is 10,000 USD. This means that
matching worked pretty well here! The absolute percentage error is about 1.2%, which is a great
improvement over the naïve estimate that resulted in 33% of absolute percentage error!

Let’s see how well our matching estimator will handle our attempts to refute it!

Step 4 – refuting the estimate

For brevity, we’ll only run one refutation test here. In the real world, we optimally want to run as
many tests as available:

refutation = model.refute_estimate(
 estimand=estimand,
 estimate=estimate,
 method_name='random_common_cause')

The basics II – propensity scores 183

Let’s print out the results:

print(refutation)

We get the following output:

Refute: Add a random common cause
Estimated effect:10118.445
New effect:10311.769699999999
p value:0.42

We see that the new effect is slightly higher than the estimated one. Nonetheless, a high p value
indicates that the change is not statistically significant. Good job!

In this section, we defined exact and approximate matching estimators. We discussed three types of
causal effects: ATE, ATT, and ATC. We implemented an approximate matching estimator as a part
of DoWhy’s four-step causal process and discussed some practical tips and implications on the way.

Now, let’s see what challenges we may meet on our way when using matching.

The basics II – propensity scores
In this section, we will discuss propensity scores and how they are sometimes used to address the
challenges that we encounter when using matching in multidimensional cases. Finally, we’ll demonstrate
why you should not use propensity scores for matching, even if your favorite econometrician does so.

Matching in the wild

Let’s start with a mental experiment. Imagine that you received a new dataset to analyze. This data
contains 1,000 observations. What are the chances that you’ll find at least one exact match for each
row if there are 18 variables in your dataset?

The answer obviously depends on a number of factors. How many variables are binary? How many
are continuous? How many are categorical? What’s the number of levels for categorical variables? Are
variables independent or correlated with each other?

Causal Inference and Machine Learning – from Matching to Meta-Learners184

To get an idea of what the answer can be, let’s take a look at Figure 9.5:

Figure 9.5 – The probability of finding an exact match versus the dimensionality of the dataset

In Figure 9.5, the x axis represents the dataset’s dimensionality (the number of variables in the dataset),
and the y axis represents the probability of finding at least one exact match per row.

The blue line is the average probability, and the shaded areas represent +/- two standard deviations.

The dataset has been generated using independent Bernoulli distributions with p = 0.5. Therefore
each variable is binary and independent. This is an extremely simple setting.

As you can see, the probability of finding an exact match in an 18-dimensional binary random dataset
is essentially zero. In the real world, we rarely operate on purely binary datasets, and for continuous
data, multidimensional matching becomes even more difficult. This poses a serious challenge for
matching, even in an approximate case.

How can we address this?

The basics II – propensity scores 185

Reducing the dimensionality with propensity scores

Propensity scores are estimates of the probability that a given unit will be assigned to a treatment group
based on their characteristics.

This is represented formally as follows:

 ̂ e (X) = P (T = 1 | X = x)

According to the propensity score theorem (Rosenbaum & Rubin, 1983), if we have unconfoundedness
given X, we will also have unconfoundedness given the propensity score, assuming positivity.

Sounds good!

Why not use this property to solve the high-dimensionality challenge? Propensity scores are unidimensional
and so now we can match on just one number [sic!] rather than a high-dimensional vector.

This sounds really good!

Propensity score matching (PSM)

Unfortunately, there are numerous challenges with this approach:

• First, propensity scores reduce the dimensionality of our data and – by definition – force us
to throw information away.

• Second, two observations that are very different in their original feature space may have the
same propensity score. This may lead to matching on very different observations and hence,
biasing the results.

• Third, PSM leads to a paradox. The main goal of PSM is to approximate randomized assignment
to the treatment and control groups.

In the binary case, the optimal propensity score would be 0.5. Let’s think about it.

What happens in the ideal scenario when all observations have the optimal propensity score of 0.5? The
position of every observation in the propensity score space becomes identical to any other observation.

How do we match observations?

We’ve seen this in the formulas before – we either take the best match or we average over the best
matches, yet now every point in the dataset is an equally good match!

We can either pick one at random or average on all the observations! Note that this kills the essence of
what we want to do in matching – compare the observations that are the most similar. This is sometimes
called the PSM paradox. If you feel like digging deeper into this topic, check out King (2018), King &
Nielsen (2019), or King’s YouTube video here: https://bit.ly/GaryKingVideo.

https://bit.ly/GaryKingVideo

Causal Inference and Machine Learning – from Matching to Meta-Learners186

Other approaches to matching (that work)
Researchers have proposed numerous alternatives to approximate matching and PSM. One
solution, proposed by Iacus and colleagues is called coarsened exact matching (CEM); Iacus
et al., 2012). Other methods include dynamic almost matching exactly (DAME); Liu et al.,
2018) and adaptive hyper-box matching (AHB); Morucci et al., 2020). Some of these methods
are available in Python, others only in R. Check out Duke University’s Almost Matching Exactly
Lab web page for more details (https://bit.ly/AlmostMatchingExactly). To
learn more about CEM, check out Gary King’s page (https://bit.ly/GaryKingCEM).

Before we conclude this section, I want to reiterate an important and often overlooked truth about PSM.
Over time, some researchers have suggested that PSM can be used to deconfound non-experimental
data with hidden confounding (for instance, Deheija & Wahba, 2002).

Unfortunately, this is not the case. Setting aside the other challenges discussed earlier, PSM requires
unconfoundedness (no hidden confounding).

Otherwise, we risk arbitrary bias in the estimates. It seems to me that the belief that propensity scores
can deconfound confounded data is still alive among some communities. I hope that this book will
contribute to promoting a healthy view of PSM.

In this section, we learned what propensity scores are, how to use them for matching, and why they
should not be used for this purpose. We discussed the limitations of the PSM approach and reiterated
that PSM is not immune to hidden confounding.

Can propensity scores be useful in other contexts?

Inverse probability weighting (IPW)
In this section, we’ll discuss IPW. We’ll see how IPW can be used to de-bias our causal estimates, and
we’ll implement it using DoWhy.

Many faces of propensity scores

Although propensity scores might not be the best choice for matching, they still might be useful in
other contexts. IPW is a method that allows us to control for confounding by creating so-called pseudo-
populations within our data. Pseudo-populations are created by upweighting the underrepresented
and downweighting the overrepresented groups in our dataset.

Imagine that we want to estimate the effect of drug D. If males and females react differently to D and
we have 2 males and 6 females in the treatment group and 12 males and 2 females in the control group,
we might end up with a situation similar to the one that we’ve seen in Chapter 1: the drug is good for
everyone, but is harmful to females and males!

https://bit.ly/AlmostMatchingExactly
https://bit.ly/GaryKingCEM

Inverse probability weighting (IPW) 187

This is Simpson’s paradox at its best (if you want to see how we can deconfound the data from Chapter 1
using IPW, check out the Extras notebook: https://bit.ly/causal-ntbk-extras-02).

Formalizing IPW

The formula for a basic IPW ATE estimator is as follows:

 ̂ τ AT E IPW = 1 _ N T=1
 ∑

 i T=1

 N T=1

 y i _

 ̂ e (X i)
 − 1 _ N T=0

 ∑
 j T=0

 N T=0

 y j _

1 − ̂ e (X j)

In the preceding formula, we follow the convention that we used earlier in this chapter: N T=1 represents
the number of units that received the treatment and N T=0 represents the number of units that did not
receive the treatment. Lowercase y i;j represents the outcome for unit i (or j respectively), and ̂ e (X i;j
) is the (estimated) propensity score for unit i (or j) defined as the probability of treatment given the
characteristics of the unit:

 ̂ e (X i) = P (T i = 1 | X i)

Note that similarly to the previously discussed methods, we need to include all confounders in X if we
want to obtain causally unbiased estimates of the treatment effect.

Implementing IPW

For this exercise, we’ll use the same earnings dataset that we used in the previous section. This allows
us also to reuse the graph and the estimand that we found in the previous section and the only thing
we need to redo is to re-compute the estimate using the appropriate estimator. We’ll use DoWhy’s
backdoor.propensity_score_weighting method. Behind the scenes, the estimator uses
weighted least squares (WLS) regression, which weights each treated sample by the inverse of its
propensity score (̂ e (X i)) and each untreated sample by the inverse of 1 − ̂ e (X i) .

The IPW WLS estimator is straightforward to implement in DoWhy:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.propensity_score_weighting',
 target_units='ate')

Let’s see the results:

estimate.value

This gives us the following output:

10313.5668311203

Compared to the matching estimate (10118.445), the result is slightly worse. The absolute percentage
error for the IPW estimator is 3.1% – over twice the error of the matching estimator (1.2%).

https://bit.ly/causal-ntbk-extras-02

Causal Inference and Machine Learning – from Matching to Meta-Learners188

Note that it’s not necessarily always the case that matching performs better than IPW. That said, some
authors have reported that IPW underperforms compared to other methods (for instance, Elze et
al., 2017; but note that this is an observational study that might suffer from other sources of bias).

IPW – practical considerations

Before we conclude the section on IPW, let’s discuss a couple of practical aspects regarding the method:

• If you’re using WLS as an estimator for IPW, remember that WLS is basically a linear regression
model (with additional weighting), and it’s not capable of modeling non-linear relationships
out of the box.

• When propensity scores are close to 0 or 1, the weights either explode or go toward 1 (which
is equivalent to no weighting; when all weights are equal to 1, WLS becomes a regular linear
regression). This can be detrimental to your model. Some people filter out all observations
with propensity scores less than .01 or greater than .99; others set the thresholds to .05 and
.95, respectively.

• You need a model to compute your propensity scores before you can perform weighting. Logistic
regression is a common choice because its probability estimates are (usually) well calibrated,
other models might return biased probabilities, and you might want to scale their outputs using
one of the available methods such as Platt scaling or isotonic regression (Niculescu-Mizil &
Caruana, 2005). Although there is an opinion that probability scaling is not necessarily very
important for IPW, recent research by Rom Gutman, Ehud Karavani, and Yishai Shimoni from
IBM Research has shown that good calibration significantly reduces errors in causal effect
estimates, especially when the original classifier lacks calibration (Gutman et al., 2022). This
is particularly important when you use expressive machine learning models to estimate your
propensity scores. You might want to use such models if you want your propensity scores to
reflect higher-order relationships (interactions) in your dataset that simple logistic regression
cannot capture (unless you perform some feature engineering).

It’s time to conclude our section on propensity scores, but it’s definitely not the last time we see them.

In this section, we learned how propensity scores can be used to weight observations in order to compute
causal effects. We defined a basic IPW averaging estimator and implemented IPW using DoWhy and
WLS. Finally, we discussed several aspects important to consider when working with IPW in practice.

In the next section, we’ll introduce S-Learner – the first estimator of a bigger meta-learner family.

Let’s go!

S-Learner – the Lone Ranger
With this section, we begin our journey into the world of meta-learners. We’ll learn why ATE is
sometimes not enough and we’ll introduce heterogeneous treatment effects (HTEs) (also known as

S-Learner – the Lone Ranger 189

conditional average treatment effects or individualized treatment effects). We’ll discuss what meta-
learners are, and – finally – we’ll implement one (S-Learner) to estimate causal effects on a simulated
dataset with interactions (we’ll also use it on real-life experimental data in Chapter 10).

By the end of this section, you will have a solid understanding of what CATE is, understand the main
ideas behind meta-learners, and learn how to implement S-Learner using DoWhy and EconML on
your own.

Ready?

The devil’s in the detail

In the previous sections, we computed two different types of causal effects: ATE and ATT. Both ATE
and ATT provide us with information about the estimated average causal effect in the population.

However, it’s important to remember that people and other complex entities (such as animals, social
groups, companies, or countries) can have different individual reactions to the same treatment.

A cancer therapy might work very well for some patients while having no effect on others. A marketing
campaign might work great for most people unless you target software developers.

Your best friend Rachel might enjoy your edgy jokes, yet your brother Artem might find them
less appealing.

When we deal with a situation like this, ATE might hide important information from us. Imagine
that you want to estimate the influence of your jokes on people’s moods. You tell a joke to your friend
Rachel, and her mood goes up from a 3 to a 5 on a 5-point scale.

This gives us the individual treatment effect (ITE) for Rachel, which is 2. Now, you say the same joke
to Artem, and his mood decreases from a 3 to a 1. His ITE is -2.

If we were to calculate the ATE based on these two examples, we would get the effect of 0 since the
ITEs for Rachel and Artem cancel each other out.

However, this doesn’t tell us anything about the actual impact of the joke on Rachel or Artem individually.

In this case, the ATE hides the fact that the joke had a positive effect on Rachel’s mood and a negative
effect on Artem’s mood. To fully understand the effect of the joke, we need to look at the ITE for
each individual.

Unfortunately, in many cases, ITE might be very difficult or even impossible to estimate as we would
need to know individual-level counterfactuals to estimate it.

Let’s see whether there’s anything we can do about it.

Causal Inference and Machine Learning – from Matching to Meta-Learners190

Mom, Dad, meet CATE

One solution to this challenge is to calculate CATE; also known as HTE. When computing CATE,
we not only look at the treatment but also at a set of variables defining the individual characteristics
of each unit that might modify the way the treatment impacts the outcome (if you thought about
interactions or moderation, that’s a great intuition).

For instance, it might be the case that your jokes are perceived as funnier by people familiar with a
specific context. Let’s assume that Rachel studied philosophy. It’s likely that your jokes about the German
philosopher Immanuel Kant will be funnier to her than they will be to Artem, who is interested in
different topics and has never heard of Kant. CATE can help us capture these differences.

In other words, CATE gives us a more nuanced understanding of the effect of the treatment on
units with different characteristics. This can be especially useful in cases where ATE hides important
differences between units, as in our example with the joke.

In general, CATE for binary treatment can be defined in the following way:

 CATE = 𝔼 [Y | T = 1, X] − 𝔼 [Y | T = 0, X]

In the preceding formula, 𝔼 [] represents the expected value operator, Y is the outcome, T is the
treatment, and X represents a (set of) feature(s) describing the population units. Translating this to
our example, Y would represent the joke receiver’s mood, T indicates whether you said a joke or not,
and X is a vector of the population unit’s characteristics (e.g., whether they studied philosophy or not).

CATE versus ITE
CATE versus ITE: while some researchers suggest that CATE can be treated as an estimate
of ITE and it can be viewed as such from some perspectives (e.g., Künzel et al., 2019; p. 3),
we’ll choose to talk about estimated individual CATE rather than about ITE. On why CATE is
different from ITE, check out Vegetabile (2021) and Mueller & Pearl (2020). Also, note that the
individualized treatment effect (a synonym for CATE) is different from ITE in this literature.

Jokes aside, say hi to the heterogeneous crowd

Heterogeneous treatment effects are a challenge in fields such as medicine and marketing, where
different groups of people may respond differently to the same treatment (such as a drug or marketing
content). Let’s take Jakub Czakon’s analysis of Hacker News comments on marketing to software
developers (https://bit.ly/DevsMarketingBlog). Jakub’s analysis showed that developers
might react differently to marketing content compared to the general population.

In particular, many reactions captured in the analysis were marked by strong negative emotions,
including disgust towards the marketed product and even the company behind it.

https://bit.ly/DevsMarketingBlog

S-Learner – the Lone Ranger 191

The idea that people might react differently to the same content is often presented in a matrix sometimes
called the uplift model matrix that you can see in Figure 9.6:

Figure 9.6 – The uplift model matrix

In Figure 9.6, rows represent reactions to content when the treatment (e.g., an ad) is presented to the
recipient. Columns represent reactions when no treatment is applied.

The four colored cells represent a summary of the treatment effect dynamics. Sure thing (green) buys
regardless of the treatment. Do not disturb (red) might buy without the treatment, but they won’t buy
if treated (e.g., Czakon’s developers). Lost cause (gray) won’t buy regardless of the treatment status,
and Persuadable (blue) would not buy without the treatment but might buy when approached.

If you’re a marketer with a limited budget, you want to focus on marketing to the blue group (Persuadable)
and avoid marketing to the red group (Do not disturb) as much as possible.

Marketing to the Sure thing and Lost cause groups will not hurt you directly but won’t give you any
benefit while consuming the budget.

Analogously, if you’re a doctor, you want to prescribe a drug to people who can benefit from it and
want to avoid prescribing it to people whom it can hurt.

In many real-world scenarios, the outcome variable might be probabilistic (e.g., the probability of
purchase) or continuous (e.g., the amount of spending). In such cases, we cannot define discrete groups
as in Figure 9.6 anymore, and we focus on finding the units with the highest expected increase in the
outcome variable between untreated and treated conditions. This difference between the outcome
under treatment versus under no treatment is sometimes referred to as uplift.

Causal Inference and Machine Learning – from Matching to Meta-Learners192

Waving the assumptions flag

To model heterogeneous effects correctly, we need to be sure that our data comes from a randomized
controlled trial (RCT) or that we are able to control for all relevant confounders. Hidden
confounding might lead to arbitrary bias in the estimates. We should also make sure that we meet
the positivity assumption.

Assuming that your data comes from an RCT, you should start by checking whether the design of
your study did not lead to leakage. Leakage refers to a situation where some aspects of your RCT
design or the randomization process itself lead to the non-random assignment of units to the control
and experimental groups.

One simple way to do it is to build a surrogate model that predicts your treatment variable based on
the predictors you use, formally presented as follows:

 T ~ X

The performance of such a model should be essentially random.

Note that this method is informative only when leakage variables are observed. In real-world scenarios,
it might be the case that leakage is driven by an unobserved variable that is independent of any other
observed variable.

In such a case, we won’t be able to discover leakage using the preceding method, and the only way to
avoid it is to carefully design your experiment, making sure that leakage does not happen.

You’re the only one – modeling with S-Learner

S-Learner is the name of a simple approach to model HTEs. S-Learner belongs to the category of
so-called meta-learners. Note that causal meta-learners are not directly related to the concept of
meta-learning used in traditional machine learning. Meta-learners, as we define them here, take one or
more traditional machine learning models called base-learners (Künzel et al., 2019) and use them to
compute the causal effect. In general, you can use any machine learning model of sufficient complexity
(tree-based, neural network, and more) as a base-learner as long as it’s compatible with your data.

How complex does my model need to be?
When we defined CATE, we said that we were interested in the interactions between the treatment
and the unit’s characteristics. Alternatively, heterogeneous treatment effect can be expressed
as a difference in the functional forms between the heterogeneous strata. In many real-life
cases we won't know which one is the case. Hence, the minimal practical requirement for our
model in order to model CATE is that it can handle interactions between two or more features.

This can be achieved either by building an architecture that allows for modeling interactions
or by manually providing a model with interaction features. In the latter case, even a simple
regression will be sufficient to model CATE, though, at scale, manual feature generation might
be a challenging task (both epistemologically and technically).

S-Learner – the Lone Ranger 193

In the former case, we need to make sure that the architecture is expressive enough to handle
feature interactions. Tree-based models deal well with this task. Classic neural networks of
sufficient depth can also model interactions, but this might be challenging sometimes.

Interactions are naturally expressed as multiplication, and in neural networks, multiplication
must be modeled solely by a combination of additive layers and non-linear activations. Zou et
al. (2020) have demonstrated that adding an explicit interaction layer makes neural networks
learn interactions better.

S-Learner is the simplest possible meta-learner, which only uses a single base-learner (hence its name:
S(ingle)-Learner). The idea behind S-Learner is beautifully simple: train a single model on the full
training dataset, including the treatment variable as a feature, predict both potential outcomes for the
observation of interest, and subtract the results to obtain CATE.

After the training, a step-by-step prediction procedure for S-Learner is shown as follows:

1. Pick the observation of interest.

2. Fix the treatment value for this observation to 1 (or True).

3. Predict the outcome using the trained model.

4. Take the same observation again.

5. This time, fix the value of the treatment to 0 (or False).

6. Generate the prediction.

7. Subtract the value of the prediction without treatment from the value of the prediction
with treatment.

Formally, we can express the same as follows:

 ̂ τ CAT E i
 = μ (X i , T = 1) − μ (X i , T = 0)

In the preceding formula, μ represents your model of choice (base-learner), so that ̂ y i = μ (X i , T = t) ,
 X i is a vector of unit i characteristics, and T represents the treatment.

That’s all.

You can easily build it yourself using any relevant model. Nonetheless, we’ll use DoWhy here to
continue familiarizing ourselves with the API and to leverage the power of convenient abstractions
provided by the library.

We’ll start with an enhanced version of the synthetic earnings dataset (ml_earnings_interaction_
train.csv and ml_earnings_interaction_test.csv from https://bit.ly/
causal-repo-data).

https://bit.ly/causal-repo-data
https://bit.ly/causal-repo-data

Causal Inference and Machine Learning – from Matching to Meta-Learners194

The enhanced dataset contains an additional variable (python_proficiency) that interacts with
the treatment. This means that the size of the effect of training on earnings depends on the Python
proficiency level in this dataset.

The causal graph for the dataset is presented in Figure 9.7:

Figure 9.7 – The causal graph (DAG) for the enhanced earnings dataset

Let’s read in the data. We’ll use the train and test sets here so that we can evaluate the model’s performance:

earnings_interaction_train = pd.read_csv(
 r'./data/ml_earnings_interaction_train.csv')
earnings_interaction_test = pd.read_csv(
 r'./data/ml_earnings_interaction_test.csv')

Let’s examine the shapes:

earnings_interaction_train.shape, earnings_interaction_test.shape

This gives us the following output:

((5000, 4), (100, 4))

Our train set consists of 5000 observations, and the test set consists of 100 observations.

S-Learner – the Lone Ranger 195

On train-test splits and validating causal models
Note that classic train-test splits and cross-validation schemes are not suitable for evaluating
causal models in terms of the correctness of the causal structure.

Why?

Because they say nothing about how correct our estimand is. In other words, they are not
informative when it comes to potential hidden confounding, selection bias, or any other
structurally invoked bias (you can also think about cross-validation as a rung 1 method).

That said, in our case, the traditional train-test split is useful. We know the true causal structure,
and so we’re not interested in evaluating the estimand, but rather – assuming we have a correct
estimand – we want to know how well our models estimate the effect, and – as we know from
traditional machine learning literature – cross-validation and train-test splits can help us with that.

Figure 9.8 presents the first five rows of the training dataset:

Figure 9.8 – The first five rows of the enhanced earnings dataset (train)

Let’s review the test partition as well (Figure 9.9):

Figure 9.9 – The first five rows of the enhanced earnings dataset (test)

As you can see, the test set’s structure is different. We don’t see the earnings column. Instead, we
have a new column called true_effect. Clearly, knowing the true effect is the privilege of synthetic
data, and we won’t get it with the real-world data!

Nevertheless, we want to use it here to demonstrate important aspects of our models’ performance.

We’re now ready to create a model.

Causal Inference and Machine Learning – from Matching to Meta-Learners196

First, let’s instantiate the CausalModel object (note we’re omitting the GML graph construction
here for brevity; check out the notebook for the full code):

model = CausalModel(
 data=earnings_interaction_train,
 treatment='took_a_course',
 outcome='earnings',
 effect_modifiers='python_proficiency',
 graph=gml_string
)

Let’s identify the effect:

estimand = model.identify_effect()

Finally, let’s get the estimate:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.metalearners.SLearner',
 target_units='ate',
 method_params={
 'init_params': {
 'overall_model': LGBMRegressor(
 n_estimators=500, max_depth=10)
 },
 'fit_params': {}
 })

We have some new stuff here. Let’s unpack it!

First, take a look at the method_name argument. We’re using an EconML SLearner estimator,
but we don’t even import EconML (another great example of the deep integration between DoWhy
and its sister library).

We use ATE as our target units.

Next, we have the method_params parameter. That’s an important one. We pass a Python dictionary
here. The structure of this dictionary depends on the method we pass to method_name.

The dictionary has two first-level keys:

• init_params

• fit_params

S-Learner – the Lone Ranger 197

The expected values for these keys are also dictionaries. The former defines estimator-level details
such as the base-learner model class or model-specific parameters. In other words, everything that’s
needed to initialize your estimator.

The latter defines parameters that can be passed to the causal estimator’s .fit() method. One
example here could be the inference parameter, which allows you to switch between bootstrap
and non-bootstrap inference modes.

If you’re unsure what keys are expected by your method of choice, check out the EconML documentation
here https://bit.ly/EconMLDocs.

In our example, we use a LightGBM model (Ke et al., 2017) as a base learner. It’s efficient and blazingly
fast, and gives very good results in many cases. We do not pass any fit parameters to the estimator
as we want to use the default values this time.

Let’s check whether S-Learner did a good job. Note that we’re passing the refutation step in print for
brevity, but the model behaved well under a random common cause and placebo refuters (check out
this chapter’s notebook for details).

First, let’s generate predictions for the test set:

effect_pred = model.causal_estimator.effect(
 earnings_interaction_test.drop(['true_effect',
 'took_a_course'], axis=1))

Note that we’re dropping the treatment column (took_a_course) and the true effect column.

The treatment column is irrelevant (and usually not available) at prediction time. The fact that it
is present in our dataset is an artifact of how we generated the data.

The true effect column will be useful at the evaluation stage, which we’ll perform in a second.

Let’s isolate the true effect values:

effect_true = earnings_interaction_test['
 true_effect'].values

Let’s compute the mean absolute percentage error (MAPE) and plot the predicted values against
the true effect:

mean_absolute_percentage_error(effect_true, effect_pred)

This gives us the following as output:

0.0502732092578003

Slightly above 5%! It’s a pretty decent result in absolute terms (of course such a result might be excellent
or terrible in a particular context, depending on your use case)!

https://bit.ly/EconMLDocs

Causal Inference and Machine Learning – from Matching to Meta-Learners198

Let’s plot the true effect against predicted values. Figure 9.10 presents the results:

Figure 9.10 – True effect (x axis) versus predicted effect (y axis) for S-Learner trained on full data

The x axis in Figure 9.10 represents the values of the true effect for each of the observations in the test
set. The y axis represents the predicted values, and the red line represents the results of a (hypothetical)
perfect model (with zero error).

We can see that there are some observations where our S-Learner underestimates the effect (the three
points that are way below the line), but its overall performance looks good!

Now I want to share with you something that I feel is often overlooked or discussed only briefly or in
abstract terms by many practitioners.

What happens when the dataset is small?

Small data

Let’s train the same S-Learner once again but on a small subset of the training data (100 observations).

You can find the code for this training and evaluation in the notebook.

For the model trained on 100 observations, the MAPE is equal to 35.9%! That’s over seven times larger
than for the original dataset. Figure 9.11 presents the results:

S-Learner – the Lone Ranger 199

Figure 9.11 – The results for S-Learner trained on 100 observations

As you can see, this model is very noisy to the extent that it’s almost unusable.

The question of defining a “safe” dataset size for S-Learner and other causal models is difficult to
answer. Power calculations for machine learning models are often difficult, if possible at all. For our
earnings dataset, 1,000 observations are enough to give us a pretty sensible model (you can check it
out in the notebook by changing the sample size in model_small and re-running the code), but
for another – perhaps more complex – dataset, this might not be enough.

If your case resembles an A/B test, you can try one of the A/B test sample size calculators (https://
bit.ly/SampleSizeCalc). Otherwise, you can try computing the power for an analogous
linear model using statistical power computation software (e.g., G*Power; https://bit.ly/
GPowerCalc) and then heuristically adjust the sample size to your model complexity.

That said, these methods can provide you only with very rough estimates.

S-Learner’s vulnerabilities

S-Learner is a great, flexible, and relatively easy-to-fit model. The simplicity that makes this method
so effective is also a source of its main weakness.

S-Learner treats the treatment variable (pun not intended) as any other variable. Let’s see what
we might risk here.

https://bit.ly/SampleSizeCalc
https://bit.ly/SampleSizeCalc
https://bit.ly/GPowerCalc
https://bit.ly/GPowerCalc

Causal Inference and Machine Learning – from Matching to Meta-Learners200

In our example, we used LightGBM, a tree-based model, in which the basic estimator unit is a
decision tree.

Decision trees utilize criteria such as Gini Impurity or information gain to determine which variables
to split on in order to predict the outcome effectively (for an explanation of how decision trees work,
check out Josh Starmer’s great video: https://bit.ly/DecisionTreesSQ). If a particular
variable has little impact on the outcome compared to other variables, it may be omitted by the model.

Therefore, if the treatment effect is small, the S-Learner model may decide to ignore the treatment
completely, resulting in the predicted causal effect being nullified. One heuristic solution to this
problem is to use deeper trees to increase the probability of the split on treatment, yet keep in mind
that this can also increase the risk of overfitting.

Other base learners with regularization, such as lasso regression, might also learn to ignore the
treatment variable.

To overcome this problem, researchers proposed another meta-learner model called T-Learner
(Künzel et al., 2019).

In this section, we introduced HTE (also known as CATE). We defined meta-learners and learned
how to implement S-Learner using DoWhy and EconML. We showed how sample size can affect the
performance of this class of models and discussed the main vulnerability of S-Learner – the potential
to underestimate causal effects.

Let’s see what T-Learner has to offer.

T-Learner – together we can do more
In this section, we’ll learn what T-Learner is and how it’s different from S-Learner. We’ll implement
the model using DoWhy and EconML and compare its performance with the model from the previous
section. Finally, we’ll discuss some of the drawbacks of T-Learner before concluding the section.

Forcing the split on treatment

The basic motivation behind T-Learner is to overcome the main limitation of S-Learner. If S-Learner
can learn to ignore the treatment, why not make it impossible to ignore the treatment?

This is precisely what T-Learner is. Instead of fitting one model on all observations (treated and
untreated), we now fit two models – one only on the treated units, and the other one only on the
untreated units.

In a sense, this is equivalent to forcing the first split in a tree-based model to be a split on the treatment
variable. Figure 9.12 presents a visual presentation of this concept:

https://bit.ly/DecisionTreesSQ

T-Learner – together we can do more 201

Figure 9.12 – The graphical intuition behind the T-Learner forced split

T-Learner in four steps and a formula

If you’d like to implement T-Learner from scratch using the base learner(s) of choice and predict the
treatment effect, these are four steps you’d need to take:

1. Split your data on the treatment variable into two subsets.

2. Train two models – one on each subset.

3. For each observation, predict the outcomes using both models.

4. Subtract the results of the untreated model from the results of the treated model.

Note that now there is no chance that the treatment is ignored as we encoded the treatment split as
two separate models.

Now, let’s define the T-Learner estimator formally:

 ̂ τ CAT E i
 = μ 1 (X i) − μ 0 (X i)

In the preceding formula, μ 1 represents our model of choice trained on the treated units only (we will
use LightGBM again), μ 0 represents our model of choice trained on the untreated units only, and X i
is a vector of unit i characteristics. Note that we did not use treatment variable T in the formula. The
reason for this is that T is now structurally encoded into the meta-learner architecture in the form of
two separate models, where each model represents one value of treatment.

Causal Inference and Machine Learning – from Matching to Meta-Learners202

Implementing T-Learner

We’ll reuse the same graph and the same estimand as we used for S-Learner and focus on the estimate.
We’ll use the original (large) dataset.

Compared to the S-Learner, there are two essential differences in the code:

• First, we use EconML’s TLearner class as our method (method_name)

• Second, instead of just one model, we need to fit two models now, and this is reflected in the
structure of the init_params dictionary

Rather than the overall_model key, we use the models key that takes a list of models as a value:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.metalearners.TLearner',
 target_units='ate',
 method_params={
 'init_params': {
 'models': [
 LGBMRegressor(n_estimators=200,
 max_depth=10),
 LGBMRegressor(n_estimators=200,
 max_depth=10)
]
 },
 'fit_params': {}
 })

Let’s estimate the effect and retrieve the true effect value:

effect_pred = model.causal_estimator.effect(
 earnings_interaction_test.drop(['true_effect',
 'took_a_course'], axis=1))
effect_true = earnings_interaction_test[
 'true_effect'].values

Note that we repeat exactly the same steps as before. Let’s compute the MAPE:

mean_absolute_percentage_error(effect_true, effect_pred)

This results in the following output:

0.0813365927834967

The error is higher than the one for S-Learner. The MAPE is now above 8%!

T-Learner – together we can do more 203

Let’s look into the results by plotting the true effect versus the predicted effect in Figure 9.13:

Figure 9.13 – The results of the T-Learner model trained on full data

The results look much worse than the ones in Figure 9.10. Didn’t we just say that T-Learner was created
as an improvement over S-Learner?

T-Learner focuses on improving just one aspect where S-Learner might (but does not have to) fail.
This improvement comes at a price. Fitting two algorithms to two different data subsets means that
each algorithm is trained on fewer data, which can harm the fit quality.

It also makes T-Learner less data-efficient (you need twice as much data to teach each T-Learner’s
base learner a representation of quality comparable to that in S-Learner).

This usually results in a higher variance in the T-Learner estimator relative to S-Learner. In particular,
the variance might become quite extreme in cases where one treatment arm has much fewer observations
than the other.

This is often the case in modern-day online A/B testing, where a company sends only a minor percentage
of the traffic to a new version of the site or service in order to minimize risk. In such a case you might
want to use a simpler model for the treatment arm with a smaller number of observations (yes, we
don’t have to use the same architecture for both base learners).

Causal Inference and Machine Learning – from Matching to Meta-Learners204

To summarize, T-Learner can be helpful when you expect that your treatment effect might be small
and S-Learner could fail to recognize it. It’s good to remember that this meta-learner is usually more
data-hungry than S-Learner, but the differences decrease as the overall dataset size becomes larger.

Is there a way to improve T-Learner’s data efficiency?

X-Learner – a step further
In this section, we’ll introduce X-Learner – a meta-learner built to make better use of the information
available in the data. We’ll learn how X-Learner works and implement the model using our familiar
DoWhy pipeline.

Finally, we’ll compute the effect estimates on the full earnings dataset and compare the results with
S- and T-Learners. We’ll close this section with a set of recommendations on when using X-Learner
can be beneficial and a summary of all three sections about meta-learners.

Let’s start!

Squeezing the lemon

Have you noticed something?

Every time we built a meta-learner so far, we estimated two potential outcomes separately (using a
single model in the case of S-Learner, and two models in the case of T-Learner) and then subtracted
them in order to obtain CATE.

In a sense, we never tried to use our estimators to actually estimate CATE. We were rather estimating
both potential outcomes separately and then postprocessing them into CATE.

Hey, but wait! Did we just say estimate CATE? How can we possibly do that if we never actually observe
both potential outcomes necessary to compute CATE?

Great question!

X-Learner is aiming to estimate CATE directly and, by doing so, it leverages the information that
S-Learner and T-Learner have previously discarded. What information is that?

S-Learner and T-Learner were learning a so-called response function or how units respond to the
treatment (in other words, the response function is a mapping from features X and treatment T to
outcome y). At the same time, none of the models used the actual outcome to model CATE. Can this
be done?

Let’s see.

X-Learner – a step further 205

Reconstructing the X-Learner

In this subsection, we’ll reconstruct the logic behind the original X-Learner step by step.

…and gosh, hold on, as this will be a ride!

Seatbelts fastened?

1. The first step is easy, plus you already know it. It’s precisely what we did for T-Learner.

We split our data on the treatment variable so that we obtain two separate subsets: the first
containing treated units only, and the second one containing untreated units only. Next, we
train two models: one on each subset. We call these models μ 1 and μ 0 , respectively.

2. Now, we’re going to do something important. For each observation in our dataset, we will compute
its estimated individual treatment effect (it won’t be the “real” ITE in the counterfactual sense that
we discussed back in Chapter 2, but it will be useful; we’ll call them imputed treatment scores).

How are we supposed to compute it though?

Twofold.

First, we take all observations that were treated.

We know something about them! For each of the treated units, we know one of their counterfactual
outcomes, namely y i (1) because that’s precisely their actual outcome (y i (1) = y i).

Hopefully, this makes sense. We know what outcome to expect under the treatment from the
treated units because we simply see this outcome recorded in the data.

The challenge is that we don’t see the other outcome for the treated units – we don’t know how
they would behave if we didn’t treat them.

Happily, we can use one of our models to estimate the outcome under no treatment.

Let’s do it and write it down formally. We’ll call the obtained imputed treatment scores ̂ d (for
the estimated difference).

We will use superscript notation to indicate whether the score was computed for the treated
versus untreated units. The score for the treated units is computed in the following way:

 ̂ d i
1 = y i − μ 0 (X i)

Second, we take all the untreated observations and compute the “mirror” score for them:

 ̂ d j
0 = μ 1 (X j) − y j

We indexed the first formula using i and the second using j to emphasize that the subsets of
observations used in the first and second formulas are disjoint (because we split the dataset on
the treatment in the beginning).

Causal Inference and Machine Learning – from Matching to Meta-Learners206

3. In the third step, we’re going to train two more models (hold on, that’s not the end!). These
models will learn to predict the imputed scores ̂ d i;j from units’ feature vectors X i;j .

You might ask – why do we want to predict ̂ d from X if we’ve just computed it?

Great question! The truth is that if we’re only interested in quantifying the causal effects for an
existing dataset, we don’t have to do it.

On the other hand, if we’re interested in predicting causal effects for new observations before
administering the treatment, then this becomes necessary (because we won’t know any of the
potential outcomes required for computations in step 2 before administering the treatment).

This scenario is prevalent in personalized medicine when we want to decide whether some drug
or therapy will be beneficial to our patient and in marketing when we want to understand which
individuals are persuadable (Figure 9.5) in order to allocate our campaign budget effectively.

Going back to our models. We said that we’ll train two of them. Let’s call these models ν 0 and
ν 1 . These second-stage models are also known in the literature as second-stage base learners.
We’ll train the first model to predict ̂ ̂ d 0 , and the second one to predict ̂ ̂ d 1 :

 ̂ ̂ d 0 = ν 0 (X i)

 ̂ ̂ d 1 = ν 1 (X j)

We call the new predicted quantities ̂ ̂ d 0;1 (with a double hat) because this quantity is an estimate
of an estimate.

4. Finally, we compute our final CATE estimates based on the second-stage models’ outputs. Want
to breathe a sigh of relief? We’re almost there. In the final computation, we weight the outputs
of ν 0 and ν 1 by propensity scores. Let’s call our estimate ̂ τ CATE and describe it with a formula:

 ̂ τ CATE = ̂ e (X i) ν 0 (X i) + (1− ̂ e (X i)) ν 1 (X i)

Note that we now call ν 0;1 models on all available observations (although we trained these
models using disjoint data subsets split on the treatment). This makes sense because, for
new observations, we usually won’t have any treatments recorded, and even if so, we’re likely
interested in predicting CATE before administering any treatment.

Now, let’s briefly discuss the logic behind the weighting part. We weight the output of ν 0 by the unit’s
propensity score (which is the probability of this unit getting the treatment).

Let’s recall that ν 0 is a model trained on the units that were untreated. We knew their actual outcome
under no treatment, but we needed to predict their potential outcome under treatment in order to train ν 0 .

The importance of the output of ν 0 (X i) in the final model ̂ τ CATE increases when the propensity score ̂ e
(X i) increases. This means that we give more weight to ν 0 (X i) when it’s more likely that X i gets the
treatment. Why is that?

X-Learner – a step further 207

The intuition is that when it’s highly likely that X i gets the treatment, then observations such as X i are
prevalent in the dataset and we can assume that we have good quality fit of the μ 1 model. Note that we
use μ 1 to compute ̂ d j

0 , which we then use (indirectly) to train ν 0 . In other words, we want to prioritize
high-quality estimates over the poor-quality ones.

This logic is not bullet-proof, though. Perhaps this is the reason why the authors propose that we can
use other weighting functions instead of propensity scores or even “choose [the weights to be] (…) 1 or
0 if the number of treated units is very large or small compared to the number of control units” (Künzel
et al., 2019).

Let’s summarize what we’ve learned so far! X-Learner requires us to fit five models in total (if we count
the propensity score model).

First-stage base learners μ 0 and μ 1 are identical to the two models we use in T-Learner. The former
(μ 0) is trained solely on untreated, while the latter (μ 1), solely on the treated units. Second-stage base
learners are trained on the actual outcomes from the dataset and outputs from the first-stage models.

Finally, we train the propensity score model and compute ̂ τ CATE , weighting the outputs of ν 0 and ν 1
by propensity scores.

X-Learner – an alternative formulation

Recently, I learned from Rob Donnelly of Arena AI that he has his own simplified formulation of
X-Learner. Rob says that this simplified version works better than the full version in certain cases. I
found it interesting, and so I want to share it with you as well.

Here are the steps to build Rob’s X-Learner:

1. We start exactly the same as before. We split our data on the treatment variable, which gives
us two subsets: the subset of all treated observations and a subset of all untreated observations.

We fit two separate models, one to each subset of the data. These are our first-stage base learners
μ 0 and μ 1 .

2. In step 2, we use the models μ 0 and μ 1 alongside the actual outcomes from the dataset in order
to compute the imputed scores:

 ̂ d j
0 = μ 1 (X j) − y j

 ̂ d i
1 = y i − μ 0 (X i)

Again, this step is identical to what we’ve done before. Note that now we have CATE estimates
for all observations (regardless of their original treatment values), let’s call it ̂ d .

Causal Inference and Machine Learning – from Matching to Meta-Learners208

3. In step 3, we fit the final model, let’s call it η , that learns to predict ̂ d directly from X :

 ̂ ̂ d i = η (X i)

We used a double hat for ̂ ̂ d i again because it’s an estimate of an estimate.

That’s all! Rob’s X-Learner only needs three models (μ 0 , μ 1 , and η) compared to five models in the
classic X-Learner (μ 0 , μ 1 , ν 0 , ν 1 , and ̂ e). This is a great simplification!

Implementing X-Learner

Now, understanding how X-Learner works, let’s fit it to the data and compare its performance against
its less complex cousins.

We’ll reuse the graph and the estimand that we created previously and only focus on the estimate:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.metalearners.XLearner',
 target_units='ate',
 method_params={
 'init_params': {
 'models': [
 LGBMRegressor(n_estimators=50,
 max_depth=10),
 LGBMRegressor(n_estimators=50,
 max_depth=10)
],
 'cate_models': [
 LGBMRegressor(n_estimators=50,
 max_depth=10),
 LGBMRegressor(n_estimators=50,
 max_depth=10)
]
 },
 'fit_params': {},
 })

Note that we now have a new key in the init_params object: cate_models. We use it to specify
our second-stage base learners. If you don’t specify the CATE models, EconML will use the same models
that you provided as your first-level base learners. It’s also good to mention that if you want to use
identical models for μ 0 , μ 1 , ν 0 , and ν 1 , it’s sufficient if you only specify it once:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.metalearners.XLearner',

X-Learner – a step further 209

 target_units='ate',
 method_params={
 'init_params': {
 'models': LGBMRegressor(n_estimators=50,
 max_depth=10),
 },
 'fit_params': {},
 })

EconML will duplicate this model behind the scenes for you.

If we want to explicitly specify the propensity score model, this can also be done by adding the
propensity_model key to the init_params dictionary and passing the model of choice as
a value.

Now, let’s see how X-Learner performs.

We generate predictions and assign the true effect values to a variable exactly as before:

effect_pred = model.causal_estimator.effect(
 earnings_interaction_test.drop(['true_effect',
 'took_a_course'], axis=1))
effect_true = earnings_interaction_test['true_effect'
].values

Let’s compute the MAPE:

mean_absolute_percentage_error(effect_true, effect_pred)

This gives us the following result as an output:

0.036324966995778

The MAPE for X-Learner is 3.6%. That’s more than twice as good as T-Learner’s 8.1% and around
32% better than S-Learner’s 5.2%!

Good job, X-Learner!

Causal Inference and Machine Learning – from Matching to Meta-Learners210

Figure 9.14 presents the results visually:

Figure 9.14 – X-Learner results

We can see that most points are focused around the red line. We don’t see clear outliers as in the case of
S-Learner (Figure 9.10), and the overall error is much smaller than in the case of T-Learner (Figure 9.13).
A pleasant view. The results for all three meta-learners on our dataset are summarized in Table 9.2:

Estimator MAPE
S-Learner 5.2%
T-Learner 8.1%
X-Learner 3.6%

Table 9.2 – A summary of meta-learners’ results

When X-Learner shines and when it doesn’t

Due to its weighting capabilities between the two sub-models (ν 0 and ν 1), X-Learner can really shine
when the dataset is highly imbalanced. It can work really well when you want to test a new variant of
your web page, but you’re only willing to show it to a small number of users to minimize the risk in
case they don’t like this new variant.

X-Learner – a step further 211

On the other hand, when your dataset is very small, X-Learner might not be a great choice, as fitting
each additional model comes with some additional noise, and we might not have enough data to
overpower this noise with signal (in such a case, it might be better to use a simpler – perhaps linear
– model as your base learner).

Take a look at Figure 9.15, which presents the results of X-Learner trained on just 100 observations
from our training data:

Figure 9.15 – X-Learner’s results on small data

At first sight, the results in Figure 9.15 look slightly more structured than the ones for S-Learner on
small data (Figure 9.11), but the MAPE is slightly higher (39% versus 36%).

That said, X-Learner usually outperforms S- and T-Learners when CATE is complex (e.g.,
highly non-linear).

As a closing remark, meta-learners can be extended to multi-level treatment scenarios. In other words,
these models can be used in a setting where we have more than two mutually exclusive treatments
(e.g., sending three different promotional email variants or testing four new therapies). We’ll see the
multi-level treatment scenario in action in the next chapter.

It’s time to conclude our journey with X-Learner for now (we’ll see it again soon, though).

In this section, we introduced the X-Learner model. We analyzed its building blocks: first- and second-
stage base learners and weighting, and we showed how to connect them. We discussed the logic behind

Causal Inference and Machine Learning – from Matching to Meta-Learners212

the weighting mechanism. We presented Rob Donnelly’s alternative simplified version of X-Learner.
Finally, we evaluated the model against S- and T-Learners, achieving a superior performance on our
data, and talked about when using X-Learner can be beneficial.

Wrapping it up
Congrats on finishing Chapter 9!

We presented a lot of information in this chapter! Let’s summarize!

We started with the basics and introduced the matching estimator. On the way, we defined ATE,
ATT, and ATC.

Then, we moved to propensity scores. We learned that propensity score is the probability of being
treated, which we compute for each observation. Next, we’ve shown that although it might be tempting
to use propensity scores for matching, in reality, it’s a risky idea. We said that propensity scores can
shine in other scenarios, and we introduced propensity score weighting, which allows us to construct
sub-populations and weight them accordingly in order to deconfound our data (it does not help when
we have unobserved confounding).

Next, we started our journey with meta-learners. We said that ATE can sometimes hide important
information from us and we defined CATE. This opened the door for us to explore the world of HTEs,
where units with different characteristics can react differently to the same treatment.

We presented a simple yet often very effective model called S-Learner, which uses a single base-learner
in order to learn the patterns in the data. This model is later used to generate estimated counterfactual
outcomes, which allow us to compute individualized CATE for each observation.

We learned that S-Learner might sometimes ignore the treatment variable and therefore underestimate
(or nullify) causal effects.

We introduced T-Learner as an antidote to this problem. T-Learner uses two models (hence the name
T(wo)-Learner), and this very structure prevents it from ignoring the treatment. This comes at a price
of decreased data efficiency, and T-Learner underperformed on our data compared to S-Learner.

To overcome these difficulties, we introduced X-Learner, which takes T-Learner’s logic to the next level
by explicitly using the actual outcomes in the training. We introduced and implemented the original
version of X-Learner (Künzel et al., 2019) and discussed a simplified version proposed by Rob Donnelly.

X-Learner outperformed both T-Learner and S-Learner on our data. We said that X-Learner might
be a great choice when the data is imbalanced between the treatment and control groups. We’ve also
shown that a small data regime might be challenging for X-Learner.

Looking at meta-learners, it’s difficult to unambiguously pick one winner. Each model can perform
well in certain circumstances but underperform its counterparts in another context.

References 213

X-Learner seems like a safe bet in most cases where the sample size is sufficiently large. S-Learner is
a great starting point in many settings as it’s simple and computationally friendly.

In the next chapter, we’ll see more architectures that can help us model heterogeneous treatment effects.

Hope you’re ready for another ride!

References
Abrevaya, J., Hsu, Y., & Lieli, R.P. (2014). Estimating Conditional Average Treatment Effects. Journal of
Business & Economic Statistics, 33, 485–505.

Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics. Princeton University Press.

Dehejia, R. H., & Wahba, S. (2002). Propensity score-matching methods for nonexperimental causal
studies. The Review of Economics and Statistics, 84(1), 151–161.

Elze, M. C., Gregson, J., Baber, U., Williamson, E., Sartori, S., Mehran, R., Nichols, M., Stone, G. W., &
Pocock, S. J. (2017). Comparison of Propensity Score Methods and Covariate Adjustment: Evaluation in
4 Cardiovascular Studies. Journal of the American College of Cardiology, 69(3), 345–357. https://
doi.org/10.1016/j.jacc.2016.10.060

Facure, M., A. (2020). Causal Inference for The Brave and True. https://matheusfacure.
github.io/python-causality-handbook/landing-page.html

Gelman, A., & Hill, J. (2006). Analytical methods for social research: Data analysis using regression and
multilevel/hierarchical models. Cambridge University Press.

Gutman, R., Karavani, E., & Shimoni, Y. (2022). Propensity score models are better when post-calibrated. arXiv.

Hernán M. A., Robins J. M. (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Iacus, S., King, G., & Porro, G. (2012). Causal Inference without Balance Checking: Coarsened Exact
Matching. Political Analysis, 20, 1–24.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. (2017). LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. NIPS.

King, G. (2018). Gary King on Simplifying Matching Methods for Causal Inference. [Speech
transcript]. Retrieved from http://ntupsr.s3.amazonaws.com/psr/wp-content/
uploads/2018/10/02-1-Gary-King-compressed.pdf.

King, G., & Nielsen, R. (2019). Why Propensity Scores Should Not Be Used for Matching. Political
Analysis, 27 (4).

Künzel, S.R., Sekhon, J.S., Bickel, P.J., & Yu, B. (2017). Meta-learners for Estimating Heterogeneous
Treatment Effects using Machine Learning. arXiv: Statistics Theory.

https://doi.org/10.1016/j.jacc.2016.10.060
https://doi.org/10.1016/j.jacc.2016.10.060
https://matheusfacure.github.io/python-causality-handbook/landing-page.html
https://matheusfacure.github.io/python-causality-handbook/landing-page.html
http://ntupsr.s3.amazonaws.com/psr/wp-content/uploads/2018/10/02-1-Gary-King-compressed.pdf
http://ntupsr.s3.amazonaws.com/psr/wp-content/uploads/2018/10/02-1-Gary-King-compressed.pdf

Causal Inference and Machine Learning – from Matching to Meta-Learners214

LaLonde, R.J. (1986). Evaluating the Econometric Evaluations of Training Programs with Experimental
Data. The American Economic Review, 76, 604–620.

Liu, Y., Dieng, A., Roy, S., Rudin, C., & Volfovsky, A. (2018). Interpretable Almost Matching Exactly
for Causal Inference. arXiv: Machine Learning.

Lopez, M. J., & Gutman, R. (2017). Estimation of Causal Effects with Multiple Treatments: A Review
and New Ideas. Statistical Science, 32(3), 432–454.

Morucci, M., Orlandi, V., Roy, S., Rudin, C., & Volfovsky, A. (2020). Adaptive Hyper-box Matching for
Interpretable Individualized Treatment Effect Estimation. arXiv, abs/2003.01805.

Niculescu-Mizil, A., & Caruana, R. (2005). Predicting good probabilities with supervised learning.
Proceedings of the 22nd international conference on Machine learning.

Pearl, J. (2009). Causality. Cambridge University Press.

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.

Pearl, J., & Mackenzie, D. (2019). The Book of Why. Penguin.

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Rosenbaum, P.R., & Rubin, D.B. (1983). The central role of the propensity score in observational studies
for causal effects. Biometrika, 70, 41–55.

Sizemore, S., Alkurdi, R. (August 18, 2019). Matching Methods for Causal Inference: A Machine Learning
Update. Seminar Applied Predictive Modeling (SS19). Humboldt-Universität zu Berlin. https://
humboldt-wi.github.io/blog/research/applied_predictive_modeling_19/
matching_methods/

Stuart E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical
science: a review journal of the Institute of Mathematical Statistics, 25(1), 1–21.

Vegetabile, B.G. (2021). On the Distinction Between “Conditional Average Treatment Effects” (CATE)
and “Individual Treatment Effects” (ITE) Under Ignorability Assumptions. arXiv, abs/2108.04939.

Zou, D., Zhang, L., Mao, J., & Sheng, W. (2020). Feature Interaction based Neural Network for Click-
Through Rate Prediction. arXiv, abs/2006.05312.

https://humboldt-wi.github.io/blog/research/applied_predictive_modeling_19/matching_methods/
https://humboldt-wi.github.io/blog/research/applied_predictive_modeling_19/matching_methods/
https://humboldt-wi.github.io/blog/research/applied_predictive_modeling_19/matching_methods/

10
Causal Inference and Machine

Learning – Advanced
Estimators, Experiments,

Evaluations, and More

Welcome to Chapter 10!

We closed the previous chapter by discussing meta-learners. We started with a single model S-Learner
and finished with a complex X-Learner that required us to train five machine learning models behind
the scenes!

Each new model was an attempt to overcome the limitations of its predecessors. In this chapter, we’ll
continue to walk the path of improvement. Moreover, we’ll integrate some of the approaches introduced
in the previous chapter in order to make our estimates better and decrease their variance.

In this chapter, we’ll learn about doubly robust (DR) methods, double machine learning (DML),
and Causal Forests. By the end of this chapter, you’ll have learned how these methods work and how
to implement them using EconML by applying them to real-world experimental data. You’ll also have
learned about the concept of counterfactual explanations.

In this chapter, we’ll cover the following topics:

• Doubly robust methods

• Double machine learning

• Targeted maximum likelihood estimator

• Causal Forests

• Heterogeneous treatment effects with experimental data

• Counterfactual explanations

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More216

Doubly robust methods – let’s get more!
So far, we’ve discussed a broad range of methods that can be used to estimate causal effects. In earlier
chapters, we discussed linear regression; in later chapters, we discussed matching, propensity score
weighting, and the meta-learner framework. The latter allowed us to go beyond the limitations of linear
regression by plugging arbitrary machine learning models as base learners. Meta-learners turned out
to be very flexible as they offer all the benefits of contemporary machine learning.

Do we need another thing?

As we learned, propensity scores alone can be used to deconfound the data (as in propensity score
weighting; note that this only holds for observed confounding). The same is true for regression models,
where we can deconfound the data by simply controlling for the right variable(s) by including them
in the regression formula. Propensity score models are sometimes referred to as treatment models
(as they aim to predict the treatment from confounders) and regression models are referred to as
outcome models (as they aim to predict the outcome from the treatment and other relevant variables;
note that we use the term regression models in a broad sense, which includes but is not limited to
linear regression).

Isn’t the fact that both treatment and outcome models can be used to achieve the same goal interesting?

Let’s see.

A graphical approach is usually helpful when we want to examine questions like this. Figure 10.1
presents two directed acyclic graphs (DAGs):

Figure 10.1 – Two models – without and with a propensity score

Doubly robust methods – let’s get more! 217

In panel a), we see a model with a treatment, T, an outcome, Y, and a confounder, X. In panel b), we
see the same model, but with the propensity score, e(X), added on the path between X and T. As a
refresher, the propensity score is defined as follows:

 e (X) = P (T | X)

Adding a new node representing the propensity score to the graph is possible thanks to the propensity
score theorem that we learned about in the previous chapter.

The theorem states that if we have unconfoundedness given X, we will also have unconfoundedness
given the propensity score of X, assuming positivity (Rosenbaum & Rubin, 1983). Thanks to this, we
can use the propensity score as a full mediator of the relationship between X and T. Note that this
gives us a possibility to close the backdoor path between T and Y in three ways (Figure 10.1; panel b)):

• By controlling for X

• By controlling for e(X)

• By controlling for both of them

Each of these ways will deconfound the relationship between the treatment and the outcome.

Interestingly, although all three ways to deconfound the data are equivalent from a graphical point
of view, they might lead to different estimation errors. In particular, although the estimands obtained
using X and e(X) are equivalent (P (Y | T, X) = P (Y | T, e (X))), the estimators estimating these quantities
might have different errors. In particular, in certain cases, one of the models might be correct with a
near-zero error, while the other might be misspecified with arbitrary bias.

What if we could combine both estimators in a way that would allow us to automatically choose the
better model?

It turns out that this is exactly what DR methods do. We get a model that automatically switches between
the outcome model and the treatment model. The bias of DR estimators scales as the product of the
errors of the treatment and outcome models (Hernán & Robins, 2020; p. 229).

Let’s reiterate this – the DR estimator will give asymptotically unbiased estimates whenever one of the
models (outcome or treatment) is correctly specified. This is a really powerful property!

Moreover, DR methods can be seen as a subset of the meta-learner framework, meaning that we
can use arbitrary estimators in order to compute the outcome and treatment models. DR estimators
are guaranteed to be consistent when either of the models (treatment or outcome) is correct, but not
necessarily both models. DR is a large-sample property, which means that if our sample size is small,
we might not get the benefits.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More218

Doubly robust is not equal to bulletproof…

Although theoretically speaking, the treatment and outcome models are equivalent in the DR estimator,
some practitioners and researchers report that misspecification of the outcome model leads to a
significant bias even if the treatment model is correct (Li, 2021).

Moreover, when both models (treatment and outcome) are even moderately misspecified, DR estimators
can have high bias and high variance (Kang & Schafer, 2007).

…but it can bring a lot of value

If both models – outcome and treatment – are correct, the DR estimator will have a smaller variance
than inverse probability weighting (IPW), at least in large samples (Li, 2021).

Speaking from experience, it will usually also have a smaller variance than the meta-learners introduced
in the previous chapter. This observation is supported by theory. The DR estimator can be decomposed
as an S-Learner with an additional adjustment term (for details, see Courthoud, 2022).

The secret doubly robust sauce

Although many advances in DR estimators are fairly recent (see Tan et al., 2022), the method’s origins
date back to the 1994 paper Estimation of Regression Coefficients When Some Regressors are not Always
Observed by Robins et al. (1994). Interestingly, the authors originally considered the method in the
context of the missing data problem.

To be fair, the basic idea of double robustness dates back even earlier – to Cassel et al.’s 1976 paper.
Cassel and colleagues (1976) proposed an estimator virtually identical to what we call the DR estimator
today, with the difference that they only considered a case with known (as opposed to estimated)
propensity scores.

Causal inference and missing data
The fundamental problem of causal inference (Holland, 1986) that we introduced in Chapter 2
is that we can never observe all potential outcomes at the same time. One view on causal
inference that stems from this perspective is that it is a missing data problem. This idea inspired
researchers and practitioners to use causal methodologies for data imputation purposes (e.g.,
Mohan & Pearl, 2021) and vice versa. For an overview, check out Ding & Li (2018).

We’re now ready to define a basic DR estimator formally (Facure, 2020):

 ̂ τ ATE = 1 _ N ∑
i
 (

 T i (Y i − μ 1 (X i))
 _ ̂ e (X i) + μ 1 (X i)) − 1 _ N ∑

i
 (

 (1 − T i) (Y i − μ 0 (X i))
 ______________ 1 − ̂ e (X i) + μ 0 (X i))

Doubly robust methods – let’s get more! 219

In the preceding formula, T i is the treatment for unit i , ̂ e (X i) is the estimate of the propensity score,
μ 0 and μ 1 are models that estimate E [Y | X, T = t] with t = 0 and t = 1 , respectively, and Y is the
outcome variable. Note that we define an estimator for the average treatment effect (ATE) here,
but DR methods can be applied to estimate conditional average treatment effects (CATE) as well.

Let’s unpack the formula.

We’ll set the stage in the following way:

1. Divide the big formula into two chunks (on the left of the main minus sign and on the right).

2. Focus on the part inside the brackets on the left.

3. Develop the intuition for this part.

4. Generalize this intuition to the entire formula.

We’ve supplied a color-coded formula in Figure 10.2 to make the process easier to understand.

Figure 10.2 – A color-coded formula for the DR estimator

The two main parts of the formula in Figure 10.2 represent models under treatment (left; orange) and
under no treatment (right; green). The purple parts represent averaging.

Let’s focus on the orange part first.

Let’s say that our model, μ 1 , returns a perfect prediction for observation X i , but our propensity estimate,
 ̂ e (X i) , is way off. In such a case, this prediction will be equal to Y i . Therefore, Y i − μ 1 (X i) will be 0.
This will make the whole fraction expression (T i (Y i − μ 1 (X i)) _ ̂ e (X i)) in the orange part in Figure 10.2 equal to 0,
leaving us with μ 1 (X i) after the plus sign. Because μ 1 returned a perfect prediction, μ 1 (X i) is a perfect
estimate and we’re happy to use it.

Note that the same logic holds for the green part of the formula in Figure 10.2.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More220

We can also show that in the case of a misspecified outcome model, the opposite will happen –
the outcome model will be weighted down to 0 and the treatment model will take the lead in the
estimate. Showing this mechanism requires some algebraic transformations, which we will skip here.
If you’re interested in more details, Chapter 12 of Matheus Facure’s online book contains an accessible
explanation: https://bit.ly/DoublyRobust.

Doubly robust estimator versus assumptions

As with all the methods discussed in the previous chapter, the DR estimator works properly when there’s
no hidden confounding (i.e., X contains all the variables we need to control for and no variables that
introduce bias). For precise estimates of CATE, we also need to include relevant effect modifiers in X .

Additionally, note that positivity assumption violations might lead to high variance for DR estimators
(Li, 2020).

DR-Learner – crossing the chasm

DR-Learner (DR comes from doubly robust) is a DR meta-learner model. EconML offers a couple of
variants of DR-Learner. The simplest one is the linear variant implemented in the LinearDRLearner
class. This model is in fact more complex than the DR estimator we described earlier.

It uses cross-fitting and orthogonalization (we’ll discuss both terms in the next section) and an
additional model to estimate CATE directly. For LinearDRLearner, this additional model defaults
to linear regression, but this can be changed to an arbitrary model in another class called DRLearner.

The code for the following experiments can be found in the notebook for Chapter 10 (https://
bit.ly/causal-ntbk-10).

We will continue with the same data that we used for meta-learners in the previous chapter and so
we’ll skip the graph creation and estimand identification steps here. You can find the full pipeline
implemented in the notebook accompanying this chapter.

As in the case of meta-learners, we’ll use DoWhy’s CausalModel API to call EconML’s estimators.

Let’s compute our estimate using LinearDRLearner:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dr.LinearDRLearner',
 target_units='ate',
 method_params={
 'init_params': {
 # Specify treatment and outcome models
 'model_propensity': LogisticRegression(),
 'model_regression': LGBMRegressor(n_estimators=

https://bit.ly/DoublyRobust
https://bit.ly/causal-ntbk-10
https://bit.ly/causal-ntbk-10

Doubly robust methods – let’s get more! 221

 1000, max_depth=10)
 },
 'fit_params': {}
 })

First, we use 'backdoor.econml.dr.LinearDRLearner' as a method name. We specify
the ATE as a target unit (but CATE estimates will still be available to us) and pass model-specific
parameters as a dictionary. Here, we only use two parameters to specify the outcome model ('model_
regression') and the treatment model ('model_propensity'). We picked simple logistic
regression for the latter and an LGBM regressor for the former.

As a reminder, logistic regression is often the go-to method for propensity score modeling as its
probability output is well calibrated. Its limitation is that it cannot model interactions directly, so if you
expect that interaction terms might be important for your propensity model, you might want to specify
interaction terms explicitly in your dataset (you can do so by multiplying the features that interact
with each other and adding the result as a new feature(s) to your dataset) or go for another model.

In the latter case, remember to scale the probability output.

Let’s generate predictions:

effect_pred = model.causal_estimator.effect(
 earnings_interaction_test.drop(['true_effect',
 'took_a_course'], axis=1))

effect_true = earnings_interaction_test['true_effect'
].values

Now, we’re ready to evaluate our model. Let’s check the value of the mean absolute percentage
error (MAPE):

mean_absolute_percentage_error(effect_true, effect_pred)

This gives us the following result:

0.00623739241153059

This is six times lower than X-Learner’s error in the previous chapter (3.6%)!

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More222

Let’s plot the predictions versus the true effect (Figure 10.3):

Figure 10.3 – True versus predicted effect for the linear DR-Learner model

This looks pretty impressive!

Let’s think about what could help the model get such a good fit.

As we said earlier, DR methods can be a benefit when both models – outcome and treatment – are well
specified. This is the case in our example. This allows the model to achieve a small variance compared
to the meta-learners in the previous chapter.

The bias is also very small, although you can see in the plot that the model slightly, but systematically,
overestimates the true effect.

Note that the scale of the plot plays a role in forming our impressions regarding the model’s performance.
For ease of comparison, we kept the ranges for both axes identical to the ones in the previous chapter.
To an extent, this can mask the model’s errors visually, but it does not change the fact that the
improvements over meta-learners from Chapter 9 are significant.

Let’s address one more question that some of us might have in mind – we used a model called
LinearDRLearner. Why do we call it linear if we used a non-linear boosting model as an outcome
model? The answer is that the orthogonalization procedure that we’ll describe in the next section allows
us to model non-linearities in the data while preserving linearity in causal parameters.

Doubly robust methods – let’s get more! 223

This setting is a good-enough fit for a broad category of problems, yet if you need more flexibility, you
can use the DRLearner class and choose an arbitrary non-linear final model.

Note that using super-powerful models might sometimes be overkill. To illustrate this, let’s use
DRLearner with a relatively deep boosting regressor as a final model and apply it to our data:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dr.DRLearner',
 target_units='ate',
 method_params={
 'init_params': {
 'model_propensity': LogisticRegression(),
 'model_regression': LGBMRegressor(
 n_estimators=1000, max_depth=10),
 'model_final': LGBMRegressor(
 n_estimators=500, max_depth=10),
 },
 'fit_params': {}
 })

This model’s MAPE is over 7.6% – over 10 times higher than for a simple linear DR-Learner. Figure 10.4
presents the results:

Figure 10.4 – True versus predicted effect for the non-linear DR-Learner model

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More224

As we can see, the non-linear model has a much higher variance on the test set. Try to decrease the
number of estimators and the maximum depth in the final model and see how it affects the error.

Spoiler alert – you should expect some improvements!

DR-Learners – more options

EconML provides us with a total of four different DR-Learners. On top of the two that we’ve discussed
before, we also have SparseLinearDRLearner, which uses debiased lasso regression (Bühlmann
& van de Geer, 2011; van de Geer et al., 2013) as a final stage algorithm, and ForestDRLearner,
which uses Causal Forest as the final stage algorithm.

We’ll now discuss them briefly.

SparseLinearDRLearner uses an L1-penalized regression, which means that the algorithm
can effectively perform automatic feature selection by weighting the coefficients for some features
down to 0. A sparse linear DR-Learner will be a good choice whenever the number of features is large.

It shines in particular when the number of features is close to or larger than the number of observations,
where a regular linear DR-Learner would fail. The model will also provide you with valid confidence
intervals. Its main limitation is that – similar to LinearDRLearner – it expects that the treatment
effect is linear.

ForestDRLearner uses the Causal Forest algorithm (Wager & Athey, 2018) as the final model.
We’ll discuss Causal Forests in greater detail later in this chapter. Forest DR-Learner is great at handling
multidimensional data, and unlike SparseLinearDRLearner is not limited to linear cases.

If obtaining confidence intervals is important to you, ForestDRLearner can provide them through
bootstrapping. Note that this will significantly impact computation times for the model, in particular
in large samples.

We will discuss how to obtain confidence intervals for estimators that do not support such an option
natively later in the chapter.

Now, let’s see another interesting DR estimator that can bring advantages under (limited) positivity
violations (Porter et al., 2011) or smaller sample sizes.

Targeted maximum likelihood estimator

DR estimators come in various shapes and tastes. One popular DR method is called TMLE. It was
originally introduced by van der Laan and Rubin in their paper Targeted Maximum Likelihood Learning
(van der Laan & Rubin, 2006).

TMLE is a semi-parametric method and allows us to use machine learning algorithms while yielding
asymptotic properties for statistical inference. In other words, we can use complex machine learning
models but retain some of the convenience of traditional statistical methods, including generating

Doubly robust methods – let’s get more! 225

valid confidence intervals without bootstrapping. Moreover, TMLE uses an extra targeting step to
optimize the bias-variance trade-off when estimating the causal effect.

Note that some of TMLE’s properties are similar to these of DR-Learner or DML (which we will
discuss in the next section). A detailed comparison between the three is beyond the scope of this
book, but you’ll find links to the resources containing detailed TMLE and DML comparisons at the
end of the next section.

In this section, we’ll explain the mechanics behind TMLE, so you can understand the main factors
contributing to its uniqueness.

Note that the TMLE estimator we introduce in this chapter works for binary treatments and binary
outcomes only. The method can be extended to continuous outcomes under certain conditions (Gruber
& van der Laan, 2010).

As TMLE isn’t currently available in EconML, we won’t implement it here. Instead, we’ll look into
the algorithm mechanics step by step and share the resources demonstrating how to use it in other
Python packages, such as IBM’s causallib or zEpid.

TMLE can be used with any machine learning algorithm and in this sense can be treated as a meta-learner.

There are eight steps to implement TMLE:

1. Train a model, μ , that models Y ~ X + T , where Y is a binary outcome, X is a feature matrix,
and T is a binary treatment. Arbitrary machine learning models compatible with the outcome
and features can be used here.

2. Generate the following predictions (note that all ̂ y s are probabilities, not labels):

A. For each observation, predict the outcome for the actual treatment value:

 ̂ y t = μ (X, T = t)

B. For each observation, predict the outcome under no treatment:

 ̂ y 0 = μ (X, T = 0)

C. For each observation, predict the outcome under treatment:

 ̂ y 1 = μ (X, T = 1)

3. Estimate the propensity score for each observation: ̂ e (X) = P (T = 1 | X) .

4. Compute the following quantity:

 H (T, X) =
 1 { T=1 } _ ̂ e (X) −

 1 { T=0 } _ 1 − ̂ e (X)

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More226

where 1 {T=t} is an indicator function (refer to Chapter 2 (the Associations section) for a definition).
The quantity, H (T, X) , is known in the literature as the clever covariate and it will help us
update our estimates to reduce bias.

5. Estimate the fluctuation parameter, which will help us calculate the variance necessary to
obtain confidence intervals for our estimates. This can be achieved by doing the following:

A. Fitting a logistic regression model:

 γ (T, X, ̂ y t) = Y ~ [− 1 + logit (̂ y t)] + H (T, X)

In the preceding formula, [− 1 + logit (̂ y t)] means do not fit intercept (− 1); instead, use a
fixed vector logit (̂ y t) .

By saying fixed vector, we mean that we take a whole vector of values (in this case, a vector
of predictions coming from the model, μ (X, T = t)), and use this vector as an intercept,
instead of using just a single number (scalar). Specifically, the intercept value for each row
in our dataset is the prediction of the μ (X, T = t) model for that particular row.

B. Obtaining the coefficient for H (T, X) from the preceding logistic regression model. We
call this coefficient the fluctuation parameter and use ̂ ϵ to denote it.

6. Update the predictions from step 2 using the fluctuation parameter, ̂ ϵ . We’ll use asterisk notation
for the updated predictions:

A. ̂ y t
* = expit (logit (̂ y t) + ̂ ϵ H (T = t, X))

B. ̂ y 0
* = expit (logit (̂ y 0) + ̂ ϵ H (T = 0, X))

C. ̂ y 1
* = expit (logit (̂ y 1) + ̂ ϵ H (T = 1, X))

The expit function is the inverse of the logit function. We need it here to go back from logits
to probabilities. To learn more about logit and expit, check out this great blog post by Kenneth
Tay: https://bit.ly/LogitExpit.

7. Compute the estimate of the ATE (this can be also adapted for CATE):

 ̂ τ ATE = 1 _ N ∑
i
 ̂ y 1

* − ̂ y 0
*

8. Compute the confidence intervals:

A. Calculate the values of the influence function (̂ IF):

 ̂ IF = (Y − ̂ y t
*) H (T, X) + ̂ y 1

* − ̂ y 0
* − ̂ τ ATE

B. Compute the estimate of the standard error:

 ̂ SE = √

_

var (̂ IF)

 _ N

https://bit.ly/LogitExpit

If machine learning is cool, how about double machine learning? 227

A. Get the 95% intervals:

 C I lower = ̂ τ ATE − 1.96 ̂ SE

 C I upper = ̂ τ ATE + 1.96 ̂ SE

That’s the mechanics of TMLE.

Following the formulas, you can relatively easily implement it from scratch yourself in Python, but
you don’t have to!

TMLE has already been implemented in IBM’s causallib library by Ehud Karavani, as well as in zEpid
– an epidemiology analysis library created by computational epidemiologist Paul Zivich.

You can find causallib’s documentation for TMLE here: https://bit.ly/TMLEDocs. An example
notebook can be found here: https://bit.ly/CausallibTMLEExample. The documentation
for zEpid’s implementation of TMLE can be found here: https://bit.ly/zEpidTMLEDocs.

For an excellent visual introduction to TMLE, check out the series of blog posts by Katherine Hoffman:
https://bit.ly/KatHoffmanTMLE. Her great work helped me structure this section more
clearly and I hope this will also translate into more clarity for you.

It’s time to conclude this section.

We learned that DR methods rely on two models: the outcome model and the treatment model (also
called the propensity model). Both models can be estimated using any compatible machine learning
technique – whether linear models, tree-based methods, or neural networks.

The core strength of DR models is that even if only one model (e.g., the outcome model) is specified
correctly, they will still give consistent estimates. When both models (outcome and treatment) are
specified correctly, DR estimators tend to have very low variance, which makes them even more attractive.

TMLE – an extension of the classic DR estimator – offers us the advantages of parametric models and
good statistical properties while allowing us to use flexible machine learning models as base learners.
Moreover, it can outperform other DR methods under positivity violations and can be an advantage
for smaller sample sizes. Perhaps that’s one of the reasons TMLE has gained significant traction lately,
even though the original idea dates back to 2006.

In the next section, we’ll dive into another exciting area of causal inference, called double machine
learning, which offers some improvements over the DR framework.

If machine learning is cool, how about double machine
learning?
The title of this section is inspired by Brady Neal’s video (https://bit.ly/BradyNealDML)
where he (jokingly) suggests that DML “is maybe twice as cool” as regular machine learning. Let’s see!

https://bit.ly/TMLEDocs
https://bit.ly/CausallibTMLEExample
https://bit.ly/zEpidTMLEDocs
https://bit.ly/KatHoffmanTMLE
https://bit.ly/BradyNealDML

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More228

DML, also known as debiased machine learning or orthogonal machine learning, is another causal
framework with the root double in its name. In DML – similarly to DR methods – we fit two models
that estimate different parts of the relationships in the data.

DML can be implemented using arbitrary base estimators, and in this sense, it also belongs to the
meta-learner family. At the same time, unlike S-, T- and X-Learners, the framework comes with a
strong theoretical background and unique architectural solutions.

In this section, we’ll introduce the main concepts behind DML. After that, we’ll apply it to our
earnings dataset using DoWhy’s API. We’ll discuss some popular myths that have arisen around
DML and explore the framework’s main limitations. Finally, we’ll compare it to DR estimators and
present some practical guidelines for when to choose DML over DR-Learner.

Why DML and what’s so double about it?

Similar to DR methods, DML also uses two estimators in order to model data, yet it does it slightly
differently. Before we jump into the technicalities, let’s discuss what the main motivations behind
DML are.

DML was first proposed by MIT statistician and economist Victor Chernozhukov and colleagues
(Chernozhukov et al., 2018). The authors’ motivation was to build a causal estimator that can leverage
the flexibility of non-parametric machine learning models while achieving low bias and offering valid
confidence intervals (note how similar these ideas are to what we saw for TMLE).

In particular, the authors built DML in a way that makes it root-n consistent. We say that an estimator
is consistent when its error goes down with the sample size. Intuitively, root-n consistency is an
indicator that the estimation error goes to 0 at a rate of 1 _ √

_
 n when the sample size (n) goes to infinity.

More on consistency
Estimator consistency is important (not only in causality) because it tells us whether the
estimator will converge to the true value with a large enough sample size. Formally, we say that
a consistent estimator will converge in probability to the true value.

Although consistency is an asymptotic property, consistent estimators usually show good
behavior in practice (with finite and realistic sample sizes).

Inconsistent estimators, on the other hand, have a non-zero probability of non-convergence
even for infinitely large samples.

For a lightweight introduction to consistency, root-n consistency, and convergence in probability,
check out Kenneth Tay’s blog post: https://bit.ly/RootNConsistency.

OK, so we have a consistent estimator that gives us the flexibility of machine learning and valid
confidence intervals. How do we achieve these properties?

It turns out that there are two main sources of bias that we need to address.

https://bit.ly/RootNConsistency

If machine learning is cool, how about double machine learning? 229

The first comes from a mechanism that we usually see as beneficial in machine learning: regularization.
Regularization is a set of techniques that helps machine learning models avoid overfitting. It turns
out that it can lead to bias when we apply machine learning techniques to treatment effect estimation,
preventing us from achieving root-n consistency.

The second source of bias comes from overfitting. Let’s start by addressing the latter.

Overfitting bias

DML solves the second problem using cross-fitting. The idea is as follows:

1. We split the data into two random partitions, D 0 and D 1 .

2. We fit the models (remember, we have two of them) on D 0 and estimate the quantity of interest
on D 1 .

3. Next, we fit the models on D 1 and estimate on D 0 .

4. Finally, we average the two estimates and this gives us the final estimate.

This procedure might remind you of cross-validation. Cross-fitting and cross-validation both stem
from the same idea of masking parts of the data, where masked partitions serve as a proxy for (future)
unseen data. At first glance, cross-fitting and cross-validation have different goals (bias correction
versus model evaluation), but the mechanics of both methods are virtually identical.

Most implementations of DML estimators perform cross-fitting on two partitions by default. From
a theoretical point of view, the number of partitions (or folds as we call them in the context of
cross-validation) has no impact on the estimator’s performance (asymptotically). That said, in practice,
DML tends to work better with four or five partitions than with just two, especially on smaller
datasets. Although this is not a rule, these differences seem to have a relatively systematic character
(Chernozhukov et al., 2018, p. C24).

Regularization bias

After crossing overfitting bias off our to-do list, we’re now ready to tackle regularization bias.

DML addresses this challenge using a technique called orthogonalization. The procedure is inspired
by the Frisch-Waugh-Lovell (FWL) theorem.

To get an understanding of FWL, let’s start with the following linear regression equation:

 Y = β 1 T+ β 2 X + ϵ

FWL states that we can obtain β 1 not only by fitting the model described by the preceding formula
but also by carrying out the following steps:

1. Regress T on X using linear regression: ̂ t = γX .

2. Regress Y on X using linear regression: ̂ y = ψX .

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More230

3. Compute the residuals from regressions from points 1 and 2:

A. δ T = T − ̂ t

B. δ Y = Y − ̂ y

4. Regress residuals δ Y on residuals δ T using linear regression: ̂ δ T = α 1 δ Y .

It turns out that the coefficient, α 1 , from the last equation is equal to the coefficient, β 1 , from the original
regression equation (note that if you code it yourself, you may get minor differences between β 1 and α 1 ;
they might come from numerical imprecisions and/or the implementation details of the packages
you use). For a proof of the FWL theorem, including R code examples, check out https://bit.
ly/FWLProof.

Orthogonalization is a modification of the FWL procedure that allows us to use arbitrary machine
learning models instead of linear regression in steps 1 and 2 (note that the last model from step 4
remains linear in the linear DML estimator (Chernozhukov et al., 2018); this limitation does not
apply to non-parametric DML).

The core strengths of DML come from its ability to model complex non-linear relationships in the
data. Let’s re-write the original linear regression equation to allow for non-linearities. This will allow
us to demonstrate the power of DML more clearly. We will start with a so-called partially linear model:

 Y = θT + f Y (X) + ϵ Y

 T = f T (X) + ϵ T

In the preceding formulas, Y is the outcome, T is the treatment, f Y (.) and f T (.) are arbitrary and
possibly non-linear functions, X is a set of predictors that includes the confounders, and the ϵ s represent
error terms. In this formulation, θ is the causal parameter that we want to estimate.

By applying orthogonalization, we can separate the estimation of the causal parameter, θ , from estimating
the so-called nuisance parameter that models the impact of non-causal predictors in the model (the
nuisance parameter in our partial linear model is represented by f Y (.) , which is a function; that’s why
the nuisance parameter is sometimes also referred to as the nuisance function).

The last step of the orthogonalization procedure (which is analogous to the last step of FWL) will
provide us with an estimate of the θ parameter that is free of the regularization bias!

Moreover, this means that we can get the benefits of parametric statistical inference and don’t care
about the exact functional form of the nuisance parameter. This gives us great flexibility!

Before we conclude this subsection, let’s summarize the key points. DML uses two machine learning
models in order to estimate the causal effect. These models are sometimes called the treatment and
the outcome models (as they were in the case of DR methods), but note that the treatment model in
DML does not estimate the propensity score, but rather models treatment directly.

https://bit.ly/FWLProof
https://bit.ly/FWLProof

If machine learning is cool, how about double machine learning? 231

Additionally, we fit one more model to estimate the causal parameter, θ , from the residuals. This
model is known as the final model. In linear DML, this model is – by design – a linear regression, but
in generalized, non-parametric DML, an arbitrary machine learning regressor can be used.

DML is an estimator with low variance and bias and can provide us with valid confidence intervals.
It also natively supports both discrete and continuous treatments.

DML with DoWhy and EconML

Let’s implement a linear DML estimator and apply it to our data. We’ll skip graph creation, model
initialization, and estimand identification steps as they are identical to what we’ve done for previous
models. Note that this modular logic offered by DoWhy makes experimentation with various
methods seamless, as problem definition and estimand identification are completely independent of
the estimation step.

To use linear DML, we need to pass 'backdoor.econml.dml.LinearDML' to the method_name
parameter. Notice that we also introduce an additional argument, 'discrete_treatment', and
set it to True. This argument is passed to the model as a part of the 'init_params' dictionary.
We need to specify it because EconML DML estimators default to continuous treatment, while our
treatment is binary:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dml.LinearDML',
 target_units='ate',
 method_params={
 'init_params': {
 # Define outcome and treatment models
 'model_y': LGBMRegressor(
 n_estimators=500, max_depth=10),
 'model_t': LogisticRegression(),
 # Specify that treatment is discrete
 'discrete_treatment': True
 },
 'fit_params': {}
 })

Let’s predict on test data:

effect_pred = model.causal_estimator.effect(
 earnings_interaction_test.drop(['true_effect',
 'took_a_course'], axis=1))
effect_true = earnings_interaction_test['true_effect'
].values

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More232

Let’s compute the error:

mean_absolute_percentage_error(effect_true, effect_pred)

This gives us the following:

0.0125345885989969

This error is roughly twice higher than the error for the linear DR-Learner.

Let’s plot the results (Figure 10.5).

Figure 10.5 – The true versus predicted effect for linear DML

It seems that DML comes with a slightly biased estimate. In particular, the model underestimates the
lower effect values (see the blue dots below the red line for lower values of the true effect in Figure 10.5).

If machine learning is cool, how about double machine learning? 233

Let’s try to reduce the complexity of the outcome model and increase the number of cross-fitting folds:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dml.LinearDML',
 target_units='ate',
 method_params={
 'init_params': {
 # Define outcome and treatment models
 'model_y': LGBMRegressor(n_estimators=50,
 max_depth=10),
 'model_t': LogisticRegression(),
 # Specify that treatment is discrete
 'discrete_treatment': True,
 # Define the number of cross-fitting folds
 'cv': 4
 },
 'fit_params': {
 }
 })

Let’s get predictions and calculate the error:

effect_pred = model.causal_estimator.effect(
 earnings_interaction_test.drop(['true_effect',
 'took_a_course'], axis=1))
effect_true = earnings_interaction_test['true_effect'
].values
mean_absolute_percentage_error(effect_true, effect_pred)

This results in the following:

0.00810075098627887

That’s better, but the results are still slightly worse than for the best DR-Learner.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More234

Let’s plot the results (Figure 10.6).

Figure 10.6 – The true versus predicted effect for linear DML with

less complex models and four cross-fitting folds

These results look much better, but the model seems to systematically overestimate the effect.

Now, you might be puzzled about this whole process. Isn’t there a fundamental challenge to all
we’re doing?

We changed some of the parameters of the base models and observed improved results – great – but
this is only possible when we have simulated data, isn’t it?

Is there anything we can do when simulated data is unavailable?

Hyperparameter tuning with DoWhy and EconML

Yes. One path we can take in order to optimize our models is to tune the hyperparameters of the
outcome and treatment models.

Hyperparameter tuning can improve our estimators’ fit to the data and their generalization to new
instances (note that it cannot help with the estimand).

If machine learning is cool, how about double machine learning? 235

There are two main ways to run hyperparameter tuning with DoWhy and EconML.

The first is to wrap the models in one of the sklearn cross-validation classes, GridSearchCV,
HalvingGridSearchCV, or RandomizedSearchCV, and pass the wrapped models into
the constructor.

Let’s try it!

This time, we’ll use the LGBM classifier instead of logistic regression to predict the treatment. We
hope that with some hyperparameter tuning, we can outperform the model with logistic regression.

Now’s also a good moment for a reminder. In DML, the treatment model does not estimate propensity
scores but rather predicts treatment values directly. In this setting, probability calibration – important
for propensity scores – is not that critical and so using a more complex model might be beneficial,
despite the fact that its probabilities might be less well calibrated than in the case of logistic regression.

Ready to code?

We’ll start by defining our outcome (model_y) and treatment (model_t) models and wrapping
them in a grid search wrapper:

model_y = GridSearchCV(
 estimator=LGBMRegressor(),
 # Define the model's parameter search space
 param_grid={
 'max_depth': [3, 10, 20, 100],
 'n_estimators': [10, 50, 100]
 },
 # Define GridSearch params
 cv=10, n_jobs=-1, scoring='neg_mean_squared_error'
)

model_t = GridSearchCV(
 estimator=LGBMClassifier(),
 # Define the model's parameter search space
 param_grid={
 'max_depth': [3, 10, 20, 100],
 'n_estimators': [10, 50, 100]
 },
 # Define GridSearch params
 cv=10, n_jobs=-1, scoring='accuracy'
)

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More236

We set GridSearchCV’s cv parameter to 10. This parameter determines how many folds will be
used to tune the hyperparameters of our treatment and outcome models. Note that this is different
from the DML estimator’s cv parameter, which controls the number of folds for cross-fitting. It’s good
to remember this distinction as both parameters control different functionalities.

Now, let’s estimate the effects. Doing so is straightforward. We simply pass wrapped model_y and
model_t objects to the init_params dictionary:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dml.LinearDML',
 target_units='ate',
 method_params={
 'init_params': {
 # Pass models wrapped in GridSearchCV objects
 'model_y': model_y,
 'model_t': model_t,
 # Set discrete treatment to `True`
 'discrete_treatment': True,
 # Define the number of cross-fitting folds
 'cv': 4
 },
 'fit_params': {
 }
 })

After computing the results, we obtain the following:

0.00179346825212699

The MAPE value is only 0.17%. This is much better than anything we’ve seen so far!

In particular, this result is more than 3.5 times better than the result of our best DR-Learner.

Let’s examine the results visually (Figure 10.7).

If machine learning is cool, how about double machine learning? 237

Figure 10.7 – DML results after hyperparameter tuning

These results look very good!

The tuned model did a really good job! To the extent that such a small error might seem unrealistic.

When looking at Figure 10.7, we should remember two things. First, we’re working with a relatively
simple synthetic dataset, which should be easily solvable by a powerful enough model. Second, for
comparability, we keep the same value ranges for both axes in the plot that we used for the previous
models. This (to an extent) hides the fact that the model has some error.

If you see results like this in real life, don’t forget about Twyman’s law. The law has multiple variants
(Kohavi et al., 2020) and states that any figure or statistic that looks interesting is most likely wrong.
Twyman’s law can be a valuable reminder to retain healthy skepticism in our work.

As we’ve just seen, tuning hyperparameters for CATE models can bring significant improvements. At
the beginning of this section, we said that there are two ways to tune hyperparameters with DoWhy
and EconML.

Let’s discuss the second way now.

The second way to tune hyperparameters is to do it in advance using your favorite hyperparameter
tuning framework, such as Hyperopt or Optuna, and then simply use the best models found.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More238

There are two main advantages to this approach. The first is that you’re not limited to the grid search
or random search options available in sklearn. With Hyperopt, Optuna, and some other frameworks,
you can leverage the power of more efficient Bayesian optimization.

Note that the cross-validation procedure or a separate validation set should be used when tuning the
hyperparameters in order to minimize the risk of leakage and overfitting. The second reason to tune
your parameters independently – perhaps even more important – is that while passing sklearn wrappers
to EconML, only a subset of the data will be used for tuning. This might be statistically less stable.

As an additional remark, I want to comment once again on cross-validation. In Chapter 7, we said
that cross-validation is not a suitable technique to validate structural aspects of causal models, yet it
can be useful for validating the estimation part.

This also includes hyperparameter tuning for base estimators that we carried out in this section.

The idea of hyperparameter tuning brings more interesting questions. For instance, if the outcome model
is tuned and trained on a particular dataset, how will it perform on the data that is out of distribution?
Wouldn’t it be reasonable to expect that a causal model would handle this task smoothly? At the end
of the day, we’ve learned about a causal structure that goes beyond associations in the dataset, right?

The answer depends on a number of factors. Let’s discuss two important ones.

First, the answer depends on which models we use. For instance, tree-based models do not extrapolate
beyond the maximum value in the training set. Let’s imagine that you only have one predictor in your
problem, X, and all values of X in your training dataset are bounded between 0 and 1,000. Additionally,
let’s assume that the outcome, Y, is always two times X.

This is a very simple problem, but if you test your tree-based model on data where X ranges from
1,000 to 2,000 (that is, all values are outside the training range), the prediction for all observations
will be a constant value that is no greater than the maximum outcome seen in the training dataset
(which would be 1000*2 = 2000).

This behavior comes from the fact that trees learn a set of rules from the data (e.g., if 4.5 < x < 5.5,
then y = 10) and they would need to essentially make up the rules for data that is outside the training
range. The fact that we’re using a causal DML model will not surpass this limitation.

If we use a linear regression model or a neural network, on the other hand, these models will extrapolate.
This brings us to the second factor.

The extrapolation can only be correct under certain limited circumstances – when the relationship
between X and Y is linear or, in the case of neural networks, when the activation function is similar
to the target function (Xu et al., 2021).

In this scenario, using DML will also not surpass the limitations of the outcome and treatment models.

If machine learning is cool, how about double machine learning? 239

These limitations are extremely important in any production system and should be taken into account
at the early stages of the system design.

Is DML a golden bullet?

We just discussed some of the general limitations of machine learning models. Accepting them as
they are, let’s take a closer look at the DML framework itself.

DML is a great and flexible method and tends to work very well in a broad set of circumstances; yet
– like any other method – it has its own set of constraints. We will discuss the main ones here.

We already know that one of the assumptions behind DML is a lack of hidden confounding. In their 2022
paper, Paul Hünermund and colleagues showed that not meeting this assumption leads to significant
biases that are similar in magnitude to biases that we get from other, much simpler methods, such as
LASSO (Hünermund et al., 2022). These findings are consistent with the results obtained by Gordon
et al. (2022) in a large-scale study that benchmarked DML using high-dimensional non-experimental
data from the Facebook Ads platform. Note that DML is sensitive to not only unobserved common
causes of treatment and outcomes but also other bad control schemes that allow for non-causal
information flow in the graph. This is also true for other causal models (for a comprehensive overview
of bad control schemes, check out Cinelli et al., 2022).

While it might not be particularly surprising to some of you that DML can lead to biased results when
hidden confounding cannot be excluded, there are two ideas I’d like to highlight here.

It can be tempting for some researchers and practitioners to transfer their insights from the fields
of deep learning and big data to the domain of causal inference. Let’s discuss why such an approach
might backfire.

First, those familiar with deep learning will recognize that in certain cases, increasing the training
sample size can lead to significant model performance improvements. In causal machine learning, this
approach can also be helpful when the base models do not have enough data to learn a useful mapping
or when the original data does not provide enough diversity to satisfy the positivity assumption. That
said, when these conditions are met, adding more observations cannot help in reducing causal bias
that arises from unmet causal assumptions.

The reason for this is that causal bias comes from ill-defined structural relationships between variables,
not from an insufficient amount of information within a dataset. In other words, causal bias is related
to the estimand misspecification and not to the statistical estimate.

Secondly, sometimes, in particular in big data settings, practitioners of traditional machine learning
might benefit from adding more features to the model. For many tech companies, it’s not unusual
to use hundreds or even thousands of variables for predictive tasks. The logic behind adding more
features to a statistical model relies on the assumption that having more features translates to more
predictive power, which in turn translates to better predictions. This reasoning might lead to beneficial
outcomes when using modern machine learning techniques.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More240

The causal setting is different. As we know, adding arbitrary features to the model might result in
opening non-causal paths in the DAG. This can introduce confounding and lead to biased estimates
of causal parameters.

In practice, it might be better to include a smaller set of variables in your model and make sure that
they do not introduce unwanted confounding. This might be easier said than done, yet in cases where
it’s unclear which variables to include, this approach can be treated as a hypothesis-generating process
that can be iteratively improved over time.

If you cannot exclude the possibility of unobserved confounding in your setting and you cannot
afford to perform an experiment (for ethical, financial, or other reasons), DML can still be useful for
you. Chernozhukov et al. (2022) proposed a general framework for finding confidence bounds under
unobserved confounding. The method, belonging to a broader family of sensitivity analysis methods,
allows us to assess how stable the effect would be under hidden confounding of different strengths.

This solution can bring a lot of value to business decision-making, providing us with potentially
actionable insights in light of difficult or impossible-to-meet assumptions.

Doubly robust versus DML

Before we conclude this section, let’s make a quick comparison between DR-Learner and DML. Both
methods can lead to good results. Both offer smart solutions for reducing the bias and variance of
causal estimates. After reading this chapter, you might wonder: which one should I choose in practice?

I cannot give you a definitive answer that will guarantee that one model always outperforms the other,
but we can look into some recommendations together. Hopefully, these recommendations will help
you make decisions in your own use cases.

The first key difference between the models is that DML works for categorical and continuous treatments,
while DR-Learner (similarly to TMLE) is – by design – limited to categorical treatments. This might
sort some stuff out for you right away.

Now, let’s focus on the particular implementations available in EconML. As we said before, DRLearner
is more than just a simple DR estimator as it uses orthogonalization and cross-fitting under the hood. In
a sense, you can think of DRLearner as a DR estimator on steroids as it incorporates various modern
techniques in order to minimize error. One thing that remains unchanged is that DR correction is at
the heart of the method. That’s one of the reasons why it behaves differently compared to EconML’s
DML methods.

The main advantage of the DR method is that the error of the final estimate is only affected by the
product of errors of the outcome model and the treatment model (Hernan & Robins, 2020). DR
methods might perform better whenever the outcome model is misspecified.

If machine learning is cool, how about double machine learning? 241

On the other hand, DR-Learner will usually have higher variance than DML. Jane Huang from Microsoft
suggests that this might become particularly noticeable when “there are regions of the control space
(…) in which some treatment has a small probability of being assigned” (Huang et al., 2020). In this
scenario, “DML method could potentially extrapolate better, as it only requires good overlap on average
to achieve good mean squared error” (Huang et al., 2020). Note that TMLE could also perform well
in the latter case. Another setting where DML might outperform DR-Learner is under sparsity in a
high-dimensional setting, as demonstrated by Zachary Clement (Clement, 2023; note that in this case,
DR-Learner’s results could be potentially improved by adding lasso regularization to the final model).

In addition, a comparison between DML and TMLE might interest you. As we mentioned earlier, a
detailed discussion on this topic is beyond the scope of this book, yet great resources are available.
To start, check out van der Laan & Hejazi (2019) and Díaz (2020).

What’s in it for me?

It’s difficult to point out just one algorithm that would be guaranteed to unconditionally work better
than other solutions.

That said, given the results of our experiments in this and the previous chapter, we might get the
impression that DML outperforms other methods. This impression is somewhat biased as we did not
tune hyperparameters for the remaining methods. On the other hand, DML is often recommended as
the go-to method for continuous treatments. DR methods cannot compete in this category. S-Learner
can be adapted to work with continuous treatment, but the current version of EconML does not
support this feature.

If you cannot benchmark a wide array of methods and you’re convinced that your data contains
heterogeneous treatment effects, my recommendation would be to start with S-Learner, in particular
if computational resources are an issue. T-Learner and X-Learner might be good to add to the mix
if your treatment is discrete.

If computational resources are not an issue, DML (continuous or discrete treatment) and DR-Learner
or TMLE (discrete treatment) will usually be good shots. That said, it’s always good to have a simpler
model as a benchmark. It’s very easy to plug in complex base estimators to DML or DR/TMLE and get
carried away, not knowing that the complexity pulls us far away from the best results we could achieve.

In the next section, we’ll discuss one more family of methods that might be worth considering.

Before this, let’s summarize the current section.

In this section, we introduced DML. We discussed the key concepts that constitute the uniqueness of
the method: orthogonalization and cross-fitting. We demonstrated how to perform hyperparameter
tuning for submodels using DoWhy and EconML. Then, we discussed the weaknesses of DML,
finishing with a comparison between DR-Learner and DML.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More242

Causal Forests and more
In this short section, we’ll provide a brief overview of the idea behind Causal Forests. We’ll introduce
one of the EconML classes implementing the method. An in-depth discussion on Causal Forests and
their extensions is beyond the scope of this book, but we’ll point to resources where you can learn
more about forest-based causal estimators.

Causal Forest is a tree-based model that stems from the works of Susan Athey, Julie Tibshirani, and
Stefan Wager (Wager & Athey, 2018; Athey et al., 2019). The core difference between regular random
forest and Causal Forest is that Causal Forest uses so-called causal trees. Otherwise, the methods are
similar and both use resampling, predictor subsetting, and averaging over a number of trees.

Causal trees

What makes causal trees different from regular trees is the split criterion. Causal trees use a criterion
based on the estimated treatment effects, using so-called honest splitting, where the splits are generated
on training data, while leaf values are estimated using a hold-out set (this logic is very similar to
cross-fitting in DML). For a more detailed overview, check out Daniel Jacob’s article (Jacob, 2021),
Mark White’s blog post (https://bit.ly/CausalForestIntro), or the chapter on Causal
Forests in White & Green (2023). For a high-level introduction, check out Haaya Naushan’s blog
post (https://bit.ly/CausalForestHighLvl). For a deep dive, refer to Wagner & Athey
(2018) or Athey et al. (2019).

Forests overflow

EconML offers a wide variety of estimators that build on top of the idea of Causal Forests. The methods
share many similarities but may differ in significant details (for instance, how first-stage models are
estimated). This might translate to significant differences in computational costs. To understand
the differences between the different estimator classes, check out the EconML documentation page
here: https://bit.ly/EconMLCausalForestDocs.

Advantages of Causal Forests

Causal Forest models are a good choice when dealing with high-dimensional data. They provide valid
confidence intervals while being non-parametric and offering high flexibility.

https://bit.ly/CausalForestIntro
https://bit.ly/CausalForestHighLvl
https://bit.ly/EconMLCausalForestDocs

Causal Forests and more 243

To start with Causal Forests, the CausalForestDML class from the dml module will likely be the
best starting point in most cases. EconML also offers a raw version of Causal Forest – CausalForest
– which can be found in the grf module. The latter class does not estimate the nuisance parameter.
You might want to use this basic implementation in certain cases, but keep in mind that this might
lead to suboptimal results compared to CausalForestDML.

Causal Forest with DoWhy and EconML

To use Causal Forest with DML orthogonalization, we simply pass the method’s name to the method_
name parameter. You might also want to make your own choice of the outcome and treatment models.
This is done exactly in the same way as we did for the DML estimator. If your treatment is discrete,
don’t forget to include discrete_treatment': True in the init_params dictionary. Here’s
a code example for reference:

estimate = model.estimate_effect(
 identified_estimand=estimand,
 method_name='backdoor.econml.dml.CausalForestDML',
 target_units='ate',
 method_params={
 'init_params': {
 'model_y': LGBMRegressor(n_estimators=50,
 max_depth=10),
 'model_t': LGBMClassifier(n_estimators=50,
 max_depth=10),
 'discrete_treatment': True,
 # Define the num. of cross-fitting folds
 'cv': 4
 },
 'fit_params': {
 }
 }
)

This model’s error is around 4.6% – a result comparable to S- and X-Learners. Note that we did not
tune hyperparameters for this model.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More244

Figure 10.8 presents the results of the model:

Figure 10.8 – Results for Causal Forest with DML (untuned)

Before we conclude this section, let’s summarize the results of all CATE models on the machine
learning earnings interaction dataset from Chapter 9 and Chapter 10 in a single table. Table 10.1
presents this summary:

Estimator MAPE
S-Learner 5.02%
T-Learner 8.13%
X-Learner 3.63%
Linear DR-Learner 0.62%
Linear DML 1.25%
Linear DML (tuning) 0.17%
Causal Forest 4.60%

Table 10.1 – A summary of the results for all models from Chapter 9 and

Chapter 10 on the machine learning earnings interaction dataset

Heterogeneous treatment effects with experimental data – the uplift odyssey 245

In this section, we discussed the core differences between classic random forest and Causal Forests.
We said that the main difference between the two algorithms lies in how the trees are constructed. We
pointed to resources where you can learn more about methods based on Causal Forests. Finally, we
implemented CausalForestDML – a method that extends the basic Causal Forest with nuisance
parameter estimation – and summarized the results for all CATE models on the machine learning
earnings interaction dataset.

In the next section, we’ll discuss estimating heterogeneous treatment effects from experimental data.

Ready?

Heterogeneous treatment effects with experimental data
– the uplift odyssey
Modeling treatment effects with experimental data is usually slightly different in spirit from working
with observational data. This stems from the fact that experimental data is assumed to be unconfounded
by design (assuming our experimental design and implementation were not flawed).

In this section, we’ll walk through a workflow of working with experimental data using EconML. We’ll
learn how to use EconML’s basic API and see how to work with discrete treatments that have more than
two levels. Finally, we’ll use some causal model evaluation metrics in order to compare the models.

The title of this section talks about heterogeneous treatment effects – we already know what they are,
but there’s also a new term: uplift. Uplift modeling and heterogeneous (aka conditional) treatment
effect modeling are closely related terms. In marketing and medicine, uplift simply means the quantity
of change in some outcome in a treatment group (or subject) as compared to a control group – in
other words, the treatment effect. Although uplift can be calculated for an entire treatment group, it
can also be estimated for individual subjects or subgroups. In the latter case, it’s synonymous with
conditional (heterogeneous) treatment effects.

The data

In this section, we’ll use the data from Kevin Hillstrom’s MineThatData challenge (https://bit.
ly/KevinsDataChallenge).

Before we start, I want to take a moment to express my gratitude for Kevin’s generosity. Kevin agreed
that we could use his dataset in the book. I appreciate this and believe that Kevin’s decision will help
us all become better causal data scientists, one step at a time. Thank you, Kevin!

Now, let’s understand how the dataset is structured. The data comes from a randomized email
experiment on 64,000 customers.

https://bit.ly/KevinsDataChallenge
https://bit.ly/KevinsDataChallenge

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More246

The treatment has three levels and was administered randomly:

• 1/3 of the customers received an email campaign featuring men’s merchandise (treatment 1)

• 1/3 received an email campaign featuring women’s merchandise (treatment 2)

• 1/3 received no campaign (control)

The features include the time since the last purchase (recency), the amount of dollars spent in the
past year (history), indicators of the type of merchandise bought in the past year (mens or womens),
an indicator of whether the customer was new in the past 12 months (newbie), what channel they
purchased from previously (channel), and what type of area they live in (rural, suburban, urban; zip_code).
Treatment is a three-level discrete variable describing which email campaign the customer received
(men’s, women’s, or control). Finally, we have three outcome variables: visit, conversion, and spending.

We’ll use spending as our target. It records a customer’s spending within the two weeks following the
delivery of the email campaign.

Let’s read in the data.

We’ll read the main dataset from a CSV file and the treatment mapping from a JSON file:

hillstrom_clean =
 pd.read_csv(r'./data/hillstrom_clean.csv')

with open(r'./data/hillstrom_clean_label_mapping.json',
 'r') as f:
 hillstrom_labels_mapping = json.load(f)

Our treatment has three levels. I stored the mapping in a dictionary serialized as a JSON object.

Let’s see a couple of rows from our dataset (Figure 10.9):

Heterogeneous treatment effects with experimental data – the uplift odyssey 247

Figure 10.9 – The first five rows of the Hillstrom dataset

We cut the display in Figure 10.9 into two parts for readability. As you can see, there are many sparse
binary features in the data. Roughly half of them are one-hot-encoded multi-level categorical features:
zip code area and channel.

The zip code and channel variables are represented as fully one-hot-encoded sets of variables. This
means that for each row, the set of variables representing a channel (or zip code area) will have exactly
one column with the value 1.

This makes one of the columns redundant as its value can be unambiguously inferred from the
values of the remaining columns in the set (if channel__web and channel__phone are both
0, channel__multichannel has to be 1 – by definition of one-hot-encoding).

Note that this setting with redundant information will introduce multicollinearity into the data.
Although this might not be a problem for the tree-based methods, it will impact linear models’
convergence and performance.

To address this in advance, let’s drop the redundant columns:

hillstrom_clean = hillstrom_clean.drop(['zip_code__urban',
 'channel__web'], axis=1)

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More248

The data is technically ready.

Let’s examine its properties.

Testing the waters – how unconfounded are you, my dear?

We expect that experimental data is unconfounded due to randomization, yet sometimes experimental
data might be biased. This can be the case for a number of reasons: technical glitches, invalid procedures,
treatment leakage, and more.

We cannot fully test whether randomization was valid (there is no easy way to spot arbitrary unobserved
confounding), but we can test whether observed variables can predict treatment. If this were the case,
we’d have an indicator that the randomization or data collection process was flawed.

One practical way to perform this check is to split your data in half: train a model that predicts the
treatment from covariates on one half of the data and predict treatment values on the other half. Our
model’s performance should essentially be random.

Let’s implement this process.

First, let’s split the data into treatment, outcome, and feature vectors:

hillstrom_X = hillstrom_clean.drop(['visit', 'conversion',
 'spend', 'treatment'], axis=1)
hillstrom_Y = hillstrom_clean['spend']
hillstrom_T = hillstrom_clean['treatment']

Second, let’s check whether the treatments are distributed uniformly in our data as expected:

sample_size = hillstrom_clean.shape[0]
hillstrom_T_.value_counts() / sample_size

We get the following output:

1 0.334172
2 0.332922
0 0.332906
Name: treatment, dtype: float64

All values are close to 33.3%, which indicates that the treatments were distributed uniformly.

Third, let’s perform a train-test split for the randomness checks:

X_train_eda, X_test_eda, T_train_eda, T_test_eda =
 Train_test_split(hillstrom_X, hillstrom_T_eda,
 test_size=.5)

Heterogeneous treatment effects with experimental data – the uplift odyssey 249

Let’s verify the split’s quality. We expect that roughly 33% of observations should be assigned to each
treatment group:

T_test_eda.value_counts() / T_test_eda.shape[0]

We get the following:

0 0.335156
2 0.333250
1 0.331594
Name: treatment, dtype: float64

This looks good!

Fourth, let’s fit the classifier that aims to predict treatment T from features X:

lgbm_eda = LGBMClassifier()
lgbm_eda.fit(X_train_eda, T_train_eda)

One side remark that I want to share with you here is that, in general, for the LGBM classifier, it might
be better for us not to one-hot encode our categorical features (such as zip area or channel). The
model handles categorical data natively in a way that can improve the results over one-hot-encoded
features in certain cases.

That said, we’ll continue with one-hot-encoded features as they give us more flexibility at later
stages (other models might not support categorical features natively) and we don’t expect significant
improvements in our case anyway.

Fifth, let’s predict on the test data and calculate the accuracy score:

T_pred_eda = lgbm_eda.predict(X_test_eda)
accuracy_score(T_test_eda, T_pred_eda)

If there’s no confounding in the data, we expect to get an accuracy of around 33%. The result is as follows:

0.33384375

This looks good!

Finally, we can generate empirical confidence intervals to see whether this score falls within them:

random_scores = []

test_eda_sample_size = T_test_eda.shape[0]

for i in range(10000):
 random_scores.append(

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More250

 (np.random.choice(
 [0, 1, 2],
 test_eda_sample_size) == np.random.choice(
 [0, 1, 2],
 test_eda_sample_size)).mean())

np.quantile(random_scores, .025), np.quantile(random_scores, .975)

We compare how often two random vectors of three mutually exclusive values are the same. For each
draw, we compare as many vectors as we have observed in our test set. We repeat this procedure 10,000
times and calculate 0.025 and 0.975 quantiles. This gives us 95% confidence intervals:

(0.32815625, 0.33850078125)

The accuracy score that we obtained for our model lies within the boundaries of these intervals. This
gives us more confidence that the data is not observably confounded.

See Figure 10.10 for reference.

Figure 10.10 – Empirical distribution of random models versus model accuracy

Another similar way to check randomization under observed variables is to use a classifier two-sample
test (C2ST; Diemert et al., 2018; Lopez-Paz & Oquab, 2016). The procedure is very similar, with the
difference that the C2ST compares the loss of a classifier trained on the actual data with the distribution
of losses of a classifier predicting random noise, instead of comparing accuracies.

Heterogeneous treatment effects with experimental data – the uplift odyssey 251

C2STs based on different types of classifiers might perform better in certain cases or for certain data
types (e.g., images). Check out Lopez-Paz & Oquab (2016) for details.

Choosing the framework

We started this section with the statement that modeling treatment effects in experimental data differs
from working with observational data.

We already got a taste of some of the differences in the workflow. Instead of starting the process by
defining a graph, we performed randomization checks. The fact that we do not explicitly define a graph
means that we won’t explicitly look for the estimand and that there’s no clear basis for performing
refutation tests.

These differences make it a natural choice to work with EconML estimators directly (rather than using
DoWhy’s four-step process) when we use experimental data.

We’re almost ready to start, but before we open the toolbox, let me share something with you.

We don’t know half of the story

I was recently skimming through a paper discussing selection models. These models are used by
statisticians who perform meta-analyses to assess how much the effect of interest might be skewed
due to research that was not published.

As researchers and practitioners, we are used to working with materials demonstrating successful
outcomes. Research papers and blog posts rarely focus on challenges and failures and not many journals
(though there are exceptions) are willing to publish negative results. Though understandable from a
psychological standpoint, this bias toward discussing successful results has its price.

Those of us who’ve worked with meta-analyses know about the tools we use in order to assess
publication bias. Those of us working in the industry will have perhaps seen junior data scientists
surprised by the messiness of real-world data, something they never found in their handbooks and
courses. Moreover, most of us have likely been in a similar position at least once – surprised at how
far away real-world data can be from our expectations.

This surprise comes partially from the fact that the world is complex, yet the way we structure incentives
in the education system and the publish-or-perish culture also play a role here.

In this section, we’ll see how things should look when everything works smoothly, but we’ll also see
what happens when they don’t.

I hope this approach will be beneficial to you.

Now, let’s get some more context and begin our journey into the wild!

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More252

Kevin’s challenge

As we said in the beginning, the data that we’re about to use comes from an online experiment, but
this is only half of the story. The data was released as part of a challenge organized by Kevin back in
2008. The challenge also included a series of questions, among others – if you could eliminate 10,000
customers from the campaign, which 10,000 should that be?

This and the other questions posed by Kevin are very interesting and I am sure they stir up a sense of
excitement in anyone interested in marketing.

Check out the full list of Kevin’s questions here: https://bit.ly/KevinsDataChallenge.

Although most, if not all, of these questions can be answered with the tools we’ll use in this section
(plus some clever analytics), we’ll ask a simpler question instead: which of the models would help us
make decisions that would translate to the best financial results?

The fact that this question might seem simpler does not make our endeavor easier.

There are a number of challenges that we’ll need to overcome:

• First, we have more than one treatment. This makes model evaluation more challenging than
in a binary case.

• Second, although the dataset is relatively large (64,000 observations), the conversion rate is low.

Let’s take a look at the label mapping to find out how to work with the treatment:

hillstrom_labels_mapping

This gives us the following:

{'control': 0, 'womans_email': 1, 'mens_email': 2}

0 represents the control group assignment, 1 represents women’s emails, and 2 represents men’s emails.

Let’s check how many people bought something under both treatments:

(hillstrom_Y[hillstrom_T > 0] > 0).sum()

We get the following:

456

This is roughly 0.7% of the entire dataset.

Let’s open the toolbox!

https://bit.ly/KevinsDataChallenge

Heterogeneous treatment effects with experimental data – the uplift odyssey 253

Opening the toolbox

In this section, we’ll use six algorithms: S-Learner, T-Learner, X-Learner, DR-Learner, linear DML, and
Causal Forest with DML. We’ll compare their performance from three different angles: computational
cost, ability to sort true uplift, and average expected outcome. If some of these sound cryptic to you,
don’t worry; we’ll explain them on the way.

Let’s start by instantiating the models. First, we’ll create a function that returns an instance of the
LGBM model to make the code a bit more readable:

def create_model(model_type, n_estimators=100, max_depth=10, learning_
rate=.01):
 if model_type == 'regressor':
 return LGBMRegressor(
 n_estimators=n_estimators,
 max_depth=max_depth,
 learning_rate=learning_rate)
 elif model_type == 'classifier':
 return LGBMClassifier(
 n_estimators=n_estimators,
 max_depth=max_depth,
 learning_rate=learning_rate)
 else:
 raise NotImplementedError(
 f'Model type `{model_type}` not implemented.')

The function returns an instance of an LGBM regressor or LGBM classifier, depending on the argument
we pass to the model_type parameter.

Let’s instantiate our causal models:

s_learner = SLearner(
 overall_model=create_model('regressor')
)

x_learner = XLearner(
 models=[
 create_model('regressor'),
 create_model('regressor'),
 create_model('regressor'),
],
 cate_models=[
 create_model('regressor'),
 create_model('regressor'),
 create_model('regressor'),

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More254

]
)

t_learner = TLearner(
 models=[
 create_model('regressor'),
 create_model('regressor'),
 create_model('regressor'),
]
)

dml = LinearDML(
 model_y=create_model('regressor'),
 model_t=create_model('classifier'),
 discrete_treatment=True,
 cv=5
)

dr = DRLearner(
 model_propensity=LogisticRegression(),
 model_regression=create_model('regressor'),
 model_final=create_model('regressor'),
 cv=5,
)

cf = CausalForestDML(
 model_y=create_model('regressor'),
 model_t=create_model('classifier'),
 discrete_treatment=True,
 cv=5
)

This is very similar to what we were doing before when using DoWhy wrappers. The main difference
is that we now pass model parameters directly to model constructors rather than encoding them in
an intermediary dictionary.

Note that for linear DML and Causal Forest, we set discrete_treatment to True. We don’t do
so for meta-learners and DR-Learner because these models only allow discrete treatments (S-Learner
can be generalized to continuous treatments, but the current version of EconML does not support that).
Also note that our create_model() function returns estimators with the same set of pre-defined
parameters for each base learner.

Heterogeneous treatment effects with experimental data – the uplift odyssey 255

First things first

We want to assess the performance of our models and so we’ll divide our data into training and test sets.

As a reminder – we won’t be able to compute an error metric like we’d do in the case of traditional
supervised learning. We’ll need to use different approaches, but having a test set will still be beneficial
for us.

We’ll use scikit-learn’s train_test_split function to perform the split:

X_train, X_test, y_train, y_test, T_train, T_test =
 train_test_split(
 hillstrom_X,
 hillstrom_Y,
 hillstrom_T,
 test_size=.5
)

We set the test size to 0.5. The reason I chose this value is that although our dataset has 64,000
observations, only a tiny fraction of subjects actually converted (made a purchase). Let’s see how
many conversion instances we have in each of the splits:

(y_train[T_train > 0] > 0).sum(),
(y_test[T_test > 0] > 0).sum()

This gives us the following:

(227, 229)

That’s only 227 converted observations in training and 229 in the test set. This is not a very large
number for machine learning methods. The trade-off here is between having enough observations to
effectively train the models and having enough observations to effectively evaluate the models. Our
case is pretty challenging in this regard.

Nonetheless, let’s fit the models and see how much we can get out of them.

We’ll fit the models in a loop to save ourselves some space and time. Speaking of time, we’ll measure
the fitting time for each of the algorithms to get a sense of the differences between them in terms of
computational cost.

Let’s start by creating a dictionary that aggregates all the models:

models = {
 'SLearner': s_learner,
 'TLearner': t_learner,
 'XLearner': x_learner,
 'DRLearner': dr,

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More256

 'LinearDML': dml,
 'CausalForestDML': cf
}

Let’s iterate over the dictionary and fit the models:

for model_name, model in models.items():
 start = time.time()
 model.fit(
 Y=y_train,
 T=T_train,
 X=X_train,
 inference='bootstrap'
)
 stop = time.time()
 print(f'{model_name} fitted in {stop - start:0.4f}
 seconds.')

This gives us the following output:

SLearner fitted in 0.1730 seconds.
XLearner fitted in 0.8588 seconds.
TLearner fitted in 0.2894 seconds.
DRLearner fitted in 2.0550 seconds.
LinearDML fitted in 4.0384 seconds.
CausalForestDML fitted in 6.3661 seconds.

From this output, we can get a sense of the computational costs related to each model. It would be
great to repeat this experiment a couple of times to get more reliable estimates of the differences
between the models. I did this in advance for you. Table 10.2 contains rough estimates of how much
computational time each of the methods needs compared to the S-Learner baseline:

Model Time

(multiplier compared to S-Learner)
S-Learner 1x
T-Learner 2x
X-Learner 5x
DR-Learner 13x
LinearDML 27x
CausalForestDML 39x

Table 10.2 – Relative training times of six different EconML CATE estimators

Heterogeneous treatment effects with experimental data – the uplift odyssey 257

In Table 10.2, the right column displays the time taken by each model to complete its training in
comparison to the S-Learner baseline. For instance, 2x means that a model needed twice as much
time as S-Learner to finish the training.

All the models were trained on the three-level treatment scenario, using the same dataset, with identical
base estimators and default hyperparameters.

T-Learner needs twice as much training time as S-Learner, and Causal Forest with DML needs a
stunning 39 times more time! Just to give you an understanding of the magnitude of this difference:
if S-Learner trained for 20 minutes, Causal Forest would need 13 hours!

Computational cost becomes an important factor whenever we design a production-grade system.
Causal Forest with DML might easily become prohibitively expensive on very large datasets, especially
if we add hyperparameter tuning to the mix.

Our models are trained. Let’s think about how to evaluate them.

Uplift models and performance

There’s a significant body of literature on evaluating uplift models. The most popular metrics include
the Qini coefficient (Radcliffe, 2007) and the Area Under the Uplift Curve (AUUC; Rzepakowski
& Jaroszewicz, 2010).

The Qini coefficient is a single-scalar model quality summary that is based on a comparison between
the Qini curve for an actual model and a random model. The Qini curve shows the cumulative number
of positive outcomes scaled by the number of treated units.

The AUUC is based on a similar idea – it measures the area under the cumulative uplift curve. We plot
uplift on the y axis against the percentage of observed units (the cumulative percentage of our sample
size) sorted by model predictions on the x axis and calculate the area under the curve.

The AUUC and Qini are very popular and you can find many open source implementations for these
metrics (for instance, in the uplift-analysis package: https://bit.ly/UpliftAnalysis).
Both metrics were originally designed for scenarios with binary treatments and binary outcomes.
Another popular choice for uplift model performance assessment is the uplift by decile (or uplift by
percentile) plot.

You might be wondering – why are we talking about metrics and plots that are cumulative or per
decile? The answer is related to the nature of the problem we’re tackling: we never observe the true
uplift (aka the true causal effect).

Let’s take a look at uplift by decile and explain it step by step. It turns out that we can generalize it
naturally to continuous outcomes. That’s good news!

https://bit.ly/UpliftAnalysis

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More258

Uplift by decile

When we run an experiment, we can never observe all potential outcomes for a given unit at the same
time. Each unit or subject can either receive treatment, T, or not receive it.

When we run a randomized experiment, we try to overcome this inherent limitation by computing
group effects, assuming that the results will be generalizable (we could validly ask to what extent and
under what conditions, but we will skip these questions here).

In other words, if we take a group of subjects and randomly assign them to experimental conditions,
we hope that we can learn something about the general effect of the treatment.

Uplift by decile draws from the same source.

We divide the dataset into bins and assume we can learn something about the true effect within each
bin. We leverage this information to assess the quality of our models.

How exactly do we do this?

1. First, we generate predictions from our models.

2. Next, we sort the predictions from the highest to the lowest predicted uplift.

3. We bin our predictions into deciles (in case of smaller datasets or when it's impossible to split
the data into deciles, quantiles of smaller granularity can also be used, for example, quartiles).

4. We split the observations in our dataset into 10 bins according to the deciles we’ve just calculated.

5. Within each decile, we compute the average outcome for the units that were originally treated
and the average outcome for the units that were originally in the control group.

6. Within each decile, we subtract the average outcome for untreated from the average outcome
for treated.

These differences are our estimates of the true uplift within each decile.

7. We use a bar plot to visualize these estimates against the deciles, ordered from the top to the
bottom decile (left to right).

Figure 10.11 presents an example of an uplift by decile plot:

Heterogeneous treatment effects with experimental data – the uplift odyssey 259

Figure 10.11 – An example of an uplift by decile plot

Let’s take a closer look at Figure 10.11. The x axis represents deciles. The y axis represents our estimated
average true uplift.

The true meaning of this plot comes from the fact that the deciles are not sorted by the estimated true
uplift that we actually see in the plot but rather by our predicted uplifts (which are not visible in the plot).

How does this make sense?

We expect that the output of a good model will correlate with the true uplift – we’d like to see a high
estimated true uplift in the top deciles (on the left) and a low estimated true uplift in the bottom
deciles (on the right).

Figure 10.11 presents the results from a really good model as we can see that higher values are on the
left and lower values are on the right.

In the case of a perfect model, the values on the y axis should monotonically go down from left to
right. We see that in Figure 10.11, this is not entirely the case, with minor deviations on the fifth and
eighth ticks (note that the x axis is 0-indexed), but overall, the pattern indicates a very good model.

Uplift by decile can be a good way to quickly visually assess the model, yet it doesn’t provide us with
the means to quantitatively compare various models.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More260

We will use another tool for this purpose, but first, let’s plot uplift by decile for all of our models.
Figure 10.12 presents the results:

Figure 10.12 – Uplift by decile plots

Each row in Figure 10.12 corresponds to one model. The leftmost two columns present the results for
treatment 1, and the rightmost two columns for treatment 2. Blue plots represent the evaluation on
training data, while red ones the evaluation on the test data. Note that the y axes are not normalized.
We did this on purpose to more clearly see the patterns between different models.

According to the criteria that we discussed earlier, we can say that most models perform very well
on the training data. One exception is linear DML, with a less clear downward pattern. One reason
for this might be the fact that the last stage in linear DML is… linear, which imposes a restriction on
the model’s expressivity.

When it comes to the test set, the performance of most models drops significantly. Most cells in the
plot indicate poor performance. DR-Learner for treatment 1 is a strong exception, but the same model
for treatment 2 gives almost a reversed pattern!

Heterogeneous treatment effects with experimental data – the uplift odyssey 261

There might be a couple of reasons for this poor performance on the test set:

• First, our models might be overfitting to the training data. This can be related to the fact that
there is not enough data for the models to build a generalizable representation.

• The second side of the same coin is that the architectures we used might be too complex for
the task (note that we picked hyperparameters arbitrarily, without tuning the models at all).

• Finally, there might be some instability in the per-decile estimates of true uplift, yet the results
on the train set suggest that this is likely not the main issue.

The fact that uplift per decile plots do not look favorable does not necessarily imply that our models
are not useful.

Let’s compute a metric that will help us assess whether the models can bring us some real value.

Expected response

The expected response metric was introduced by Yan Zhao and colleagues in their 2017 paper Uplift
Modeling with Multiple Treatments and General Response Types (Zhao et al., 2017). The method works
in multiple-treatment scenarios and with continuous outcomes, which is perfect for our case.

Although the metric is focused on the outcome rather than on uplift, it’s a valid way to evaluate uplift
models. The metric computes the expected average outcome of a model by combining information
from all the treatments. That’s very handy.

At the same time, the metric is also useful from a decision-making point of view as it gives us a good
understanding of what average return on investment we can expect by employing a chosen model.

Intuitively, the metric works for uplift models because we use previously unseen data to check the
expected return on investment for a given model. This information can be used to compare two or
more models under unconfoundedness and obtain information on the expected performance of
out-of-sample data.

Before we explain how the expected response metric works, let’s get some context. Uplift models can
be understood as action recommendation systems.

Imagine we have k different treatments. For each observation in the dataset, we can obtain k effect
estimates – one for each treatment. We can pick the highest estimate for each observation and treat
it as a predicted optimal treatment.

Now to the explanation.

The idea behind the expected response is simple. For each observation in the test set, we check whether
the predicted treatment was the same as the actual treatment. If so, we divide the value of the outcome
for this observation by the probability of the treatment and store it. Otherwise, we set the value to 0
and store it. Finally, we average over the stored values and the obtained score is our expected response
for a given model.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More262

This basically gives us a treatment-weighted average outcome that we expect to get if we administer
treatments according to the model’s recommendations.

I put the formula for the expected response metric in the notebook for this chapter. We’ll skip it here,
but feel free to explore the notebook and play with the implementation and the formula.

Now, let’s see the results for the expected response (the full code is in the notebook):

Expected response on train:

SLearner: 2.004509358884219
TLearner: 2.499033323345889
XLearner: 2.3844783394170035
DRLearner: 2.357949913732327
LinearDML: 1.5596898804820036
CausalForestDML: 2.9583483277085936

Expected response on test:

SLearner: 1.3498049695400602
TLearner: 1.2108070097957537
XLearner: 1.2901946274863276
DRLearner: 1.500974856751045
LinearDML: 1.3496321556492639
CausalForestDML: 1.3114730998145985

We see that the metric for all models significantly dropped between the train and test sets. The smallest
difference can be observed for the linear DML model. This is congruent with what we observed in
the uplift by decile plot – linear DML performed relatively poorly on the training data and slightly
worse on the test data.

The best model on the test set according to the expected response is DR-Learner. This also translates
– at least partially – to what we observed in the plot. DR-Learner had a pretty clear downward trend
for treatment 1. Perhaps this good performance on treatment 1 allowed the model to compensate for
the worse performance on treatment 2.

Other metrics for continuous outcomes with multiple treatments

Radcliffe proposed a version of Qini that is applicable to continuous outcome problems (Radcliffe,
2007), but it does not work with multiple treatments.

A multi-treatment generalization has been proposed by Gubela & Lessmann (2020). Check out their
article for more details: https://bit.ly/MultiTreatQini.

https://bit.ly/MultiTreatQini

Heterogeneous treatment effects with experimental data – the uplift odyssey 263

Confidence intervals

We said before that one of the advantages of linear DML is its ability to provide us with valid confidence
intervals. How can we obtain them in practice?

With EconML, it’s very easy. We simply call the .effect_interval() method on the fitted
estimator. The method returns a two-tuple of numpy arrays. The first array contains the lower bounds
and the second the upper bounds of the confidence intervals.

Let’s implement it!

models['LinearDML'].effect_interval(X=X_test, T0=0, T1=1)

The output is as expected:

(array([-1.41417908, -0.40901173, -1.50891344, ..., -0.27946152,
-0.8185368 , -0.92689394]),
 array([0.88022207, 1.03706657, 3.34888932, ..., 2.47925003,
1.75716167, 1.51788005]))

Based on the confidence intervals, we can decide whether there are observations that we’d like to
exclude from targeting. Let’s see how many intervals contain 0:

ints = np.stack(models['LinearDML'].effect_interval(
 X=X_test, T0=0, T1=1, alpha=.05)).T
What % of effects contains zero?
(np.sign(ints[:, 0]) == np.sign(ints[:, 1])).sum() /
 ints.shape[0]

This gives us the following:

0.100875

Out of all the test observations, confidence intervals for 10% of them contain 0. Removing
these observations from our action recommendation set could perhaps further improve the
model’s performance.

To obtain confidence intervals for methods that do not support them natively, pass
inference='bootstrap' to the model’s .fit() method. Note that this will result in
a significant increase in training time. The number of bootstrap samples can be adjusted by
using the BootstrapInference object. For more details, check out https://bit.ly/
EconMLBootstrapDocs.

https://bit.ly/EconMLBootstrapDocs
https://bit.ly/EconMLBootstrapDocs

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More264

Kevin’s challenge’s winning submission

At the beginning of this section, we said that the data we were using was part of a challenge. The
submission that Kevin Hillstrom picked as the winning one came from Nicholas Radcliffe.

Does this name ring a bell for you?

If it sounds oddly familiar, it might be because we’ve already seen it (that is, the last name) in this
chapter. Nicholas Radcliffe is not only the author of the winning submission in Kevin’s challenge but
also the person who originally proposed the Qini coefficient (and the Qini curve).

If you’re interested in uplift modeling and marketing, you might find Nicholas’ submission interesting
or even inspiring. The document describing Nicholas’ approach is available here: https://bit.
ly/NicksSolution.

Before we close this section, I want us to think about a question that I received from one of the members
of the causalpython.io community.

When should we use CATE estimators for experimental data?

Organizations – both commercial and non-commercial – usually decide to perform experiments in
order to answer particular questions. A commercial organization might ask questions such as what
impact a change in our funnel page design will have on our sales. A university research team might
be interested in learning how a change in communication style from the municipality will impact
citizens’ engagement in an important public initiative.

These questions can often be answered using randomized experiments and – in many cases – traditional
statistical analyses.

A two-sample sample t-Test (Student, 1908) is a popular choice for analyzing the data from binary
treatment experiments. For more complex designs, perhaps involving hierarchical structures, mixed-
effect models can be used (e.g., Baayen et al., 2008; Barr, 2008). We also have a large variety of methods in
between, including (but not limited to) regression analysis and – closely related to the latter – ANOVA.

All these methods can help us make valid conclusions from experimental data.

Experiments, treatment effects, and generalization
What valid conclusions from experiments really mean and what the generalizability guarantees
are are beyond the scope of this book. If you’re interested in understanding the intricacies of the
relationships between experimental results, the ATE, and transportability (the generalizability
of results beyond the test (sub)population), this Twitter conversation involving Judea Pearl,
Frank Harrell, and Stephen Senn, among others, might be interesting to you: https://bit.
ly/GeneralizationDiscussion.

https://bit.ly/NicksSolution
https://bit.ly/NicksSolution
https://bit.ly/GeneralizationDiscussion
https://bit.ly/GeneralizationDiscussion

Heterogeneous treatment effects with experimental data – the uplift odyssey 265

Machine learning methods come in handy when the feature space is large and when relationships
and interactions in the data can take arbitrary functional forms. CATE methods in particular give us
additional flexibility by enabling us to predict individualized responses to a (potentially high) number
of treatments under high model complexity. These quasi-counterfactual capabilities go beyond what
traditional statistical methods can offer us.

Uplift (CATE and HTE) modeling techniques have been proven to bring value in numerous industrial
settings from marketing and banking to gaming and more.

The main price that we pay for the flexibility offered by CATE machine learning models is the difficulty
of computing the sample size necessary to establish the desired statistical power. In Chapter 9, we
discussed some ideas of how to overcome this limitation.

The main advantage of CATE machine learning models is that they give us a way to non- or semi-
parametrically distinguish the units that can benefit from obtaining our treatment (persuadables)
from those that will most likely not benefit from it (sure things and lost causes) and those who will
likely not benefit but can additionally get hurt or hurt us (do not disturbs; check Chapter 9 and Table
9.5 for a refresher).

More ways to determine the sample size for complex models
When it comes to estimating statistical power for complex models, there’s a smart trick that
I recently learned from Frank Harrell (https://bit.ly/FrankHarrell). If you can
afford a pilot study or you have some historical data that represents a problem similar to the
one that you’re interested in, you can find a subgroup in your data that is as homogenous as
possible. You can estimate the sample size for this group using some of the traditional statistical
power tools. Finally, scale your overall sample size so that this subgroup is properly powered
relative to the entire sample (Harrell, 2023).

Model selection – a simplified guide

Before closing this section, I want to share a simple table with you, where we summarize key
information about the models we discussed in this chapter. I hope that this will help you get the most
out of this chapter.

https://bit.ly/FrankHarrell

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More266

Table 10.3 summarizes important aspects of various EconML estimators that can help you guide your
implementation decisions:

Model name Treatment
type

Confidence
intervals

Linear
treatment
assumed

Multiple
outcomes

Training
speed

(relative
to S-Learner)

SLearner Categorical
(can be adapted
to continuous)

Only by
bootstrapping

No Yes 1x

TLearner Categorical Only by
bootstrapping

No Yes 2x

XLearner Categorical Only by
bootstrapping

No Yes 5x

DRLearner Categorical Only by
bootstrapping

No No 13x

LinearDML Categorical,
continuous

Natively Yes Yes 27x

CausalForestDML Categorical,
continuous

Bag-of-little-
bootstraps or by
(conventional)
bootstrapping

Yes Yes 39x

Table 10.3 – Comparison of selected EconML estimators

For an even more comprehensive comparison between EconML estimators, check out this documentation
page: https://bit.ly/EconMLComparison.

For more performance comparisons between various machine learning methods for CATE (meta-
learners, DR, and more) on experimental data, check Jacob (2021).

Now, it’s time to conclude this section.

We started this section with a brief discussion on using CATE models with experimental data and
the EconML workflow tailored to experimental scenarios.

After that, we introduced the Hillstrom dataset and tested whether our data is unconfounded under
observed variables. We fitted six different models and compared their performance from a computational
cost point of view.

We introduced popular evaluation tools for uplift models: the Qini coefficient, the AUUC, and
uplift by decile. We used the latter and the generalized expected response metric to compare our
models’ performance.

https://bit.ly/EconMLComparison

Extra – counterfactual explanations 267

Finally, we showed how to obtain confidence intervals from EconML estimators, discussed when using
CATE machine learning models with experimental data can be beneficial, and shared a comprehensive
causal estimator comparison table.

In the next short section, we’ll discuss the idea of using machine learning for counterfactual explanations.

Extra – counterfactual explanations
Imagine that you apply for a loan from your bank. You prepared well – you checked your credit score
and other variables that could affect the bank’s decision. You’re pretty sure that your application will
be approved.

On Wednesday morning, you see an email from your bank in your inbox. You’re extremely excited!
You open the message, already celebrating and ready to welcome the success!

There’s a surprise in the email.

Your loan application has been rejected.

You call the bank. You ask questions. You want to understand why. At the end of the day, its decision
impacts some of your most important plans!

The only response you get from the customer service representative is that you did not meet the criteria.
“Which criteria?” you ask. You don’t get a satisfying answer.

You’d like to make sure that you meet the criteria the next time you re-apply, yet it seems that no one
can tell you how to improve!

Bad faith or tech that does not know?

Does the lack of answers come from bank employees’ unwillingness to help?

Not necessarily. Some organizations might not be technically ready to answer questions like ours.
How could we help them change this?

Let’s recall the idea behind S-Learner.

First, we train a single model on our data. Then, we generate predictions for different values of the
treatment variable and perform a simple subtraction. This idea is very flexible. What if we extended
it to other variables that we did not treat as the treatment before?

Theoretically (depending on the setting), this could mess up the causal character of the model.

Do we care?

If our goal is to answer the question What should be done? in order to change the output of the model,
we actually do not.

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More268

Why?

We’re performing an intervention on the model and we’re interested in the model’s behavior, not in how
accurately it represents an underlying process.

Interventions such as this provide us with valid results given our goal.

In a sense, this approach is even simpler than S-Learner as we’re only interested in finding minimal
changes to the data that would result in the expected change of the outcome, so we don’t even need
to calculate the causal effect. There are some challenges that come with this approach, though.

What if we need to change more than one feature in order to influence the outcome because there’s
an interaction between these features? What if there are many ways to change the outcome and some
are much easier, but we’ve only found the hardest one?

To address this and other issues, Microsoft released an open source package called Diverse Counterfactual
Explanations (DiCE; Mothilal et al., 2020). The basic intuition behind DiCE is that it searches for a
set of changes in the input features that lead to the outcome change, at the same time maximizing the
proximity to the original values and diversity (finding many different solutions to the same problem to
let us choose the best one). If you want to learn more about DiCE, check out the introductory blog post
by Amit Sharma (https://bit.ly/DiCEIntro) and DiCE’s GitHub repository (https://
bit.ly/DiCERepo).

Note that depending on the industry sector and geopolitical region, usage of methods such as the ones
we discussed previously might be difficult due to particular regulatory requirements. DiCE offers a
smart set of tools that can help when sensitive data is at stake.

In cases where complex machine learning models might be difficult to apply due to interpretability
requirements, logic similar to that we discussed at the beginning of this section can be implemented
with simple linear models.

In this short extra section, we discussed basic ideas behind counterfactual model explanations and
introduced DiCE – an open source Python library that helps analysts perform counterfactual inferences
easily in more complex cases.

Wrapping it up
Congratulations! You just reached the end of Chapter 10.

In this chapter, we introduced four new causal estimators: DR-Learner, TMLE, DML, and Causal
Forest. We used two of them on our synthetic earnings dataset, comparing their performance to the
meta-learners from Chapter 9.

After that, we learned about the differences in workflows between observational and experimental data
and fit six different models to the Hillstrom dataset. We discussed popular metrics used to evaluate
uplift models and learned how to use confidence intervals for EconML estimators. We discussed

https://bit.ly/DiCEIntro
https://bit.ly/DiCERepo
https://bit.ly/DiCERepo

References 269

when using machine learning models for heterogeneous treatment effects can be beneficial from an
experimental point of view. Finally, we summarized the differences between different models and
closed the chapter with a short discussion on counterfactual model explanations.

In the next chapter, we’ll continue our journey through the land of causal inference with machine
learning, and with Chapter 12, we’ll open the door to the last part of the book, dedicated to causal
discovery. See you!

References
Athey, S., Tibshirani, J., & Wager, S. (2018). Generalized random forests. The Annals of Statistics,
47(2). 1148-1178.

Balestriero, R., Pesenti, J., & LeCun, Y. (2021). Learning in High Dimension Always Amounts to
Extrapolation. arXiv, abs/2110.09485.

Barr, D. J. (2008). Analyzing “visual world” eyetracking data using multilevel logistic regression. J. Mem.
Lang. 59, 457-474.

Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling with crossed random
effects for subjects and items. J. Mem. Lang. 59, 390-412.

Bühlmann, P. & van de Geer, S. A. (2011). Statistics for High-Dimensional Data. Springer.

Cassel, C.M., Särndal, C., & Wretman, J. H. (1976). Some results on generalized difference estimation
and generalized regression estimation for finite populations. Biometrika, 63, 615-620.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. M.
(2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics
Journal, 21(1), C1-C68. https://academic.oup.com/ectj/article/21/1/C1/5056401.

Chernozhukov, V., Cinelli, C., Newey, W., Sharma, A., & Syrgkanis, V. (2022). Long Story Short: Omitted
Variable Bias in Causal Machine Learning (Working Paper No. 30302; Working Paper Series). National
Bureau of Economic Research. https://doi.org/10.3386/w30302.

Cinelli, C., Forney, A., & Pearl, J. (2022). A crash course in good and bad controls. Sociological Methods
& Research, 00491241221099552.

Clement, Z. (2023, February 8). Estimating causal effects under sparsity using the econml package.
Medium. https://medium.com/@clementzach_38631/estimating-causal-
effects-under-sparsity-using-the-econml-package-153b787cb2b1.

Courthoud, M. (2022, July 19). Understanding AIPW, the Doubly-Robust Estimator. Towards Data
Science; Medium. https://towardsdatascience.com/understanding-aipw-
ed4097dab27a.

https://academic.oup.com/ectj/article/21/1/C1/5056401
https://doi.org/10.3386/w30302
mailto:https://medium.com/@clementzach_38631/estimating-causal-effects-under-sparsity-using-the-econml-package-153b787cb2b1
mailto:https://medium.com/@clementzach_38631/estimating-causal-effects-under-sparsity-using-the-econml-package-153b787cb2b1
https://towardsdatascience.com/understanding-aipw-ed4097dab27a
https://towardsdatascience.com/understanding-aipw-ed4097dab27a

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More270

Diemert, E., Betlei, A., Renaudin, C., & Amini, M. R. (2018). A Large Scale Benchmark for Uplift
Modeling. KDD.

Ding, P. & Li, F. (2018). Causal Inference: A Missing Data Perspective. Statist. Sci. 33(2), 214-237.

Díaz, I. (2020). Machine learning in the estimation of causal effects: targeted minimum loss-based
estimation and double/debiased machine learning, Biostatistics, 21(2). 353-358. https://doi.
org/10.1093/biostatistics/kxz042.

Facure, M. A. (2020). Causal Inference for The Brave and True. https://matheusfacure.
github.io/python-causality-handbook/landing-page.html.

Gordon, B. R., Moakler, R., & Zettelmeyer, F. (2022). Close Enough? A Large-Scale Exploration of
Non-Experimental Approaches to Advertising Measurement. arXiv. https://doi.org/10.48550/
ARXIV.2201.07055.

Green, J. & White, M. H., II. (2023). Machine Learning for Experiments in the Social Sciences. Cambridge
University Press.

Gruber, S. & van der Laan, M. J. (2010). A Targeted Maximum Likelihood Estimator of a Causal Effect
on a Bounded Continuous Outcome. The International Journal of Biostatistics, 6(1), 26. https://
doi.org/10.2202/1557-4679.1260.

Gubela, R. & Lessmann, S. (2020). Uplift Forest for Multiple Treatments and Continuous Outcomes.
International Conference on Information Systems.

Harrell, F. [@f2harrell]. (2023, March 2). This is a difficult case. Sometimes one must have pilot
data to do meaningful calculations. [Tweet]. Twitter. https://twitter.com/f2harrell/
status/1631281762075590656.

Hernán M. A. & Robins J. M. (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Holland, P. (1986). Statistics and Causal Inference. Journal of the American Statistical Association,
81, 945-960.

Huang, J., Yehdego, D., & Siddarth, K. (2020, November 5). Causal inference (Part 2 of 3): Selecting
algorithms. Medium. https://medium.com/data-science-at-microsoft/causal-
inference-part-2-of-3-selecting-algorithms-a966f8228a2d.

Hünermund, P., Louw, B., & Caspi, I. (2022). Double Machine Learning and Automated Confounder
Selection – A Cautionary Tale. arXiv. https://doi.org/10.48550/ARXIV.2108.11294.

Jacob, D. (2021). CATE meets ML - Conditional Average Treatment Effect and Machine Learning.
Accounting Technology & Information System eJournal.

Kang, J. D. Y. & Schafer, J. L. (2007). Demystifying Double Robustness: A Comparison of Alternative
Strategies for Estimating a Population Mean from Incomplete Data. Statist. Sci. 22(4), 523-539.

https://doi.org/10.1093/biostatistics/kxz042
https://doi.org/10.1093/biostatistics/kxz042
https://matheusfacure.github.io/python-causality-handbook/landing-page.html
https://matheusfacure.github.io/python-causality-handbook/landing-page.html
https://doi.org/10.48550/ARXIV.2201.07055
https://doi.org/10.48550/ARXIV.2201.07055
https://doi.org/10.2202/1557-4679.1260
https://doi.org/10.2202/1557-4679.1260
https://twitter.com/f2harrell/status/1631281762075590656
https://twitter.com/f2harrell/status/1631281762075590656
https://medium.com/data-science-at-microsoft/causal-inference-part-2-of-3-selecting-algorithms-a966f8228a2d
https://medium.com/data-science-at-microsoft/causal-inference-part-2-of-3-selecting-algorithms-a966f8228a2d
https://doi.org/10.48550/ARXIV.2108.11294

References 271

Kennedy, E. H. (2020). Towards optimal doubly robust estimation of heterogeneous causal effects. arXiv:
Statistics Theory. https://arxiv.org/abs/2004.14497.

Kohavi, R., Tang, D., & Xu, Y. (2020). Twyman’s Law and Experimentation Trustworthiness. In
Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing (pp. 39-57). Cambridge:
Cambridge University Press.

Li, F. (2020). Comment: Stabilizing the Doubly-Robust Estimators of the Average Treatment Effect under
Positivity Violations. Statist. Sci. 35(3), 503-510. https://doi.org/10.1214/20-STS774.

Li, F. (2021). STA 640 — Causal Inference. Chapter 3.5. Doubly Robust and Augmented Estimators
[Course materials]. Department of Statistical Science. Duke University. http://www2.stat.
duke.edu/~fl35/teaching/640/Chap3.5_Doubly%20Robust%20Estimation.pdf.

Lopez-Paz, D. & Oquab, M. (2016). Revisiting classifier two-sample tests. arXiv.

Mohan, K. & Pearl, J. (2021). Graphical Models for Processing Missing Data. Journal of the American
Statistical Association, 116, 1023-1037.

Mothilal, R. K., Sharma, A., & Tan, C. (2020). Explaining machine learning classifiers through diverse
counterfactual explanations. Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, 607-617.

Oprescu, M., Syrgkanis, V., & Wu, Z. S. (2019). Orthogonal Random Forest for Causal Inference.
Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine
Learning Research, 97, 4932-4941. https://proceedings.mlr.press/v97/oprescu19a.
html.

Porter, K. E., Gruber, S., van der Laan, M. J., & Sekhon, J. S. (2011). The Relative Performance of Targeted
Maximum Likelihood Estimators. The International Journal of Biostatistics, 7(1), 31. https://doi.
org/10.2202/1557-4679.1308.

Radcliffe, N. (2007). Using control groups to target on predicted lift: Building and assessing uplift model.
Direct Marketing Analytics Journal, 3, 14-21.

Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of Regression Coefficients When Some
Regressors are not Always Observed. Journal of the American Statistical Association, 89, 846-866.

Rosenbaum, P. R. & Rubin, D. B. (1983). The central role of the propensity score in observational studies
for causal effects. Biometrika, 70, 41-55.

Rzepakowski, P. & Jaroszewicz, S. (2010). Decision Trees for Uplift Modeling. 2010 IEEE International
Conference on Data Mining, 441-450.

Schuler, M. S. & Rose, S. (2017). Targeted maximum likelihood estimation for causal inference in
observational studies. American Journal of Epidemiology, 185(1), 65-73.

https://arxiv.org/abs/2004.14497
https://doi.org/10.1214/20-STS774
http://www2.stat.duke.edu/~fl35/teaching/640/Chap3.5_Doubly%20Robust%20Estimation.pdf
http://www2.stat.duke.edu/~fl35/teaching/640/Chap3.5_Doubly%20Robust%20Estimation.pdf
https://proceedings.mlr.press/v97/oprescu19a.html
https://proceedings.mlr.press/v97/oprescu19a.html
https://doi.org/10.2202/1557-4679.1308
https://doi.org/10.2202/1557-4679.1308

Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More272

Student. (1908). The probable error of a mean. Biometrika, 1-25.

Tan, X., Yang, S., Ye, W., Faries, D. E., Lipkovich, I., & Kadziola, Z. (2022). When Doubly Robust Methods
Meet Machine Learning for Estimating Treatment Effects from Real-World Data: A Comparative Study.
arXiv. https://doi.org/10.48550/ARXIV.2204.10969

van de Geer, S.A., Buhlmann, P., Ritov, Y., & Dezeure, R. (2013). On asymptotically optimal confidence
regions and tests for high-dimensional models. Annals of Statistics, 42, 1166-1202.

van der Laan, M. & Hejazi, N. (2019, December 24). CV-TMLE and double machine learning.
vanderlaan-lab.org. https://vanderlaan-lab.org/2019/12/24/cv-tmle-and-
double-machine-learning/

van der Laan, M. & Rubin, D. (2006). Targeted Maximum Likelihood Learning. The International
Journal of Biostatistics, 2(1). https://doi.org/10.2202/1557-4679.1043

Wager, S. & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random
Forests. Journal of the American Statistical Association, 113(523), 1228–1242. https://doi.org/
10.1080/01621459.2017.1319839

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K., & Jegelka, S. (2020). How Neural Networks
Extrapolate: From Feedforward to Graph Neural Networks. arXiv, abs/2009.11848.

Zhao, Yan, Xiao Fang, and David Simchi-Levi. Uplift Modeling with Multiple Treatments and General
Response Types. Proceedings of the 2017 SIAM International Conference on Data Mining (June 9,
2017): 588–596.

https://doi.org/10.48550/ARXIV.2204.10969
https://vanderlaan-lab.org/2019/12/24/cv-tmle-and-double-machine-learning/
https://vanderlaan-lab.org/2019/12/24/cv-tmle-and-double-machine-learning/
https://doi.org/10.2202/1557-4679.1043
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.1080/01621459.2017.1319839

11
Causal Inference and

Machine Learning – Deep
Learning, NLP, and Beyond

You’ve come a long way! Congratulations!

Chapter 11 marks an important turning point in our journey into causality. With this chapter, we’ll
conclude our adventure in the land of causal inference and prepare to venture into the uncharted
territory of causal discovery.

Before we move on, let’s take a closer look at what deep learning has to offer in the realm of causal inference.

We’ll start by taking a step back and recalling the mechanics behind two models that we introduced
in Chapter 9 – S-Learner and T-Learner.

We’ll explore how flexible deep learning architectures can help us combine the advantages of both
models, and we’ll implement some of these architectures using the PyTorch-based CATENets library.

Next, we’ll explore how causality and natural language processing (NLP) intersect, and we’ll learn
how to enhance modern Transformer architectures with causal capabilities, using Huggingface
Transformers and PyTorch.

After that, we’ll take a sneak peek into the world of econometrics and quasi-experimental time series
data, learning how to implement a Bayesian synthetic control estimator using CausalPy.

Ready?

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond274

In this chapter, we will cover the following:

• Conditional average treatment effects (ATEs) with deep learning

• Causal NLP with Transformers

• Bayesian synthetic control

Going deeper – deep learning for heterogeneous
treatment effects
Since modern deep learning started gaining traction in the early 2010s, we have seen a continuous
progression of breakthroughs. From AlexNet (Krizhevsky et al., 2012), which revolutionized computer
vision, through Word2vec (Mikolov et al., 2013), which changed the face of NLP forever, to Transformers
(Vaswani et al., 2017) and modern generative architectures (e.g. Radford et al., 2021, and Rombach
et al., 2022), which fueled the generative AI explosion of 2022-2023.

Although the core idea behind (supervised) deep learning is associative in its nature and, as such,
belongs to rung one of the Ladder of Causation, the flexibility of the framework can be leveraged to
improve and extend existing causal inference methods.

In this section, we will introduce deep learning architectures to model heterogeneous treatment
effects (aka conditional treatment effects (CATE)). We’ll discuss the advantages of using deep
learning to model CATE and implement two key architectures, using the PyTorch-based CATENets
library (Curth & van der Schaar, 2021a).

CATE goes deeper

Differentiable deep learning architectures make it easy to arrange information flows in virtually any
possible way. This opens the door to a whole new world of possibilities.

In Chapter 9, we introduced S-Learner and T-Learner algorithms. We saw that one of the advantages
of S-Learner compared to T-Learner is sample efficiency.

S-Learner uses a single base-learner model and trains it with all available data. Meanwhile, T-Learner
uses treated observations and control observations to train two separate base models.

One of the advantages of T-Learner is that by learning two separate response functions, it can be more
effective in modeling these functions when they significantly differ.

What if we could combine the advantages of both models in one single architecture?

Going deeper – deep learning for heterogeneous treatment effects 275

TARNet

The Treatment-Agnostic Representation Network (TARNet) is a neural network architecture,
introduced by Uri Shalit from Technion (back then at NYU) and his colleagues in the 2017 ICML
paper Estimating individual treatment effect: generalization bounds and algorithms (Shalit et al., 2017).

The architecture consists of a block of shared layers, trained using all available data, and two disjoint
regression heads, trained using treated or control data, respectively. Intuitively, this architecture
combines the sample efficiency of S-Learner thanks to shared layers and the flexibility of T-Learner
thanks to disjoint regression heads.

Note that this solution also combats the greatest weakness of S-Learner – namely, the risk that a
treatment variable will not be taken into account in the shared representation.

Figure 11.1 presents the TARNet architecture symbolically:

Figure 11.1 – A simplified TARNet architecture

As you can see in Figure 11.1, the first layers of TARNet (shared representation layers) leverage all
the data. Then, the information flow is split between treatment- and control-specific heads (disjoint
regression heads). The output from these heads are used to compute CATE.

In addition to what we see in Figure 11.1, TARNet uses an extra component that computes the
discrepancy between the treatment and control covariate representations, which can be used to balance
these representations when needed, analogously to the propensity score (marked symbolically by
three dots in Figure 11.1, with details skipped for the clarity of presentation).

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond276

TARNet has been demonstrated to perform competitively or outperform a number of other architectures
(Shalit et al., 2017, and Curth & van der Schaar, 2021a).

SNet

SNet (Curth & van Der Schaar, 2021a) is a deep learning-based architecture that can be thought of as
a generalization of TARNet (and other architectures such as DragonNet (Shi et al., 2019) and DR-CFR
(Hassanpour & Greiner, 2020)).

SNet consists of a set of parallel early layers trained on all data. In particular, SNet learns five different
representations and feeds them to three disjoint heads – two regression heads (representing the outcome
model) and one propensity score head (representing the treatment model).

The S in SNet’s name comes from the fact that the information from the early representations in the
network is shared between the latter task-specific heads.

Figure 11.2 presents the SNet architecture symbolically:

Figure 11.2 – A simplified SNet architecture

In Figure 11.2, we can see that the signal from each of the five representation layers (yellow) flows
to a different set of regression heads. Blue arrows indicate flow to just a single head, while green and
orange arrows indicate flow to multiple heads.

Going deeper – deep learning for heterogeneous treatment effects 277

As all representations are learned jointly, the distinction between them might not be well identified.
The authors add a regularization term to the model objective that “enforces orthogonalization of inputs
to (…) different layers” (Curth & van der Schaar, 2021).

The authors demonstrate that SNet outperforms TARNet and neural network versions of T-Learner
and DR-Learner over multiple synthetic and semi-synthetic datasets.

SNet’s additional flexibility might come at a price of more challenges when fitting the algorithm, as
might be the case with any complex architecture.

We will now implement TARNet and SNet using the CATENets library.

Let’s meet CATENets.

CATENets

CATENets was developed by Alicia Curth, a researcher at the van der Schaar Lab at Cambridge
University, led by Mihaela van der Schaar. The library is built on top of JAX (Bradbury et al., 2018)
and provides a range of deep learning architectures to estimate CATE, including TARNet and SNet.

Additionally, the library includes implementations of three original algorithms proposed by Curth
and van der Schaar – SNet (Curth & van der Schaar, 2021a), FlexTENet, and OffsetNet (Curth & van
der Schaar, 2021b).

Most of the models are also available as PyTorch (Paszke et al., 2017) implementations (kindly contributed
by Bogdan Cebere – https://github.com/bcebere). We’ll use these implementations in the
subsequent code examples.

CATENets offers a very convenient and intuitive scikit-learn-style API.

PyTorch
PyTorch (Paszke et al., 2017) is an open source deep learning framework, originally developed
by the Meta AI (Facebook AI) team and currently governed by the PyTorch Foundation. Version
2.0 was released in March 2023, introducing a number of features that can speed up PyTorch in
numerous scenarios. In recent years, PyTorch has gained significant traction, especially in the
research community. The models that we will experiment with in this chapter (CATENets and
CausalBert) use PyTorch behind the scenes. In Part 3, Causal Discovery, we’ll build a complete
PyTorch training loop when implementing Microsoft’s DECI model.

Experiments with CATENets

We’ll use a simulated non-linear dataset with a binary treatment for our CATENets experiments.

You can find the code for this and the next section in the Chapter_11.1.ipynb notebook (https://
bit.ly/causal-ntbk-11_1).

https://github.com/bcebere
https://bit.ly/causal-ntbk-11_1
https://bit.ly/causal-ntbk-11_1

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond278

Let’s start with the data:

import numpy as np

SAMPLE_SIZE = 5000
TRAIN_SIZE = 4500
N_FEATURES = 20

X = np.random.normal(0, 1, (SAMPLE_SIZE, N_FEATURES))
T = np.random.binomial(1, 0.5, SAMPLE_SIZE)

weights = np.random.gumbel(5, 10, (SAMPLE_SIZE,
 N_FEATURES - 1))

y = (50 * T * np.abs(X[:, 0])**1.2) + (weights * X[:,
 1:]).sum(axis=1)

y0 = (50 * 0 * np.abs(X[:, 0])**1.2) + (weights * X[:,
 1:]).sum(axis=1)
y1 = (50 * 1 * np.abs(X[:, 0])**1.2) + (weights * X[:,
 1:]).sum(axis=1)
effect_true = y1[TRAIN_SIZE:] - y0[TRAIN_SIZE:]

We generate 5,000 samples and split them into training and test sets containing 4500 and 500 observations,
respectively. Our dataset has 20 features. The data is generated according to the following formula:

 Y i = (50 * T i * abs (X i
 (0)))

1.2
 + ∑

d=1

D

 w (d) X i
 (d)

In the preceding formula:

• Y i is the outcome of the i -th observation

• T i is the treatment for the i -th observation

• X i
 (d) is the d -th feature for the i -th observation

• w (d) is the weight for feature d

• abs (.) is the absolute value operator

We pick weights at random, drawing from the Gumbel distribution.

As you can see in the preceding formula, the treatment effect is non-additive and non-linear (we have
an absolute value and raise the interaction term to the 1.2-th power). At the same time, only 1 out of
20 features we generated interacts with the treatment (feature X (0) , which corresponds to X[:, 0]
in the code snippet).

Going deeper – deep learning for heterogeneous treatment effects 279

We’ll use our dataset to fit S-Learner, X-Learner, DR-Learner, and Causal Forest as a baseline. Next,
we’ll fit TARNet and SNet.

Let’s start with the necessary imports:

from catenets.models.torch import TARNet, SNet
from econml.metalearners import SLearner,
from econml.dr import LinearDRLearner
from econml.dml import CausalForestDML
from lightgbm import LGBMRegressor

We imported the TARNet and SNet classes from catenets.models.torch and added Causal
Forest DML and the S-, X-, and DR-Learners from EconML.

We’ll also import PyTorch (torch) and PyTorch Lightning (pytorch_lightning):

import torch
import pytorch_lightning as pl

Let’s set the computational device using torch:

device = 'cuda' if torch.cuda.is_available() else 'cpu'
device

If you have a GPU installed in your system that is supported by PyTorch and you have properly
configured the drivers, this will print the following:

'cuda'

Otherwise, you should see the following:

'cpu'

Computations on CPU-only machines will take more time, but we prepared the datasets in a way that
should allow you to complete them in a reasonable time on a CPU.

Next, let’s set the seed for reproducibility. PyTorch Lightning offers a convenience function to do so:

SEED = 18
pl.seed_everything(SEED)

Note that even using pl.seed_everything() does not always lead to the same results. To enforce
fully the deterministic behavior of PyTorch, we would need to use torch.use_deterministic_
algorithms(True) and freeze the randomness in data loaders. At the time of writing, this would
require modifying environmental variables and CATENets code. We won’t go that far and keep the
results weakly reproducible. Be prepared for your results to differ.

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond280

To learn more about reproducibility in PyTorch, check out https://bit.ly/
PyTorchReproducibility.

Let’s fit the benchmark models first:

benchmark_models = {
 'SLearner': SLearner(overall_model=LGBMRegressor()),
 'XLearner': XLearner(models=LGBMRegressor()),
 'DRLearner': LinearDRLearner(),
 'CausalForest': CausalForestDML()
}

benchmark_results = {}

for model_name, model in benchmark_models.items():
 model.fit(
 X=X[:TRAIN_SIZE, :],
 T=T[:TRAIN_SIZE],
 Y=y[:TRAIN_SIZE]
)

 effect_pred = model.effect(
 X[TRAIN_SIZE:]
)

 benchmark_results[model_name] = effect_pred

We create a dictionary of models and iterate over it, fitting each model and storing the results in another
dictionary called benchmark_results. We used LightGBM regressors for S- and X-Learner and
default models for DR-Learner and Causal Forest.

Now, let’s fit TARNet and SNet:

tarnet = TARNet(
 n_unit_in=X.shape[1],
 binary_y=False,
 n_units_out_prop=32,
 n_units_r=8,
 nonlin='selu',
)

tarnet.fit(
 X=X[:TRAIN_SIZE, :],
 y=y[:TRAIN_SIZE],
 w=T[:TRAIN_SIZE]
)

https://bit.ly/PyTorchReproducibility
https://bit.ly/PyTorchReproducibility

Going deeper – deep learning for heterogeneous treatment effects 281

We need to specify a number of parameters to initialize the TARNet class:

• n_unit_in defines the number of features in our dataset. To keep the code dynamic, we pass
the size of the first dimension of our dataset as an argument. This parameter is mandatory.

• binary_y informs the model whether the outcome is binary. Our dataset has a continuous
outcome, so we set it to False. Internally, this parameter will control which loss function
the model should use for the outcome model (binary cross-entropy for a binary outcome and
mean squared error otherwise). This parameter is set to False by default, but I wanted to use
it explicitly because it’s an important one.

• n_units_out_prop and n_units_r define the number of neurons in the propensity
score layer (three dots in Figure 11.1) and representation layers (yellow layers in Figure 11.1),
respectively. These parameters are optional, but I wanted us to see them, as they might be useful
if you decide to tune TARNet for yourself one day. For more parameters (e.g., the number of
layers), check out https://bit.ly/TARNetCode.

• nonlin defines the activation function used by the network. The default value is exponential
linear unit (ELU), but scaled exponential linear unit (SELU) has been shown to have an
auto-normalizing effect on dense networks (Klambauer et al., 2017). This effect might not be
guaranteed in more complex architectures such as TARNet, but I found SELU to work better
than ELU for datasets similar to the one we use.

After initializing the model, we call the .fit() method and pass the data. Note that the naming
convention in CATENets differs from the one we used in EconML:

• X takes the feature matrix (it should include all confounders if there is observational data)

• y takes the outcome vector

• w takes the treatment vector

We index the X, y, and T variables using the TRAIN_SIZE constant that we defined at the beginning
(for example, X[:TRAIN_SIZE, :] means that we take all observations from the first one up to
(but not including) the TRAIN_SIZE one and we take all the features (marked by the second colon
after the comma)).

Note that we did not shuffle the dataset. This is because it’s randomly generated.

Let’s get predictions from TARNet:

effect_pred_tarnet = tarnet.predict(
 X=X[TRAIN_SIZE:, :]
).cpu().detach().numpy()

https://bit.ly/TARNetCode

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond282

To get the predicted CATE, we use the .predict() method. Note that this time we pass the test
dataset (starting from the TRAIN_SIZE observation up to the last one).

Note that we call a chain of methods on the result:

1. We call .cpu() to send the resulting tensor from a GPU (if you used one) to a CPU.

2. Next, we call .detach(), which detaches the tensor from the computational graph used
by PyTorch behind the scenes (note that this graph does not have anything to do with causal
graphs; it’s used by PyTorch to perform computations efficiently).

3. Finally, we call .numpy() to cast the tensor to NumPy’s np.array data type.

This chain is only necessary when we use a GPU, but it’s harmless when working on a CPU-only machine.

Now, let’s fit the SNet model.

The procedure is virtually identical to the one we used for TARNet:

snet = SNet(
 n_unit_in=X.shape[1],
 binary_y=False,
 n_units_out_prop=32,
 n_units_r=8,
 nonlin='selu',
)

snet.fit(
 X=X[:TRAIN_SIZE, :],
 y=y[:TRAIN_SIZE],
 w=T[:TRAIN_SIZE]
)

To get the predictions, we call the .predict() method and the CPU-detach-NumPy chain on
the result:

effect_pred_snet = snet.predict(
 X=X[TRAIN_SIZE:, :]
).cpu().detach().numpy()

Great! Now we’re ready to compare the results between all the models.

Figure 11.3 summarizes the results for TARNet, SNet, and our benchmark methods:

Going deeper – deep learning for heterogeneous treatment effects 283

Figure 11.3 – Results for the benchmark models and deep learning models (TARNet and SNet)

As we can see in Figure 11.3, TARNet got the best results, achieving a mean absolute percentage error
(MAPE) value of 2.49. SNet performed less favorably, with the highest variance out of all compared
models. Perhaps the model could benefit from longer training and/or a larger sample size.

TARNet is the best at approximating low-density regions (the part in the top-right corner of each panel
with a small number of points). Causal Forest DML has the lowest variance, but performs poorly in
these low-density regions, giving place to TARNet.

S- and X-Learners seem to have variance comparable to TARNet, but they visibly underperform in
comparison in the lower-density regions.

Finally, the linear DR-Learner fails to capture the heterogeneity of the effect. This is not surprising as
the model – by definition – can only capture treatment effects linear in parameters.

Note that the results of our experiment should not be treated as a universal benchmark. We only ran
one iteration for each model, but there’s also a deeper reason.

As demonstrated by Curth et al. (2021), CATE models might perform very differently depending on
the construction of the dataset. In particular, changing the function that modifies the treatment effect
can favor some models over others.

This fact might make CATE model benchmarking on synthetic data challenging.

The authors propose a number of steps to address these challenges, such as using artificially biased
experimental data to construct observational datasets. That said, each of their proposals comes with
its own disadvantages (Curth et al., 2021).

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond284

In the real world, integrating expert knowledge into the process and validating model predictions
with test data (using interventions and counterfactual predictions if possible) can be very helpful in
addressing these challenges. This brings us to a seemingly paradoxical conclusion – it might be easier
to evaluate a CATE model in a particular practical real-world use case than to compare its universal
performance against other models on a curated benchmark.

Taking a broader perspective, perhaps we could say that this state of affairs is not unique to modeling
causality, and contemporary non-causal machine learning faces similar challenges, yet they are harder
to explicitly spot (for example, think about validating large language models trained on virtually all
of the internet).

In this section, we introduced two deep learning-based architectures, TARNet and Snet, and implemented
them using the CATENets library. We compared the results against other CATE methods and discussed
the challenges in benchmarking CATE models.

In the next section, we’ll see an example of adapting the Transformer architecture to causal NLP tasks.

Transformers and causal inference
“Der Gegenstand ist einfach.”

Ludwig Wittgenstein (1921)

It’s 1916. The flames of war consume Europe. A young Austrian man of Jewish descent arrives at
a hospital in Kraków, injured in an industrial explosion. He’s a volunteer soldier who served in an
Austrian artillery regiment.

There’s something that differentiates him from other young men in the hospital.

His backpack is full of notes.

He keeps them close, but the notes are not a diary. They consist of a set of remarks on logic, ethics,
language, and religion. Some of them were taken while he was still in the trenches of the Eastern Front.

The young man’s name is Ludwig Wittgenstein, and his notes will later become the basis of the only
book he will publish in his lifetime – Tractatus Logico-Philosophicus (Wittgenstein, 1922).

The book will become one of the most significant works of 20th-century Western philosophy.

One of the core ideas of the book is that most philosophical problems are created by the misuse of
language. It states that fixing language by making clear references to real-world objects and states of
affairs would solve existing philosophical problems – many by showing that they are mere artifacts
of language misuse.

In this section, we’ll discuss the challenges of using natural language in causal inference tasks,
demonstrate one of the approaches to tackling this challenge, and implement it using a PyTorch-
based CausalBert model.

Transformers and causal inference 285

The theory of meaning in five paragraphs

We started this section with a quote from Wittgenstein’s book. The quote (thesis 2.02 of Tractatus
Logico-Philosophicus) was translated into English by Charles Kay Ogden as “The object is simple”
(Wittgenstein, 1922).

The theory of meaning proposed in the book states that names that we use in language refer to simple
(atomic) objects. Atomic objects have no complexity; they cannot be divided further or described,
only named.

There’s beauty in this vision. The correspondence between language and the world seems simple
and elegant. One challenge to this view is that in natural languages, the same word can often denote
different objects, events, or even represent entire sentences.

For instance, the Arabic word يلا (yalla), used extensively by Arabic and Hebrew speakers, has numerous
meanings that heavily depend on the context. It can mean (among others) the following:

• Let’s go!

• Hurry up!

• Please go to bed now.

• Deal!

• Go away!

• Come here!

• Let’s do it!

This context dependence is common in natural languages. Moreover, the changes in the meaning of a
word might have a subtle character between different usages. Wittgenstein realized this and changed
his approach toward meaning in the later stages of his philosophical career.

The new approach he took in his later works might have helped us build systems such as ChatGPT,
but let’s take it step by step.

Making computers understand language

Working with natural language based on discrete units that we call words has been a major challenge
for computer scientists for a pretty long time.

Over the years, computational linguists and computer scientists came up with many creative ways to
squeeze information from natural language documents. First attempts relied on bag-of-words-type
approaches and information-theoretic analyses (e.g., Zipf in 1949).

The main challenge with these approaches was that they were not able to capture the aspects of
semantic similarities between words (although some of them could capture some notion of similarity
on a document level).

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond286

Wittgenstein’s approach toward meaning moved from the idea of words denoting objects to contextual
usage. In Philosophical Investigations (published posthumously), Wittgenstein (1953) wrote, “The
meaning of a word is its use in the language,” and proposed that different meanings might be codified
within language games.

These ideas are closely related to the notion promoted by English linguist John Rupert Firth, summarized
as, “You shall know a word by the company it keeps” (Firth, 1957).

Wittgenstein’s works have likely influenced many lines of research in artificial intelligence and linguistics
through a number of paths. One of these paths led to the works of his student Margaret Masterman,
who applied Wittgensteinian ideas to the realm of machine translation. She founded the Cambridge
Language Research Unit in 1955, and her work influenced researchers around the world (Molino &
Tagliabue, 2023).

From philosophy to Python code

A 2013 seminal paper by Czech Google researcher Tomáš Mikolov and colleagues changed the
face of NLP forever. The paper presented a self-supervised algorithm called word2vec that learned
continuous dense vector representations of words, allowing the framing of semantic similarity as a
distance between vectors in a continuous multidimensional space (Mikolov et al., 2013).

Although word2vec was not able to model polysemy (multiple meanings of the same word), it can be
considered the first practical implementation of the core ideas proposed in Wittgenstein’s later works.

Less than five years after the publication of the word2vec paper, ELMo – a model introduced by Matthew
E. Peters and colleagues (Peters et al., 2018) – made modeling polysemy possible. Just a couple of
months later, another model – BERT – was released by a team at Google (Devlin et al., 2018). BERT
replaced recurrent neural networks with a multi-head attention mechanism (Vaswani et al., 2018).
BERT is an example of the Transformer architecture that also gave birth to the GPT family of models
(Radford et al., 2019, Brown et al., 2020, and OpenAI, 2023).

BERT has revolutionized the entire field of NLP, bringing huge improvements to most if not all
known benchmarks. Its generative cousins from the GPT family made NLP a mainstream topic with
media headlines.

Although modern large language models (LLMs) such as BERT or GPT-4 led to an impressive leap
in what’s possible in today’s natural language modeling and processing, they have some limitations.

LLMs and causality

ChatGPT is a chatbot system introduced by OpenAI in November 2022 (OpenAI, 2022). The system
is based on the GPT-3.5 and GPT-4 models, trained using the reinforcement learning from human
feedback (RLHF) paradigm. ChatGPT is well known to produce plausible sounding short-, mid-,
and even long-form texts.

Transformers and causal inference 287

It has been demonstrated that the model can successfully answer various types of causal and counterfactual
questions. Figure 11.4 presents how ChatGPT (correctly) answered the counterfactual query that we
solved analytically in Chapter 2.

Figure 11.4 – ChatGPT’s counterfactual reasoning

I find the behavior presented in Figure 11.4 impressive, yet it turns out that under more systematic
examination, the model is not entirely consistent in this realm.

The system has been thoroughly scrutinized from the causal perspective by two independent teams at
Microsoft (led by Cheng Zhang) and TU Darmstadt (led by Moritz Willig and Matej Zečević). Both
teams arrived at similar conclusions – the system has significant potential to answer various types
of questions (including some causal questions), but cannot be considered fully causal (Zheng et al.,
2023 and Willig et al., 2023).

Willig et al. (2023) proposed that ChatGPT learns a meta-SCM purely from language data, which
allows it to reason causally but only in a limited set of circumstances and without proper generalization.

Zhang et al. (2023) suggested that the model could benefit from integration with implicit or explicit
causal modules. Her team has even demonstrated an early example of GPT-4 integration with a causal
end-to-end framework DECI (we will discuss DECI in Part 3, Causal Discovery).

In a more recent paper titled Causal Reasoning and Large Language Models: Opening a New Frontier
for Causality (Kıcıman et al., 2023), Emre Kıcıman and colleagues demonstrated that GPT-based
models outperform many existing models on pair-wise causal discovery, counterfactual reasoning, and
in determining necessary and sufficient causes, with GPT-4 achieving an accuracy of 92.44% on the
CRASS counterfactual reasoning benchmark (comparing to the 98.18% accuracy of human annotators).

Figure 11.5 presents an accuracy comparison of the CRASS counterfactual benchmark (Frohberg &
Binder, 2022) between different models and human annotators.

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond288

Figure 11.5 – Performance of models and humans on the CRASS counterfactual benchmark

These results are truly impressive. The main challenge that remains is related to model failure modes,
which are difficult to predict and might occur “even in tasks where LLMs obtain high accuracy” (Kıcıman
et al., 2023). This might be related to the fact that the meta-SCM that the model learns (as proposed by
Willig et al. (2023)) is correlational in its nature, so the model might produce mistakes stochastically.

Keeping in mind that LLMs are not yet capable of systematic causal reasoning, a question that naturally
arises is whether there are other ways in which they can be useful in the context of causality.

It turns out that the answer is positive.

The three scenarios

There are two main types of questions we can ask at the intersection of NLP and causality:

• Questions regarding LLMs’ and/or other NLP tools’ capabilities to help us answer causal queries
about the world (e.g., did a writing training program improve the participants’ writing clarity?)

• Questions regarding the internal causal mechanics of LLMs or other models (e.g., what changes
in the output can be caused by altering the embedding space?)

We’ll focus solely on the first type of question.

There are three basic scenarios where we can leverage LLMs and other NLP tools to answer causal
queries when addressing the first type of question. In each of the scenarios, we will use text as a node
(or a set of nodes) in a causal graph.

Transformers and causal inference 289

The three scenarios are as follows:

• Text as a treatment

• Text as an outcome

• Text as a confounder

In this subsection, we will draw from a great review article by Amit Feder and colleagues, which I
wholeheartedly recommend you read if you’re interested in causality and NLP (Feder et al., 2020).

Let’s review the three scenarios.

Text as a treatment

Hanna is a copywriter at a top New York marketing agency. Over the last few weeks, she’s been working
on a high-profile project. She and her team are working on an online campaign to drive conversions
for a major fashion brand.

Hanna has poured her heart into the project, painstakingly choosing words that she believes will
speak to her ideal client. She’s created numerous successful campaigns in the past, but deep down in
her heart, she really doesn’t know which aspects of her copywriting are responsible for their success.

Is it the wording? The use of metaphors? The rhythm of the copy? A combination of all of these things?

Hanna relies on her intuition to decide when the copy is good. She’s often right, but quantifying the
impact of the copy in a more systematic way could help her work and scale to new niches much faster.
It would also give her an excellent asset that she could leverage in communication with internal and
external stakeholders.

One of the examples of how Hanna’s use case could be addressed comes from Reid Pryzant et al.’s
paper (2017). The authors designed a neural network to isolate language aspects that influence sales
and concluded that in their sample (coming from a Japanese online marketplace Rakuten), appealing
to authority by using polite, informative, and seasonal language contributed most to increased sales.

Some other works that aim at discovering the features of language that impact the outcome of interest
include the discovery of conversational tendencies that lead to positive mental health outcomes
(Zhang et al., 2020).

These works are very interesting and open a path toward new fascinating research directions. At the
same time, they come with a number of challenges.

For instance, it might be difficult to exclude confounding that is rooted internally in text. Text is a
source of the treatment, but other (non-treatment) aspects of text might impact the treatment as well
as the outcome (Feder et al., 2022).

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond290

Moreover, the situation can be further complicated by the fact that different readers might interpret
a text differently (to see an example of a model that takes the reader’s interpretation into account,
check out Pryzant et al. (2021)).

Text as an outcome

Yìzé is an aspiring writer. He has a prolific imagination and produces stories with ease, but he feels
that the way he writes lacks a bit of focus and clarity. He decides to enroll in a writing course at a
local community college.

Measuring Yìzé’s improvement in writing clarity after the course is an example of a text-as-outcome scenario.

In this scenario, the treatment can be relatively easily randomized (technically speaking), and
deconfounding the observational data could be possibly much easier than in the previous case.

The main challenge in this scenario is the measure of the outcome. If we use a model to measure clarity
and this model is trained on the data from our sample, the measure of clarity becomes dependent on
the values of treatment for all participants. This makes the outcomes of all participants dependent on
the treatments of all other participants, which violates the consistency assumption (Feder et al., 2022).

One way to deal with this challenge is to train the outcome measurement model on another sample
(Egami et al., 2018). This can be relatively easily done if we have enough samples.

Text as a confounder

Finally, text can also be a confounder.

Catori and her friend Stephen both love manga and are inspired by similar characters. They pay attention
to similar details and often find themselves wanting to share the same story at the same moment.

Both of them post about manga on Reddit. One day, they noticed an interesting pattern – Stephen’s
posts get more upvotes, and it’s much more likely that his post gets an upvote within the first hour
after being posted than Catori’s post does. They are curious about what causes this difference.

It has been repeatedly shown that across scientific fields, female authors are cited less frequently than
their male counterparts. This effect has been demonstrated in neuroscience (Dworkin et al., 2020),
astronomy (Caplar et al., 2017), transplantation research (Benjamens et al., 2020), and so on.

Could the fact that Catori is perceived as female impact how other Reddit users react to her posts?

As seasoned causal learners, we know that to answer this question, we need to carefully consider a
number of factors.

Catori’s gender might impact the topics she chooses, her style of writing, or the frequency of using
certain words. All of these choices can impact the way other participants react to her content.

Moreover, other Reddit users do not know Catori’s true gender. They can only infer it from her profile
information, such as her username or her avatar.

Transformers and causal inference 291

Therefore, the question here is about perceived genders, rather than the true gender’s impact on other
users’ behavior.

Let’s build a directed acyclic graph (DAG) representing this problem. We’ll also add a node that
represents whether a given post contains a picture or not.

Figure 11.6 presents the proposed DAG:

Figure 11.6 – The Reddit DAG

The blue node in Figure 11.6 represents our treatment (perceived gender), and the green one is the
outcome (Upvote – a post upvote within one hour of posting).

True gender impacts the probability that a person will use a female avatar and impacts Text (e.g., the
topic or linguistic properties). Note that True gender is unobserved, which we indicate by dashed
lines in Figure 11.6.

Additionally, we have a node indicating whether a post contains an image. In our model, this node is
independent of true and perceived gender.

Note that the True gender node opens a backdoor path between the treatment (Female avatar) and
outcome (Upvote). Luckily, its impact is mediated by Text. This means that by controlling for Text,
we can block the path.

A natural question to ask here is which aspects of the text we should control for and how can we make
sure that they are present in the representation of the text that we choose to use.

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond292

CausalBert

CausalBert is a model proposed by Victor Veitch, Dhanya Sridhar, and David Blei from Columbia
University in their paper Adapting Text Embeddings for Causal Inference (Veitch et al., 2020). It leverages
BERT architecture (Devlin et al., 2018) and adapts it to learn causally sufficient embeddings that
allow for causal identification when text is a confounder or mediator.

CausalBert is conceptually similar to DragonNet (Shi et al., 2019) – a descendant of the TARNet
architecture. Figure 11.7 presents CausalBert symbolically:

Figure 11.7 – CausalBert architecture

The yellow layers in Figure 11.7 are pretrained Transformer layers. These layers come from the BERT
model pre-trained on the original corpus. Three disjoint heads estimate the two potential outcomes
and the propensity score, all starting from the same shared representation.

The BERT model family
Since the original BERT model was introduced in 2018, many modifications of the original
architecture have been proposed. One of them is DistilBERT (Sanh et al., 2019) – a smaller,
faster, and lighter version of BERT that retains about 97% of the original model’s capabilities,
while reducing its size by 40% and performing computations in 60% less time. CausalBert uses
DistilBERT behind the scenes.

Transformers and causal inference 293

Note that the version of CausalBert presented in Figure 11.7 is slightly different from the original
version proposed by Veitch et al. (2020) and follows Reid Pryzant’s PyTorch implementation. Pryzant
added the possibility to include an additional categorical confounder (or context) variable, marked
as Context in the figure.

During the training, CausalBert adapts the pretrained layers and learns the embedding, outcome,
and treatment models jointly. This joint objective preserves the information in the embeddings that is
predictive of the treatment and outcome and attenuates everything else. Thanks to this mechanism, we
make sure that information relevant to the downstream task is preserved in the embeddings, making
them sufficient to effectively control for confounding.

Note that the same mechanism is helpful when the text is a partial mediator of the treatment effect.
When controlling for text in this scenario, we learn the direct effect of the treatment on the outcome
(this will exclude all the information that travels through the mediator and only leave the information
that flows directly from the treatment to the outcome, also known as the natural direct effect (NDE)).

Playing safe with CausalBert

The mechanism that adapts the embeddings that predict the treatment and outcome also has a darker
side. Confounding and mediation scenarios are not the only ones in which text is correlated with
both the treatment and outcome.

It will also happen when text is a common descendant of the treatment and outcome. In such a case,
the text becomes a collider, and controlling for it opens a spurious path between the treatment and
outcome, biasing the results.

To mitigate this risk, we should always make sure that none of the aspects of the text are a descendant
of the treatment and outcome; neither should any aspect of the text be a descendant of the outcome
alone (as this would nullify any effect of the treatment on the outcome).

For instance, if a Reddit user shares a post, observes a lack of upvote within the first 15 minutes after
posting, and then edits the post in the hope of getting an upvote, the text becomes a collider between
the treatment and the outcome.

On top of this, CausalBert requires standard causal inference assumptions – a lack of hidden confounding,
positivity, and consistency (one type of treatment and no treatment interference between subjects;
check out Chapter 8 for more details).

CausalBert in code

We will implement CausalBert using Reid Pryzant’s PyTorch implementation (https://bit.ly/
CausalBertCode).

At the time of writing, the code in the original repository contained a small mistake that could distort
the model’s results. A fixed version of the code that we’ll use in this section can be found in the book’s
repository (https://bit.ly/CausalBertCodeBook).

https://bit.ly/CausalBertCode
https://bit.ly/CausalBertCode
https://bit.ly/CausalBertCodeBook

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond294

Let’s start with the imports:

import pandas as pd
from models.causal_bert_pytorch.CausalBert import CausalBertWrapper

We import pandas to read the data and the CausalBertWrapper class, which implements the
model and wraps it in a user-friendly API.

Next, we read in the data:

df = pd.read_csv('data/manga_processed.csv')

Our dataset has been generated according to the structure presented in Figure 11.6. It consists of 221
observations and 5 features:

• text – the text content

• subreddit – the subreddit name (we’ll ignore this variable, as it has a single value for all posts)

• female_avatar – a binary variable, indicating whether a user has a female avatar in their profile

• has_photo – a binary indicator if a post contains an image

• upvote – a binary indicator of a post upvote in the 1st hour after posting (the outcome)

Texts are short Reddit-like posts, generated using ChatGPT and prompted indirectly to produce gender-
stereotypical content. Both the text and female avatar indicators are confounded by an unobserved
true gender variable, and the text causally impacts the outcome through linguistic features (for the
data-generating process code, check out https://bit.ly/ExtraDGPs).

Figure 11.8 presents the first five rows of the dataset before shuffling:

Figure 11.8 – A manga pseudo-Reddit dataset

Let’s instantiate the model:

causal_bert = CausalBertWrapper(
 batch_size=8,
 g_weight=0.05,

https://bit.ly/ExtraDGPs

Transformers and causal inference 295

 Q_weight=1.,
 mlm_weight=0.05
)

We pass four parameters to the constructor.

We define the batch size and three weight parameters. These three parameters will be responsible
for weighting the components of the loss function during the training.

Here’s their meaning:

• g_weight is responsible for weighting the part of the loss that comes from propensity score
(the “P(T=1|X)” block in Figure 11.7; it’s called g, according to the convention used in Veitch
et al.’s (2018) paper)

• Q_weight is responsible for weighting the outcome model loss (the sub-model that predicts
the actual outcome – the “T=0” and “T=1” blocks in Figure 11.7, called Q according to the
paper’s convention)

• mlm_weight weights BERT’s masked language model (MLM) loss

MLM
BERT and some of its cousins are trained using the so-called MLM objective. It’s a self-supervised
training paradigm in which a random token in a training sequence is masked, and the model
tries to predict this masked token using other tokens in the sequence. Thanks to the attention
mechanism, the model can “see” the whole sequence when predicting the masked token.

As you can see, we weighted the outcome model loss (Q_weight) much higher than the propensity
model (g_weight) or MLM loss (mlm_weight).

This setting works pretty well for our dataset, but when you work with your own data, you should
tune these parameters only if you have enough samples to do so.

The low weighting of the MLM loss indicates that the texts in our dataset are likely not very different
from the overall language on the internet, and the generic DistilBERT embeddings provide us with a
good-enough representation for our task.

Let’s train the model:

causal_bert.train(
 texts=df['text'],
 confounds=df['has_photo'],
 treatments=df['female_avatar'],
 outcomes=df['likes'],
 epochs=6
);

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond296

The .train() method takes five arguments:

• texts – an array (pd.Series) of texts

• confounds – a categorical array containing values of an additional confounding or context
variable (if there’s no such variable in your setting, just pass an array of zeros here)

• treatments – a binary treatment indicator

• outcomes – a binary outcome indicator

• epochs – the number of training epochs

After training the model, we can compute the ATE.

To do so, we call the .inference() method and pass texts and additional confounds as arguments.
This method returns a tuple. We’re interested in the 0th element of this tuple:

preds = causal_bert.inference(
 texts=df['text'],
 confounds=df['has_photo'],
)[0]

The 0th element contains an array of dimension N × T , where N is the number of observations and T
is the number of treatment levels (for a binary treatment T = 2). Entries in the first (0th) column are
the probabilities that the outcome is equal to 1 under no treatment. Entries in the second (1st) column
are the probabilities that the outcome is equal to 1 under the treatment.

To calculate the ATE, we subtract the entries in the first column from the entries in the second column
and take the average:

np.mean(preds[:, 1] - preds[:, 0])

This gives us the following:

−0.62321178301562

This result is pretty close to the true effect of -0.7.

It indicates that perceived gender causes a significant drop in early reactions to the content published
in our imaginary manga subreddit.

This conclusion is only valid if the three causal assumptions (no hidden confounding, positivity, and
consistency) are met and the model is structurally sound (no aspects of the text are descendants of
the treatment and outcome, nor the outcome itself).

If Catori and Stephen had doubts regarding some of these assumptions, they could run a randomized
experiment on Reddit to see whether the results held.

Causality and time series – when an econometrician goes Bayesian 297

Before we conclude this section, I want to take a step back and take a look at the topic of fairness.
At the beginning of this section, we cited a number of papers, demonstrating a citation gender gap
between female and male authors.

Although we might be tempted to make conclusions regarding gender gaps and other similar effects
based on simple statistical analyses of observational data (e.g., survey data), this is usually a bad idea.

The structural aspect is crucial in fairness analyses, and ignoring it will almost surely lead to invalid
results (including sign reversal, effect masking, or hallucinating non-existent effects). To learn more
about this topic, check out the excellent works of Drago Plečko and Elias Bareinboim (Plečko &
Bareinboim, 2023).

In this section, we explored the intersection of NLP and causality, starting with a discussion on the
ideas of Ludwig Wittgenstein and how these and similar ideas contributed to making computers
encode natural language efficiently.

We then delved into the three types of scenarios encountered at the intersection of NLP and causality
– text as a treatment, text as an outcome, and text as a confounder. Next, we demonstrated an approach
to adapt text embeddings for causal inference in the text-as-confounder scenario, using a Transformer-
based CausalBert model.

Finally, we discussed the limitations and potential challenges that we can encounter when working
with this model. We finished the chapter by sharing references to materials that discuss how we can
tackle the problems of fairness from a causal perspective.

In the next section, we’ll take a look at one of the ways in which we can leverage the time dimension
to draw causal conclusions when experiments are not available.

Causality and time series – when an econometrician goes
Bayesian
In this section, we’re going to introduce a new style of thinking about causality.

We’ll start this section with a brief overview of quasi-experimental methods. Next, we’ll take a closer
look at one of these methods – the synthetic control estimator. We’ll implement the synthetic control
estimator using an open source package, CausalPy, from PyMC Labs and test it on real-life data.

Quasi-experiments

Randomized controlled trials (RCTs) are often considered the “gold standard” for causal inference.
One of the challenges regarding RCTs is that we cannot carry them out in certain scenarios.

On the other hand, there’s a broad class of circumstances where we can observe naturally occurring
interventions that we cannot control or randomize. Something naturally changes in the world, and
we are interested in understanding the impact of such an event on some outcome of interest.

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond298

Events like this are sometimes referred to as natural experiments.

Such interventions do not have the power to guarantee unconfoundedness, yet sometimes, they can
provide us with useful information.

A family of methods traditionally used to analyze data coming from natural experiments (also known
as quasi-experiments) is known as quasi-experimental methods.

Traditionally, quasi-experiments are framed as time series problems. An event is observed at some point
in time, and we track how some measurable quantity changes after this event compare to some baseline.

Let’s make it more concrete.

Twitter acquisition and our googling patterns

On October 27, 2022, Elon Musk acquired a popular social media platform, Twitter.

The acquisition process was lengthy and marked by numerous controversies.

The day after the formal acquisition, on October 28, Musk tweeted, “The bird is freed,” suggesting
that the acquisition had now become a reality. The tweet quickly gained significant attention from
the public and media outlets alike, with many people commenting and resharing it on the platform.

Significant events in politics, economy, or art and culture can spark public attention and alter the
behaviors of large groups of people, making them search for additional information.

Was Twitter’s acquisition such an event?

Let’s see.

To answer this question, we’ll take a look at Google Trends data and compare how often users searched
for Twitter before and after Elon Musk’s tweet.

To perform such a comparison, we will need some baseline.

The logic of synthetic controls

With RCTs, we randomly assign units to the treatment and control groups and compare the outcomes
between both groups to quantify the relative efficacy of the treatment.

In quasi-experiments, we don’t have control over the treatment assignment. Moreover, the intervention
is oftentimes limited to just one unit.

How can we navigate this?

First, let’s notice what we already have. We have a treated unit, and we believe that we know at which
point in time the treatment has been assigned.

Causality and time series – when an econometrician goes Bayesian 299

That’s valuable information, but it’s not sufficient to draw conclusions.

To make a comparison, we’ll also need a baseline – a control group or control unit.

A useful control unit would provide us with information about what would have happened to the
treated unit if the treatment had not occurred. As we already know, this alternative outcome cannot
be observed. How can we deal with this?

Recall the core idea behind meta-learners. With meta-learners, we learn response functions for treated
and untreated units and then predict one or both outcomes, based on the learned representation. We
use these counterfactual outcomes to compute the estimated treatment effect.

Synthetic control is different from meta-learners in a number of significant aspects, yet it bears a
conceptual similarity to them.

In synthetic control (Abadie & Gardeazabal, 2003), we observe units over time. If two units are
correlated over an extensive period of time, it is highly likely that either one of the units has a (direct
or indirect) causal effect on the other unit, or they have a common cause that is a source of variability
in both of them.

Whichever scenario of the two is the case, the two units will have some predictive power to predict
each other (as long as the underlying data-generating process does not change).

Reichenbach’s principle
Reichenbach’s common cause principle asserts that when two variables are correlated, there
must be either a causal relationship between the two, or a third variable exists (known as a
Reichenbachian common cause) that causes the correlation between the two.

In a finite data regime, correlations between two variables might also occur randomly. That’s
why in the text we say that it’s highly likely that the two variables are causally related or they
have a common cause, rather than saying that this is certainly true. Random correlations
between two long time series are highly unlikely, but the shorter the series, the more likely the
random correlation is.

Note that some authors propose (putative) counterexamples to Reichenbach’s principle (check
out https://bit.ly/ReichenbachPrinciple for more details). The principle is
also debated in quantum physics (the Einstein-Podolsky-Rosen argument – e.g., Rédei, 2002).

The main idea behind synthetic control is to find units that are correlated with our unit of interest in
the pre-treatment period, learning a model that effectively predicts the behavior of the treated unit
after the treatment occurs. The units that we use as predictors are called the donor pool.

Let’s unpack it.

https://bit.ly/ReichenbachPrinciple

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond300

A visual introduction to the logic of synthetic controls

Let’s take a look at Figure 11.9, which presents an outcome variable (Target, in blue) and a set of
potential donor pool variables (green, red, and purple). Note that all variables are recorded over time:

Figure 11.9 – An outcome variable (Target) and a set of potential donor variables

We’re aiming to predict the outcome variable (Target) by using the remaining variables (Donor 1,
…, Donor 3) as predictors.

The donor pool variables in Figure 11.9 seems to be good potential predictors of Target, as there are
visible correlation patterns between them and Target.

To see this in a more systematic way, Table 11.1 presents Pearson correlation coefficients between the
donor pool variables and the outcome.

Variable Pearson’s r (donor-outcome) p-value
Donor 1 0.92 <0.0001
Donor 2 -0.60 <0.0001
Donor 3 -0.33 <0.0001

Table 11.1 – The correlation coefficients between the donor variables and the outcome

Strong significant correlation coefficients indicate that these donor pool variables will be good
predictors of the outcome.

Let’s see how well we can predict the outcome from these variables using simple linear regression.
Figure 11.10 presents the actual outcome variable (blue) and its predicted version (gray):

Causality and time series – when an econometrician goes Bayesian 301

Figure 11.10 – The actual target and prediction based on donor variables

As we can see, the overall fit seems really good.

An important property of donor pool units is that they should be correlated with the treated unit in the
pre-treatment period (before the treatment occurs), but they should not react to the treatment themselves.

In Figure 11.11, we can see a longer version of the time series from Figure 11.9 with a treatment
recorded at time 170:

Figure 11.11 – An outcome variable (Target), a set of donor pool variables, and the treatment

As we can see, our outcome variable changed significantly after the treatment occurred, but donor
variables seem to follow their previous pattern in the post-treatment period.

Let’s predict the outcome variable from the donor pool variables after the occurrence of the treatment.

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond302

Figure 11.12 presents the results:

Figure 11.12 – The actual target and prediction, based on donor

pool variables in the pre- and post-treatment periods

The prediction (the gray solid line in Figure 11.12) in the post-treatment period is our synthetic
control unit.

Having the actual outcome (the blue line in Figure 11.12) and the predicted counterfactual outcome (the
gray line in Figure 11.12), we can subtract the latter from the former to get the estimated treatment
effect at any point in the post-treatment period.

Conceptually, we learn the counterfactual outcome from the donor pool variables, and then we
subtract the values of this counterfactual outcome from the values of the actual outcome to obtain
the estimate of the treatment effect.

Let’s use this logic to see whether Elon Musk’s tweet had enough impact to alter our Google search patterns.

Starting with the data

In this section, we’ll use Google Trends data on search volume for different social media platforms
over time.

We’ll use the information on search volume for LinkedIn, TikTok, and Instagram as our donor pool
units. We sampled the data with daily granularity between May 15, 2022 and November 11, 2022, with
the treatment (the tweet) occurring on October 28, 2022. This gives us 181 samples (days) in total,
with 166 samples (days) in the pre-treatment period. This sample size should be more than sufficient
to capture predictive regularities in the dataset.

Causality and time series – when an econometrician goes Bayesian 303

Synthetic controls in code

In the visual introduction section, all that we did was based on a simple linear regression model. In
fact, the synthetic control estimator is based on the same idea.

The synthetic control estimator learns to predict the outcome variable using the donor pool variables
in the pre-treatment period, and then it predicts the counterfactual version of the outcome variable
in the post-treatment period.

This procedure is carried out by finding a set of weights for each of the donor pool variables that best
predicts the outcome variable. The easiest way to do this is to use linear regression.

In order to decrease the risk of overfitting, the synthetic control estimator forces the weights for the
donor pool variables to take values between 0 and 1 and enforces the condition that all the weights
sum up to 1.

This constraints the model to learn to predict the outcome variable by interpolating between the donor
pool variables, effectively reducing the risk of overfitting.

In a traditional synthetic control estimator, this constraint can be achieved by using the constrained
optimization scheme (for more details, check out Facure, 2020 in Chapter 15).

As we will follow a Bayesian implementation, we’ll use a Dirichlet prior to impose the constraints on
the weights, rather than constraining the optimization scheme.

Dirichlet distribution is a multidimensional generalization of the beta distribution. Samples from
the Dirichlet distribution are bounded between 0 and 1 and sum up to 1 – a perfect match for our
overfitting-reducing idea!

Note that to effectively predict the outcome variable from the donor pool variables under these
constraints, we need some of our donor pool variables to take values greater than the outcome and
some others to take values lower than the outcome.

Intuitively, note that a weighted average of an array of values can never be lower than the minimum
of this array and can never be greater than the maximum of this array, assuming that the weights are
bounded between 0 and 1.

Let’s take a look at Figure 11.11 once again. Note that the green line is above, while the red and purple
ones are below our outcome variable (blue). This is good.

If all your donor pool variables always take values below or above the values of your outcome, a
constraint synthetic control estimator won’t work. Theoretically, in such a case, you can transform
your variables, but this comes with certain drawbacks (see Abadie, 2021 for details).

Ok, we’re ready to do some coding!

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond304

We’ll use CausalPy, a Bayesian library for quasi-experimental data, to implement the synthetic controls
estimator. CausalPy builds on top of PyMC, a popular Python probabilistic programming framework
that makes building and debugging Bayesian models seamless.

You can find the code for this section in the Chapter_11.2.ipynb notebook (https://bit.
ly/causal-ntbk-11_2). Note that this notebook uses a separate conda environment. You’ll
find installation instructions in the repository’s description or the notebook itself (whichever is more
convenient for you).

Let’s import the libraries:

import pandas as pd
import causalpy as cp
import matplotlib.pyplot as plt

Let’s read in the data:

data = pd.read_csv(r'./data/gt_social_media_data.csv')

Figure 11.13 presents the first five rows of the dataset:

Figure 11.13 – The first five rows of the social media search volume dataset

The first column stores the information about the date. The remaining four columns contain information
about the relative search volume for a given day.

To make our work with CausalPy smooth, we’ll use date as the index of our data frame:

data.index = pd.to_datetime(data['date'])
data = data.drop('date', axis=1)

First, we cast it to the pandas.Timestamp type and overwrite the current index.

Second, we drop the original column (the date information is now stored in the index).

Let’s plot the data. Figure 11.14 presents the data, with the date of Musk’s tweet marked by a black
dashed line:

https://bit.ly/causal-ntbk-11_2
https://bit.ly/causal-ntbk-11_2

Causality and time series – when an econometrician goes Bayesian 305

Figure 11.14 – Social media platforms search volume data

Note that Instagram’s search volume is typically higher than that of Twitter, while LinkedIn and TikTok
have lower search volumes compared to the latter. Twitter’s line occasionally exceeds Instagram’s line,
which is not ideal, but as this happens rarely, we’ll accept it, assuming that it won’t hinder the model’s
ability to learn a useful representation.

To prepare the dataset for modeling, we need to store the treatment date in the same format as the
dates in the index of our data frame. We will use the pd.to_datetime() function for this purpose:

treatment_index = pd.to_datetime('2022-10-28')

To implement the synthetic controls estimator in CausalPy, we’ll use the WeightedSumFitter()
class from the pymc_models module:

model = cp.pymc_models.WeightedSumFitter()

To define the model structure, we’ll use the R-style regression formula (you can refer to Chapter 3 for
a refresher on R-style formulas):

formula = 'twitter ~ 0 + tiktok + linkedin + instagram'

The formula says that we’ll predict twitter using the remaining three variables. Zero at the beginning
of the formula means that we’ll not fit an intercept.

Finally, we can fit the model. In CausalPy, we do it using the SyntheticControl class from the
pymc_experiments module:

results = cp.pymc_experiments.SyntheticControl(
 data,
 treatment_index,
 formula=formula,

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond306

 model=model,
)

We pass the data, treatment date index, formula, and model to the constructor and assign the object
to the results variable.

The training will start automatically.

We can now use the fitted SyntheticControl object to access useful information about the model.

First, let’s plot the results:

results.plot(plot_predictors=True)

Figure 11.15 presents the output:

Figure 11.15 – The results of the fitted model

Causality and time series – when an econometrician goes Bayesian 307

At the top of Figure 11.15, we can see the information about the pre-treatment model fit, expressed in
terms of Bayesian R 2 (Gelman et al., 2018), which defines how the amount of variability in the outcome
variable in the pre-treatment period is explained by the variability in the donor pool predictors.

Our donor pool predictors only explain 38.6% of the variability in the outcome before the treatment.
This means that the fit has limited quality.

The top panel presents the actual values of the outcome variable (the black dots) and the predicted
values of the outcome variable (the blue line). The orange line represents the predicted synthetic
control, and the blue shaded area represents the estimated causal effect of the treatment. The treatment
is represented as a red vertical line.

The middle panel presents the difference between the predicted and actual values of the outcome
variable. If we had a model that predicted the outcome perfectly, the blue line in the middle panel of
Figure 11.15 would be a straight line fixed at zero in the entire pre-treatment period. This is because
a perfect model would have zero errors.

Finally, the bottom panel presents the estimated cumulative causal impact of the treatment.

Let’s take a look at how each of the donor pool predictors contributed to the prediction. This can be
achieved by calling the .summary() method on the results object:

results.summary()

This gives us the following printout:

===============================Synthetic Control=====================
===========
Formula: twitter ~ 0 + tiktok + linkedin + instagram
Model coefficients:
tiktok 0.08, 94% HDI [0.01, 0.18]
linkedin 0.08, 94% HDI [0.01, 0.15]
instagram 0.84, 94% HDI [0.81, 0.87]
sigma 5.79, 94% HDI [5.34, 6.28]

The coefficient for Instagram’s contribution is the highest (0.84), rendering it the strongest predictor
of the outcome.

Note that none of the 94% highest density intervals (HDIs) contains zero, suggesting that all predictors
were significant. You can think of the HDI as a Bayesian analog of confidence intervals (although this
is a simplification; for more details, check out Martin et al., 2021).

The model fit is not perfect (as expressed by R 2), yet the overall effect seems pretty large.

To increase our confidence in the results, we could further formally test the significance of the effect
(for more ideas, check out Facure, 2020 in Chapter 15 and Chernozhukov et al., 2022), but we’ll skip
this procedure here.

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond308

Assuming that our model is correctly specified, we can say that we’ve found convincing evidence that
Elon Musk’s tweet increased the Google search volume for Twitter.

That’s powerful!

Before we conclude, let’s discuss a number of challenges.

Challenges

The donor pool size we used for this analysis is small, which may explain the low value of R 2 . Many
practitioners would recommend using at least between 5 to 25 variables in your donor pool as a rule
of thumb. That said, smaller donor pool sizes might have certain advantages.

For instance, we can be pretty sure that we’re not overfitting, which might happen with larger sizes
of donor pools (Abadie, 2021).

We hypothesized that Elon Musk’s tweet caused the increase in the search volume for Twitter, yet
there might be other factors at work (e.g., media publications on Twitter’s acquisition). We might
also deal with confounding here.

The Twitter acquisition itself could have caused Musk’s tweet and increased interest in the information
about the platform. This alternative cannot be excluded based on the data alone and might be very
difficult to exclude in general.

This consideration shows us an important truth about quasi-experimental methods – they do not
automatically guarantee causal identifiability.

We should consider all the available data when working with these methods, exactly the same way
we do with any other causal method. Considering a DAG that describes our problem, understanding
structural relationships between variables, and investigating potential confounding are good first
steps in quasi-experimental analysis.

To learn more about good practices regarding data selection and overall synthetic control methodology,
check out the excellent papers from Abadie (2021) and Ferman et al. (2020).

Other great resources on synthetic controls include Scott Cunningham’s book Causal Inference: The
Mixtape (Cunningham, 2021) and Chapter 15 of Matheus Facure’s online book Causal Inference for
the Brave and True (Facure, 2020).

This concludes our section on synthetic control and quasi-experimental methods.

In this section, we introduced quasi-experimental methods and discussed how a synthetic control
estimator works. We implemented it in Python using CausalPy and discussed a number of challenges
with our analysis.

Wrapping it up 309

Wrapping it up
We covered a lot in this chapter. We started by revisiting the S-Learner and T-Learner models and
demonstrated how flexible deep learning architectures can help combine the benefits of both models.
We implemented TARNet and SNet and learned how to use the PyTorch-based CATENets library.

Next, we delved into the application of causality in NLP. We used a Transformer-based CausalBert
model to compute the average treatment effect of a gender avatar on the probability of getting an
upvote in a simulated Reddit-like discussion forum.

Finally, we took a glimpse into the world of econometrics and quasi-experimental data and learned
how to implement a Bayesian synthetic control estimator using CausalPy.

In the next chapter, we’ll start our adventure with causal discovery.

See you on the other side!

References
Abadie, A. (2021). Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects.
Journal of Economic Literature, 59(2), 391-425.

Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque
Country. Public Choice & Political Economy Journal.

Benjamens, S., Banning, L. B. D., van den Berg, T. A. J., & Pol, R. A. (2020). Gender Disparities in
Authorships and Citations in Transplantation Research. Transplantation Direct, 6(11), e614.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: composable transformations of
Python+NumPy programs [Computer software]: http://github.com/google/jax

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language
models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

Caplar, N., Tacchella, S., & Birrer, S. (2017). Quantitative evaluation of gender bias in astronomical
publications from citation counts. Nature Astronomy, 1(6), 0141.

Chernozhukov, V., Wuthrich, K., & Zhu, Y. (2022). A t-test for synthetic controls. arXiv.

Cunningham, S. (2021). Causal Inference: The Mixtape. Yale University Press.

Curth, A., Svensson, D., Weatherall, J., & van der Schaar, M. (2021). Really Doing Great at Estimating
CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation. Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks.

http://github.com/google/jax

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond310

Curth, A., & van der Schaar, M. (2021a). Nonparametric Estimation of Heterogeneous Treatment Effects:
From Theory to Learning Algorithms. Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics (AISTATS).

Curth, A., & van der Schaar, M. (2021b). On Inductive Biases for Heterogeneous Treatment Effect
Estimation. Proceedings of the Thirty-Fifth Conference on Neural Information Processing Systems.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv.

Dworkin, J. D., Linn, K. A., Teich, E. G., Zurn, P., Shinohara, R. T., & Bassett, D. S. (2020). The extent
and drivers of gender imbalance in neuroscience reference lists. Nature Neuroscience, 23(8), 918-926.

Egami, N., Fong, C. J., Grimmer, J., Roberts, M. E., & Stewart, B. M. (2018). How to make causal
inferences using texts. arXiv.

Facure, M., A. (2020). Causal Inference for The Brave and True.

Feder, A., Keith, K. A., Manzoor, E., Pryzant, R., Sridhar, D., Wood-Doughty, Z., ... & Yang, D. (2022).
Causal inference in natural language processing: Estimation, prediction, interpretation and beyond.
Transactions of the Association for Computational Linguistics, 10, 1138-1158.

Ferman, B., Pinto, C., & Possebom, V. (2020). Cherry Picking with Synthetic Controls. Journal of Policy
Analysis and Management., 39, 510-532.

Firth, J. (1957). A Synopsis of Linguistic Theory, 1930–55. In Studies in Linguistic Analysis. Special
Volume of the Philological Society. Blackwell.

Frohberg, J., & Binder, F. (2022). CRASS: A Novel Data Set and Benchmark to Test Counterfactual
Reasoning of Large Language Models. Proceedings of the Thirteenth Language Resources and Evaluation
Conference, 2126–2140. https://aclanthology.org/2022.lrec-1.229

Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2018). R-squared for Bayesian regression models.
The American Statistician.

Hassanpour, N., & Greiner, R. (2020). Learning disentangled representations for counterfactual regression.
International Conference on Learning Representations.

Hernán M. A., Robins J. M. (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Kıcıman, E., Ness, R., Sharma, A., & Tan, C. (2023). Causal Reasoning and Large Language Models:
Opening a New Frontier for Causality. arXiv preprint arXiv:2305.00050.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing neural networks.
Advances in Neural Information Processing Systems, 30.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional
Neural Networks. In: F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems (Vol. 25).

https://aclanthology.org/2022.lrec-1.229

References 311

Martin, O. A., Kumar, R., Lao, J. (2021). Bayesian Modeling and Computation in Python. Chapman
and Hall/CRC.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in
vector space. arXiv.

Molino, P., & Tagliabue, J. (2023). Witgenstein’s influence on artificial intelligence. arXiv.

OpenAI. (November 30, 2022). Introducing ChatGPT. OpenAI blog: https://openai.com/
blog/chatgpt

OpenAI. (2023). GPT-4 Technical Report. arXiv.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., & Lerer, A. (2017). Automatic differentiation in PyTorch.

Pearl, J. (2009). Causality. Cambridge University Press.

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.

Pearl, J., & Mackenzie, D. (2019). The Book of Why. Penguin.

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018).
Deep Contextualized Word Representations. North American Chapter of the Association for
Computational Linguistics.

Plečko, D., & Bareinboim, E. (2023). Causal Fairness Analysis. arXiv.

Pryzant, R., Chung, Y., & Jurafsky, D. (2017). Predicting Sales from the Language of Product
Descriptions. eCOM@SIGIR.

Pryzant, R., Card, D., Jurafsky, D., Veitch, V., & Sridhar, D. (2021). Causal Effects of Linguistic
Properties. Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 4095-4109.

Pryzant, R., Shen, K., Jurafsky, D., & Wagner, S. (2018). Deconfounded Lexicon Induction for Interpretable
Social Science. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 1, 1615–1625.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021). Learning
transferable visual models from natural language supervision. In International Conference on Machine
Learning, 8748-8763. PMLR.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are
Unsupervised Multitask Learners.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond312

Rédei, M. (2002). Reichenbach’s Common Cause Principle and Quantum Correlations. In: Placek, T.,
Butterfield, J. (eds) Non-locality and Modality. NATO Science Series, Vol. 64. Springer, Dordrecht.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10684-10695.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. arXiv.

Shalit, U., Johansson, F. D., & Sontag, D. (2017). Estimating individual treatment effect: generalization
bounds and algorithms. In International Conference on Machine Learning,. 3076-3085. PMLR.

Shi, C., Blei, D., & Veitch, V. (2019). Adapting neural networks for the estimation of treatment effects.
Advances in Neural Information Processing Systems, 32.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin,
I. (2017). Attention is All you Need. In: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, & R. Garnett (eds), Advances in Neural Information Processing Systems (Vol. 30).

Veitch, V., Sridhar, D., & Blei, D. (2020). Adapting text embeddings for causal inference. In Conference
on Uncertainty in Artificial Intelligence, 919-928. PMLR.

Willig, M., Zečević, M., Dhami, D. S., Kersting, K. (2023). Causal Parrots: Large Language Models May
Talk Causality But Are Not Causal [ACM preprint].

Wittgenstein, L. (1953). Philosophical investigations. Philosophische Untersuchungen. Macmillan.

Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. Harcourt, Brace & Company, Inc.

Zhang, C., Bauer, S., Bennett, P., Gao, J., Gong, W., Hilmkil, A., ... & Vaughan, J. (2023). Understanding
Causality with Large Language Models: Feasibility and Opportunities. arXiv.

Zhang, J., Mullainathan, S., & Danescu-Niculescu-Mizil, C. (2020). Quantifying the causal effects of
conversational tendencies. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 1-24.

Zipf, G. K. (1949). Human behavior and the principle of least effort. Addison Wesley Press.

Part 3:
Causal Discovery

In Part 3, we will start our journey into the world of causal discovery. We will begin with an overview
of the sources of causal knowledge and a deeper look at important assumptions.

We will introduce four families of causal discovery algorithms and implement them using gCastle.
We will move toward advanced methods and demonstrate how to train a DECI algorithm using PyTorch.

Along the way, we will show you how to inject expert knowledge into the causal discovery process,
and we will briefly discuss methods that allow us to combine observational and interventional data
to learn causal structure more efficiently.

We will close Part 3 with a summary of the book, a discussion of causality in business, a sneak peek
into the (potential) future of the field, and pointers to more resources on causal inference and discovery
for those who are ready to continue their causal journey.

This part comprises the following chapters:

• Chapter 12, Can I Have a Causal Graph, Please?

• Chapter 13, Causal Discovery and Machine Learning – from Assumptions to Applications

• Chapter 14, Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond

• Chapter 15, Epilogue

12
Can I Have a

Causal Graph, Please?

Welcome to Chapter 12.

We will start our journey to the land of causal discovery here.

Most people who hear about causal discovery for the first time are truly fascinated by this topic. Other
people are skeptical, yet almost no one is indifferent.

Perhaps this tendency toward stronger reactions reveals something fundamental about our own human
nature. In the first chapter, we briefly discussed Alison Gopnik’s research showing that even infants
and small babies run experiments in order to efficiently construct world models.

In this chapter, we’ll discuss three sources of causal knowledge and we’ll think together about the
relative advantages and disadvantages of using them.

By the end of this chapter, you’ll have a clear idea about different sources of causal knowledge and
will be able to discuss their core strengths and weaknesses.

In this chapter, we will cover the following:

• Sources of causal knowledge

• Scientific experiments and simulations as a source of causal knowledge

• Personal observations and domain knowledge

• Causal discovery and structure learning

Can I Have a Causal Graph, Please?316

Sources of causal knowledge
Malika, Illya, and Lian are 11-month-old infants playing together. Malika passes a toy car to Illya,
who had dropped it accidentally. Lian is trying to grab a new teddy bear that her sister put next to
the chair. If you observe Malika, Illya, and Lian, you will quickly notice that they are very motivated
to explore the environment around them.

This is a good sign – one of the indicators of a healthy developmental trajectory.

There’s a catch though.

How do they choose what to explore?

You and I, oversaturated

It’s estimated that around 11 million bits of information are sent from sensory inputs to the brain
every second. In adults, only about 60 bits per second can be consciously processed (Martín, 2009).

It’s difficult to assess how much of the 11 million bits can be processed unconsciously. It is also difficult
to translate these numbers directly into babies’ processing capabilities, but it’s safe to say that infants
are not able to process all the information available in the environment most of the time.

One of the mechanisms that helps humans and other animals to free up some of their processing
capacity is called habituation. Habituation is a process in which an organism’s response to repeated
or prolonged presentations of a stimulus decreases. In other words, we stop paying attention to things
that happen around us repeatedly over and over again in a similar way.

Have you ever moved to a new house or apartment with a loud street behind the windows? If you had
this experience, it’s likely that it was hard not to notice the noise in the beginning.

There’s a chance it was pretty annoying to you. You might have even said to yourself or your family
or friends “Gosh, how loud this is!”

It is likely that in a month or so, you stopped noticing the noise. The noise became a part of the
background; it became essentially invisible.

This is habituation at work.

Habituation appears very early in development and can be observed even in later pre-natal stages
(e.g., Muenssinger et al., 2013).

Scientific insights 317

The power of a surprise

Developmental psychologists took advantage of the habituation mechanism and created research
paradigms such as the violation of expectation (VoE), which allow them to study how little babies
learn. Researchers have shown that surprising (unhabituated) events can trigger multiple specific
reactions such as alterations in facial expressions, pupil dilation, changes in cerebral blood flow,
changes in brain electrical activity, and alterations in looking time.

Aimee Stahl and Lisa Feigenson from Johns Hopkins University have shown groups of 11-month-
old infants regular toys and toys that (seemingly) violated the laws of physics. The altered toys went
through the walls, flowed in the air, and suddenly changed location.

Infants spent more time exploring the altered toys than the regular ones. They also engaged with
them differently.

The analyses have shown that babies learned about objects with unexpected behavior better, explored
them more, and tested relevant hypotheses for these objects’ behavior (Stahl & Feigenson, 2015).

This and other experiments (see Gopnik, 2009) suggest that even very small babies systematically choose
actions that help them falsify hypotheses and build relevant causal world models. This interventional
active learning approach is essential in achieving this goal.

Do you remember Malika, Illya, and Lian from the beginning of this chapter? Malika passed a toy
car to Illya, who dropped it accidentally. It turns out that it’s much more likely that a baby will pass
a dropped object to a person who dropped it accidentally than to someone who dropped it or threw
it intentionally.

World models are critical for efficient navigation in physical and social worlds, and we do not stop
building them as grown-ups.

Scientific insights
Human babies have a lot to learn during their development – the laws of physics, language, and social
norms. After learning the basics, most children start school. School provides most of us with a canon
of current knowledge about a broad variety of topics.

To many people, learning this canon is sufficient. Others, unsettled by the answers to the questions
they have or motivated by other factors, decide to dig deeper and look for the answers themselves.
Some of these people become scientists.

In this section, we’ll take a look at causal knowledge through the lens of scientific methods. We’ll
introduce some core scientific methodologies and touch upon their benefits and limitations.

Can I Have a Causal Graph, Please?318

The logic of science

Karl Popper, one of the 20th century’s most famous philosophers of science, used to say that “what is
true in logic is true in scientific method” (Popper, 1971). We briefly mentioned Popper’s framework
in Chapter 7 and we’ll refresh it now.

Popper’s narrative is as follows: saying that all Xs are x is usually impossible because we usually cannot
observe all Xs (and if in certain cases we can observe all Xs, we don’t need science for these cases, as
we can observe all the outcomes).

Although we cannot observe all Xs and hence we cannot definitely confirm any particular hypothesis
about Xs, we can still learn something useful.

“All Xs are x” is logically equivalent to “no X is not x.” Although we cannot unambiguously prove
that all Xs are x, finding even a single case where X is not x disproves the hypothesis that all Xs are x.
Disproving a hypothesis in this way is called falsification.

A falsifiable hypothesis is a hypothesis for which we can define an empirical test that can falsify this
hypothesis. All pigeons are white is a falsifiable hypothesis that can be falsified by finding at least one
non-white pigeon.

On the other hand, the existence of an intelligent supernatural being is usually not falsifiable unless
we set a hypothesis in a very specific way, for instance, the existence of a supernatural being guarantees
that no person ever dies before their 18th birthday.

It seems to me that not many people who advocate for the existence of supernatural beings are
interested in formulating hypotheses such as this. Other, more general or more vague hypotheses in
similar contexts usually turn out to be unfalsifiable.

Hypotheses are a species

In the Popperian framework, hypotheses come from theories (or tentative theories). Once generated,
hypotheses should be scrutinized, i.e., put to the empirical test, which can falsify them.

If a hypothesis generated from a theory is falsified, the theory in its original shape is falsified and
should be retracted. Every theory can generate many different hypotheses, yet a theory that survives
the largest number of tests is not necessarily more true. It’s more fit, in a sense, analogous to fitness in
biological evolution.

For instance, a theory might fit the current data very well. The reason for that might be that we
simply do not have advanced enough tooling to collect the data that could falsify this theory and so
the theory’s fitness does not automatically translate to its truthfulness. Some of these views have been
since criticized and not all of them are broadly accepted today (see the callout box).

Scientific insights 319

Popper and other philosophers
We present a very brief and synthetic overview of the Popperian framework here, which is
certainly simplified and not complete. Although Popper’s ideas are still a vital part of modern
scientific culture, we should be aware that some of them have been criticized.

For instance, Thomas Kuhn has proposed an alternative model of how science develops over
time (Kuhn, 1962), and other philosophers such as Imre Lakatos or Paul Feyerabend criticized
Popper’s views on the demarcation between science and pseudo-science and his criteria of
theory rejection.

One of the (perhaps surprising) consequences of the consistent Popperism is the rejection of
Darwin’s theory of evolution as non-scientific (Popper himself called it an interesting metaphysics
project; Rosenberg & McIntyre, 2020).

French physicist Pierre Duhem and American logician Willard Van Orman Quine argued
independently that hypotheses cannot be empirically falsified in isolation because an empirical
test needs auxiliary assumptions. Popper’s theory has been also criticized as overly romantic
and non-realistic (Rosenberg & McIntyre, 2020).

One logic, many ways

Scientific inquiry can take different forms depending on the object of interest of a given field.

Physicists usually design their experiments differently from psychologists. Although virtually all
scientists follow (or at least do their best to follow) a set of similar basic principles, they might do
very different things in practice.

For instance, physicists are interested in formulating hypotheses regarding the universal basic laws that
rule the physical world. The objects they are interested in can be often described by a finite number
of well-defined physical observables.

On the other hand, psychologists try to capture universal laws governing human and other animals’
cognition and behavior.

The number of ways in which two individual chimpanzees or humans can differ is even difficult to
quantify. Animals can be viewed as complex systems, where multiple different factors interact with
each other and with the environment in a virtually infinite dance.

These differences are reflected in the choice of scientific tools that scientists in these fields make.

Controlled experiments

Physicists, chemists, and other representatives of the so-called hard sciences often work with controlled
experiments. The control aspect means that the experimental environment is carefully controlled in
order to minimize any interference from the outside world or – in other words – to keep the context
variables constant. An extreme example of such control is projects such as the Large Hadron Collider

Can I Have a Causal Graph, Please?320

– a sophisticated experimental system consisting of a 27-kilometer-long ring of superconducting
magnets placed over 100 meters under the ground and a no less sophisticated shielding system aiming
to reduce unwanted outside influences.

Many experiments in hard sciences do not require randomization, as the objects the experimenters
deal with are considered to be governed by universal principles and the observed effects are often
assumed to be generalizable to other conditions. For instance, if a properly designed experiment
concerning some universal principles is conducted in Paris, the results are assumed to be replicable
in Kyiv, New York, and Shanghai.

Things are different in medicine, social sciences, and agriculture. The objects studied in these fields
are usually complex and might significantly differ from each other along dimensions that are not
observed. If the treatment and control groups differ systematically along some of these dimensions,
this might lead to biased results. How to address this risk?

Randomized controlled trials (RCTs)

Randomized controlled trials (RCTs) are experiments where participants (or – more broadly – units)
are randomly assigned to experimental conditions. The idea of randomization comes from the iconic
British polymath Sir Ronald Aymler Fisher. Fisher used the idea of randomization in the context of
agriculture. Although the idea was known before, he formalized it and popularized it through his
work, starting in the 1920s.

The goal of randomization is to eliminate bias and permit valid significance testing (Hall, 2007).
Contrary to popular misconception, randomization does not make treatment and control groups
balanced or homogenous (Senn, 2020).

RCTs are often considered the golden standard for inferring causal relationships.

That said, the idea of randomization seems controversial to many. As expressed by Stephen Senn, “(…)
it has remained controversial ever since it was introduced by R.A. Fisher into the design of agricultural
studies in the 1920s and even statisticians disagree about its value” (Senn, 2021).

One of the challenges with RCTs pointed out by some authors is that they do not provide us with
estimates of the efficacy of treatment at the individual level, but only at a group level (e.g., Kostis
& Dobrzynski, 2020). Other authors suggest that this is not always problematic and that often the
group-level conclusions are surprisingly transportable to individuals (e.g., Harrell, 2023), but as we
saw in Chapter 9, group-level conclusions can hide important information from us.

In this section, we implicitly assumed that an RCT consists of two (or more) groups that are assigned
to the treatment or control conditions in parallel. This is not the only possible RCT design. Moreover,
other designs such as cross-over design might be more powerful. Further discussion on experimental
designs is beyond the scope of this book. Check Harrell (2023) for a starter.

Personal experience and domain knowledge 321

From experiments to graphs

Scientific experiments can help us understand which real-world phenomena are causally related.
Although from a traditional Popperian point of view, it would be difficult to argue that science can
provide us with true causal graphs, most people would probably agree that science can help us decide
which causal graphs are plausible.

Each new hypothesis and each new experiment can potentially deepen our understanding of real-world
causal systems and this understanding can be encoded using causal graphs (note that not all systems
can be easily described using acyclic graphs and sometimes causality might be difficult to quantify). For
instance, you might be interested in how the brightness of colors on your website impacts sales. You
might design an A/B test to test this hypothesis. If the results indicate an influence of color brightness
on sales, you should add an edge from brightness to sales to a graph describing the causes of sales.

Simulations

Simulations are another way to obtain causal knowledge.

Simulations usually start with a set of known (or hypothesized) low-level mechanisms. We code these
mechanisms in order to observe a high-level behavior of a system of interest.

For instance, at TensorCell (https://bit.ly/TensorCell), a research group founded by a
Polish mathematician and AI researcher Paweł Gora, we used simulators of traffic systems to optimize
traffic control systems using various machine learning and reinforcement learning techniques.

Performing interventions in a simulator is typically much cheaper than performing interventions in
a real-world system, yet if the simulator is precise enough, we expect to obtain valuable real-world
insights from such interventions.

Interestingly, complex simulations might also become too expensive for certain purposes. For example,
using a complex traffic simulator to produce inputs for a reinforcement learning agent is inefficient and
very slow. At TensorCell, we used graph neural networks and Transformer models to approximate
the outputs of simulators to tackle this problem.

In this section, we discussed the foundations of the scientific method and core scientific tools that
can be used to generate causal knowledge. We briefly discussed how hypotheses can be put to the
empirical test using experiments and what the main advantages and limitations of this approach are.

Now, let’s take a look at less formal sources of causal knowledge.

Personal experience and domain knowledge
We started this chapter by talking about how babies perform experiments to build causal world models.
In this section, we’ll look into an adult’s approach to refining and building such models.

https://bit.ly/TensorCell

Can I Have a Causal Graph, Please?322

Imagine a rainy chilly afternoon somewhere in Northern Europe. You stand at a bus stop near your
favorite park. There’s a large puddle on the street in front of you. You notice a car approaching from
the left, driving close to the sidewalk. It seems that it will drive straight into the puddle. As the car
approaches the puddle without slowing down, you instinctively jump behind the bus stop’s shelter.
Water hits the shelter’s glass right next to your face, but fortunately, you are safe on the other side.

Your reaction was likely a result of many different factors, including a fast instinctive response to a
threatening stimulus (splashing muddy water), but it was likely not entirely instinctive. You noticed
a car in advance and likely simulated what will happen. A simulation like this requires us to have a
world model.

In this case, your model of what will happen when a relatively hard object (a tire) moves through a
puddle at a sufficient speed likely comes from various different experiences. It might have experimental
components (such as you jumping into puddles as a 2-year-old and observing the effects of your
interventions) and observational components (you seeing a person splashed by a car and observing
the consequences).

Personal experiences

Personal experiences such as the ones that led you to simulate the car splashing you with the water
can be a valid source of causal knowledge. Humans and some other animals can effectively generalize
experiences and knowledge from one context to another.

That said, the generalizations are not always correct. A good example comes from the realm of clinical
psychology. Children growing up in dysfunctional families might (and usually do) learn specific
relational patterns (how to relate to other people in various situations).

These patterns are often carried into adulthood and transferred to relationships with new people,
causing unstable or destructive relationship dynamics. Although the original patterns worked well
in the family of origin, they do not work well in a new relationship. The model has not been updated.

Personal experiences are vulnerable to many biases, especially when they rely on observational data
and are not examined critically. Daniel Kahneman and Amos Tversky collected an extensive list of
such biases. Here, we’ll only briefly discuss one of them.

An availability heuristic is a mental shortcut (usually used unconsciously) that relies on the data that
comes to mind first (or most easily; Kahneman, 2011). For instance, if you usually see men rather
than women in leadership positions, the image of a man will be cognitively more accessible for you
when you think about leadership.

This might make you subconsciously associate men with leadership and manifest itself in a conscious
belief that being male is related to being better equipped to take leadership positions, although the
evidence suggests otherwise (e.g., Zenger & Folkman, 2020).

Causal structure learning 323

An availability heuristic might lead not only to faulty world models but also to interesting paradoxes.
Multiple studies have shown that although women are perceived as having stronger key leadership
competencies than men, they are not necessarily perceived as better leaders by the same group of
people (e.g., Pew Research Center, 2008).

Domain knowledge

Domain knowledge can rely on various sources. It might be based on scientific knowledge, personal
experiences, cultural transmission, or a combination of all of these.

Domain experts will usually have a deep understanding of one or more areas that they spent a significant
amount of time studying and/or interacting with. They might be able to accurately simulate various
scenarios within their area of expertise.

The main risks related to domain expertise as a source of causal knowledge are similar to the risks that
we’ve discussed in terms of personal experience. Cultural transmission that takes place in everyday
life and organizations can also equip us with incorrect or biased models (e.g., prayers for rain seem
to assume an incorrect causal model).

On top of this, experts can be sensitive to overconfidence, especially when they have a narrow focus.
It turns out that experts that are specialized in a narrow field tend to give predictions about the future
that are not better than the ones provided by complete laymen and sometimes even worse, indicating
inaccurate world models (Tetlock, 2005; Tetlock & Gardner, 2015).

Phillip Tetlock’s research that we refer to here was specifically focused on forecasting in complex real-
world scenarios. Although the conclusions might not generalize perfectly to some other areas, they
definitely highlight an important risk factor in using domain expertise as a source of causal knowledge.

Summarizing, personal experiences and domain expertise can be valuable sources of causal knowledge.
At the same time, they are susceptible to numerous distortions associated with heuristics and biases.

Personal experiences and domain expertise seem to be generally less trustworthy than scientific
insights, but in certain cases, they might be in fact more accurate (e.g., when no scientific insights are
available for a given (sub)domain or the domain is highly heterogeneous).

Causal structure learning
The last source of causal knowledge that we will discuss in this chapter is causal structure learning.
Causal structure learning (sometimes used interchangeably with causal discovery) is a set of methods
aiming at recovering the structure of the data-generating process from the data generated by this process.
Traditional causal discovery focused on recovering the causal structure from observational data only.

Some more recent methods allow for encoding expert knowledge into the graph or learning from
interventional data (with known or unknown interventions).

Can I Have a Causal Graph, Please?324

Causal structure learning might be much cheaper and faster than running an experiment, but it often
turns out to be challenging in practice.

Many causal structure learning methods require no hidden confounding – a condition difficult to
guarantee in numerous real-world scenarios. Some causal discovery methods try to overcome this
limitation with some success.

Another challenge is scalability – the space of possible directed acyclic graphs (DAGs) grows super
exponentially according to the number of nodes in the graph.

An exciting and relatively new research direction is to combine causal structure learning with domain
knowledge and efficient experimentation.

We’ll learn more about causal discovery in the next chapter.

Wrapping it up
In this chapter, we discussed three broad sources of causal knowledge: scientific insights, personal
experiences and domain knowledge, and causal structure learning.

We saw that humans start to work on building world models very early in development; yet not all
world models that we build are accurate. Heuristics that we use introduce biases that can skew our
models on an individual, organizational, or cultural level.

Scientific experiments are an attempt to structure the process of obtaining knowledge so that we can
exclude or minimize unwanted interferences and sources of distortion.

Unfortunately, experiments are not always available and have their own limitations. Causal structure
learning methods can be cheaper and faster than running experiments, but they might rely on
assumptions difficult to meet in certain scenarios.

Hybrid methods that combine causal structure learning, domain expertise, and efficient experimentation
are a new exciting field of research.

Let’s see how to implement causal discovery algorithms and how they work in practice.

See you in Chapter 13!

References
Gopnik, A. (2009). The philosophical baby: What children’s minds tell us about truth, love, and the
meaning of life. Farrar, Straus and Giroux.

Hall N. S. (2007). R. A. Fisher and his advocacy of randomization. Journal of the History of Biology,
40(2), 295–325.

References 325

Harrell, F. (2023, February 14). Randomized Clinical Trials Do Not Mimic Clinical Practice, Thank
Goodness. Statistical Thinking. https://www.fharrell.com/post/rct-mimic/

Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.

Kostis, J. B., & Dobrzynski, J. M. (2020). Limitations of Randomized Clinical Trials. The American
Journal of Cardiology, 129, 109–115.

Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.

Martín, F. M. (2009). The thermodynamics of human reaction times. arXiv, abs/0908.3170.

Muenssinger, J., Matuz, T., Schleger, F., Kiefer-Schmidt, I., Goelz, R., Wacker-Gussmann, A., Birbaumer,
N., & Preissl, H. (2013). Auditory habituation in the fetus and neonate: an fMEG study. Developmental
Science, 16(2), 287–295.

Pew Research Center. (2008). Men or Women: Who’s the Better Leader? A Paradox in Public
Attitudes. https://www.pewresearch.org/social-trends/2008/08/25/men-or-
women-whos-the-better-leader/

Popper, K. (1959). The Logic of Scientific Discovery. Basic Books.

Popper, K. (1971). Conjectural Knowledge: My Solution of the Problem of Induction. Revue Internationale
de Philosophie, 25(95/96), 167-197.

Rosenberg, A., & McIntyre, L. (2020). Philosophy of Science: A Contemporary Introduction (4th
ed.). Routledge.

Senn, S. S. (2021). Statistical Issues in Drug Development (3rd ed.). Wiley.

Senn, S. S. (2020, April 20). Randomisation is not about balance, nor about homogeneity but about
randomness. Error Statistics. https://errorstatistics.com/2020/04/20/s-senn-
randomisation-is-not-about-balance-nor-about-homogeneity-but-about-
randomness-guest-post/

Stahl, A. E., & Feigenson, L. (2015). Cognitive development. Observing the unexpected enhances infants’
learning and exploration. Science (New York, N.Y.), 348(6230), 91–94.

Tetlock, P.E. (2005). Expert Political Judgment: How Good Is It? How Can We Know? Princeton
University Press.

Tetlock, P. E., & Gardner, D. (2015). Superforecasting: The Art and Science of Prediction. Crown.

Zenger, J., & Folkman, J. (2020, December 30). Research: Women Are Better Leaders During a Crisis.
Harvard Business Review. https://hbr.org/2020/12/research-women-are-better-
leaders-during-a-crisis

https://www.fharrell.com/post/rct-mimic/
https://www.pewresearch.org/social-trends/2008/08/25/men-or-women-whos-the-better-leader/
https://www.pewresearch.org/social-trends/2008/08/25/men-or-women-whos-the-better-leader/
https://errorstatistics.com/2020/04/20/s-senn-randomisation-is-not-about-balance-nor-about-homogeneity-but-about-randomness-guest-post/
https://errorstatistics.com/2020/04/20/s-senn-randomisation-is-not-about-balance-nor-about-homogeneity-but-about-randomness-guest-post/
https://errorstatistics.com/2020/04/20/s-senn-randomisation-is-not-about-balance-nor-about-homogeneity-but-about-randomness-guest-post/
https://hbr.org/2020/12/research-women-are-better-leaders-during-a-crisis
https://hbr.org/2020/12/research-women-are-better-leaders-during-a-crisis

13
Causal Discovery and Machine

Learning – from Assumptions
to Applications

In the previous chapter, we reviewed three classes of sources of causal knowledge and discussed
their main advantages and disadvantages. In this chapter, we’ll focus on the last source of knowledge
mentioned in the previous chapter – causal discovery.

We’ll start by reviewing the popular assumptions behind causal discovery. Next, we’ll present four
broad families of methods for causal discovery and we’ll introduce gCastle – the main Python package
that we’ll use in this chapter. We’ll follow with a comparison of selected methods and a practical guide
on how to combine causal discovery algorithms with expert knowledge.

By the end of this chapter, you will know a broad range of causal discovery methods. You’ll be able to
implement them using Python and gCastle and you’ll understand the mechanics and implications of
combining selected methods with pre-existing domain knowledge.

In this chapter, we will cover the following:

• Assumptions for causal discovery – a refresher

• Introduction to gCastle

• Constraint-based causal discovery

• Score-based causal discovery

• Functional causal discovery

• Gradient-based causal discovery

• Encoding expert knowledge

Causal Discovery and Machine Learning – from Assumptions to Applications328

Causal discovery – assumptions refresher
The first time we mentioned causal discovery in this book was in Chapter 1. In Chapter 5, we went
a little bit deeper and discussed two assumptions that are often used for causal discovery methods:
faithfulness and minimality.

In this section, we’ll review these assumptions and discuss other, more general assumptions that will
be useful in our causal discovery journey.

Let’s start!

Gearing up

Causal discovery aims at discovering (or learning) the true causal graph from observational
(and sometimes interventional or mixed) data.

In general, this task is difficult but possible under certain conditions. Many causal discovery methods
will require that we meet a set of assumptions in order to use them properly.

The first general assumption is one of causal sufficiency (or lack of hidden confounding). A vast
majority of causal discovery methods rely on this assumption (although not all).

Another popular assumption for causal discovery is faithfulness.

Always trying to be faithful…

The faithfulness assumption states that if two variables are conditionally independent in their distributions
given a third variable, they will also be conditionally independent in the graph that represents the data-
generating process. This is represented more formally here:

 X ⫫ P Y | Z ⇒ X ⫫ G Y | Z

This assumption is the reverse of the global Markov property that we use for causal inference and that
we discussed back in Chapter 5. The formula says that if X and Y are independent in their distribution
given Z , they will also be independent in the graph given Z .

…but it’s difficult sometimes

The faithfulness assumption might be difficult to fulfill sometimes. One reason for this is the sampling
error when testing for conditional independence in the finite sample size regime (Uhler et al., 2013).

Moreover, any situation where one variable influences another through two different paths and these
paths cancel out completely will lead to the violation of faithfulness (see Chapter 5 for more details
and see Neal Brady’s video for a quick reference: https://bit.ly/BradyFaithfulness).

https://bit.ly/BradyFaithfulness

The four (and a half) families 329

That said, the probability of encountering the latter in the real world is extremely small (Sprites et
al., 2000, pp. 68-69), even if it feels easy to come up with theoretical examples (Peters et al., 2017,
pp. 107-108).

Minimalism is a virtue

There might exist more than one graph or structural causal model (SCM) that entails the same distribution.

That’s a challenge for recovering the causal structure as the mapping between the structure and the
distribution becomes ambiguous.

The causal minimality assumption is designed to address this. The assumption states that the directed
acyclic graph (DAG) G is minimal with respect to distribution P if, and only if, G induces P , but no
proper subgraph of G induces P . In other words, if graph G induces P , removing any edge from G
should result in a distribution that is different than P .

Although not all causal discovery methods require all three assumptions that we discussed in this
section, the three are likely the most frequent over a broad set of methods. We’ll talk more about this
when discussing particular methods in detail.

In this section, we refreshed three popular assumptions that many causal discovery methods rely on:
sufficiency, faithfulness, and minimality.

In the next section, we’ll discuss four streams of ideas that led to the development of classic and
contemporary causal discovery methods.

The four (and a half) families
In this section, we’ll present an overview of the four families of causal discovery methods. By the end
of this section, you should have a good grasp of the four families and their core properties.

We use the word families rather than a more formal term such as type, as the distinction between the
four families we’ll use might be slightly vague. We follow the categorization proposed by Glymour et
al. (2019) and extend it slightly to include more recent causal discovery methods not mentioned in
Glymour and colleagues’ paper.

The four streams

The origins of modern causal discovery can be traced back to the works of Judea Pearl and the 1987
paper he co-authored with George Rebane. The paper described a method that recovers causal
structure from statistical data, assuming that the data-generating process has a poly-tree structure
(Rebane and Pearl, 1987).

Causal Discovery and Machine Learning – from Assumptions to Applications330

The ideas that followed from this research led to two parallel research streams focused around three
academic centers – the University of California, Los Angeles (UCLA), Carnegie Mellon University
(CMU), and Stanford (Pearl, 2009):

• Constraint-based methods: Researchers from UCLA and CMU focused on the approach
to causal discovery based on graph independencies (understood as we described them in
Chapter 5). We refer to such methods as constraint-based methods. This research stream led
to the development of algorithms such as inductive causation (IC) and its implementation in
a famous software package called TETRAD.

• Score-based method: The work at Stanford focused on the Bayesian network approach. Early
research (for example, Heckerman et al., 1995) paved the way for the development of the
greedy equivalence search (GES) algorithm (Chickering, 2020) – one of the classic examples
of a score-based method.

• Functional causal discovery: The third line of thought was inspired by independent component
analysis (ICA) (Hyvärinen et al., 2001) and developed by Shohei Shimizu and colleagues.
We refer to this family of algorithms as functional causal discovery. Algorithms in this family
leverage various aspects of functional forms of the relationships between variables in order
to determine the causal direction. A classic example representing this family is the Linear
Non-Gaussian Acyclic Model (LiNGAM) algorithm (Shimizu et al., 2006).

• Gradient-based methods: The fourth line of thought originates from the research focused on the
idea of treating the graph space search as a continuous optimization problem. We’ll refer to this
fourth family as gradient-based methods, as we typically use gradient descent for optimization
purposes. A classic method within this family is the NOTEARS algorithm (Zheng et al., 2018).

This section was titled The four (and a half) families. What about the remaining half?

The remaining half includes hybrid methods, reinforcement-learning-based methods, and other
methods that do not fit the main four categories. This is not to say that these methods are less important.

Each of the families comes with its own benefits and challenges, yet the demarcation lines between
them might sometimes be blurry.

In this section, we introduced the four (and a half) families of causal discovery algorithms – constraint-
based, score-based, functional, gradient-based, and other – and provided a brief historical account
of the main four categories.

We’ll discuss each family in greater detail, but before we start, let’s introduce the main library that
we’ll use in this chapter – gCastle.

Introduction to gCastle 331

Introduction to gCastle
In this section, we’ll introduce gCastle (Zhang et al., 2021) – a causal discovery library that we’ll use
in this chapter. We’ll introduce four main modules: models, synthetic data generators, visualization
tools, and model evaluation tools. By the end of this section, you’ll be able to generate a synthetic
dataset of chosen complexity, fit a causal discovery model, visualize the results, and evaluate the model
using your synthetic data as a reference.

Hello, gCastle!

What is gCastle?

It’s an open source Python causal discovery library created by Huawei’s Noah’s Ark Lab. The library
provides us with a comprehensive selection of modern causal discovery algorithms that include classics
such as the PC algorithm, as well as cutting-edge gradient- or reinforcement-learning-based methods.

The repository (https://bit.ly/gCastleRepo) includes example notebooks, a list of currently
available models, and basic documentation.

A great strength of gCastle is that it provides us with a unified, very intuitive, and elegant API
for interacting with various causal discovery models. This makes the experimentation and model
comparison seamless.

The library has four main functional components:

• Synthetic data generators

• Models

• Visualization tools

• Model evaluation tools

Let’s examine them!

Synthetic data in gCastle

Synthetic data is often a natural choice for benchmarking causal discovery algorithms, as not many
real-world causal datasets are publicly available. gCastle provides us with the datasets module,
which allows us to generate synthetic data easily.

https://bit.ly/gCastleRepo

Causal Discovery and Machine Learning – from Assumptions to Applications332

gCastle’s datasets module

The two main objects in the module are DAG and IIDSimulation. The former allows us to generate
graphs (structure) in the form of an adjacency matrix. The latter generates the actual data given an
adjacency matrix and a set of parameters that define the properties of structural equations that
determine the relationships between variables.

The DAG object allows us to generate five different types of graphs:

• Erdős–Rényi

• Scale-free (Barabási–Albert)

• Bipartite

• Hierarchical

• Low-rank

Graph types, graph theory, and network science
The idea of distinguishing between different types of graphs comes from graph theory and
was later extended by what we know today as network science. The latter started with the
works of two Hungarian mathematicians, Paul Erdős and Alfréd Rényi, who studied so-called
random graphs (Erdös and Rényi, 1959). More recently, network science regained popularity
with the works of Albert-László Barabási and Réka Albert (for example, Barabási and Albert,
1999; Barabási, 2009).

The IIDSimulation object allows us to choose between linear and non-linear assignments. Linear
datasets can be binary (logistic) or continuous. Continuous datasets can be created using one of
four different noise distributions:

• Gaussian (gauss)

• Exponential (exp)

• Gumbel (gumbel)

• Uniform (uniform)

Non-linear datasets can be generated using the following:

• Multilayer perceptron (mlp)

• Two versions of Gaussian processes (gp and gp-add)

• Quadratic function (quadratic)

• Multiple index model (mim; Zheng et al., 2020)

Introduction to gCastle 333

There’s also an additional simulator class called THPSimulation, which allows for simulating event
sequences with Topological Hawkes Processes (THP). The discussion on THP is beyond the scope
of this book. To learn more, check Cai et al. (2021).

Let’s generate some data. On the way, we’ll also briefly discuss scale-free graphs and the main parameters
of the IIDSimulation object.

Generating the data with gCastle

Let’s start with the imports. The code for this chapter can be found in the notebook at https://
bit.ly/causal-ntbk-13.

We import the DAG and IIDSimulation objects from gCastle. Additionally, we import NetworkX
and Matplotlib for visualizations:

from castle.datasets import DAG, IIDSimulation
import networkx as nx
import matplotlib.pyplot as plt

We set the seed to keep the code reproducible:

SEED = 18
np.random.seed(SEED)

Now, we’re ready to generate our first adjacency matrix:

adj_matrix = DAG.scale_free(
 n_nodes=10,
 n_edges=17,
 seed=SEED
)

We use the .scale_free() method of the DAG object. We specify the number of nodes to be 10
and the number of edges to be 17. We fix the random seed to the predefined value.

Scale-free networks have a number of interesting properties. They are created using a probabilistic
preferential attachment mechanism. A node with a large number of connections is more likely to
gain new connections than a node with a smaller number of connections.

This is sometimes metaphorically described as the rich get richer. The distribution of node degrees
(number of edges per node) in scale-free networks is fat-tailed. This is because scale-free networks
tend to have a few strongly connected hubs and a majority of nodes have a significantly smaller
number of connections.

https://bit.ly/causal-ntbk-13
https://bit.ly/causal-ntbk-13

Causal Discovery and Machine Learning – from Assumptions to Applications334

Although scale-free networks were known at least from the 1960s (although not necessarily under
their current name), they significantly gained popularity in the late 1990s and early 2000s with the
works of Albert-László Barabási and Réka Albert, who proposed that scale-free networks can be used
to model the internet interlink structure and other real-world systems (Barabási and Albert, 1999;
Barabási, 2009).

Graphs, networks, and adjacency matrices
In network science terms, graph and network are used interchangeably. As we discussed in
Chapter 4, graphs can be represented as adjacency matrices, and matrices can be visualized as
graphs. We extensively use this correspondence in the current chapter.

Let’s plot the graph representing our adjacency matrix and see whether we can recognize the preferential
attachment scheme in the plot. We’ll use NetworkX for this purpose.

First, let’s transform the adjacency matrix into the NetworkX directed graph object:

g = nx.DiGraph(adj_matrix)

Next, let’s plot the graph g:

plt.figure(figsize=(12, 8))
nx.draw(
 G=g,
 node_color=COLORS[0],
 node_size=1200,
 pos=nx.circular_layout(g)
)

We set the figure size using Matplotlib and pass a number of parameters to NetworkX’s nx.draw()
method. We pass g as a graph, set the node color and size, and define the network layout to increase
readability. The circular layout should provide good visual clarity for our relatively small graph.

To learn about other layout options in NetworkX, check https://bit.ly/NetworkXLayouts
or the NetworkX documentation (https://bit.ly/NetworkXDrawingDocs).

Figure 13.1 presents the resulting graph:

https://bit.ly/NetworkXLayouts
https://bit.ly/NetworkXDrawingDocs

Introduction to gCastle 335

Figure 13.1 – A graph representing the adjacency matrix, g

In Figure 13.1, at the top, we see a highly connected node with six incoming edges. This is the effect of
the preferential attachment mechanism. If we grew our graph further, the differences between highly
connected nodes and less connected nodes would become even more visible. Looking at the graph
in Figure 13.1, you can imagine how the preferential attachment mechanism would add more edges
to the more connected nodes and fewer edges to the less connected ones.

We are now ready to generate some data. We’ll use our adjacency matrix, adj_matrix, and generate
10,000 observations with linear structural assignments and Gaussian noise:

dataset = IIDSimulation(
 W=adj_matrix,
 n=10000,
 method='linear',
 sem_type='gauss'
)

The parameter W accepts adjacency matrices as NumPy arrays. Matrices can be (but do not have to
be) weighted, n determines the number of samples returned, and we can choose between linear and
non-linear datasets via the method parameter (available options are linear and nonlinear).
Finally, sem_type determines the key characteristics of the structural assignments (gauss, exp,
mlp, etc.).

The dataset object produced by IIDSimulation has two attributes: X and B. The former contains
the actual data, and the latter contains the adjacency matrix.

Causal Discovery and Machine Learning – from Assumptions to Applications336

We can access the generated data as follows:

dataset.X

With our dataset generated, let’s learn how to fit a gCastle causal discovery model.

Fitting your first causal discovery model

gCastle offers a broad variety of causal discovery models, from classics such as PC and GES models
up to recent gradient-based methods such as GOLEM.

For the sake of this demonstration, we will use the PC algorithm.

Let’s start with the imports:

from castle.algorithms import PC

After importing the model class, we need to instantiate it.

pc = PC()

Training the model is extremely simple:

pc.learn(dataset.X)

The output of a causal discovery algorithm is a learned adjacency matrix. Depending on the method
you use, this matrix can be either weighted or unweighted. In our case, we learned an unweighted
adjacency matrix. Let’s access it:

pc.causal_matrix

This will print out the learned causal matrix. We won’t print it here to save space, but you can see the
matrix in this chapter’s notebook.

Now that we have learned the adjacency matrix, we are ready to compare it with the ground truth.
First, we’ll do it visually.

Visualizing the model

In the previous subsection, we visualized the adjacency matrix as a graph. Let’s do the same for the
true DAG and the learned DAG to compare them. Figure 13.2 presents the result:

Introduction to gCastle 337

Figure 13.2 – True DAG versus learned DAG

We added yellow arrows in Figure 13.2 to denote incorrectly identified edges. Note that the edge
between nodes 2 and 5 exists in both the true and the learned DAGs, but in the learned DAG, this
edge is bidirectional. This is a practical example of a situation where a causal discovery model returns
a complete partially directed acyclic graph (CPDAG; recall our discussion on Markov equivalence
classes in Chapter 5).

Comparing two graphs visually is only useful for smaller graphs. Although our graph has only 10
nodes and 17 edges, the comparison might be already challenging for some of us.

Another way to visualize adjacency matrices is to use heatmaps. Because our adjacency matrix is
unweighted, a respective heatmap will be binary. In a binary heatmap, each cell can only have one of
two values (0 or 1).

gCastle comes with a convenience object called GraphDAG that plots comparison heatmaps for us.
Let’s import GraphDAG and see it in action:

from castle.common import GraphDAG
GraphDAG(
 est_dag=pred_dag,
 true_dag=adj_matrix)

Causal Discovery and Machine Learning – from Assumptions to Applications338

You can see the resulting plot in Figure 13.3:

Figure 13.3 – Heatmaps representing the learned and the true adjacency matrices

After a short inspection, you should be able to spot four differences between the two matrices in
Figure 13.3. That’s congruent with our observation from Figure 13.2.

Although heatmaps might make it easier for us to make visual comparisons between slightly bigger
graphs, they only work to a point.

Visual comparisons might be useful and even very helpful in certain cases, yet their usefulness is
limited due to the limitations of our human attention, which can only track between three and seven
elements at a time. That’s when numerical evaluation metrics become useful.

Model evaluation metrics

gCastle comes with a dedicated object for model evaluation called MetricsDAG.

Let’s import the object and instantiate it:

from castle.metrics import MetricsDAG
metrics = MetricsDAG(
 B_est=pred_dag,
 B_true=adj_matrix
)

The newly created metrics object computes a number of useful metrics for us internally. We can
access them through a dictionary internally stored as an attribute called metrics. The values for all
available metrics can be easily accessed via respective dictionary keys.

For example, to access the F1 score, we do it in the following way:

metrics.metrics['F1']

Introduction to gCastle 339

The F1 score for the PC algorithm on our graph is as follows:

0.8824

As of the time of writing (gCastle, version 1.0.3), there are nine available metrics in MetricsDAG.

We can access the complete metrics dictionary as follows:

metrics.metrics

This will give us the following:

{'fdr': 0.1176,
 'tpr': 0.9375,
 'fpr': 0.069,
 'shd': 3,
 'nnz': 17,
 'precision': 0.8333,
 'recall': 0.9375,
 'F1': 0.8824,
 'gscore': 0.75}

Table 13.1 presents a summary and definitions of the metrics available in gCastle 1.0.3:

Name Acronym Definition
False Discovery Rate fdr rev + FP _ TP + FP

True Positive Rate tpr TP _ TP + FN

False Positive Rate fpr rev + FP _ TN + FP

Structural Hamming Distance shd No. of edge additions, flips, or deletions to get
from the predicted graph to the true one

No. of Non-Negative Entries nnz TP + FP
Precision precision TP _ TP + FP

Recall recall TP _ TP + FN

F1 Score F1 2 recall ⋅ precision ____________ recall + precision

G-Score gscore max (0, TP − FP _ TP + FN)

Table 13.1 – Summary of metrics available in the MetricsDAG object

Causal Discovery and Machine Learning – from Assumptions to Applications340

In Table 13.1, TP stands for the number of true positives, FP stands for the number of false positives,
TN stands for the number of true negatives, and FN stands for the number of false negatives; rev
represents the number of reversed edges.

We would count an entry in the adjacency matrix as a true positive if we predicted that this entry
should be 1 and it is also 1 in the true graph. On the other hand, we say that an entry is a true negative
when we predicted it to be 0 and it’s also 0 in the true graph. If we predicted an entry as 1 but in
fact, it’s 0, we count it as a false positive. If we predicted an entry as 0 but in fact, it’s 1, we count it
as a false negative. Reversed edges are the ones that exist in the predicted and the true graph, but we
mispredicted their orientation (direction).

We’ll discuss how to understand some of the metrics in the subsequent sections.

There are two other useful quantities that you might want to compute when benchmarking causal
discovery methods: the number of undirected edges and the structural intervention distance (SID)
(Peters and Bühlmann, 2015).

We can implement the former, for instance, this way:

def get_n_undirected(g):
 total = 0
 for i in range(g.shape[0]):
 for j in range(g.shape[0]):
 if (g[i, j] == 1) and (g[i, j] == g[j, i]):
 total += .5
 return total

The latter is available in the CDT Python package (https://bit.ly/CDTMetricsDocs) as a
wrapper for an R implementation.

Now, let’s summarize what we’ve learned in this section.

In this section, we introduced gCastle, a causal discovery library that we will use throughout this chapter.
We’ve discussed the four main modules of the package: the synthetic data generation module, models
module, data visualization module, and model evaluation module. We introduced data simulation
and model fitting APIs, and demonstrated how to use the GraphDAG class for visualizations and
the MetricsDAG class for calculating relevant metrics. We defined the metrics available in gCastle
and introduced two additional quantities that can help us assess our model’s quality: the number of
undirected edges and SID.

We’ll learn more about gCastle’s modules in the next sections while working with specific algorithms.

Ready?

Let’s start!

https://bit.ly/CDTMetricsDocs

Constraint-based causal discovery 341

Constraint-based causal discovery
In this section, we’ll introduce the first of the four families of causal discovery methods – constraint-
based methods. We will learn the core principles behind constraint-based causal discovery and
implement the PC algorithm (Sprites et al., 2000).

By the end of this chapter, you will have a solid understanding of how constraint-based methods work
and you’ll know how to implement the PC algorithm in practice using gCastle.

Constraints and independence

Constraint-based methods (also known as independence-based methods) aim at decoding causal
structure from the data by leveraging the independence structure between three basic graphical
structures: chains, forks, and colliders.

Let’s start with a brief refresher on chains, forks, and colliders. Figure 13.4 presents the three structures:

Figure 13.4 – The three basic graphical structures

In Chapter 5, we demonstrated that the collider structure has a unique property.

Let’s take a look at Figure 13.4 once again. Each structure consists of three variables represented by
nodes A, B, and C. For each structure, let’s imagine a model where we regress C on A.

When we control B in chains and forks, A and C become independent. A collider is different. When
we control B in a collider, A and C become dependent.

This property can help us recover structural information from observational data.

Let’s see how this can be useful in practice.

Causal Discovery and Machine Learning – from Assumptions to Applications342

Leveraging the independence structure to recover the graph

We’ll start with a graph. Figure 13.5 presents the graph that we will use in this section. The graph
topology follows the one from Glymour et al. (2019):

Figure 13.5 – An example graph that we’ll use in this section

The graph in Figure 13.5 consists of four nodes and three directed edges.

Let’s pretend that we observe four variables that correspond to the P, Q, R, and S nodes in the graph
and that we don’t know the actual structure.

We’ll use the PC algorithm to retrieve this structure from observations. The source of the algorithm’s
name is the first names of its creators, Peter (Sprites) and Clark (Glymour). The name likely also refers
to a precursor algorithm called IC, proposed by Verma and Pearl in 1990.

The PC algorithm consists of five basic steps:

1. Start with a fully connected graph.

2. Delete the edges between unconditionally independent variables.

3. Iterate over all remaining variable pairs (A, B) and delete an edge between A and B if A ⫫ B | C ,
where C is a conditioning set of size 1 (containing only one variable). Repeat this step for all
remaining pairs (A, B) , increasing the size of the conditioning set C by 1.

4. For each triple of variables, A − B − C , where “–” represents an undirected edge and where A
and C are not adjacent, orient the edges A → B ← C whenever A ⫫̸ C |B (note that if the latter
is true, we know that A − B − C forms a collider and hence we know how to orient the edges).

5. For each triple of variables, A → B − C , where A and C are not adjacent, orient the edge between
B and C as B → C . This is called orientation propagation (Glymour et al., 2019).

For a more detailed view of the PC algorithm, check Glymour et al. (2019), Sprites et al. (2000), or
Le et al. (2015).

Let’s apply the PC algorithm step-by-step to the graph presented in Figure 13.5.

Constraint-based causal discovery 343

We present the entire process in Figure 13.6:

Figure 13.6 – The PC algorithm step by step

Let’s examine the process in Figure 13.6:

1. We start with a fully connected graph (A).

2. We remove the edges between the nodes that are unconditionally independent (B). There’s only
one pair like this. This is the pair (P, Q).

3. We remove the edges between P and Q, and Q and S, as P ⫫ Q | R and Q ⫫ S | R (C).

4. We orient the edges P → R ← S because R is a collider between P and S (D).

5. Finally, we orient the edge between R and S because we know that R is not a collider between
S and any other adjacent variable (E).

If any of the steps seem unclear to you, feel free to go through the stages in Figure 13.6 once again and
review the PC algorithm steps that we discussed earlier. If you need a deeper refresher on conditional
independencies, review Chapter 5.

Let’s generate some data according to our graph and fit the PC algorithm to recover the true structure.

We’ll start by generating 1,000 observations and store them in a NumPy matrix:

N = 1000
p = np.random.randn(N)
q = np.random.randn(N)
r = p + q + .1 * np.random.randn(N)
s = .7 * r + .1 * np.random.randn(N)

Causal Discovery and Machine Learning – from Assumptions to Applications344

Store the data as a matrix
pc_dataset = np.vstack([p, q, r, s]).T

Now, let’s instantiate and fit the algorithm:

pc = PC()
pc.learn(pc_dataset)

Let’s display the predicted causal matrix alongside the true DAG:

GraphDAG(
 est_dag=pc.causal_matrix,
 true_dag=pc_dag)
plt.show()

Figure 13.7 presents the visualization:

Figure 13.7 – The comparison between the DAG learned by the PC algorithm (left) and the true DAG (right)

Both DAGs in Figure 13.7 look identical. It indicates that our model learned the underlying DAG perfectly.

In this case, it’s just a pure formality; nonetheless, let’s print out the metrics:

MetricsDAG(
 B_est=pc.causal_matrix,
 B_true=pc_dag
).metrics

This results in the following:

{'fdr': 0.0,
 'tpr': 1.0,
 'fpr': 0.0,

Constraint-based causal discovery 345

 'shd': 0,
 'nnz': 3,
 'precision': 1.0,
 'recall': 1.0,
 'F1': 1.0,
 'gscore': 1.0}

The metrics confirm that the model learned a perfect representation. Precision, recall, TPR, and F1
score are all equal to 1. FDR, FPR, and SHD are equal to 0. NNZ is equal to 3, indicating that there
are 3 edges in the graph.

PC algorithm – hidden challenges

The PC algorithm worked very well for the data in our example. Although in general, the PC algorithm
comes with theoretical guarantees of convergence to the true MEC in the large sample limit, assuming
that all model assumptions are met, in certain high-dimensional cases, the original algorithm might
return incorrect results.

The reason for this is that in certain scenarios, the algorithm might be sensitive to the order in which
we perform conditional independence tests. The sensitivity has been addressed in a variant of the PC
algorithm called PC-stable (Colombo and Maathuis, 2012).

Fortunately, implementing PC-stable is very easy with gCastle. We only need to specify a variant
when initializing the object:

pc_stable = PC(variant='stable')

More on PC-stable
In fact, PC-stable only addresses a part of the problem of ordering sensitivity – the variant
is only insensitive to the ordering of the tests that lead to the discovery of the skeleton but is
still sensitive to ordering when finding colliders and orienting edges. Other variants of the PC
algorithm have been proposed to address these two problems, but it turns out that, in practice,
they might lead to less useful results than simple PC-stable. Check Colombo and Maathuis
(2012) for more details.

Another challenge for the PC algorithm is computational. Performing a significant number of
conditional independence tests in a very large dataset might be computationally expensive. One way
to address this challenge is to parallelize the algorithm (Le et al., 2015). Fortunately, gCastle provides
us with a parallelized version out of the box.

To use the parallel version, simply specify the variant:

pc_parallel = PC(variant='parallel')

Causal Discovery and Machine Learning – from Assumptions to Applications346

The results for the stable and parallel versions of the algorithm are identical for our example so we do
not present them here (but you can find them in the notebook).

PC algorithm for categorical data

In our example, we used continuous data, but the PC algorithm can also work for categorical data.
Recall that the main principle of how PC works is independence testing. By default, PC uses Fisher’s
z-test (Fisher, 1921) in order to test independencies between variables. Fisher’s z-test works well for
continuous and linear-Gaussian data.

For categorical variables, we need another approach.

gCastle provides us with a number of independence tests that can be used in this context. Two of them,
χ 2 and G 2 (Tsamardinos et al., 2006), can be used directly in the PC algorithm, by simply passing a
string to the ci_test parameter.

For the χ 2 test, use the following:

pc_cat = PC(ci_test='chi2')

For the G 2 test, use the following:

pc_cat = PC(ci_test=g2)

We can find more tests in the castle.common.independence_tests.CITest object. The
tests include Neyman’s test, the Cressie-Read test (Cressie and Read, 1984), and more.

In order to use them, we need to pass a function (without calling it) to the ci_test parameter:

from castle.common.independence_tests import CITest
pc_cat_alt = PC(ci_test=CITest.cressie_read)

We can also use an arbitrary custom test as long as it returns a three-tuple where the last element
represents the p-value of the test – structurally speaking: (_, _, p_val).

This modular design is really powerful. Notice that all causal libraries used in this book so far – DoWhy,
EconML, and gCastle – promote an open, modular, and flexible design, which makes them well suited
for future developments and facilitates research.

The time has come to conclude this section. We’ll get back to the PC algorithm briefly in later sections
of this chapter to reveal one more hidden gem that can be really helpful in real-world scenarios.

In this section, we learned about constraint-based causal discovery methods and introduced the PC
algorithm. We discussed the five basic steps of the PC algorithm and applied them to our example
DAG. Next, we generated data according to the DAG and implemented the PC algorithm using gCastle.

Score-based causal discovery 347

We discussed two limitations of the algorithm and introduced two variants of the PC algorithm
aiming to address them. Finally, we discussed how to use alternative conditional independence tests
including the ones provided by the library and the custom ones.

In the next section, we’ll introduce the second major family of causal discovery methods –
score-based methods.

Score-based causal discovery
In this section, we’ll introduce score-based methods for causal discovery. We’ll discuss the mechanics
of the GES algorithm and implement it using gCastle.

Tabula rasa – starting fresh

The very first step of the PC algorithm was to build a fully-connected graph. GES starts on the other
end of the spectrum, but first things first.

GES is a two-stage procedure. First, it generates the edges, then it prunes the graph.

The algorithm starts with a blank slate – an entirely disconnected graph – and iteratively adds new
edges. At each step, it computes a score that expresses how well a new graph models the observed
distribution, and at each step, the edge that leads to the highest score is added to the graph.

When no more improvement can be achieved, the pruning phase begins. In this phase, the algorithm
removes edges iteratively and checks for score improvement. The phase continues until no further
improvement can be achieved by removing edges.

The entire first and second phases are executed in a greedy fashion (hence the greedy part of the
algorithm’s name).

GES might return a CPDAG, which corresponds to a Markov equivalence class for a given DAG
(hence the equivalence part of the name).

GES – scoring

In order to compute the score at each step, Chickering (2003) uses the Bayesian scoring criterion.
Huang et al. (2018) proposed a more general method based on regression in Reproducing Kernel
Hilbert Space (RHKS), which allows for mixed data types and multidimensional variables.

gCastle’s implementation offers two scoring criteria: Bayesian Information Criterion (BIC or bic)
and Bayesian Dirichlet Equivalent Uniform (Bdeu or bdeu). The latter is intended to work with
discrete variables exclusively.

Causal Discovery and Machine Learning – from Assumptions to Applications348

GES in gCastle

Implementing the GES algorithm in gCastle is straightforward:

ges = GES(criterion='bic')

To train the model, use the .learn() method (analogously to what we’ve done for the PC algorithm):

ges.learn(pc_dataset)

We used the dataset generated according to the graph in Figure 13.5. Let’s plot the results to see how
GES performed:

GraphDAG(
 est_dag=ges.causal_matrix,
 true_dag=pc_dag)
plt.show()

The resulting plot is presented in Figure 13.8:

Figure 13.8 – Results of the GES algorithm

As we can see in Figure 13.8, the GES algorithm did a very good job and retrieved the perfect graph.

In general, the GES algorithm can be proven to be optimal (based on the so-called Meek Conjecture;
see Chickering (2003) for details), but the guarantees are only asymptotic.

In the limit of a large sample, GES converges to the same solution as PC. In my personal experience, I
found GES repeatedly underperforming compared to other methods (including PC), but please note
that my observations do not have a systematic character here.

As a final remark, we need to highlight that GES requires that there’s no hidden confounding in
our dataset.

In this section, we introduced score-based causal discovery methods, discussed the GES algorithm,
and applied it to our PC dataset. In the next section, we’ll cover functional causal discovery methods.

Functional causal discovery 349

Functional causal discovery
Functional causal discovery (also called function-based causal discovery) is all about leveraging
the information about the functional forms and properties of distributions governing the relationships
between variables in order to uniquely identify causal directions in a dataset. In this section, we’ll
introduce the logic behind function-based methods, using the Additive Noise Model (ANM) (Hoyer
et al., 2008) and LiNGAM (Shimizu et al., 2006) as examples. We’ll implement ANM and LiNGAM and
discuss the differences between the two. By the end of this section, you will have a good understanding
of the general principles of function-based causal discovery and you’ll be able to apply the ANM and
LiNGAM models to your own problems using Python and gCastle.

The blessings of asymmetry

Tyger Tyger, burning bright,

In the forests of the night;

What immortal hand or eye,

Could frame thy fearful symmetry?

William Blake – Tyger (1794)

(Blake, 2009)

Symmetry plays a special role in human life. We rate symmetric faces as more beautiful (Grammer
and Thornhill, 1994), we use symmetry in architecture (Figure 13.9) and in everyday design such
as cars, planes, and trains, and have a preference for symmetrical objects (Enquist and Arak, 1994).

Figure 13.9 – Three famous structures leveraging symmetry: Taj Mahal in India (top left;

image by Maahid Photos), Pyramids in Egypt (bottom left; image by Diego Ferrari), Notre

Dame in France (right; image by Max Avans) – all images can be found at Pexels.com

Causal Discovery and Machine Learning – from Assumptions to Applications350

Iain Johnston and colleagues argue that symmetry is fundamentally connected to the process of
evolution and its “preference” to compress information (Johnston et al., 2021).

That said, symmetry only tells a part of the story. Perfectly symmetrical faces and objects are perceived
as unnatural – fearfully symmetrical. It seems that nature likes to be asymmetrical sometimes and a
large class of real-world variables is distributed in a non-symmetrical manner.

In Chapter 3, we demonstrated that when we have two causally and linearly-related normally distributed
variables, we have no way to decide which direction is causal, based solely on the data. The behavior
of the regression in both directions is symmetrical in the sense that the residuals in both cases are
independent, not containing any information that we could leverage to decode the causal direction. In
other words, the linear-Gaussian causal mechanism does not leave any traces in pair-wise relationships.

Is there anything we can do about it?

It seems that the linear-Gaussian case is hard, but moving into either the non-linear or non-Gaussian
realm breaks the symmetry.

Let’s see how.

ANM model

ANM (Hoyer et al., 2008) is a causal discovery algorithm that leverages the fact that when two variables
are related non-linearly, the causal mechanism does leave traces.

Let’s see it in practice.

We’ll start by generating some non-linear data:

x = np.random.randn(1000)
y = x**3 + np.random.randn(1000)

Let’s plot it:

plt.figure(figsize=(10, 7))
plt.scatter(x, y, alpha=.5, color=COLORS[0])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

Functional causal discovery 351

Figure 13.10 shows the results:

Figure 13.10 – Scatter plot of our non-linear dataset

Now, let’s fit two non-linear spline regressions to our data – one in the causal (X -> Y) and one in
the anti-causal (Y -> X) direction.

We’ll use 150 splines in each model:

n_splines = 150

Instantiate the models
model_xy = GAM(n_splines=n_splines)
model_yx = GAM(n_splines=n_splines)

Fit the models
model_xy.fit(x.reshape(-1, 1), y)
model_yx.fit(y.reshape(-1, 1), x)

Generate predictions
y_pred = model_xy.predict(x.reshape(-1, 1))
x_pred = model_yx.predict(y.reshape(-1, 1))

Causal Discovery and Machine Learning – from Assumptions to Applications352

Let’s plot the data alongside the fitted regression curves. Figure 13.11 presents the results:

Figure 13.11 – Scatter plot of non-linear data with two fitted regression curves

The two lines representing the causal and the anti-causal models differ significantly.

Let’s compute the residuals for both models:

residuals_xy = y - y_pred
residuals_yx = x - x_pred

Let’s now plot them:

plt.figure(figsize=(15, 7))

plt.subplot(121)
plt.scatter(x, residuals_xy, alpha=.5, color=COLORS[0])
plt.xlabel('X', fontsize=14)
plt.ylabel('$Y-residuals$', fontsize=14)

plt.subplot(122)
plt.scatter(residuals_yx, y, alpha=.5, color=COLORS[0])
plt.xlabel('$X-residuals$', fontsize=14)
plt.ylabel('Y', fontsize=14)

plt.show()

Functional causal discovery 353

Figure 13.12 presents the results:

Figure 13.12 – Scatter plots of residuals for the causal and the anti-causal model

As we can see in Figure 13.12, the residuals for both models form very different patterns. In particular,
the residuals for the anti-causal model (right panel) form a cross-like pattern, indicating a lack of
independence between the residuals (x axis) and the predictor (y axis).

This is great news for us!

If we can algorithmically decide which patterns indicate independence, we can retrieve the information
about the causal direction.

Assessing independence

It seems clear that none of the traditional correlation metrics such as Pearson’s r or Spearman’s rho will
be able to help here. The relationship in the right panel of Figure 13.12 is non-monotonic, violating
the basic assumption of both methods.

Luckily, many methods exist that can help us with this task. One of the methods traditionally used in
ANM models is called Hilbert-Schmidt Independence Criterion (HSIC). HSIC can easily handle
patterns like the one that we obtained for the anti-causal model.

Let’s compute HSIC for both models. We’ll use the implementation of HSIC provided by gCastle.

Let’s import the function first:

from castle.common.independence_tests import hsic_test

Causal Discovery and Machine Learning – from Assumptions to Applications354

Now, let’s compute the HSIC statistic:

Compute HSIC
is_indep_xy = hsic_test(
 x = x.reshape(-1, 1),
 y = residuals_xy.reshape(-1, 1),
 alpha=.05
)

is_indep_yx = hsic_test(
 x = y.reshape(-1, 1),
 y = residuals_yx.reshape(-1, 1),
 alpha=.05
)

gCastle’s implementation of HSIC returns 1 when two variables are independent and 0 when they are
dependent, given a specified significance level alpha. We use the .reshape() method to reshape
our arrays into two-dimensional arrays, as required by the API.

Let’s print the results:

is_indep_xy, is_indep_yx

This gives us the following:

(1, 0)

The result says that the residuals are independent for the model in the X -> Y direction, while they
are dependent for the model in the Y -> X direction.

We expect the residuals from the causal model to be independent. Hence, we can conclude that,
according to our model, the true causal model is the one in the X -> Y direction.

This is correct!

Congrats, you just learned how to implement the ANM model from scratch!

There are also other options to implement ANM. You can use another non-linear model instead of
spline regression (for instance, gCastle’s implementation of ANM uses Gaussian process regression).
You can also use other tools to compare the residuals. For instance, an alternative approach to
independence testing is based on likelihood. Check this notebook for implementation: https://
bit.ly/ANMNotebook.

ANM only works when the data has independent additive noise; it also requires no hidden confounding.

To implement ANM using gCastle, use the ANMNonlinear class.

https://bit.ly/ANMNotebook
https://bit.ly/ANMNotebook

Functional causal discovery 355

LiNGAM time

While ANM relies on non-linearity to break the symmetry between the causal and anti-causal models,
LiNGAM relies on non-Gaussianity.

Let’s compare residual patterns in two linear datasets: one with Gaussian and one with non-Gaussian noise.

Let’s start by generating the data:

SAMPLE_SIZE = 1000

x_gauss = np.random.normal(0, 1, SAMPLE_SIZE)
y_gauss = x_gauss + 0.3 * np.random.normal(0, 1,
 SAMPLE_SIZE)

x_ngauss = np.random.uniform(0, 1, SAMPLE_SIZE)
y_ngauss = x_ngauss + 0.3 * np.random.uniform(0, 1,
 SAMPLE_SIZE)

We used the uniform distribution in the non-Gaussian case.

Let’s take a look at Figure 13.13, which presents the Gaussian and non-Gaussian data with fitted
regression lines in causal and anti-causal directions:

Figure 13.13 – Gaussian and non-Gaussian data with fitted regression lines

In the top panes of Figure 13.13, we see two Gaussian models with fitted regression lines (first and third
columns) and their respective residuals (second and fourth columns). In the bottom panes, we see
two non-Gaussian models (first and third columns) and their residuals (second and fourth columns).

Causal Discovery and Machine Learning – from Assumptions to Applications356

Although both Gaussian and uniform distributions are symmetric themselves, the uniform is asymmetric
rotationally. Notice how the residuals form a rotated pattern in the bottom-right corner. The intuition
behind this asymmetry is closely related to the independent component analysis (ICA) model.

ICA is an algorithm frequently used to recover the source signals from noisy overlapping observations.
A popular example of ICA usage is the source separation in the so-called cocktail party problem,
where we have a multi-track recording of multiple speakers speaking simultaneously and we want to
separate those speakers’ voices into separate tracks.

It turns out that we can achieve it under certain assumptions using ICA. One of the core assumptions
here is the non-Gaussianity of the source signals, which allows us to presume that there’s a bijective
mapping between the noisy recording and the source.

As LiNGAM relies on ICA internally, it also inherits this assumption.

The second assumption is linearity. ICA can only hold linear data and, again, LiNGAM inherits
this limitation.

The good news is that LiNGAM does not require the faithfulness assumption.

Let’s see LiNGAM in action!

LiNGAM in action

We’ll start with the data that we generated for the PC algorithm to see what happens when LiNGAM’s
assumptions are not met.

Recall that pc_dataset was linear and Gaussian.

Let’s instantiate and fit the model:

lingam = ICALiNGAM(random_state=SEED)
lingam.learn(pc_dataset)

Let’s plot the results. Figure 13.14 presents the comparison between the predicted and the correct
adjacency matrix:

Figure 13.14 – LiNGAM results

Functional causal discovery 357

We can see that LiNGAM has predicted two edges correctly (1 -> 2 and 2 -> 3) but it has missed the
edge 0 -> 2. Additionally, the model hallucinated two edges (1 -> 0 and 2 -> 0). These results are not
very impressive, especially for such a simple graph. That said, this is expected as we violated one of
the basic assumptions of the method.

Using legal data with LiNGAM

Let’s generate the data that LiNGAM can deal with. Let’s keep the same causal structure that we used
for pc_dataset, and only update the functional forms:

a = np.random.uniform(0, 1, N)
b = np.random.uniform(3, 6, N)
c = a + b + .1 * np.random.uniform(-2, 0, N)
d = .7 * c + .1 * np.random.uniform(0, 1, N)
lingam_dataset = np.vstack([a, b, c, d]).T

Let’s re-instantiate and refit the model:

lingam = ICALiNGAM(random_state=SEED)
lingam.learn(lingam_dataset)

Figure 13.15 demonstrates the model’s results on the new dataset:

Figure 13.15 – LiNGAM on non-Gaussian data

This time, the model was able to perfectly retrieve the true graph.

A great feature that LiNGAM offers is that it does not only retrieve the causal structure but also the
strength of the relationships between variables. In this sense, LiNGAM is an end-to-end method for
causal discovery and causal inference.

Causal Discovery and Machine Learning – from Assumptions to Applications358

Let’s check how well LiNGAM did with retrieving the coefficients. We can access the learned weighted
matrix via the weight_causal_matrix attribute:

lingam.weight_causal_matrix

This returns a weighted adjacency matrix as a castle.common.base.Tensor object:

Tensor([[0. , 0. , 1.003, 0.],
 [0. , 0. , 0.999, 0.],
 [0. , 0. , 0. , 0.7],
 [0. , 0. , 0. , 0.]])

Figure 13.16 presents these results in the context of the original structural equations. Let’s see how
well the algorithm managed to recover the true coefficients.

Figure 13.16 – LiNGAM results (right) versus the original DAG

(left) and the original structural equations (top)

In Figure 13.16 (top), we see the set of original structural equations (the ones that we implemented).
On the bottom, we see the original DAG (left) and the learned matrix (right). The blue dashed lines
map the coefficients from the equations to the respective cells in the original DAG. The green cells
on the right contain the coefficients retrieved by LiNGAM. Dark green emphasizes the perfectly
retrieved coefficient.

Functional causal discovery 359

These results are pretty good!

Before we conclude, there are a couple of things that are good to know about LiNGAM. First, LiNGAM
uses ICA in the background, and ICA is a stochastic method. Sometimes, it might not converge to a
good solution within the default number of steps.

You can modify the number of steps by modifying the max_iter parameter:

lingam = ICALiNGAM(
 max_iter=2000,
 random_state=SEED
)

Second, LiNGAM is not scale-invariant, which might result in estimation errors.

Get more direct

DirectLiNGAM (Shimizu et al., 2011) is an ICA-free variation of LiNGAM. The model uses a series
of regressions in order to determine the causal order.

It’s guaranteed to converge to the true solution in the infinite sample regime when the model
assumptions are strictly met. The number of steps required for convergence scales linearly with the
number of variables.

Of course, we never have access to an infinite number of samples in the real world. That said,
DirectLiNGAM has been shown to outperform its counterpart on simulated finite sample data as
well (Shimizu et al., 2011).

DirectLiNGAM also solves the scaling issue. The cost for the improvements is in computational time.
The time scales as a power function of the number of variables (nodes).

Using DirectLiNGAM with gCastle is straightforward:

d_lingam = DirectLiNGAM()
d_lingam.learn(lingam_dataset)

The results are identical to the regular model, so we skip them here. You can see the plots and the
learned weighted matrix in the notebook.

More variants of the LiNGAM model exist than the two we discussed here. The LiNGAM framework
has been extended to work with time series, cyclical graphs (Lacerda et al., 2008), and latent variables,
among others. For implementations and references for some of these variants, check the Python
LiNGAM library (https://bit.ly/LiNGAMDocs).

It’s time to conclude our journey with functional-based causal discovery for now.

https://bit.ly/LiNGAMDocs

Causal Discovery and Machine Learning – from Assumptions to Applications360

In this section, we introduced functional-based causal discovery methods. We’ve seen how non-linearity
and non-Gaussianity can help us break the symmetry and follow the traces left by causal mechanisms
in order to gain valuable insights.

We learned how to implement the ANM model from scratch using Python and HSIC independence
tests from the gCastle library and how to use the algorithms from the LiNGAM family using gCastle.
Finally, we discussed the main limitations of ICA-LiNGAM and discussed how to address them
using DirectLiNGAM.

In the next section, we’ll introduce the most contemporary family of causal discovery methods –
gradient-based methods.

Gradient-based causal discovery
In this section, we’ll introduce gradient-based causal discovery methods. We’ll discuss the main
contributions of this family of methods and their main disadvantages. Finally, we’ll implement selected
methods using gCastle and compare their performance with other families.

What exactly is so gradient about you?

2018 was an exciting year for the causal discovery community. Xun Zheng from CMU and his colleagues
presented an interesting paper during the 2018 NeurIPS conference.

The work was titled DAGs with NO TEARS: Continuous Optimization for Structure Learning and
introduced a novel approach to causal structure learning (though we need to say that the authors did
not explicitly state that their method is causal).

The proposed method (called NOTEARS) was not based on a set of independence tests or local
heuristics but rather treated the task of structure learning as a joint, continuously-optimized task.

One of the main breakthroughs in the paper was the differentiable function encoding the acyclicity
constraints. In other words, the authors proposed a function that we could optimize continuously,
making sure that the graph we’re fitting to the data is acyclic.

Before we continue, it’s good to mention that gradient-based methods are essentially score-based – we
compute a numerical summary of the quality of graph data fit in the optimization process.

Nevertheless, we’ve chosen to think about them as a separate family because the fact that they use
continuous optimization comes with unique opportunities and challenges.

Let’s see how to encode the acyclicity constraint as a differentiable function. It turns out that the
formula is very concise:

 ℛ (A) = tr (e A⊙A) − d

Gradient-based causal discovery 361

In the preceding formula, the following applies:

1. A is the adjacency matrix of a graph, G

2. e is a matrix exponential

3. tr (.) is a trace of a matrix

4. d is the number of nodes in a graph represented by A

5. ⊙ is the Hadamard (element-wise) product

For a quick introduction to matrix exponentials, check https://bit.ly/MatrixExponential.

It turns out that when ℛ (A) is equal to zero, a graph represented by the adjacency matrix A is a
DAG. Otherwise, it’s not. This is a very convenient way to measure what the authors refer to as the
DAG-ness of a graph.

Let’s implement this formula in Python:

from scipy import linalg

def check_if_dag(adj_matrix):
 A = adj_matrix
 return np.trace(linalg.expm(A * A)) - A.shape[0] == 0

First, we import the linalg linear algebra module from SciPy. We’ll need it for the matrix
exponential operation.

Next, we multiply the adjacency matrix element-wise by itself. Note that this step is only effective for
weighted adjacency matrices. For binary matrices, A ⊙ A = A.

Next, we perform matrix exponentiation using the linalg.expm() function.

Finally, we compute the trace of the resulting matrix and subtract the number of rows in the adjacency
matrix, which is equivalent to the number of nodes in the graph represented by this matrix (or the
number of variables in our problem).

If this quantity (note that trace is a scalar value) is equal to zero, we return True. Otherwise, we
return False.

Let’s test the function on the pc_dag DAG that we created at the beginning of this chapter:

check_if_dag(pc_dag)

This returns the following:

True

https://bit.ly/MatrixExponential

Causal Discovery and Machine Learning – from Assumptions to Applications362

The result is as expected.

Let’s build a simple cyclic graph:

dcg = np.array([
 [0, 1, 0],
 [1, 0, 0],
 [0, 1, 0]
])

Let’s evaluate it using our function:

check_if_dag(dcg)

This gives us the following:

False

This result is also as expected.

Gradients for ℛ (A) are easy to compute and so it’s naturally compatible with gradient-based
optimization methods.

The overall loss function in NOTEARS consists of the mean squared error component ‖X − XA‖ F
2

with a number of additional regularization and penalty terms. The function is optimized using the
augmented Lagrangian method (Niemirovski, 1999) subject to the constraint that ℛ (A) = 0 (see
Zheng et al., 2018, for the full definition).

In the main loss component, X is an n × d data matrix, where n is the number of observations and d is
the number of features, A is the adjacency matrix, and ‖

 . ‖

F
 2 is the squared Frobenius norm (https://

bit.ly/MatrixNorm; see also Chapter 14 for definition).

Shed no tears

The authors have tested NOTEARS against a selection of traditional methods including PC, LiNGAM,
and FGES (fast GES). In their experiments, the authors found that NOTEARS either outperformed
or performed on par with the best traditional methods (depending on the setting).

These initial results brought a lot of excitement to the community and inspired new lines of research.

The initial excitement cooled down after the publication of two research papers that examined the
NOTEARS algorithm. Kaiser and Sipos (2021) have shown that NOTEARS’ sensitivity to scaling
makes it a risky choice for real-world causal discovery. Reisach et al. (2021) demonstrated similar
inconsistencies in the performance of gradient-based methods between standardized and unstandardized
data and pointed to a more general problem: synthetic data used to evaluate these methods might
contain unintended regularities that can be relatively easily exploited by these models, as the authors
expressed in the title of their paper, Causal Discovery Benchmarks May Be Easy To Game.

https://bit.ly/MatrixNorm
https://bit.ly/MatrixNorm

Gradient-based causal discovery 363

GOLEMs don’t cry

GOLEM (Ng et al., 2020) is an algorithm that improves over NOTEARS. The algorithm uses a
likelihood-based objective (rather than an MSE-based one like in NOTEARS) and soft DAG-ness
constraint (rather than a hard one like in NOTEARS), which leads to facilitated optimization and
faster convergence. The authors demonstrate that GOLEM outperforms NOTEARS on synthetic data.

These changes do not seem to address all the issues raised by Reisach et al. (2021) and it seems that
GOLEM’s performance is affected by the unintended variance patterns introduced by synthetic data-
generating processes. In particular, the model’s performance tends to degrade in the normalized data
scenario, where unfair variance patterns are minimized. Note that the same is true for NOTEARS
(check Reisach et al., 2021, for the details).

NOTEARS, GOLEM, and linearity
The original version of NOTEARS was designed to work with linear data. It’s the same for
GOLEM. An extension of NOTEARS exists that works with general non-parametric models
(Zheng et al., 2020).

The comparison

Now, let’s generate three datasets with different characteristics and compare the performance of the
methods representing each of the families.

We’ll start by building the dataset:

true_dag = DAG.scale_free(n_nodes=11, n_edges=15, seed=SEED)

DATA_PARAMS = {
 'linearity': ['linear', 'nonlinear'],
 'distribution': {
 'linear': ['gauss', 'exp'],
 'nonlinear': ['quadratic']
 }
}

datasets = {}

for linearity in DATA_PARAMS['linearity']:
 for distr in DATA_PARAMS['distribution'][linearity]:
 datasets[f'{linearity}_{distr}'] = IIDSimulation(
 W=true_dag,
 n=2000,
 method=linearity,
 sem_type=distr)

Causal Discovery and Machine Learning – from Assumptions to Applications364

First, we generate a graphical structure according to the scale-free model. Our graph will have 10
nodes and 15 edges. Figure 13.17 presents the graph:

Figure 13.17 – The graph for the comparative experiment

Next, we define what type of functional relationships and/or noise we want to have in our SCM (linear
with Gaussian and exponential noises and non-linear quadratic).

Finally, we iterate over the defined settings and generate the observations. We store the observations
in the datasets dictionary.

Now, let’s create an object containing the methods we’ll use:

methods = OrderedDict({
 'PC': PC,
 'GES': GES,
 'LiNGAM': DirectLiNGAM,
 'Notears': NotearsNonlinear,
 'GOLEM': GOLEM
})

We’re now ready to start the experiment. You can find the full experimental loop in the notebook for
this chapter.

Gradient-based causal discovery 365

We present the results in Figure 13.18. The best-performing models for each dataset are marked in bold.

Figure 13.18 – Results of the model comparison

In this section, we introduced gradient-based methods for causal discovery. We discussed the continuous
acyclicity constraint (DAG-ness), and its innovative character. We discussed the main challenges
that gradient-based methods face. Finally, we carried out an experiment comparing algorithms from
different families on a synthetic dataset.

In the next section, we’ll see how to combine causal discovery algorithms with expert knowledge.

Causal Discovery and Machine Learning – from Assumptions to Applications366

Encoding expert knowledge
Combining expert knowledge with automated methods can be incredibly beneficial. It can help
algorithms learn while inspiring human stakeholders to deepen their own insights and understanding
of their environments and processes.

In this section, we’ll demonstrate how to incorporate expert knowledge into the workflow of our
causal discovery algorithms.

By the end of this section, you’ll be able to translate expert knowledge into the language of graphs
and pass it to causal discovery algorithms.

What is expert knowledge?

In this section, we think about expert knowledge as an umbrella term for any type of knowledge or
insight that we’re willing to accept as valid.

From the algorithmic point of view, we can think of expert knowledge as a strong (but usually local)
prior. We encode expert knowledge by freezing one or more edges in the graph. The model treats these
edges as existing and adapts their behavior accordingly.

Expert knowledge in gCastle

Let’s see how to encode external knowledge using gCastle.

Currently (gCastle 1.0.3), one algorithm supports adding external knowledge – the PC algorithm –
but support for more algorithms is planned.

We’ll take the linear Gaussian dataset from the previous section’s experiment and we’ll try to improve
PC’s performance by adding some external knowledge to the algorithm.

We start with an additional import. The PrioriKnowledge object will allow us to conveniently
define and pass the knowledge to the algorithm:

from castle.common.priori_knowledge import PrioriKnowledge

Next, we instantiate the PrioriKnowledge object and pass the number of nodes to the constructor:

priori_knowledge = PrioriKnowledge(n_nodes=10)

Next, we add the required and forbidden edges:

priori_knowledge.add_required_edges([(7, 3)])
priori_knowledge.add_forbidden_edges([(0, 9), (8, 6)])

Encoding expert knowledge 367

I checked the plots for the experiment in the notebook to find the edges the PC algorithm got wrong
in the previous section’s experiment. We added some of them here.

Now, we’re ready to instantiate the model and train it:

pc_priori = PC(priori_knowledge=priori_knowledge)
pc_priori.learn(datasets['linear_gauss'].X)

Note that, this time, we pass the priori_knowledge object to the constructor.

Let’s compare the results before and after sharing our knowledge with the algorithm. Figure 13.19
summarizes the results for us:

Figure 13.19 – Results for the PC algorithm before and after adding prior knowledge

In Figure 13.19, we see that all metrics that we record have been improved after adding external
knowledge to the algorithm. We could continue adding and restricting more edges to improve the
algorithm further.

In this section, we’ve learned how to encode and pass expert knowledge to the PC algorithm. Currently,
only one algorithm in gCastle supports external knowledge, but as far as I know, the developers are
planning to add support for more algorithms in the future.

Causal Discovery and Machine Learning – from Assumptions to Applications368

Wrapping it up
We started this chapter with a refresher on important causal discovery assumptions. We then introduced
gCastle. We discussed the library’s main modules and trained our first causal discovery algorithm.
Next, we discussed the four main families of causal discovery models – constraint-based, score-based,
functional, and gradient-based – and implemented at least one model per family using gCastle. Finally,
we ran a comparative experiment and learned how to pass expert knowledge to causal models.

In the next chapter, we’ll discuss more advanced ideas in causal discovery and take a broader perspective
on the applicability of causal discovery methods in real-life use cases.

Ready for one more dive?

References
Barabási, A. L. (2009). Scale-free networks: a decade and beyond. Science, 325(5939), 412-413.

Barabási, A. L., and Albert, R. (1999). Emergence of Scaling in Random Networks. Science,
286(5439), 509–512.

Blake, W. (2009) The Tyger. Songs of Experience. In William Blake: The Complete Illuminated Books.

Cai, R., Wu, S., Qiao, J., Hao, Z., Zhang, K., and Zhang, X. (2021). THP: Topological Hawkes Processes
for Learning Granger Causality on Event Sequences. ArXiv.

Chickering, D. M. (2003). Optimal structure identification with greedy search. J. Mach. Learn. Res.,
3, 507–554.

Chickering, M. (2020). Statistically Efficient Greedy Equivalence Search. Proceedings of the 36th
Conference on Uncertainty in Artificial Intelligence (UAI). In Proceedings of Machine Learning
Research, 124, 241-249.

Colombo, D., and Maathuis, M.H. (2012). Order-independent constraint-based causal structure learning.
J. Mach. Learn. Res., 15, 3741-3782.

Cressie, N., and Read, T.R. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical
Society: Series B (Methodological), 46(3), 440-464.

Enquist, M., Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169–172

Erdös, P. and Rényi, A. (1959). On Random Graphs I. Publicationes Mathematicae Debrecen, 6, 290-297.

Fisher, R. A. (1921). On The “Probable Error” of a Coefficient of Correlation Deduced From a Small
Sample. Metron, 1, 1-32.

References 369

Glymour, C., Zhang, K., and Spirtes, P. (2019). Review of Causal Discovery Methods Based on Graphical
Models. Frontiers in genetics, 10, 524.

Grammer, K., and Thornhill, R. (1994). Human (Homo sapiens) facial attractiveness and sexual selection:
the role of symmetry and averageness. Journal of comparative psychology, 108(3), 233–242.

Heckerman, D., Geiger, D., and Chickering, D.M. (1995). Learning Bayesian Networks: The Combination
of Knowledge and Statistical Data. Machine Learning, 20, 197–243.

Hoyer, P., Janzing, D., Mooij, J. M., Peters, J., and Schölkopf, B. (2008). Nonlinear causal discovery with
additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in Neural
Information Processing Systems, 21. Curran Associates, Inc.

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., and Glymour, C. (2018). Generalized score functions for
causal discovery. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 1551-1560.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Wiley.

Johnston, I. G., Dingle, K., Greenbury, S. F., Camargo, C. Q., Doye, J. P. K., Ahnert, S. E., and Ard A.
Louis. (2022). Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution.
Proceedings of the National Academy of Sciences, 119(11), e2113883119.

Kaiser, M., and Sipos, M. (2021). Unsuitability of NOTEARS for Causal Graph Discovery.
ArXiv, abs/2104.05441.

Lacerda, G., Spirtes, P. L., Ramsey, J., and Hoyer, P. O. (2008). Discovering Cyclic Causal Models by
Independent Components Analysis. Conference on Uncertainty in Artificial Intelligence.

Le, T.D., Hoang, T., Li, J., Liu, L., Liu, H., and Hu, S. (2015). A Fast PC Algorithm for High Dimensional
Causal Discovery with Multi-Core PCs. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 16, 1483-1495.

Ng, I., Ghassami, A., and Zhang, K. (2020). On the Role of Sparsity and DAG Constraints for Learning
Linear DAGs. ArXiv, abs/2006.10201.

Nemirovski, A. (1999). Optimization II: Standard Numerical Methods for Nonlinear Continuous
Optimization [Lecture notes].

Peters, J., and Bühlmann, P. (2015). Structural intervention distance for evaluating causal graphs. Neural
computation, 27(3), 771-799.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. MIT Press.

Rebane, G., and Pearl, J. (1987). The recovery of causal poly-trees from statistical data. International
Journal of Approximate Reasoning.

Causal Discovery and Machine Learning – from Assumptions to Applications370

Shimizu, S., Hoyer, P.O., Hyvärinen, A., and Kerminen, A.J. (2006). A Linear Non-Gaussian Acyclic
Model for Causal Discovery. J. Mach. Learn. Res., 7, 2003-2030.

Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., and Bollen,
K.A. (2011). DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation
Model. J. Mach. Learn. Res., 12, 1225–1248.

Sprites, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. MIT Press.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65(1), 31-78.

Uhler, C., Raskutti, G., Bühlmann, P., and Yu, B. (2013). Geometry of the faithfulness assumption in
causal inference. The Annals of Statistics, 436-463.

Verma, T., and Pearl, J. (1990). Equivalence and synthesis of causal models. Proceedings of the 6th
Conference on Uncertainty and Artificial Intelligence, 222-227.

Zhang, K., Zhu, S., Kalander, M., Ng, I., Ye, J., Chen, Z., and Pan, L. (2021). gCastle: A Python Toolbox
for Causal Discovery. ArXiv.

Zheng, X., Aragam, B., Ravikumar, P., and Xing, E.P. (2018). DAGs with NO TEARS: Continuous
Optimization for Structure Learning. Neural Information Processing Systems.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E.P. (2020). Learning Sparse Nonparametric
DAGs. International Conference on Artificial Intelligence and Statistics.

14
Causal Discovery and Machine

Learning – Advanced Deep
Learning and Beyond

Welcome to Chapter 14!

We're inevitably moving towards the end of our book, but we still have something to learn!

In the previous chapter, we introduced four families of causal discovery models: constraint-based,
score-based, functional, and gradient-based. Each of the families and methods that we discussed came
with unique strengths and unique limitations.

In this chapter, we’ll introduce methods and ideas that aim to solve some of these limitations. We’ll
discuss an advanced deep learning causal discovery framework, Deep End-to-end Causal Inference
(DECI), and implement it using the Microsoft open source library Causica and PyTorch.

We’ll see how to approach data with hidden confounding using the fast causal inference (FCI)
algorithm and introduce other algorithms that can be used in similar scenarios.

After that, we’ll introduce two frameworks that allow us to combine observational and interventional
data: ENCO and ABCI.

We’ll close this chapter with a discussion of the challenges and open areas for improvement in
causal discovery.

By the end of this chapter, you’ll understand the basic theory behind DECI and will be able to apply
it to your own problems. You will understand when the FCI algorithm might be useful and will be
able to use it, including adding expert knowledge.

Finally, you will have a good understanding of how to extend observational causal discovery
to interventional data and what challenges we face when applying causal discovery methods to
real-world problems.

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond372

In this chapter, we cover the following topics:

• Deep End-to-end Causal Inference (DECI)

• Causal discovery under hidden confounding

• The FCI algorithm

• Causal discovery with interventions

• The real-world applicability of causal discovery and open challenges

Advanced causal discovery with deep learning
Xun Zheng and colleagues’ DAGs with NO TEARS paper (Zheng et al., 2018), which we introduced
in the previous chapter, ignited excitement in the causal discovery community and inspired a whole
new line of research on gradient-based methods.

The fact that graph search could be carried out using continuous optimization opened up a path for
integrating causal discovery with techniques coming from other deep learning areas.

One example of a framework integrating such techniques into the realm of causal discovery is DECI
– a deep learning end-to-end causal discovery and inference framework (Geffner et al., 2022).

DECI is a flexible model that builds on top of the core ideas of the NO TEARS paper. It works for
non-linear data with additive noise under minimality and no hidden confounding assumptions.

In this section, we’ll discuss its architecture and major components and apply it to a synthetic dataset,
helping the model to converge by injecting expert knowledge into the graph.

This section will have a slightly more technical character than some of the previous chapters. We’ll
focus on gaining a deeper understanding of the framework and code.

This focus will help us get a grasp of how advanced methods in causal discovery might be designed
and how to implement them using lower-level components.

This is also an opportunity to get a taste of how causal algorithms can be implemented using deep
learning frameworks such as PyTorch.

From generative models to causality

In recent years, generative models have made their way to the headlines. Models such as ChatGPT,
DALL-E 2, and Midjourney have astonished the general public with their capabilities, sparked broad
interest, and inspired a number of debates on the future of AI and even humanity itself; but generative
models are far from being new.

The ideas behind generative models can be traced back to the 19th century and the early works of
Adolphe Quetelet and – a bit later – Karl Pearson (McLachlan et al., 2019).

Advanced causal discovery with deep learning 373

Contemporary causal discovery has multiple connections to generative modeling. For instance, DECI
uses causal autoregressive flow (Khemakhem et al., 2021), while the Structural Agnostic Model (SAM;
Kalainathan et al., 2022) leverages generative adversarial networks (GANs; Goodfellow et al., 2020).

Let’s briefly review the connection between autoregressive flows and causal models.

Looking back to learn who you are

Autoregressive flows (Kingma et al., 2016) are a subset of the normalizing flows framework – a set of
techniques traditionally used in variational inference in order to efficiently learn complex distributions
by transforming simpler ones.

In particular, autoregressive flows estimate the distribution of variable X k as a function of the variables
preceding it.

If we want to express one variable as a function of the variables preceding it, we first need to order
these variables somehow.

A setting where variables are ordered and their value only depends on the variables that are preceding
them resembles a structural causal model (SCM), where nodes’ values only depend on the values
of their parents.

This insight has been leveraged by Ilyes Khemakhem and colleagues (Khemakhem et al., 2021), who
proposed an autoregressive flow framework with causal ordering of variables (CAREFL).

DECI further builds on this idea, by modeling the likelihood of data given the graph in an
autoregressive fashion.

Moreover, the model learns the posterior distribution over graphs rather than just a single graph. In
this sense, DECI is Bayesian. This architectural choice allows for a very natural incorporation of expert
knowledge into the graph. We will see this in action later in this section.

DECI’s internal building blocks

At the heart of DECI lies the same core idea that enabled NO TEARS’ continuous optimization: the
DAG-ness score. Although we introduced this in the previous chapter, let’s refresh the definition here:

 ℛ (A) = tr (e A⊙A) − d

In the preceding formula, note the following:

• A is the adjacency matrix of a graph, G

• e is a matrix exponential

• tr (.) is a trace of a matrix

• d is the number of nodes in a graph, represented by A

• ⊙ is the Hadamard (element-wise) product

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond374

The role of ℛ (A) is to ensure that we focus our search on directed acyclic graphs (DAGs). ℛ (A) is
equal to 0 if and only if a graph represented by the matrix A is a DAG.

In other words, minimizing this component during training helps us make sure that the recovered
model will not contain cycles or bi-directional edges.

The DAG-ness score is one of the components that constitute DECI’s loss function; but it’s not the
only one. A second important component is the sparsity score.

The sparsity score is defined using the squared Frobenius norm of the adjacency matrix. Formally,
this is represented as follows:

 𝒮 (A) = ‖A‖ F
2

The role of the sparsity score is to (heuristically) promote the minimality of the solution. In other
words, 𝒮 (A) pushes the graph to follow the minimality assumption (for a refresher on minimality,
refer to Chapter 5 and/or Chapter 13).

Frobenius norm
The Frobenius norm is a matrix norm (https://bit.ly/MatrixNorm) defined as the
square root of the sum of squares of absolute values of matrix entries:

 ‖A‖ F = √
_

 ∑
i=1

m

 ∑
j=1

n

 | a ij | 2
When A is an unweighted adjacency matrix, the Frobenius norm measures the sparsity of the
matrix. The sparser the matrix, the more zero entries it has.

Note that if the matrix A is real-valued, the absolute value function | . | is redundant (squaring
will make the result non-negative anyway). This only matters for complex-valued matrices
(which we’re not using here, but we include the absolute value operator for completeness of
the definition).

The DAG-ness score and sparsity score are used to define three terms used in the model’s loss function:

• αℛ (A)

• ρℛ (A) 2

• λ𝒮 (A)

Each term is weighted by a dedicated coefficient: α , ρ , and λ , respectively.

While the latter coefficient is kept constant over the training, the first two are gradually increased.

The idea here is not to overly constrain the search space in the beginning (even if early graphs are not
DAGs) in order to allow the algorithm to explore different trajectories. With time, we increase the
values of α and ρ , effectively limiting the solutions to DAGs only.

The updates of these parameters are carried out by the scheduler of the augmented Lagrangian
optimizer (https://bit.ly/AugmentedLagrangian).

https://bit.ly/MatrixNorm
https://bit.ly/AugmentedLagrangian

Advanced causal discovery with deep learning 375

The initial values of α , ρ , and λ are set by the user (they play the role of hyperparameters) and can
influence the trajectory of the algorithm. In some causal discovery algorithms, including DECI, initial
hyperparameter settings can make or break the results.

Finding good values of such hyperparameters might be challenging, in particular when we don’t
have a relevant benchmark dataset. We will discuss this challenge in greater detail in the last section
of this chapter.

Keeping this in mind, let’s move forward and see how to implement DECI.

We will learn about more hyperparameters on the way.

DECI in code

Let’s implement DECI to get a more concrete understanding of how it works. The code for this chapter
can be found in the accompanying notebook (https://bit.ly/causal-ntbk-14).

Let’s start with the imports.

First, we’ll import the dataclass decorator and NumPy and NetworkX libraries:

from dataclasses import dataclass
import numpy as np
import networkx as nx

The dataclass decorator will help us make sure that the model configuration is immutable and we
don’t change it by mistake somewhere on the way. We’ll use NumPy for general numerical purposes
and NetworkX for graph visualizations.

Next, we’ll import PyTorch, PyTorch Lightning, and two convenient tools – DataLoader
and TensorDict:

import torch
import pytorch_lightning as pl

from torch.utils.data import DataLoader
from tensordict import TensorDict

PyTorch is a popular deep learning framework and PyTorch Lightning (https://bit.ly/
IntroToLightning) is a wrapper around PyTorch that aims at simplifying PyTorch’s workflow
(somewhat similar to what Keras does for TensorFlow). We won’t make too much use of Lightning‘s
capabilities in this chapter, but we’ll leverage its convenient.seed_everything() method in
order to set the random seed over different libraries.

Next, we’ll import a familiar set of objects from gCastle:

from castle.datasets import DAG, IIDSimulation
from castle.common import GraphDAG
from castle.metrics import MetricsDAG

https://bit.ly/causal-ntbk-14
https://bit.ly/IntroToLightning
https://bit.ly/IntroToLightning

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond376

We’ll use them to generate the data, plot the results, and compute useful metrics.

Next, we’ll import a number of modules and methods from Causica. Causica (https://bit.ly/
MicrosoftCausica) is a Microsoft-managed open source library focused on causal machine
learning. At the time of writing this chapter (Q2 2023), DECI is the only algorithm available in the
library, yet the authors have informed us that other algorithms will be added with time.

First, we import the distributions module:

import causica.distributions as cd

The distributions module contains a broad range of objects related to model-specific
probabilistic operations.

Next, we import the Input Convex Graph Neural Network (ICGNN) module, three objects related to
the computations of the augmented Lagrangian loss, and a method that computes the DAG-ness score:

from causica.functional_relationships import ICGNN
from causica.training.auglag import AugLagLossCalculator, AugLagLR,
AugLagLRConfig
from causica.graph.dag_constraint import calculate_dagness

ICGNN (Park et al., 2022) is a graph neural network architecture that we’ll use to recover the functional
relationships between variables.

Finally, we import additional utilities:

• VariableTypeEnum, which stores variable type information (continuous, binary, or categorical)

• The tensordict_shapes() function, which allows us to easily get information about the
shapes of variables stored within a TensorDict container

We have skipped these imports here to avoid excessive clutter (check the notebook for a full list
of imports).

TensorDict
TensorDict is a PyTorch-specific dictionary-like class designed as a data-storing container. The
class inherits properties from PyTorch tensors, such as indexing, shape operations, and casting
to a device. TensorDict provides a useful abstraction that helps to achieve greater modularity.

We’re done with the imports; let’s prepare for experiments!

We’ll start with a quick setup.

DECI training can be accelerated using GPU. The following line will check whether a GPU is available
in your system and store the relevant information in the device variable:

device = 'cuda' if torch.cuda.is_available() else 'cpu'

https://bit.ly/MicrosoftCausica
https://bit.ly/MicrosoftCausica

Advanced causal discovery with deep learning 377

Let’s set a random seed for reproducibility:

SEED = 11
pl.seed_everything(SEED)

We’re ready to generate the data. We’ll generate 5,000 observations from a simple scale-free graph:

Generate a scale-free adjacency matrix
adj_matrix = DAG.scale_free(
 n_nodes=4,
 n_edges=6,
 seed=SEED
)

Generate the simulation
dataset = IIDSimulation(
 W=adj_matrix,
 n=5000,
 method='nonlinear',
 sem_type='mim'
)

Here, we follow the same process that we used in the previous chapter:

• We generate a graph using gCastle’s DAG object

• We generate the observations using the IIDSimulation object

We picked non-linear data generated using the multiple index model (Zheng et al., 2020). Figure 14.1
presents our generated DAG.

Figure 14.1 – Generated DAG

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond378

DECI configuration

As you have probably already noticed, DECI is a pretty complex model. In order to keep the code
clean and reproducible, we’ll define a set of neat configuration objects:

@dataclass(frozen=True)
class TrainingConfig:
 noise_dist=cd.ContinuousNoiseDist.SPLINE
 batch_size=512
 max_epoch=500
 gumbel_temp=0.25
 averaging_period=10
 prior_sparsity_lambda=5.0
 init_rho=1.0
 init_alpha=0.0

training_config = TrainingConfig()
auglag_config = AugLagLRConfig()

We use the @dataclass decorator with frozen=True in order to make sure that we don’t alter
the configuration object somewhere along the way mistakenly.

We instantiate model configuration (TrainingConfig()) and optimizer configuration
(AugLagLRConfig()) and assign them to variables.

I set the batch size to 512 as I noticed that larger batches work better for small graphs with DECI.

Preparing the data

The dataset that we generated is stored as NumPy arrays. As DECI uses PyTorch, we need to cast it
to torch.tensor objects.

We’ll simultaneously store the tensors in a dictionary and then encapsulate them in a TensorDict object:

data_tensors = {}

for i in range(dataset.X.shape[1]):
 data_tensors[f'x{i}'] = torch.tensor(dataset.X[:,
 i].reshape(-1, 1))

dataset_train = TensorDict(data_tensors,
 torch.Size([dataset.X.shape[0]]))

Advanced causal discovery with deep learning 379

Let’s move the dataset to the device (the device should be cuda if a GPU accelerator had been detected
on your system, otherwise cpu):

dataset_train = dataset_train.apply(lambda t:
 t.to(dtype=torch.float32, device=device))

Finally, let’s create a PyTorch data loader, which will take care of batching, shuffling, and smooth data
serving during training for us:

dataloader_train = DataLoader(
 dataset=dataset_train,
 collate_fn=lambda x: x,
 batch_size=training_config.batch_size,
 shuffle=True,
 drop_last=False,
)

DECI and expert knowledge

Thanks to its flexible architecture, DECI allows us to easily inject prior knowledge into the training process.

Let’s pick one edge (let’s say edge (3, 0)) in our graph and pass a strong belief about its existence
to the model’s prior.

Figure 14.2 presents a plot of the true adjacency matrix with edge (3, 0) marked in red:

Figure 14.2 – The true adjacency matrix with prior knowledge edges marked

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond380

As you can see, there’s also another spot marked in blue in Figure 14.2. This spot represents the same
edge, but pointing in the opposite direction. As we are learning a directed graph (a DAG), the model
should automatically understand that if the edge (3, 0) exists, the edge (0, 3) does not exist.
The DAG-ness penalty in the cost function pushes the model toward this solution.

Although I haven’t tested this systematically, it seems to me that explicitly passing the knowledge about
the existence of edge i → j and the non-existence of edge j → i helps the model converge compared
to the scenario where we only pass knowledge about the former.

In order to pass the knowledge to DECI, we need to build three matrices:

• An expert knowledge matrix

• A relevance mask that contains ones in the entries that we consider relevant and zeros
everywhere else

• A confidence matrix that weights the relevant entries by our confidence, encoded as a float
between 0 and 1

The relevance matrix is needed because we sometimes might want to pass our belief about the
non-existence of an edge (encoded as 0 in the expert matrix) rather than its existence (encoded as 1
in the expert matrix).

The entries in the relevance matrix inform the model of which entries should be taken into account
during the optimization.

Let’s put all of this in the code.

First, we generate a zero matrix of the size of our adjacency matrix and assign 1 to the entry
(3, 0), where we believe an edge exists:

expert_matrix = torch.tensor(np.zeros(adj_matrix.shape))
expert_matrix[3, 0] = 1.

Next, in order to get the relevance matrix, we clone the expert matrix (we want the entry (3, 0)
to be taken into account by the model, so we can just reuse the work we just did) and set the entry
(0, 3) to 1:

relevance_mask = expert_matrix.clone()
relevance_mask[0, 3] = 1.

Now, the expert_matrix object contains 1 in position (3, 0), while the relevance_mask
object contains ones in positions (3, 0) and (0, 3).

Finally, we clone the relevance matrix to obtain the confidence matrix:

confidence_matrix = relevance_mask.clone()

Advanced causal discovery with deep learning 381

We want to tell the model that we’re 100% sure that the edge (3, 0) exists.

The confidence matrix takes values between 0 and 1, so the ones in the (3, 0) and (0, 3) entries
essentially tell the model that we’re completely sure that these entries are correct.

As DECI is a generative model, after the convergence, we can sample from the distribution over the
adjacency matrix.

In order to effectively pass the knowledge to the model, we need to pass all three matrices to Causica’s
ExpertGraphContainer object:

expert_knowledge = cd.ExpertGraphContainer(
 dag=expert_matrix,
 mask=relevance_mask,
 confidence=confidence_matrix,
 scale=5.
)

The last parameter that we pass to the expert knowledge container – scale – determines the amount
of contribution of the expert term to the loss.

The larger the value of scale, the heavier the expert graph will be weighted when computing the
loss, making expert knowledge more important and harder to ignore for the model.

The main modules of DECI

DECI is largely a modular system, where particular components could be replaced with other compatible
elements. This makes the model even more flexible.

Let’s define DECI’s main modules.

We’ll start with the DAG prior:

prior = cd.GibbsDAGPrior(
 num_nodes=len(dataset_train.keys()),
 sparsity_lambda=training_config.prior_sparsity_lambda,
 expert_graph_container=expert_knowledge
)

Let’s unpack it!

We use the GibbsDAGPrior class to define the prior. We pass three parameters to the class
constructor: the number of nodes in the graph (which also represents the number of features in our
dataset), the sparsity lambda value (this is the λ parameter, which weights the sparsity score that we
discussed earlier in this chapter), and – last but not least – the expert knowledge object.

The Gibbs prior object will later be used in the training in order to compute the unnormalized log
probability of the DAG that we’ll use to compute the value of the loss function.

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond382

Next, let’s build three components representing three elements of a structural equation model (SEM):

• The adjacency matrix distribution module

• The functional module (which models the functional relationships between variables)

• The noise distribution module (which models the noise term distributions in the SEM)

We’ll model the adjacency matrix using the ENCOAdjacencyDistributionModule object.
ENCO (Lippe et al., 2022) is a causal discovery model that is able to work with observational, mixed,
and interventional data. Contrary to many other algorithms, ENCO parametrizes the existence of an
edge and its direction separately, and here we borrow this parametrization from the ENCO algorithm:

adjacency_dist = cd.ENCOAdjacencyDistributionModule(
 num_nodes)

ENCOAdjacencyDistributionModule’s constructor takes only one argument – the number
of nodes in a graph.

Next, we define the functional model. We’ll use the ICGNN graph neural network (Park et al., 2022)
for this purpose:

icgnn = ICGNN(
 variables=tensordict_shapes(dataset_train),
 embedding_size=8,
 out_dim_g=8,
 norm_layer=torch.nn.LayerNorm,
 res_connection=True,
)

We pass five parameters here:

• A dictionary of variable shapes (variables)

• The embedding size used to represent the variables internally (embedding_size)

• The size of the embeddings that represent the parent nodes while computing the representations
of the children nodes internally (out_dim_g)

• An optional layer normalization object (norm_layer; https://bit.ly/LayerNorm)

• A Boolean variable telling the model whether we want residual connections to be used in the
internal neural network or not (res_connection)

ICGNN will be responsible for parametrizing the functional relationships between the variables in
our model.

Finally, let’s define the noise module.

https://bit.ly/LayerNorm

Advanced causal discovery with deep learning 383

We’ll start by creating a type dictionary. For each variable, we’ll create a key-value pair with the variable
name used as a key and its type as a value. We’ll use Causica-specific type descriptions stored in the
VariableTypeEnum object:

types_dict = {var_name: VariableTypeEnum.CONTINUOUS for
 var_name in dataset_train.keys()}

As all the variables in our dataset are continuous, we use the same type (VariableTypeEnum.
CONTINUOUS) for all variables.

Finally, let’s create a set of noise modules for each of the variables:

noise_submodules = cd.create_noise_modules(
 shapes=tensordict_shapes(dataset_train),
 types=types_dict,
 continuous_noise_dist=training_config.noise_dist
)

We pass the variable shapes and types to the constructor alongside the intended noise distribution.

The information about the noise distribution type is stored in our training configuration object. At
the time of writing, DECI supports two noise distribution types: Gaussian and spline. The latter is
generally more flexible and has been demonstrated to work better across a wide range of scenarios
(Geffner et al., 2022, p. 7), and so we’ve picked it here as our default type.

Now, let’s combine per-variable submodules into a joint noise module:

noise_module = cd.JointNoiseModule(noise_submodules)

We now have all three SEM modules (adjacency, functional, and noise) prepared. Let’s pass them to
a common SEM super-container and send the whole thing to a device:

sem_module = cd.SEMDistributionModule(
 adjacency_module=adjacency_dist,
 functional_relationships=icgnn,
 noise_module=noise_module)
sem_module.to(device)

The SEM module is now ready for training. The last missing part is the optimizer. DECI can use any
PyTorch optimizer. Here, we’ll use Adam.

First, we’ll create a parameter list for all modules and then pass it to Adam’s constructor:

modules = {
 'icgnn': sem_module.functional_relationships,
 'vardist': sem_module.adjacency_module,
 'noise_dist': sem_module.noise_module,
}

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond384

parameter_list = [
 {'params': module.parameters(), 'lr':
 auglag_config.lr_init_dict[name], 'name': name}
 for name, module in modules.items()
]
optimizer = torch.optim.Adam(params=parameter_list)

As we mentioned at the beginning of this section, DECI uses a constrained optimization scheme
of augmented Lagrangian. Let’s instantiate a learning rate scheduler and augmented Lagrangian
loss calculator:

scheduler = AugLagLR(config=auglag_config)

auglag_loss = AugLagLossCalculator(
 init_alpha=training_config.init_alpha,
 init_rho=training_config.init_rho
)

We pass initial values of alpha and rho to the AugLagLossCalculator constructor. They
represent the coefficients α and ρ , which that we use to weight the DAG-ness score that we discussed
earlier at the beginning of this section.

We’re now ready to train the model!

Training DECI

In order to train DECI, we’ll use a double for loop.

In the outer for loop, we’ll iterate over the number of epochs, and in the inner for loop, we’ll iterate
over the batches within each epoch (as a result, we iterate over all batches within each epoch).

Before we start the for loops, let’s store the total number of samples in our dataset in a num_samples
variable. We’ll use it later to compute our objective:

num_samples = len(dataset_train)

for epoch in range(training_config.max_epoch):
 for i, batch in enumerate(dataloader_train):

Within the loop, we’ll start by zeroing the gradients, so that we can make sure that we compute fresh
gradients for each batch:

 optimizer.zero_grad()

Advanced causal discovery with deep learning 385

Next, we’ll sample from our SEM module and calculate the probability of the data in the batch given
the current model:

 sem_distribution = sem_module()
 sem, *_ = sem_distribution.relaxed_sample(
 torch.Size([]),
 temperature=training_config.gumbel_temp
)
 batch_log_prob = sem.log_prob(batch).mean()

Note that we use the .relaxed_sample() method. This method uses the Gumbel-Softmax
trick, which approximates sampling from a discrete distribution (which is non-differentiable) with a
continuous distribution (which is differentiable).

This is important because we cannot push the gradients through non-differentiable operations, which
essentially makes training using gradient descent impossible.

Next, still within the batch loop, we compute the SEM distribution entropy (https://bit.ly/
EntropyDefinition). We’ll need this quantity to compute the overall value of the loss for the model:

 sem_distribution_entropy =
 sem_distribution.entropy()

Next, we compute the log probability of the current graph, given our prior knowledge and the sparsity
score we defined in the DECI’s internal building blocks subsection earlier (the score is computed internally):

 prior_term = prior.log_prob(sem.graph)

Next, we compute the objective and DAG-ness score, and pass everything to our augmented
Lagrangian calculator:

 # Compute the objective
 objective = (-sem_distribution_entropy –
 prior_term) / num_samples - batch_log_prob

 # Compute the DAG-ness term
 constraint = calculate_dagness(sem.graph)

 # Compute the Lagrangian loss
 loss = auglag_loss(objective, constraint / num_samples)

We compute the gradients for the whole model and propagate them back:

 loss.backward()
 optimizer.step()

https://bit.ly/EntropyDefinition
https://bit.ly/EntropyDefinition

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond386

Finally, we update the augmented Lagrangian scheduler, which performs the augmented Lagrangian
optimization procedure:

 scheduler.step(
 optimizer=optimizer,
 loss=auglag_loss,
 loss_value=loss.item(),
 lagrangian_penalty=constraint.item(),
)

This concludes our training loop (in fact, in the notebook, we have a couple more lines that print out
and plot the results, but we’ve skipped them here to avoid stacking too much code in the chapter).

Let’s take a look at the results!

DECI’s results

Figure 14.3 presents the recovered adjacency matrix (left) and the true matrix (right):

Figure 14.3 – The matrix recovered by DECI and the true matrix

As we can see, DECI did a very good job and recovered the matrix perfectly.

That said, we need to remember that we made the task easier for the model by providing some very
strong priors.

I also found out that a number of hyperparameter settings were crucial for making the model results
more or less stable for this and similar datasets. I used my knowledge and intuitions from previous
experiments to choose the values.

Causal discovery under hidden confounding 387

First, I set the embedding sizes for ICGNN to 8. With larger, 32-dimensional embeddings, the
model seemed unstable. Second, I set the batch size to 512. With a batch size of 128, the model had
difficulties converging to a good solution.

The DECI architecture is powerful and flexible. This comes at the price of higher complexity. If you
want to use DECI in practice, it might be a good idea to first work with the model on other datasets
with a known structure that are similar to your problem in order to find good hyperparameter settings.

DECI also comes with a number of limitations – it is designed to work with non-linear data with
additive noise, and when the data does not follow these assumptions, the model loses its theoretical
guarantees (which are asymptotic).

Besides this, DECI requires standard assumptions of no hidden confounding, minimality, and general
correct model specification.

For details on assumptions, check out Geffner et al. (2022), Section 3.2. For theoretical guarantees and
their proofs, check out Geffner et al. (2022), Theorem 1 and Appendix A.

Before we conclude this section, let’s briefly discuss a capability of DECI that we haven’t touched
upon so far.

DECI is end-to-end

We used DECI as a causal discovery method, but in fact, it is an end-to-end causal framework, capable
of not only causal discovery but also estimating the average treatment effect (ATE) and (to an extent)
the conditional average treatment effect (CATE).

In this section, we introduced DECI – a deep end-to-end causal inference framework. We discussed
the basic theory behind the model and implemented it using Causica’s modules and PyTorch. DECI
is a flexible and powerful generative model that can perform causal discovery and inference in an
end-to-end fashion.

Despite its many strengths, DECI – similar to the models that we discussed in the previous chapter
– requires that no hidden confounding is present in the data.

Let’s see what to do when the possibility of hidden confounding cannot be excluded.

Causal discovery under hidden confounding
Not all causal discovery methods are helpless in the face of hidden confounding.

In this section, we’ll learn about the FCI algorithm, which can operate when some or all confounding
variables are unobserved. We’ll implement the FCI algorithm using the causal-learn package
and – finally – discuss two more approaches that can be helpful when our dataset contains potential
unobserved confounders.

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond388

The FCI algorithm

FCI (Sprites et al., 2000; Sprites et al., 2013) is a constraint-based algorithm. This means that the
algorithm uses a set of conditional independence tests in order to decide which edges exist and what
their orientations are. The FCI algorithm can be thought of as an extension of the PC algorithm that
can work on an extended class of graphs, called inducing path graphs. The theory behind inducing
path graphs is beyond the scope of our book. If you want to learn more, check out Chapter 6 of Sprites
et al. (2000).

I want more edge types, Mom!

FCI gives asymptotically correct results even under hidden confounding and selection bias.

This is great news!

However, in causality – similar to machine learning – there’s no free lunch, and there’s a price we need
to pay for this otherwise-great feature. FCI (just like PC) might return a Markov equivalence class
(MEC) rather than a fully oriented graph. In other words, some of the edges might not be oriented
(even if they are correct). The algorithm also requires the faithfulness assumption to be met.

That said, FCI output can be more informative than the standard PC output. The reason for this is
that FCI returns more edge types than just simple directed and undirected edges.

To be precise, there are four edge types in FCI (we’re following the notation scheme used in the
causal-learn package):

• When G ij = − 1 and G ji = 1 , then i is a cause of j

• When G ij = 2 and G ji = 1 , j is not an ancestor of i

• When G ij = 2 and G ji = 2 , then no set d-separates i and j

• When G ij = 1 and G ji = 1 , then there is a hidden common cause of i and j

If this sounds a bit overwhelming to you, you’re definitely not alone!

Fortunately, causal-learn also gives a simple visual representation of these types of edges that can be
printed out for any found graph (we’ll see this in a while).

Implementing FCI

As of the time of writing, FCI is not available in gCastle. We will use the implementation from another
library – causal-learn. This library is a Python translation and extension of the famous TETRAD Java
library and is maintained by the CLeaR group from Carnegie Mellon University, which includes Peter
Sprites and Clark Glymour – the creators of the original PC and FCI algorithms.

Causal discovery under hidden confounding 389

Traditionally, we start with the imports:

from causallearn.search.ConstraintBased.FCI import fci
from causallearn.utils.PCUtils.BackgroundKnowledge import
BackgroundKnowledge
from causallearn.graph.GraphNode import GraphNode

We import the fci function, which implements the FCI algorithm and the BackgroundKnowledge
and GraphNode classes, which will allow us to inject prior knowledge into the algorithm.

Now, let’s create a confounded dataset:

N = 1000

q = np.random.uniform(0, 2, N)
w = np.random.randn(N)
x = np.random.gumbel(0, 1, N) + w
y = 0.6 * q + 0.8 * w + np.random.uniform(0, 1, N)
z = 0.5 * x + np.random.randn(N)

data = np.stack([x, y, w, z, q]).T
confounded_data = np.stack([x, y, z, q]).T

We generate a five-dimensional dataset with 1,000 observations and different noise distributions
(Gaussian, uniform, and Gumbel).

We create two data matrices: data, with all variables, and counfounded_data, with the missing
variable, w (which is a common cause of x and y).

Figure 14.4 presents the structure of our dataset. The red node, W, is an unobserved confounder.

Figure 14.4 – A graph with an unobserved confounder

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond390

We’re now ready to fit the model.

causal-learn’s API is pretty different from the one we know from gCastle. First, the model is represented
as a function rather than a class with a dedicated fitting method.

The model function (fci()) returns causal-learn’s native graph object and a list of edge objects. Let’s
run the algorithm and store the outputs in variables:

g, edges = fci(
 dataset=confounded_data,
 independence_test_method='kci'
)

We passed the dataset to the function and, additionally, we specified the conditional independence
test that we want to use. Kernel-based conditional independence (KCI) is a powerful and flexible
test that can work with complex distributions. It scales well with the number of variables but can be
very slow for large sample sizes.

Let’s print the learned graph:

g.graph

This gives us the following:

array([[0, 2, 2, 0],
 [1, 0, 0, 1],
 [2, 0, 0, 0],
 [0, 2, 0, 0]])

For most people, this matrix is difficult to read (at least at first), and there’s no easy way to meaningfully
plot it using GraphDAG, which we’ve used so far.

Fortunately, we can iterate over the edges object to obtain a more human-readable representation
of the results.

Let’s create a mapping between the default variable names used internally by causal-learn and the
variable names that we used in our dataset:

mapping = {
 'X1': 'X',
 'X2': 'Y',
 'X3': 'Z',
 'X4': 'Q'
}

Causal discovery under hidden confounding 391

Now, let’s iterate over the edges returned by FCI and print them out:

for edge in edges:
 mapped = str(edge)\
 .replace(str(edge.node1),
 mapping[str(edge.node1)])\
 .replace(str(edge.node2),
 mapping[str(edge.node2)])
 print(mapped)

This gives us the following:

X o-> Y
X o-o Z
Q o-> Y

Let’s decode it.

The meaning of the arrows in the printout is as follows:

• X is not an ancestor of Y – there might be an arrow from X to Y or they might be confounded,
but there’s no arrow from Y to X

• There’s no set that d-separates X and Z – they might be confounded or have some direct
causal relationship

• Y is not an ancestor of Q

Looking at the graph, all of this is true. At the same time, the output is not very informative as it leaves
us with many unknowns.

FCI and expert knowledge

FCI allows us to easily inject expert knowledge into it. In causal-learn, we can add expert knowledge
using the BackgroundKnowledge class. Note that we’ll need to use the naming convention used
by causal-learn internally (X1, X2, etc.) in order to specify expert knowledge (see the code snippet
with the mapping dictionary in the preceding section for mapping between causal-learn’s variable
names and the variable names in our graph).

We instantiate the object and call the .add_forbidden_by_node() and .add_required_
by_node() methods:

prior_knowledge = BackgroundKnowledge()
prior_knowledge.add_forbidden_by_node(GraphNode('X2'),
 GraphNode('X4'))
prior_knowledge.add_required_by_node(GraphNode('X1'),
 GraphNode('X3'))

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond392

In order to identify the nodes, we use GraphNode objects and pass node names that causal-learn
uses internally (we could reverse our mapping here, but we’ll skip it for simplicity).

Now, we’re ready to pass our prior knowledge to the fci() function:

g, edges = fci(
 dataset=confounded_data,
 independence_test_method='fisherz',
 background_knowledge=prior_knowledge
)

Note that this time, we also used the Fisher’s Z-test instead of KCI. Fisher-Z is a fast but slightly less
flexible conditional independence test, compared to KCI. Fisher-Z is recommended for Gaussian linear
data, but I’ve seen it work multiple times for much more complex distributions and relationships as well.

Let’s see the results:

X o-> Y
X --> Z
Q --> Y

As we can see, disambiguating the relationship between Y (X2) and Q (X4) and directly enforcing
the edge between X (X1) and Z (X3) worked well. The --> symbol reads is a cause of. The retrieved
graph combined with expert knowledge is much more informative.

FCI might be a good choice if we’re not sure about the existence of edges. The algorithm can give us a
number of useful hints. The edges might next be passed in the form of expert knowledge to another
algorithm for further disambiguation (e.g., LiNGAM or DECI if the respective assumptions are met).
FCI performance can also be improved by using so-called tiers when passing background knowledge
to the algorithm (tiered background knowledge). For details, check out Andrews et al. (2020).

Other approaches to confounded data

FCI is not the only method out there that can handle hidden confounding.

Another, more recent, solution is called the confounding cascade nonlinear additive noise model
(CCANM; Cai et al., 2021).

CCANM

CCANM is an additive noise model (ANM-family) model that leverages a variational autoencoder
(VAE) in order to retrieve the causal direction between variables, including mediation and confounding
scenarios. The authors have shown that the model outperforms models such as a basic ANM and
LiNGAM on a number of benchmarks. CCANM tends to work better with larger sample size
(5,000-6,000) observations.

Extra – going beyond observations 393

CORTH

CORTH is an algorithm proposed by Ashkan Soleymani from MIT and colleagues (Soleymani et al.,
2022). The algorithm uses the double machine learning framework to identify the direct causes of a
variable of interest. It is framed by the authors as a causal feature selection algorithm. The algorithm allows
for hidden confounding in the dataset, but not between the variable of interest and its direct causes.

CORTH requires that no node in the dataset is a descendant of the variable of interest, but it does
not require faithfulness nor acyclicity between covariates and allows for non-linear interactions
between them.

In this section, we introduced causal discovery methods that can work under hidden confounding.
We discussed the FCI algorithm and implemented it using the causal-learn library. We also learned
how to pass prior knowledge to the algorithm and introduced two other methods that can work under
different scenarios involving hidden confounding: CCANM and CORTH.

In the next section, we’ll discuss methods that can leverage information coming from interventions.

Extra – going beyond observations
In certain cases, we might be able to intervene on some or all variables in order to facilitate or improve
the results of a causal discovery process.

In this short section, we’ll introduce two methods that can help us make sure that we make good use
of such interventions.

ENCO

Efficient Neural Causal Discovery (ENCO; Lippe et al., 2022) is a causal discovery method for
observational and interventional data. It uses continuous optimization and – as we mentioned
earlier in the section on DECI – parametrizes edge existence and its orientation separately. ENCO
is guaranteed to converge to a correct DAG if interventions on all variables are available, but it also
performs reasonably well on partial intervention sets. Moreover, the model works with discrete,
continuous, and mixed variables and can be extended to work with hidden confounding. The model
code is available on GitHub (https://bit.ly/EncoGitHub).

ABCI

Active Bayesian Casual Inference (ABCI; Toth et al., 2022) is a fully Bayesian framework for active
causal discovery and reasoning. ABCI requires no hidden confounding or acyclicity and assumes a
non-linear additive noise model with homoscedastic noise. A great advantage of ABCI is that it does
not necessarily focus on estimating the entire causal graph, but rather on a causal query of interest,
and then sequentially designs experiments that most reduce the uncertainty. This makes ABCI highly
data-efficient. As a Bayesian method, ABCI makes it easy to encode expert knowledge in the form of
a prior(s). Moreover, ABCI allows for different types of causal queries: causal discovery, partial causal
discovery, SCM learning, and more.

https://bit.ly/EncoGitHub

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond394

The model code is available on GitHub (https://bit.ly/ABCIGitHub).

In this section, we introduced two methods: ENCO and ABCI. They allow us to combine observational
and interventional data. ENCO provides excellent results when interventions for all variables are
available (almost error-free on graphs of up to 1,000 nodes), while ABCI provides excellent data
efficiency and can help focus efforts where it’s most needed. Both frameworks significantly expand
the realm of what’s possible with causal discovery and can bring benefits even when only minimal
interventions are possible.

Causal discovery – real-world applications, challenges,
and open problems
Before we wrap up this chapter, let’s take a broader perspective and discuss the applicability of causal
discovery to real-world problems and challenges that may arise along the way.

In the previous chapter, we mentioned that Alexander Reisach and colleagues have demonstrated that
the synthetic data used to evaluate causal discovery methods might contain unintended regularities
that can be relatively easily exploited by these models (Reisach et al., 2021). The problem is that these
regularities might not be present in real-world data.

Another challenge is that real-world data with a known causal structure is scarce. This makes synthetic
datasets a natural benchmarking choice, yet this choice leaves us without a clear understanding of
what to expect of causal structure learning algorithms when applied to real-world datasets.

The lack of reliable benchmarks is one of the main challenges in the field as of the time of writing
this chapter.

That said, there exists research examining causal discovery methods’ performance on real-world data.

We’ll now briefly discuss it.

Tu et al. (2019) applied four traditional causal discovery algorithms (FCI, RFCI, PC, and GES) to
real-world and (realistically) simulated data for neuropathic pain diagnosis. The dataset contains over
200 binary variables representing various injuries and symptoms.

The results for all causal discovery methods had limited quality in this setting. F1 scores varied roughly
between 0.01 and 0.32, depending on the method and setting (top scores required a very large sample
size, that is, >16,000 samples).

Huang et al. (2021) applied NO TEARS, DAG-GNN, and Temporal Causal Discovery Framework
(TCDF) methods to climate data. The dataset consisted of a set of variables representing the interactions
of Arctic Sea ice and the atmosphere. The authors concluded that they were able to achieve reasonable
results (a normalized Hamming distance of around 0.3) compared to the expert graph with NO TEARS
and DAG-GNN (but not TCDF).

https://bit.ly/ABCIGitHub

Wrapping it up! 395

The authors also report that both methods were sensitive to hyperparameter changes. This is challenging
in a real-world setting, where the true graph is unknown and there’s no good general benchmark,
because we don’t know which values of hyperparameters to choose.

Shen et al. (2020) applied FCI and FGES algorithms to Alzheimer’s disease data. The FGES algorithm
provided promising results with precision varying between 0.46 and 0.76 and recall varying between
0.6 and 0.74, depending on how much expert knowledge was injected into the algorithm.

The latter results show how valuable adding expert knowledge to the graph can be.

Causal discovery algorithms are also used in the industry. Unfortunately, most industrial use cases
are protected by non-disclosure agreements and cannot be shared publicly.

I hope that with the rising adoption of causal methods in the industry, this will start gradually changing
and we’ll start seeing more companies sharing their experiences. This is of paramount importance as
industrial use cases provide the research community with a vital injection of motivation. The research
community gives back, providing the industry with better and more efficient ideas, which moves the
industry forward.

We can observe the effects of such a virtuous circle in traditional machine learning today.

Benchmarking is not the only challenge in contemporary causal discovery.

Many real-world problems might be describable using mixed variable types (discrete and continuous).
For most causal discovery methods, this is a major challenge.

ENCO supports mixed types natively, but only when we provide the algorithm with interventional
data. The necessity to use interventional data might be a serious limitation in applying this algorithm
in certain use cases.

Contemporary causal discovery can be a source of valuable insights and can definitely be helpful, yet
it should be used with the awareness of its limitations.

We still haven’t reached the stage of a fully automated scientist, but I believe that causal discovery
research can move us a bit closer toward this milestone.

Understanding which methods can work under which circumstances is crucial and I hope that this
book gave you a solid foundation to build such awareness.

Congratulations on reaching the end of Chapter 14! Let’s summarize what we’ve learned.

Wrapping it up!
In this chapter, we introduced several methods and ideas that aim to overcome the limitations of
traditional causal discovery frameworks. We discussed DECI, an advanced deep learning causal
discovery framework, and demonstrated how it can be implemented using Causica, Microsoft’s open
source library, and PyTorch.

Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond396

We explored the FCI algorithm, which can be used to handle data with hidden confounding, and
introduced other algorithms that can be used in similar scenarios. These methods provide a strong
foundation for tackling complex causal inference problems.

After that, we discussed two frameworks, ENCO and ABCI, that allow us to combine observational
and interventional data. These frameworks extend our ability to perform causal discovery and provide
valuable tools for data analysis.

Finally, we discussed a number of challenges that we face when applying causal discovery methods
to real-world problems.

We are inexorably approaching the end of our journey.

In the next chapter, we’ll summarize everything we’ve learned so far, discuss practical ideas of how
to effectively apply some of the methods we’ve discussed, and see how causality is being successfully
implemented across industries.

References
Andrews, B., Sprites, P., & Cooper, G. F. (2020). On the Completeness of Causal Discovery in the Presence
of Latent Confounding with Tiered Background Knowledge. International Conference on Artificial
Intelligence and Statistics.

Cai, R., Qiao, J., Zhang, K., Zhang, Z., & Hao, Z. (2021). Causal discovery with cascade nonlinear
additive noise models. ACM Trans. Intell. Syst. Technol., 6(12).

Geffner, T., Antorán, J., Foster, A., Gong, W., Ma, C., Kıcıman, E., Sharma, A., Lamb, A., Kukla, M.,
Pawlowski, N., Allamanis, M., & Zhang, C. (2022). Deep End-to-end Causal Inference. arXiv.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.

Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., Lopez-Paz, D., & Sebag, M. (2018). Causal generative
neural networks. arXiv.

Huang, Y., Kleindessner, M., Munishkin, A., Varshney, D., Guo, P., & Wang, J. (2021). Benchmarking
of Data-Driven Causality Discovery Approaches in the Interactions of Arctic Sea Ice and Atmosphere.
Frontiers in Big Data, 4.

Kalainathan, D., Goudet, O., Guyon, I., Lopez-Paz, D., & Sebag, M. (2022). Structural agnostic modeling:
Adversarial learning of causal graphs. arXiv.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved
Variational Inference with Inverse Autoregressive Flow. Advances in Neural Information Processing
Systems, 29.

References 397

McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite Mixture Models. Annual Review of
Statistics and Its Application, 6(1), 355-378.

Lippe, P., Cohen, T., & Gavves, E. (2021). Efficient neural causal discovery without acyclicity
constraints. arXiv.

Park, J., Song, C., & Park, J. (2022). Input Convex Graph Neural Networks: An Application to Optimal Control
and Design Optimization. Open Review. https://openreview.net/forum?id=S2pNPZM-w-f

Reisach, A. G., Seiler, C., & Weichwald, S. (2021). Beware of the Simulated DAG! Varsortability in
Additive Noise Models. arXiv.

Shen, X., Ma, S., Vemuri, P., & Simon, G. (2020). Challenges and opportunities with causal discovery
algorithms: application to Alzheimer’s pathophysiology. Scientific Reports, 10(1), 2975.

Soleymani, A., Raj, A., Bauer, S., Schölkopf, B., & Besserve, M. (2022). Causal feature selection via
orthogonal search. Transactions on Machine Learning Research.

Sprites, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search. MIT Press.

Spirtes, P., Meek, C., & Richardson, T. S. (2013). Causal inference in the presence of latent variables
and selection bias. arXiv.

Toth, C., Lorch, L., Knoll, C., Krause, A., Pernkopf, F., Peharz, R., & Von Kügelgen, J. (2022). Active
Bayesian Causal Inference. arXiv.

Tu, R., Zhang, K., Bertilson, B., Kjellstrom, H., & Zhang, C. (2019). Neuropathic pain diagnosis simulator
for causal discovery algorithm evaluation. Advances in Neural Information Processing Systems, 32.

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test
and application in causal discovery. arXiv.

Zheng, X., Aragam, B., Ravikumar, P., & Xing, E. P. (2018). DAGs with NO TEARS: Continuous
Optimization for Structure Learning. Neural Information Processing Systems.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., & Xing, E. P. (2020). Learning Sparse Nonparametric
DAGs. International Conference on Artificial Intelligence and Statistics.

https://openreview.net/forum?id=S2pNPZM-w-f

15
Epilogue

Congratulations on reaching the final chapter!

This is the last stop in our journey. Before we close, we’ll do a number of things:

• Summarize what we’ve learned in the book

• Discuss five steps to get the best out of your causal projects

• Take a look at the intersection of causality and business and see how organizations implement
successful causal projects

• Take a sneak peek into (a potential) future of causality

• Discuss where to find resources and how to learn more about causality

Ready for the last leap?

What we’ve learned in this book
Back in Chapter 1, we started our causal journey by asking about the reasons to use causal modeling
rather than traditional machine learning, despite the tremendous success of the latter.

We defined the concept of confounding and showed how it can lead us astray by producing spurious
relationships between causally independent variables. Next, we introduced the Ladder of Causation
and its three rungs – observations, interventions, and counterfactuals. We showed the differences
between observational and interventional distributions using linear regression.

After that, we refreshed our knowledge of the basic graph theory and introduced graphs as an important
building block for causal models. We discussed three basic conditional independence structures –
forks, chains, and colliders, and showed that colliders have a special status among the three, allowing
us to infer the direction of causal influence from the data.

Next, we introduced DoWhy, and we learned how to implement DoWhy’s four-step causal process.
This led us to the discussion on assumptions behind causal models and the challenges that we might
face when implementing them in practice.

Epilogue400

Keeping these ideas in mind, we moved to (conditional) average treatment effect ((C)ATE) estimation
methods and demonstrated how to implement them using DoWhy and EconML in observational
and interventional scenarios.

We closed Part 2 of the book by implementing meta-learners with tree-based and deep learning
methods, and we learned how to implement a Transformer-based CausalBert model that allows
us to control for confounding coming from natural language.

In Part 3, we reviewed various sources of causal knowledge and headed toward a discussion on causal
discovery. We started with classic constraint-based algorithms and moved toward modern gradient-
based methods, closing with a full implementation of Microsoft’s DECI algorithm using PyTorch.

In the next section, we’ll discuss five steps to get the best out of your causal project that are based on
some of the best practices we discussed in the book.

Five steps to get the best out of your causal project
In this section, we’ll discuss five steps that can help you maximize the potential of your causal project.

Starting with a question

Starting with a well-defined question is a necessary step of any scientific or business endeavor, but it
has special importance in causality.

A well-defined question can transform an impossible problem into a tractable one. Causal modeling can
sometimes be a divide-and-conquer game, and various challenges that might initially seem impossible
to tackle can be addressed (sometimes relatively easily) if we’re open to refining our questions.

For instance, one mistake that I observe in the industry is starting with very broad questions regarding
a complete causal model of a process, or even an entire organization/organizational unit. In certain
cases, building such a complete model might be very difficult, very costly, or both.

Often, answering one or two well-defined causal questions can bring significant benefits at a fraction
of the cost of such a big project.

The problem with over-scoping the project and asking too broad questions is not unique to causality.
It happens in non-causal AI projects as well. That said, under-defined or incorrectly scoped questions
can break a causal project much faster than a traditional machine learning project.

One positive is that an organization can understand relatively early on that a project does not bring
the expected benefits and shut it down faster, avoiding significant losses. The negative is that such an
experience might produce disappointment, leading to reluctance to move toward causal modeling. This
can be detrimental because, for many organizations, causal modeling can bring significant benefits,
which might often remain unrealized without causal methods.

A well-defined (set of) question(s) is vital to any successful causal project.

Five steps to get the best out of your causal project 401

Obtaining expert knowledge

Expert knowledge is of paramount importance in causal modeling. Expert insights can help us
disambiguate ambiguous edges in a causal graph, narrow down the search space, and evaluate the
quality of the output of causal discovery algorithms. Many sources of information can be valuable
here – domain knowledge, scientific literature, previous internal experiments, results of simulations,
and so on.

Depending on the use case, collecting and validating expert knowledge can be a short and natural
process or a long and effortful one, but its value is hard to overestimate.

Note that not all sources of expert knowledge have to come with the same level of confidence. It’s a
good idea to keep an open mind regarding the (less confident) sources and be prepared to discard
them in the process, especially if alternative explanations are more plausible and/or more coherent
with other trustworthy sources of information.

It’s a good practice to store and manage expert knowledge in a structured and accessible way (e.g.,
following FAIR (https://bit.ly/FAIRPrinciples) or another set of principles that are well
suited for your organization and the problem that you’re solving).

This is of special importance in the case of larger systems. A lack of good access to collected expert
knowledge can lead to frustration and consume a project team’s creative energy, which should be
directed at solving a problem rather than dealing with avoidable technical issues.

Once collected, information should be stored in a way that enables us to easily access it in the future.
This way, we can make sure that we optimally use our resources if this particular knowledge can be
reused in future projects.

After collecting expert knowledge, we’re ready to encode it as a graph.

In reality, expert knowledge collection and graph generation can be intertwined, and multiple iterations
between these two steps can occur.

Generating hypothetical graph(s)

After defining the question and collecting available expert knowledge, we are ready to generate the
first hypothetical graph (or a set of hypothetical graphs).

These graphs represent our hypotheses regarding the data-generating process.

They don’t have to be perfect or complete at this stage. Hypothetical graphs will allow us to understand
what we know and whether we have enough information to answer the question(s) of interest.

Sometimes, even graphs that look non-sufficiently informative at first sight might contain enough
information to answer some (or all) of our questions.

https://bit.ly/FAIRPrinciples

Epilogue402

Depending on the size of the graph, the size of the project, and your organization characteristics, we
might choose different storage options for our graphs – a repository containing (a) file(s) encoding
the graph(s) or a graph database (e.g., Neo4j or Amazon Neptune) can all be valid options for you.

Accessibility and the ease of updating the structure are of key importance here.

Check identifiability

It’s likely that your first graph will contain some ambiguous edges and/or some unobserved variables.
The effect of interest might be possible to estimate even despite this.

To check whether this is the case, you can use one of the advanced identifiability algorithms. You can
find some of these algorithms in the Python grapl-causal library, developed by Max Little of the
University of Birmingham and MIT.

Check the repository and demo notebooks here: https://bit.ly/GRAPLCausal.

Even if your effect is not identifiable right away, you might still be able to obtain some actionable
information from your model. This is possible for a broad array of models with sensitivity analysis
tools (check Chapter 8 for more details).

For instance, if you work in marketing or sales, you might know from experience that even if there’s
hidden confounding in your data, the maximum impact of all hidden confounders on sales should
not be greater than some particular value.

If this is the case, you can reliably check whether your effect holds under extreme confounding or
under the most likely values of confounders.

If your effect turns out to be identifiable right away or you work with experimental data, you can start
estimating the effect using one of the methods that we discussed in Part 2 of our book.

If you have doubts regarding some of the edges or their orientation, you can employ one of the causal
discovery methods that we discussed in Part 3 and confront the output against expert knowledge. If
you can afford interventions on all or some variables, methods such as ENCO (Chapter 14) can lead
to very good results.

Falsifying hypotheses

When we obtain an identifiable graph, we treat it as a hypothesis, and we can now learn the functional
assignments over the graph (e.g., using the four-step framework from Chapter 7). After learning the
functional assignments over the graph, we can generate predictions. Testing these predictions over
interventional test data is a good way to check whether the model behaves realistically.

Strong discrepancies between predictions and actual effects are a strong indicator that a model has
issues (structural, related to estimation or both). A lack of discrepancies does not automatically
guarantee that the model is correct (recall the Popperian logic of falsification that we discussed in
Chapter 7 and Chapter 12).

https://bit.ly/GRAPLCausal

Causality and business 403

The five steps (defining the question(s), collecting expert knowledge, generating a graph, checking
identifiability, and falsifying the hypotheses) are usually performed iteratively, and sometimes, their
ordering may be altered. They might also involve some advanced techniques that we did not discuss in
our book – root cause analysis, causal outlier detection, generating counterfactuals from a functional
model, and so on.

Note that the steps we described do not include the actual data collection process. This is because
data collection might happen at very different stages, depending on the nature of the question, your
organization’s data maturity, and the methodology you pick.

In this section, we discussed five steps we can take in order to carry out a reliable causal project:

1. Starting with a question.

2. Obtaining expert knowledge.

3. Generating hypotheses.

4. Checking identifiability.

5. Falsifying the hypotheses.

In the next section, we’ll see examples of causal projects carried out in the real world.

Causality and business
In this section, we’ll describe a couple of real-world use cases where causal systems have been
successfully implemented to address business challenges and discuss how causality intersects with
business frameworks.

How causal doers go from vision to implementation

Geminos is a US-based company, with a mission to help businesses across industries solve their
challenges using causality. One of Geminos’ success stories that I particularly like comes from their
engagement with an industrial manufacturer of metal products; let’s call them Company M.

I like this story, because it emphasizes the broad applicability of causality that goes way beyond the
most popular cases in marketing and econometrics.

Let’s see how it worked.

Company M was interested in optimizing the process of production of one of its products. They
formulated four main questions:

1. How do we minimize an important characteristic of product P?

2. Which variables have the strongest effect on outcome O?

3. What has caused a recent change in outcome O and how do we revert the change?

4. Why do outliers occur and how do we remove them?

Epilogue404

Note that all four questions require at least interventional (rung 2) reasoning, which makes them
unanswerable using traditional statistical or machine learning methods.

For instance, question 1 asks what actions should be taken to minimize the characteristic of interest
of product P. This question goes beyond plain understanding of what simply correlates with this
characteristic (for context, recall our discussion on confounding from Chapter 1). To answer question
1, we need to understand the mechanism behind this characteristic and how changes in other variables
can affect it.

After defining the questions, Geminos’ team consulted the experts and researched relevant scientific
literature. Combining information from both sources, the team built their first hypothetical graph.

Company M had recorded a rich set of variables describing their processes for a couple of years before
the project started, yet it turned out that some of the variables considered in the graph had not been
collected up to this point.

The team addressed this challenge by adjusting the graph in a way that preserved identifiability of the
most important relationships, and the client learned which variables should be prioritized for future
collection to facilitate further causal analyses.

The knowledge about which variables’ collection to prioritize in the future was valuable in itself, as it
helped the client understand how to optimally allocate resources. Installing new sensors or altering
the existing software architecture can be very expensive, and when it does not lead to insights that
bring real business value, it can cause significant losses.

With the updated graph, the team was ready to start validating their hypotheses. They estimated the
coefficients in the model described by the hypothetical graph using Geminos’ DoWhy-powered platform.

The team compared model outcomes against observational and interventional data and iteratively
improved the model. As Owen from Geminos emphasized, “Interrogating causal models is an important
element of the iterative approach taken to causal AI.”

After a number of iterations, the client was able to answer their questions and optimize the process
beyond what they had previously been able to achieve, using traditional machine learning, statistical
and optimization tools.

Company M spotted the outliers using causal outlier detection and understood the causal chain behind
recent changes, ultimately answering all four key questions they formulated at the beginning of the
project. This led to significant improvements in the production process.

The company also learned how to structure and prioritize their new data collection efforts in order to
maximize the value, which saved them potential losses related to adapting existing systems to collect
data that would not bring clear business value.

Geminos is not the only organization that successfully implements and productionalizes causal solutions.
A UK-based company, causaLens, offers a causal data science platform that abstracts much of the
complexity of building causal models. causaLens has helped numerous customers across industries

Toward the future of causal ML 405

build more robust solutions by introducing causality. Their use cases include marketing, supply chain,
manufacturing optimization and more.

Causal modeling is also used in the digital entertainment industry. Playtika, an Israel-based digital
entertainment company specializing in mobile gaming uses uplift (CATE) modeling to optimize their
user experience. The company has recently open sourced their uplift evaluation library, uplift-
analysis (check out https://bit.ly/PlaytikaUplift).

Causal modeling is also used by Swedish audio streaming giant Spotify. The company regularly shares
their experience in applied causality through their technical blog and top conference publications
(e.g., Jeunen et al., 2022). Spotify’s blog covers a wide variety of topics, from sensitivity analysis of a
synthetic control estimator (which we learned about in Chapter 11; see more at https://bit.ly/
SpotifySynthControl) to disentangling causal effects from sets of interventions under hidden
confounding (https://bit.ly/SpotifyHiddenBlog).

Production, sales, marketing and digital entertainment are not the only areas that can benefit from
causal modeling. Causal models are researched and implemented across fields, from medicine to the
automotive industry.

This is not surprising, as causal models often capture the aspects of problems that we’re the most
interested in solving. Causal models (in particular structural causal models (SCMs)) are also
compatible with (or easily adaptable to) numerous business and process improvement frameworks.

Let’s see an example. Six Sigma is a set of process improvement tools and techniques proposed by Bill
Smith at Motorola. Within the Six Sigma framework, causality is defined as an impact of some input
x on some output y via some mechanism f , formally:

 y : = f (x)

Note that this is almost identical to functional assignments in SCMs, which we discussed back in
Chapter 2 (except that we skip the noise variable in the preceding formula).

This makes causal analysis a natural choice whenever decision-making questions are at play.

To learn more about causality from a business point of view, check out Causal Artificial Intelligence:
The Next Step in Effective, Efficient, and Practical AI by Judith Hurwitz and John K. Thompson (due
for release in Q4 2023). Now, let’s take a look at the future of causality.

Toward the future of causal ML
In this section, we’ll briefly explore some possible future directions for causality from business,
application, and research point of views. As always when talking about the future, this is somewhat
of a gamble, especially in the second part of this section where we will discuss more advanced ideas.

Let’s start our journey into the future from where we’re currently standing.

https://bit.ly/PlaytikaUplift
https://bit.ly/SpotifySynthControl
https://bit.ly/SpotifySynthControl
https://bit.ly/SpotifyHiddenBlog

Epilogue406

Where are we now and where are we heading?

With an average of 3.2 new papers published on arXiv every day in 2022, causal inference has exploded
in popularity, attracting a large amount of talent and interest from top researchers and institutions,
including industry giants such as Amazon or Microsoft.

At the same time, for many organizations, causal methods are much less accessible than traditional
statistical and machine learning techniques. This state of affairs is likely driven by a strong focus of
educational system on associational methods when teaching about data science and machine learning,
along with a lack of accessible materials that combine the theoretical and practical aspects of causality
(I hope that this book will be a small step in changing the latter).

A number of aspects of causal modeling and causal thinking can be relatively easily adopted by many
organizations, bringing them strong benefits.

Here are three skills that offer significant benefits for a wide range of organizations:

• An awareness of the differences between the rungs of the Ladder of Causation can help analysts
clearly distinguish between problems that can be solved using traditional associational methods
and ones that cannot be solved this way. Such awareness empowers organizations to mitigate
losses related to investing in machine learning projects that answer ill-posed questions and
cannot succeed in the long run.

• The ability to think structurally about a data-generating process and to understand conditional
independence structure can help analysts, data scientists, and engineers make better decisions
regarding statistical control and understand the challenges to the robustness of their models
under distribution shifts. This ability enables teams across an organization to avoid costly
surprises caused by misleading predictions generated by mis-specified models.

• The ability to model conditional average treatment effects (CATE) can help uncover
information hidden by traditional A/B testing analysis techniques and bring new opportunities
to personalize and revolutionize user experience. Causal personalization might bring better
returns than traditional recommender systems. This is true in marketing, churn prevention,
and other areas, thanks to CATE models’ capability to recognize which units should be treated
and which ones should remain untreated.

Despite the relatively low entry barrier, these three ideas seem to be highly underutilized across sectors,
industries, and organization types.

Causal benchmarks

From a research perspective, one of the main challenges that we face today in causality is a lack of widely
accessible real-world datasets and universal benchmarks – the analogs of ImageNet in computer vision.

Datasets and benchmarks can play a crucial role in advancing the field of causality by fostering
reproducibility and transparency and providing researchers with a common point of reference.

Toward the future of causal ML 407

Today’s synthetic benchmarks have properties that hinder their effective use in causal discovery
(Reisach et al., 2021) and causal inference (Curth et al., 2021).

The topic of causal benchmarks is actively researched, and initiatives such as CLeaR 2023’s Call for
Causal Datasets (https://bit.ly/CLeaRDatasets) demonstrate the community’s rising
awareness and readiness to tackle these challenges.

Some useful data simulators that can help to benchmark causal discovery methods have been also
proposed recently (see https://bit.ly/DiagnosisSimulator).

Now, let’s discuss four potential research and application directions where causality can bring value.

Causal data fusion

Causal data fusion (Bareinboim & Pearl, 2016, and Hünermund & Bareinboim, 2023) is an umbrella
term for combining data from different sources to perform causal inference. In particular, interventional
data might be combined with observational data. Causal data fusion might be particularly useful
when combined with uncertainty estimation (e.g., Chau et al., 2021) and active learning paradigms
(e.g., Toth et al., 2022).

Causal data fusion’s promise is to make causal inference efficient by leveraging information from
multiple datasets coming from different sources. This is particularly beneficial in biomedical sciences,
where experiments might be expensive, difficult, or risky. Causal data fusion can help make valid
and trustworthy conclusions by combining the information from small-sample experiments and
large-sample observational datasets.

Although a number of challenges in causal data fusion are effectively solved (Bareinboim & Pearl,
2016), the paradigm seems underutilized in practice, in particular in industry.

This could be perhaps changed by making stakeholders more familiar with the opportunities that
causal data fusion offers.

Intervening agents

The 2022/23 generative AI revolution has resulted in a number of new applications, including Auto-
GPT or AgentGPT – programs that leverage GPT-class models behind the scenes and allow them to
interact with the environment.

Model instances (called agents) might have access to the internet or other resources and can solve
complex multistep tasks. Equipping these agents with causal reasoning capabilities can make them
much more effective and less susceptible to confounding, especially if they are able to interact with
the environment in order to falsify their own hypotheses about causal mechanisms.

Agents such as these could perform automated research and are a significant step toward creating the
automated scientist. Note that allowing these agents to interact with the physical environment rather
than only with the virtual one could significantly enhance their efficiency, yet this also comes with a
number of important safety and ethical considerations.

https://bit.ly/CLeaRDatasets
https://bit.ly/DiagnosisSimulator

Epilogue408

Note that these ideas are related to some of the concepts discussed extensively by Elias Bareinboim in
his 2020 Causal Reinforcement Learning tutorial (https://bit.ly/CausalRL).

Causal structure learning

Causal structure learning (Schölkopf et al., 2021) is a broad term encompassing various algorithms
aimed at decoding a causal structure from high-dimensional data (e.g., video). Contrary to traditional
causal discovery, causal structure learning assumes that some lower-dimensional latent variables exist
that describe the causal structure of a system presented in the original high-dimensional representation.

For example, CITIRS (Lippe et al., 2022) learns low-level causal structures from videos
containing interventions.

Depending on a model, causal structure models can work in various scenarios (e.g., with known or
unknown interventions). This line of research can help us build systems that can intervene in the
world and learn causal structures by observing the effects of their interventions (using vision or
other modalities).

Note that the term causal structure learning is sometimes used interchangeably with the term causal
discovery, and sometimes causal structure learning is understood as a superset of causal discovery,
which includes the models with and without latent variables.

Imitation learning

When human babies learn basic world models, they often rely on experimentation (e.g., Gopnik, 2009;
also vide Chapter 1 of this book). In parallel, children imitate other people in their environment. At
later stages in life, we start learning from others more often than performing our own experiments.
This type of learning is efficient but might be susceptible to arbitrary biases or confounding.

Racial or gender stereotypes passed through generations are great examples of learning incorrect
world models by imitation. For instance, in modern Western culture, it was widely believed until
the late 1960s that women are physically incapable of running a marathon. Bobbi Gibb falsified this
hypothesis by (illegally) running in the Boston Marathon in 1966. She not only finished the race but
also ran faster than roughly 66% of the male participants (https://bit.ly/BobbiGibbStory).

Imitation learning is often more sample-efficient than experiments but does not guarantee causal
identifiability. We face a similar challenge in modern natural language processing (NLP). Some
large language models (LLMs) offer powerful causal capabilities learned from language data, but
they sometimes fail unpredictably (Kıcıman et al., 2023).

Willig et al. (2023) proposed that LLMs learn a meta-SCM from text and that this model is associational
in its nature.

Agents learning by imitation and then falsifying learned models by using interventions, or carrying
out efficient causal reasoning by leveraging causal data fusion, can be great and efficient learners,
capable of fast adaptation to various domains.

https://bit.ly/CausalRL
https://bit.ly/BobbiGibbStory

Learning causality 409

For instance, causally aware imitation learning can be very useful to create virtual assistants for business,
medicine, or research. These assistants can learn from existing materials or the performance of other
(virtual or physical) assistants and then improve by validating the trustworthiness of learned models.

Another broad research direction that intersects with some of the preceding ideas is neuro-symbolic AI
– a class of models combining associational representation learning with symbolic reasoning modules.

The causal analysis of LLMs that we mentioned earlier in this section is in itself a promising research
path that brings many interesting questions to the table. Thanks to the broad adoption of LLMs, this
path has a chance to spark broader interest and attract the funding necessary to achieve significant
progress in the near future.

Learning causality
In this section, we’ll point to the resources to learn more about causality after finishing this book.

For many people starting with causality, their learning path begins with excitement. The promise of
causality is attractive and powerful. After learning about the basics and realizing the challenges that
any student of causality has to face, many of us lose hope in the early stages of our journeys.

Some of us regain it, learning that solutions do exist, although not necessarily where we initially
expected to find them.

After overcoming the first challenges and going deeper into the topic, many of us realize that there
are more difficulties to come. Learning from earlier experiences, it’s easier at this stage to realize that
(many of) these difficulties can be tackled using a creative and systematic approach.

I like the way the Swiss educator and researcher Quentin Gallea presented the journey into learning
causality in a graphical form (Figure 15.1).

Figure 15.1 – The journey into causality by Quentin Gallea

Epilogue410

The figure comes from The Causal Mindset (https://bit.ly/QuentinGallea), a book that
Quentin is working on.

At whichever point of the curve from Figure 15.1 you find yourself currently, being consistent will
inevitably move you to the next stage.

A common problem that many of us face when learning a new topic is the choice of the next resource
after finishing a book or a course.

Here are a couple of resources that you might find useful on your journey one day.

First, there are many great books on causality. Starting with Judea Pearl’s classics such as The Book of
Why and finishing with Hernán and Robins’ What If?, you can learn a lot about different perspectives
on causal inference and discovery. I summarized six great books on causality in one of my blog posts
here: https://bit.ly/SixBooksBlog.

Second, survey papers are a great way to get a grasp of what’s going on in the field and what the open
challenges are.

Here are three survey papers that can help you understand the current causal landscape:

• Causal machine learning: A survey and open problems (Kadour et al., 2022)

• Deep Causal Learning: Representation, Discovery and Inference (Deng et al., 2022)

• D’ya like dags? A survey on structure learning and causal discovery (Vowels et al., 2022)

Additionally, for a unifying perspective on various causal methods, check out the Causal Deep Learning
paper by Jeroen Berrevoets and colleagues (Berrevoets et al., 2023).

To stay up to date, get free learning resources, and become a part of a community of like-minded causal
learners, subscribe to my free weekly Causal Python newsletter: https://bit.ly/CausalPython

Let’s stay in touch
Community is a catalyst for growth. Let’s connect on LinkedIn and Twitter so that we can learn from
each other:

• LinkedIn: https://www.linkedin.com/in/aleksandermolak/

• Twitter: @AleksanderMolak

If you want to consult a project or run a workshop on causality for your team, drop me a line at
alex@causalpython.io.

For comments and questions regarding this book, email me at book@causalpython.io.

https://bit.ly/QuentinGallea
https://bit.ly/SixBooksBlog
https://bit.ly/CausalPython
https://www.linkedin.com/in/aleksandermolak/
mailto:@AleksanderMolak
mailto:alex@causalpython.io
mailto:book@causalpython.io

Wrapping it up 411

Wrapping it up
It’s time to conclude our journey.

In this chapter, we summarized what we’ve learned in this book, discussed five steps to make the best
out of our causal projects, took a look at the intersection of causality and business, and sneaked into
the (potential) future of causal research and applications. Finally, we listed a number of resources that
you mind find useful in the next stages of your causal journey.

I hope finishing this book won't be the end for you, but rather the beginning of a new causal chapter!

I hope to see you again!

References
Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the
National Academy of Sciences of the United States of America, 113(27), 7345–7352.

Berrevoets, J., Kacprzyk, K., Qian, Z., & van der Schaar, M. (2023). Causal Deep Learning. arXiv.

Chau, S. L., Ton, J.-F., González, J., Teh, Y., & Sejdinovic, D. (2021). BayesIMP: Uncertainty Quantification
for Causal Data Fusion.

In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. W. Vaughan (Eds.), Advances in Neural
Information Processing Systems, 34, 3466–3477. Curran Associates, Inc.

Curth, A., Svensson, D., Weatherall, J., & van der Schaar, M. (2021). Really Doing Great at Estimating
CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation. Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks.

Deng, Z., Zheng, X., Tian, H., & Zeng, D. D. (2022). Deep Causal Learning: Representation, Discovery
and Inference. arXiv.

Gopnik, A. (2009). The philosophical baby: What children’s minds tell us about truth, love, and the
meaning of life. New York: Farrar, Straus, and Giroux.

Hünermund, P., & Bareinboim, E. (2023). Causal inference and data fusion in econometrics. arXiv.

Jeunen, O., Gilligan-Lee, C., Mehrotra, R., & Lalmas, M. (2022). Disentangling causal effects from sets
of interventions in the presence of unobserved confounders. Advances in Neural Information Processing
Systems, 35, 27850–27861

Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J., & Silva, R. (2022). Causal machine learning: A survey
and open problems. arXiv.

Kıcıman, E., Ness, R., Sharma, A., & Tan, C. (2023). Causal Reasoning and Large Language Models:
Opening a New Frontier for Causality. arXiv.

Epilogue412

Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., & Gavves, S. (2022). CITRIS: Causal
identifiability from temporal intervened sequences. In International Conference on Machine Learning
(pp. 13557–13603). PMLR.

Reisach, A.G., Seiler, C., & Weichwald, S. (2021). Beware of the Simulated DAG! Varsortability in
Additive Noise Models. arXiv.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021).
Toward causal representation learning. Proceedings of the IEEE, 109(5), 612–634.

Toth, C., Lorch, L., Knoll, C., Krause, A., Pernkopf, F., Peharz, R., & Von Kügelgen, J. (2022). Active
Bayesian Causal Inference. arXiv.

Vowels, M. J., Camgoz, N. C., & Bowden, R. (2022). D’ya like dags? A survey on structure learning and
causal discovery. ACM Computing Surveys, 55(4), 1–36.

Willig, M., Zečević, M., Dhami, D. S., Kersting, K. (2023). Causal Parrots: Large Language Models May
Talk Causality But Are Not Causal [ACM preprint].

Index

A
abduction 31
action recommendation systems 261
Active Bayesian Causal Inference

(ABCI) 393
acyclic graph

versus cyclic graph 56, 57
adaptive hyper-box matching (AHB) 186
Additive Noise Model (ANM)

148, 349-353, 392
adjacency matrix 58-60, 332
Area Under the Uplift Curve (AUUC) 257
assignment operator 20
association 16, 18, 20

best practice 20-23
associational relationships 18
associative learning 5
assumptions 74, 77, 78

for causal discovery 76, 77
attention mechanism 295
augmented Lagrangian optimizer 374
availability heuristic 322
average treatment effect (ATE)

173, 219, 296, 387
versus average treatment effect on

the control (ATC) 175

average treatment effect on the
control (ATC) 173

versus average treatment effect (ATE) 175
average treatment effect on the

treated (ATT) 173

B
back-door criterion 33, 97, 104
base-learners 192
Bayesian 72
Bayesian Dirichlet Equivalent

Uniform (Bdeu) 347
Bayesian Information Criterion (BIC) 347
beliefs 72
BERT 286, 292, 295

C
Carnegie Mellon University (CMU) 330
CATENets 277

experiments 277-284
causal autoregressive flow 373
CausalBert 292

architecture 292, 293
in code 293-297
working with 293

Index414

causal conclusion
example 9-11

causal data fusion 407
causal discovery 60, 67, 73, 74, 315, 323, 328

assumptions 76, 77
combining, with expert knowledge 67
discovering 328
faithfulness 328
faithfulness assumption 328
faithfulness assumption, problems 328
families 329
four streams 329, 330
methods 154
minimalism 329
minimality 328
model, fitting 336
problems and challenges 394, 395

causal discovery algorithms
combining, with expert knowledge 366, 367

causal effect
estimates, obtaining 134, 135
rule 104

causaLens 404
Causal Forest 242

advantages 242
overflow 242
with DoWhy 243, 245
with EconML 243, 245

causal graphs
causal discovery 67
causal discovery, combining with

expert knowledge 67
expert knowledge 67
sources 66

causal inference 73, 74, 328
challenges 152
conditions 74-76

causal inference process 139
assumptions, encoding 140, 141
estimand, obtaining 142
estimator 143, 144
refutation tests 144, 145

causality
child interaction 5, 9
confounding 6-9
history 4, 5
learning 409, 410
need for 5

causality and business 403
implementing 403-405

causal knowledge
habituation 316
scientific methods 317-321
sources 316
violation of expectation (VoE) 317

causally sufficient embeddings 292
causal Markov condition 74
causal minimality 77

assumption 77, 329
condition 77

causal ML
agents, intervening 407, 408
benefits 406
causal benchmarks 406
causal data fusion 407
causal structure learning 408
future 405
imitation learning 408

causal models
creative ideas, evaluating 156, 157
validation 135

causal project 400
defining 400
expert knowledge, obtaining 401
hypotheses 402, 403

Index 415

hypothetical graph, generating 401
identifiability, checking 402

CausalPy 297, 304
causal structure learning 67, 323, 324, 408
causal sufficiency 77, 328
causal trees 242
causation 26, 27
Causica

reference link 376
chain 79, 80, 341

graphical representation 86
chain dataset

generating 87, 88
chain of events 78, 79
challenges, faced by causal data scientists

lack of causal graphs 153, 154
not enough data 154-156
unverifiable assumptions 156

ChatGPT 286
counterfactual reasoning 287

classifier two-sample test (C2ST) 250
clever covariate 226
coarsened exact matching (CEM) 186
cocktail party problem 356
coefficients 38
collider 82-84, 167, 175, 341

graphical representation 86
collider dataset

generating 89, 90
common cause 165
common support 157
complete partially directed acyclic

graph (CPDAG) 56, 85, 337
conditional average treatment effect

(CATE) 173, 189, 219,
274, 387, 400, 406

versus individual treatment effect (ITE) 190

conditional independence 73
conditional probability 18, 72
conditioning 5
conditions 74

for causal inference 74-76
confounding 165

versus exchangeability 161
confounding cascade nonlinear additive

noise models (CCANM) 392
confounding variable 6
connected graphs

versus disconnected graphs 57, 58
consistency assumption 162-165
constrain-based causal discovery 76
constraint-based methods 330, 341

independence structure, leveraging
to recover graph 342-345

PC algorithm 345, 346
PC algorithm, for categorical data 346, 347

correlation 26, 27
CORTH 393
counterfactual explanations 267, 268
counterfactual reasoning 17
counterfactuals 10, 28

code implementation 32, 33
computing 30, 31
example 28, 29
fundamental problem of causal inference 30

covariates 44, 45
control-or-not-to-control 48
heuristics, controlling 45
scenarios 45-48

CRASS counterfactual benchmark 287
cross-validation (CV) 135, 229
cyclic graph

versus acyclic graph 56, 57
cyclic SCMs 68

Index416

D
data

generating, with gCastle 333-336
data approaches, hidden confounding

CCANM 392
CORTH 393

data-generating process 19
data subset refuter 138
debiased machine learning 228
Deep End-to-end Causal Inference

(DECI) 327, 371
configuring 378
data, preparing 378
end-to-end causal framework 387
expert knowledge 379-381
implementing, in code 375-377
modules 381-384
results 386, 387
training 384-386

deep learning
advanced causal discovery 372
autoregressive flows 373
DECI, implementing in code 375-377
DECI internal building blocks 373-375
for heterogeneous treatment effects 274
generative models 372

demarcation problem 137
dependent variable 43
difference-in-differences 154
directed acyclic graph (DAG) 64, 98, 74,

127, 175, 216, 291, 324, 329, 374
causality, defining 64, 65
collision warning system 78
limitations 66

directed graphs
versus undirected graphs 56

DirectLiNGAM 359, 360

disconnected graphs
versus connected graphs 57, 58

Diverse Counterfactual
Explanations (DiCE) 268

reference link 268
do-calculus 119

rules 119
domain expertise 154
domain knowledge 323
donor pool 299, 308
double machine learning (DML)

127, 215, 227, 228
need for 228
overfitting bias 229
overview 239, 240
regularization bias 229-231
technique 154
versus doubly robust (DR) methods 240, 241
with DoWhy 231-234
with EconML 231-234

double machine learning framework 393
doubly robust (DR) methods 215, 216

basic idea 218, 219
benefits 218
chasm, crossing 220-224
doubly robust estimator, versus

assumptions 220
need for 216, 217
options 224
targeted maximum likelihood

estimator (TMLE) 224-227
value 218
versus double machine learning

(DML) 240, 241
DoWhy packages 126, 128
d-separation 65, 75, 97-101
dynamic almost matching

exactly (DAME) 186

Index 417

E
EconML

reference link 242
EconML estimators

reference link 266
EconML packages 126, 129, 130
edges 55
Efficient Neural Causal Discovery

(ENCO) 393
ELMo 286
ELU (exponential linear unit) 281
ENCO method 402
endogenous variable 19
equal estimates

versus equivalent estimands 106
equivalent estimands 105-107

versus equal estimates 106
estimand 97, 102-104

identifying 133, 134
estimator consistency 228
estimators 102
Euclidean distance 174
exchangeability 161

versus confounding 161
exchangeable subjects 161
exogenous variable 19
expected response metric 261, 262
expert knowledge 67

causal discovery algorithms,
combining with 366, 367

combining, with causal discovery 67
encoding 366
in gCastle 366, 367

F
faithfulness assumption 64, 76, 328, 388

problems 328
falsifiable hypothesis 318
falsification 318
fast causal inference (FCI) 68, 371
FCI algorithm 388

edge types 388
expert knowledge 391, 392
implementing 388-391

FGES (fast GES) 362
final model 231
fluctuation parameter 226
fork 80-82, 341

graphical representation 86
fork dataset

generating 88, 89
frequentist 72
Frisch-Waugh-Lovell (FWL) 229
Frobenius norm 374
front-door adjustment 111
front-door criterion 97, 107

best practice 112-116
evaluating 111
example 110, 111
GPS usage 108, 109
hippocampus 109, 110
linear bridge 117, 118

front-door formula 111
fully-connected graph 57
functional causal discovery 330, 349

ANM model 350-353
asymmetry 349, 350
independence, assessing 353, 354
LiNGAM 355, 356

function-based causal discovery 349

Index418

G
Gaussian processes (gp) 332
gCastle 331

causal discovery model, fitting 336
data, generating with 333-336
datasets module 332, 333
expert knowledge 366, 367
GES, implementing 348
model evaluation metrics 338-340
model, visualizing 336, 338
synthetic data 331

GCM API
example 146-148
reference link 148

generative adversarial networks (GANs) 373
GES algorithm

implementing, in gCastle 348
scoring 347

global Markov property 76, 77, 328
GOLEMs 363
Google Trends data, on search volume

for social media platforms 302
gradient-based causal discovery 360-362

comparison 363-365
GOLEMs 363
NOTEARS 362

gradient-based methods 330
graphical causal models (GCMs) 63
graphical model 63, 64
graph modeling language

(GML) 60, 125, 179
reference link 61

graph modification 163
graph mutilation 65, 163
graph neural networks model

benefits 321

graph representations
adjacency matrix 58-60
directed and acyclic 60

graphs 55
in Python 60-63
representations 58
types 56

graphs, types
connected graphs, versus

disconnected graph 57, 58
cyclic graphs, versus acyclic graph 56, 57
directed graphs, versus undirected graphs 56
weighted graphs versus unweighted graph 58

grapl-causal library
reference link 134

greedy equivalence search
(GES) algorithm 330

H
habituation 316
heterogeneous treatment effects 274

CATE estimators for experimental
data, using 264, 265

confidence intervals 263
data 245-247
data, testing 248-250
deep learning 274
framework, selecting 251
Kevins challenge 252
Kevin’s challenge winning submission 264
metrics for continuous outcomes,

with multiple treatments 262
model selection 251, 265, 266
toolbox, opening 253-257
uplift by decile 258-261
uplift models and performance 257
with experimental data 245

Index 419

heterogeneous treatment effects (HTEs) 189
hidden confounding 328, 387

data approaches 392
FCI algorithm 388

highest density intervals (HDIs) 307
Hilbert-Schmidt Independence

Criterion (HSIC) 27, 353
hippocampus 109
honest splitting 242
hyperparameter tuning

with DoWhy 234-238
with EconML 234-238

I
identifiability 152, 153
ignorability assumption 161
imitation learning 408
immoralities 92
implicitly conditioning 167
ndependence-based causal discovery 76
independence-based methods 341
independence structure 46

using, to recover graph 342-345
independent component analysis

(ICA) 330, 356
independent mechanisms assumption 162
indicator function 21
individual treatment effect (ITE) 189

versus conditional average treatment
effect (CATE) 190

inducing path graphs 388
inductive causation (IC) 330
Input Convex Graph Neural

Network (ICGNN) 376
instrumental variables (IVs) 120

causal effects, calculating 121, 122
conditions 120
techniques 156

interaction 38
intervention 6, 17, 23

variable, altering 24, 25
invariant transformations 137
inverse probability weighting

(IPW) 186, 218
formula 187
implementing 187, 188
practical considerations 188
propensity scores 186

K
kernel-based conditional

independence (KCI) 390

L
Ladder of Causation 274
language games 286
large language models (LLMs) 286, 408
LinearDRLearner 222
Linear Non-Gaussian Acyclic Model

(LiNGAM) algorithm 330
linear regression 37-41

geometric interpretation 42
versus structural causal model (SCM) 49

LiNGAM 355-357
legal data, using with 357-359

local Markov property 76
low global motivation 108

M
machine learning method 33

causality and reinforcement
learning (RL) 33

causality and semi-supervised learning 34
causality and unsupervised learning 34

Index420

machine learning models
validating 135, 136

Mahalanobis distance 174
marginal probability 72
Markov equivalence class (MEC)

84, 136, 337, 388
example 85

Markov factorization property 76
masked language model (MLM) 295

objective 295
Massachusetts Institute of Technology

(MIT) course notes PDF
reference link 72

matching 174
effect, computing 181, 182
estimand, obtaining 181
implementing 178, 179
problem as graph 180, 181
problem as graph representation 179-181
refutation test, running 182, 183
types 174

matching estimator 176, 177
maximal information coefficient (MIC) 27
maximum likelihood estimate (MLE) 102
mean absolute percentage error

(MAPE) 197, 221, 283
Meek Conjecture 348
meta-learners 188
meta-SCM 408
minimalism 329
Minkowski distance 174
model evaluation metrics 338-340
modularity assumption 162-164
multilayer perceptron (mlp) 332
multiple regression 38

N
natural direct effect (NDE) 293
natural experiment 154, 298
natural language processing (NLP) 273, 408
natural languages, in causal inference tasks

challenges 285-288
network science 332
NetworkX

reference link 334
nodes 55
no hidden confounding 77
noise variable 19
non-DAG-based approaches, to causality 67

cyclic SCMs 68
dynamical systems 67

non-linear associations 38
normalizing flows 373
NOTEARS 330, 360
nuisance function 230
nuisance parameter 230
null hypothesis 41

types 41
nullifying transformations 137

O
observational data 37
observational equivalence 49
Ockham’s razor 77
orientation propagation 342
orthogonality 72
orthogonalization 229, 230
orthogonal machine learning 228
outcome model 216, 230
overlap 157

Index 421

P
partially linear model 230
PC algorithm 341

for categorical data 346, 347
hidden challenges 345, 346

PC-stable 345
Pearson's r 88
perfect intervention 163
personal experience 321, 322
Playtika 405
polysemy 286
Popperian 137
positive probabilities 157
positivity assumption 153, 157

example 158-160
positivity assumption violation 157
potential outcomes framework 161
power rule 52
preferential attachment 333
probability 72
problem modeling 130

CausalModel object, building 132
graph language, creating 130, 132

propensity score matching (PSM) 185, 186
propensity scores 183, 275

dimensionality, reducing 185
matching 183, 184
propensity score matching (PSM) 185, 186

propensity score theorem 217
proxy instruments 121
pseudo-populations 186
PSM paradox 185
publication bias 251
p-values 41
pydot

reference link 61
PyMC 304

Python
graphs 60-63

Python causal ecosystem 126-128
PyTorch 277

Q
Qini coefficient 257
quasi-experimental methods 298
Quasi-experiments 297

R
random graphs 332
randomization 17
randomized controlled trials

(RCTs) 6, 17, 192, 297, 320
RealCause 157
refutation tests 135, 137
regression discontinuity 154
regression model 42, 44, 49

causal effects 51-53
versus structural causal model (SCM) 50, 51

regression models
fitting 90-92

regularization 229
regularization bias 229, 230
Reichenbach's principle 299

reference link 299
reinforcement learning from human

feedback (RLHF) 286
reinforcement learning (RL) 33
reproducibility, PyTorch

reference link 280
Reproducing Kernel Hilbert

Space (RHKS) 347
response function 204
root-n consistent 228

Index422

S
sample size

methodology 154
results 155, 156

scale-invariant 359
scatterplots 88
scenarios, for LLMs and NLP tools

text, as confounder 290, 291
text, as outcome 290
text, as treatment 289

score-based method 330, 347
GES 347
GES, in gCastle 348
tabula rasa 347

second-stage base learners 206
selection bias 165

example 168, 169
selection bias under the null 169
SELU (scaled exponential linear unit) 281
sensitivity analysis 157
Simpson’s paradox 11
Six Sigma 405
skeleton 85
S-Learner 188, 274

assumptions flag 192
conditional average treatment effect

(CATE), calculating 190
heterogeneous treatment effects 190, 191
implementing 189
modeling with 192-198
small data 198
vulnerabilities 199

SNet 276
architecture 276

sparsity score 374
spline regressions 351
split criterion 242
Spotify 405
spuriousness 165
spurious relationships 92, 165
stable unit treatment value assumption

(SUTVA) 162, 164
statistical control 92
Statistical Research Group (SRG) 166
statistical significance 41
statsmodels 39

reference link 39
Structural Agnostic Model (SAM) 373
structural causal model (SCM) 15,

18, 46, 49, 112, 329, 373, 405
graphical representation 166
versus linear regression 49
versus regression model 50, 51

structural equation model (SEM) 49, 382
structural equations 332
structural intervention distance (SID) 340
structural model 49
survivorship bias 166-168
synthetic control estimator 297
synthetic controls 154

in code 303-308
logic 298-302

synthetic data
in gCastle 331

Index 423

T
tabula rasa 347
targeted maximum likelihood

estimator (TMLE) 224
implementing 225

Temporal Causal Discovery
Framework (TCDF) 394

TensorDict 376
the Ladder of Causation 15-17
tiered background knowledge 392
T-Learner 200, 274

formula 201
implementing 202-204
limitation 200

Topological Hawkes Processes (THP) 333
Transformer model 321
Treatment-Agnostic Representation

Network (TARNet) 275
architecture 275, 276

treatment model 216, 230
Twyman’s law 237

U
undirected graphs

versus directed graphs 56
unique conditional independence pattern 98
University of California, Los

Angeles (UCLA) 330
unverifiable assumptions 156
unweighted graph

versus weighted graph 58
uplift by decile 257-261
uplift modeling 10, 245
uplift model matrix 191

V
variational autoencoder (VAE) 392
violation of expectation (VoE) 317

W
walrus operator 20
weighted graph

versus unweighted graph 58
weighted least squares (WLS) 187
word2vec 286

X
X-Learner 204

alternative formulation 207
implementing 208-210
need for 210, 211
reconstructing 205-207
response function 204

Y
Yule-Simpson effect 11

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Graph Neural Networks Using Python

Maxime Labonne

ISBN: 978-1-80461-752-6

• Understand the fundamental concepts of graph neural networks

• Implement graph neural networks using Python and PyTorch Geometric

• Classify nodes, graphs, and edges using millions of samples

• Predict and generate realistic graph topologies

• Combine heterogeneous sources to improve performance

• Forecast future events using topological information

• Apply graph neural networks to solve real-world problems

https://packt.link/9781804617526

427Other Books You May Enjoy

Applying Math with Python - Second Edition

Sam Morley

ISBN: 978-1-80461-837-0

• Become familiar with basic Python packages, tools, and libraries for solving mathematical
problems

• Explore real-world applications of mathematics to reduce a problem in optimization

• Understand the core concepts of applied mathematics and their application in computer science

• Find out how to choose the most suitable package, tool, or technique to solve a problem

• Implement basic mathematical plotting, change plot styles, and add labels to plots using Matplotlib

• Get to grips with probability theory with the Bayesian inference and Markov Chain Monte
Carlo (MCMC) methods

https://packt.link/9781804618370

428

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Causal Inference and Discovery in Python, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-804-61298-7

429

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804612989

1. Submit your proof of purchase

2. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804612989

	Cover
	Title Page
	Copyright and Credit
	Dedicated
	Foreword
	Contributors
	Acknowledgments
	Table of Contents
	Preface
	Part 1:
Causality – an Introduction
	Chapter 1: Causality – Hey, We Have Machine Learning,
So Why Even Bother?
	A brief history of causality
	Why causality? Ask babies!
	Interacting with the world
	Confounding – relationships that are not real

	How not to lose money… and human lives
	A marketer’s dilemma
	Let’s play doctor!
	Associations in the wild

	Wrapping it up
	References

	Chapter 2: Judea Pearl and the
Ladder of Causation
	From associations to logic and imagination – the Ladder of Causation
	Associations
	Let’s practice!

	What are interventions?
	Changing the world
	Correlation and causation

	What are counterfactuals?
	Let’s get weird (but formal)!
	The fundamental problem of causal inference
	Computing counterfactuals
	Time to code!

	Extra – is all machine learning causally the same?
	Causality and reinforcement learning
	Causality and semi-supervised and unsupervised learning

	Wrapping it up
	References

	Chapter 3: Regression, Observations,
and Interventions
	Starting simple – observational data and linear regression
	Linear regression
	p-values and statistical significance
	Geometric interpretation of linear regression
	Reversing the order

	Should we always control for all available covariates?
	Navigating the maze
	If you don’t know where you’re going, you might end up somewhere else
	Get involved!
	To control or not to control?

	Regression and structural models
	SCMs
	Linear regression versus SCMs
	Finding the link
	Regression and causal effects

	Wrapping it up
	References

	Chapter 4: Graphical Models
	Graphs, graphs, graphs
	Types of graphs
	Graph representations
	Graphs in Python

	What is a graphical model?
	DAG your pardon? Directed acyclic graphs in the causal wonderland
	Definitions of causality
	DAGs and causality
	Let’s get formal!
	Limitations of DAGs

	Sources of causal graphs in the real world
	Causal discovery
	Expert knowledge
	Combining causal discovery and expert knowledge

	Extra – is there causality beyond DAGs?
	Dynamical systems
	Cyclic SCMs

	Wrapping it up
	References

	Chapter 5: Forks, Chains, and Immoralities
	Graphs and distributions and how to map between them
	How to talk about independence
	Choosing the right direction
	Conditions and assumptions

	Chains, forks, and colliders or…immoralities
	A chain of events
	Chains
	Forks
	Colliders, immoralities, or v-structures
	Ambiguous cases

	Forks, chains, colliders, and regression
	Generating the chain dataset
	Generating the fork dataset
	Generating the collider dataset
	Fitting the regression models

	Wrapping it up
	References

	Part 2:
Causal Inference
	Chapter 6: Nodes, Edges, and
Statistical (In)dependence
	You’re gonna keep ‘em d-separated
	Practice makes perfect – d-separation

	Estimand first!
	We live in a world of estimators
	So, what is an estimand?

	The back-door criterion
	What is the back-door criterion?
	Back-door and equivalent estimands

	The front-door criterion
	Can GPS lead us astray?
	London cabbies and the magic pebble
	Opening the front door
	Three simple steps toward the front door
	Front-door in practice

	Are there other criteria out there? Let’s do-calculus!
	The three rules of do-calculus
	Instrumental variables

	Wrapping it up
	Answer
	References

	Chapter 7: The Four-Step Process
of Causal Inference
	Introduction to DoWhy and EconML
	Python causal ecosystem
	Why DoWhy?
	Oui, mon ami, but what is DoWhy?
	How about EconML?

	Step 1 – modeling the problem
	Creating the graph
	Building a CausalModel object

	Step 2 – identifying the estimand(s)
	Step 3 – obtaining estimates
	Step 4 – where’s my validation set? Refutation tests
	How to validate causal models
	Introduction to refutation tests

	Full example
	Step 1 – encode the assumptions
	Step 2 – getting the estimand
	Step 3 – estimate!
	Step 4 – refute them!

	Wrapping it up
	References

	Chapter 8: Causal Models – Assumptions and Challenges
	I am the king of the world! But am I?
	In between
	Identifiability
	Lack of causal graphs
	Not enough data
	Unverifiable assumptions
	An elephant in the room – hopeful or hopeless?
	Let’s eat the elephant

	Positivity
	Exchangeability
	Exchangeable subjects
	Exchangeability versus confounding

	…and more
	Modularity
	SUTVA
	Consistency

	Call me names – spurious relationships in the wild
	Names, names, names
	Should I ask you or someone who’s not here?
	DAG them!
	More selection bias

	Wrapping it up
	References

	Chapter 9: Causal Inference and Machine Learning – from Matching
to Meta-Learners
	The basics I – matching
	Types of matching
	Treatment effects – ATE versus ATT/ATC
	Matching estimators
	Implementing matching

	The basics II – propensity scores
	Matching in the wild
	Reducing the dimensionality with propensity scores
	Propensity score matching (PSM)

	Inverse probability weighting (IPW)
	Many faces of propensity scores
	Formalizing IPW
	Implementing IPW
	IPW – practical considerations

	S-Learner – the Lone Ranger
	The devil’s in the detail
	Mom, Dad, meet CATE
	Jokes aside, say hi to the heterogeneous crowd
	Waving the assumptions flag
	You’re the only one – modeling with S-Learner
	Small data
	S-Learner’s vulnerabilities

	T-Learner – together we can do more
	Forcing the split on treatment
	T-Learner in four steps and a formula
	Implementing T-Learner

	X-Learner – a step further
	Squeezing the lemon
	Reconstructing the X-Learner
	X-Learner – an alternative formulation
	Implementing X-Learner

	Wrapping it up
	References

	Chapter 10: Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More
	Doubly robust methods – let’s get more!
	Do we need another thing?
	Doubly robust is not equal to bulletproof…
	…but it can bring a lot of value
	The secret doubly robust sauce
	Doubly robust estimator versus assumptions
	DR-Learner – crossing the chasm
	DR-Learners – more options
	Targeted maximum likelihood estimator

	If machine learning is cool, how about double machine learning?
	Why DML and what’s so double about it?
	DML with DoWhy and EconML
	Hyperparameter tuning with DoWhy and EconML
	Is DML a golden bullet?
	Doubly robust versus DML
	What’s in it for me?

	Causal Forests and more
	Causal trees
	Forests overflow
	Advantages of Causal Forests
	Causal Forest with DoWhy and EconML

	Heterogeneous treatment effects with experimental data – the uplift odyssey
	The data
	Choosing the framework
	We don’t know half of the story
	Kevin’s challenge
	Opening the toolbox
	Uplift models and performance
	Other metrics for continuous outcomes with multiple treatments
	Confidence intervals
	Kevin’s challenge’s winning submission
	When should we use CATE estimators for experimental data?
	Model selection – a simplified guide

	Extra – counterfactual explanations
	Bad faith or tech that does not know?

	Wrapping it up
	References

	Chapter 11: Causal Inference and
Machine Learning – Deep Learning, NLP, and Beyond
	Going deeper – deep learning for heterogeneous treatment effects
	CATE goes deeper
	SNet

	Transformers and causal inference
	The theory of meaning in five paragraphs
	Making computers understand language
	From philosophy to Python code
	LLMs and causality
	The three scenarios
	CausalBert

	Causality and time series – when an econometrician goes Bayesian
	Quasi-experiments
	Twitter acquisition and our googling patterns
	The logic of synthetic controls
	A visual introduction to the logic of synthetic controls
	Starting with the data
	Synthetic controls in code
	Challenges

	Wrapping it up
	References

	Part 3:
Causal Discovery
	Chapter 12: Can I Have a
Causal Graph, Please?
	Sources of causal knowledge
	You and I, oversaturated
	The power of a surprise

	Scientific insights
	The logic of science
	Hypotheses are a species
	One logic, many ways
	Controlled experiments
	Randomized controlled trials (RCTs)
	From experiments to graphs
	Simulations

	Personal experience and domain knowledge
	Personal experiences
	Domain knowledge

	Causal structure learning
	Wrapping it up
	References

	Chapter 13: Causal Discovery and Machine Learning – from Assumptions to Applications
	Causal discovery – assumptions refresher
	Gearing up
	Always trying to be faithful…
	…but it’s difficult sometimes
	Minimalism is a virtue

	The four (and a half) families
	The four streams

	Introduction to gCastle
	Hello, gCastle!
	Synthetic data in gCastle
	Fitting your first causal discovery model
	Visualizing the model
	Model evaluation metrics

	Constraint-based causal discovery
	Constraints and independence
	Leveraging the independence structure to recover the graph
	PC algorithm – hidden challenges
	PC algorithm for categorical data

	Score-based causal discovery
	Tabula rasa – starting fresh
	GES – scoring
	GES in gCastle

	Functional causal discovery
	The blessings of asymmetry
	ANM model
	Assessing independence
	LiNGAM time

	Gradient-based causal discovery
	What exactly is so gradient about you?
	Shed no tears
	GOLEMs don’t cry
	The comparison

	Encoding expert knowledge
	What is expert knowledge?
	Expert knowledge in gCastle

	Wrapping it up
	References

	Chapter 14: Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond
	Advanced causal discovery with deep learning
	From generative models to causality
	Looking back to learn who you are
	DECI’s internal building blocks
	DECI in code
	DECI is end-to-end

	Causal discovery under hidden confounding
	The FCI algorithm
	Other approaches to confounded data

	Extra – going beyond observations
	ENCO
	ABCI

	Causal discovery – real-world applications, challenges, and open problems
	Wrapping it up!
	References

	Chapter 15: Epilogue
	What we’ve learned in this book
	Five steps to get the best out of your causal project
	Starting with a question
	Obtaining expert knowledge
	Generating hypothetical graph(s)
	Check identifiability
	Falsifying hypotheses

	Causality and business
	How causal doers go from vision to implementation

	Toward the future of causal ML
	Where are we now and where are we heading?
	Causal benchmarks
	Causal data fusion
	Intervening agents
	Causal structure learning
	Imitation learning

	Learning causality
	Let’s stay in touch
	Wrapping it up
	References

	Index
	Other Books You May Enjoy

