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Abstract 
 

This paper compares the predictive accuracy of neural networks and conditional 

heteroscedastic models like ARCH, GARCH, GARCH-M, TGARCH, EGARCH and 

IGARCH, for forecasting the exchange rate series.The Multi Layer Perceptron (MLP) and 

Radial Basis Function (RBF) networks with different architectures and conditional 

heteroscedastic models are used to forecast five exchange rate time series. The results show 

that both Neural network and conditionally heteroscedastic models can be effectively used 

for prediction. RBF networks do considerably better than MLP networks in neural 

networks case. IGARCH and TGARCH fare better than other conditional heteroscedastic 

models. Neural networks' performance is better than that of conditional heteroscedasticity 

models in forecasting exchange rate. It is shown that neural network can be effectively 

employed to estimate the conditional volatility of exchange rate series and the implied 

volatility of NIFTY options. Neural network is found to beat conditional heteroscedastic 

models in out-of-sample forecasting. 
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1.  Introduction 
During last twenty five years many different nonlinear models have been proposed in the literature to 

model and forecast exchange rates. Some authors claimed that exchange rates are rather unpredictable 

and so random walk model is better predictor (Chang and Osler, 1999; Meese and Rose, 1990; Gencay, 

1999). Kuan and Liu (1995) estimate and select feedforward and recurrent networks to evaluate their 

forecasting performance of five exchange rates against USD. The networks performed differently for 

different exchange rate series. Yao and Tan (2000) show that if technical indicators and time series 

data are fed to neural networks to capture the underlying process of the movement in currency 

exchange rates, then useful prediction can be made. Yang and Gradojevic (2006) construct a neural 

network that never performs worse than a linear model but always performs better than the random 

walk model when predicting Canadian dollar/dollar exchange rate. Kiani and Kastens (2008) have 

successfully employed Neural networks to forecast the exchange rate. 
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The GARCH model has been used in the past for volatility estimation in U.S. dollar foreign 

exchange markets (Bail-lie and Bollerslev, 1989) and in the European Monetary System (Neely, 1999). 

Initial studies into explanatory power of out-of-sample forecasts gave out disappointing results (West 

and Cho, 1995). Jorion (1995) found that volatility forecasts for several major currencies from the 

GARCH model were outperformed by implied volatilities generated from the Black-Scholes option-

pricing model. These studies used the squared daily return as the variable to be forecast. Since, the 

exchange rate may move around a lot during the day, it has been established that one can significantly 

improve the forecasting power of the GARCH model by using sum of intraday squared returns 

(Andersen and Bollerslev, 1998). This measure is referred to as integrated or realized volatility. 

Variance forecasts thus obtained show that volatility shocks are quite persistent and the forecasts of 

conditional variance converge to the steady state quite slowly. 

The studies experimenting on forecasting exchange rates so far, have not included the data for 

the period of the current financial meltdown. This study expressly uses this data and establishes that 

neural network and autoregressive conditional heteroscedastic models both can effectively capture the 

long-term non-linearities of the data and predict successfully into the tumultuous period also. 

 

 

2.  Neural Networks 
2.1. Neuron 

The basic building block of a neural network is the neuron. A neuron can be represented by a mapping 

y:  transforming a n dimensional input into a real number. The neuron consists of a 

propagation function f:  and an activation function g:  [0,1] where g(x) takes the output of 

f(x) as argument. 

Thus, a neuron can be represented in the general form as 

y(x) = g(f(x; w)) (1) 

If f(x) is a polynomial, its degree is called the order of the neuron and its coefficients are the 

parameters of the neuron. These neurons are assembled in layered structure to construct the artificial 

neural network (ANN). The theoretical framework of neural networks mentioned in this section has 

been adopted from Giacomini (2003). 

 

2.2. Artificial Neural Networks 

Artificial neural networks produce the mapping øNN:  and can be written as 

g(y1, …, ym) = øNN(X1, …xn) (2) 

Where x = (x1, …, xn)
T
 ∈  is the input vector and y = (y1,…, ym)

T
 ∈  is output vector. A 

particular Neuron will fire when weighted sum θ  xw
n

i
ii >∑ =1

. The θ is the threshold level for neurons 

to fire. This threshold level can be built into the propagation function be weighting it with w0 = –1. 

Therefore, the propagation function ∑ == n

i
ii  θ–  xw  xf

1
 )(  is the weighted sum of inputs. The activation 

function g of a neuron may assume many forms. It can be a linear function or non-linear function. Most 

commonly used function is a sigmoid function. These interconnected neurons (Haykin, 1999) can be 

disposed according to a certain architecture. 

A network øNN where the threshold values (Bishop, 1995) are incorporated in the input vector x 

= (x0, …, xn)
T
 ∈ , x0 = – 1and the output vector is y = (y1, …, ym)

T
 ∈ 

 
is represented on Figure 1. 

 

2.3. Multi Layer Perceptron Networks - MLP 

Neural networks where the hidden neurons have sigmoidal activation function and the output neurons 

have sigmoidal or identity function are called Multi Layer Perceptrons (MLP) Networks øMLP: 
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. This architecture consists of an input layer, an output layer and k-hidden layers, each 

containing jk neurons. 

Each p-component of y = (y1, …, ym) is released by the m-neuron at the output layer as a 

function of the input x = (x1, …, xn) and of the parameters w. Writing in compact from, with weights on 

the input vectors and d – 1 as total number of hidden layers. 

 
Figure 1: Feed-forward neural network øNN 
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Figure 2 shows the graph of a neural network øMLP, where d = 3, n = 2, j1 = 4, j2 = 5 and m = 1 

or (2 – 4 – 5 – 1) MLP. 

 
Figure 2: (2 - 4 - 5 - 1) MLP øNN 
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2.4. Radial Basis Function Networks - RBF 

Radial Basis Function (RBF) neurons are neurons in which the propagation function has the form f(x) 

= || x - w ||, where x = (x1, …, xn)
T
, wr = (w1, …, wn)

T
 ∈  are the inputs and weights. The activation 

function h(x) has the form of a radial symmetric function, commonly the gaus-sian function. 

Networks with one hidden layer containing r RBF neurons and output neurons with 

propagation function ∑ == n

i
iijxw   xf

1
)(  and identity activation function g(x) = x are called RBF 

networks øRBF:  with r RBF neurons on the hidden layer. Each p-component of the output y 

= (y1, …, ym)is given by 

||)–||()(
1

i

r

i

iipp  w x  hw  xy ∑==  (4) 

The propagation function calculates how close (using the euclidian distance) the input vector x 

is to the vector wr. The gaussian activation function produces higher values for input vectors that are 

close to the vector wr and smaller values for inputs that are far away from it. Thus the weights form 

clusters in the input space. 

 

 

3.  Heteroscedasticity 
The works of Mandelbrot (1963) and Fama (1965) were among the first few works that examined the 

statistical properties of stock returns. During the 1980s, Engle (2003) worked on improving time-series 

analysis. Statistical techniques then in use mostly treated volatile variables, such as stock prices, as 

constants, even though such variables can change significantly from day to day and week to week. 

Engle (2003) after observing the variance of stock returns, developed a statistical technique known as 

ARCH (autoregressive conditional heteroscedasticity), which uses previously observed patterns of 

variance to predict future volatility. Refinements of ARCH models are now being used in banking and 

finance to help determine the prices and risk involved of investing in stocks . The theoretical 

framework described in this section is adopted from Tsay (2005) 

A univariate stochastic process Y is said to be homoscedas-tic if the standard deviations of 

terms are constant for all times t. Otherwise, it is said to be heteroscedastic (see Figure 3 adopted from 

www.riskglossary.com). A process is unconditionally heteroscedastic if unconditional standard 

deviations ıt are not constant. It is conditionally heteroscedastic if conditional standard deviations ıt|t–1 

are not constant. For example, stock or bond returns tend to be conditionally heteroscedastic. These 

prices exhibit non-constant volatility, but periods of low or high volatility are generally not known in 

advance. New Delhi electricity prices, on the other hand, exhibit unconditional heteroscedasticity. The 

prices tend to have higher volatilities during the Summer than during other seasons. This is predictable, 

therefore the electricity prices exhibit unconditional heteroscedasticity. If a process is unconditionally 

heteroscedastic, then it is necessarily conditionally heteroscedastic. The converse is not true. All these 

notions extend to higher dimensions. A multivariate stochastic process Y is said to be homoscedastic if 

its covariance matrix is constant for all times t, etc. 
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Figure 3: Homoscedastic vs. Heteroscedastic 

 

 
 

3.1. Structure of a Model 

Let rt be the log return of an asset at time index t. In the volatility study rt is either taken as serially 

uncorrelated or with minor lower order serial correlations, but it is a dependent series. The conditional 

mean and variance of rt given the information set available at time t – 1 as It–1 are specified as, 

])[(  )( ,( 2

1–1– 1–ttttt

2

tttt I|ȝ–  rEI\rVar       I\rE  ȝ ı === )  (5) 

Since serial dependence of rt is weak, we can say that rt follows a simple time series model like 

stationary ARMA(p, q) model. The model becomes 

, ,
1 1

i–t

p

i

q

i

ii–titttt eθ–  rφ  c  ȝ     e  ȝ  r ∑ ∑= =
+=+=  (6) 

where p, and q are non-negative integers and et are innovations or error terms, )(0,~ 2

tt ı N  e . This is 

the mean equation for rt. The order (p, q) of an ARMA model may depend on the frequency of the 

return series. The variance can be specified as 

)()( 1–1– tttt

2

t I|eVar  I|rVar  ı ==  (7) 

 

3.2. The ARCH Model 

The major assumption behind the least square regression is homoscedasticity i.e constancy of variance. 

If this condition is violated, the estimates will still be unbiased but they will not be minimum variance 

estimates. The standard error and confidence intervals calculated in this case become too narrow, 

giving a false sense of precision. ARCH and related models handle this by modeling volatility itself in 

the model and thereby correcting the deficiencies of least squares model. The ARCH models (Engle, 

1982; Tsay, 2005), characterized by mean and volatility equations, are specified as 

∑=+=∈=+= p

i

i–titttttt eα α  ı     ı  e     e  ȝ  r
1

2

0

2   , ,  (8) 

T   p  t   eα α  e ti–t

p

i

it , 1,, 2

1

0

2 …+=∈++= ∑=  (9) 

where ∈t, denotes the error term and T is the sample size. This is called ARCH(p) model. The next step 

is to check the ARCH effects by using residuals of mean equation. We can apply the usual Ljung-Box 

statistics Q(p) to the }{ 2

te  series (McLeod and Li, 1983) or apply the white's test of significance of αi = 

0(i = 1, …, p) by F-statistic under the null hypothesis Ho:α1 = … = αp = 0. 

This F-statistic is distributed as χ2
 distribution. 
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If ARCH effects are found significant we can use the PACF of 2

te  to determine the ARCH 

order. After specifying the volatility model we perform the joint estimation of the mean and volatility 

models. Lastly we evaluate the fitted model and further refine it. The standardized residuals, ẽt = 
t

t

ı
e

 

can be seen to check the adequacy of a fitted ARCH model. We can evaluate the QQ plots of ẽt and ẽt
2
 

to check validity of mean and variance equations respectively. After finding the parameters of the 

model, prediction can be done. 

 

3.3. The GARCH Model 

Bollerslev proposed a useful extension known as the generalized ARCH (GARCH) model. The et 

follows a GARCH(p, q) model (Bollerslev, 1986; Tsay, 2005) if 

2

11

2

0

2  , j–t

q

j

j

p

i

i–titttt ıȕ  eα α  ı      ı  e ∑∑ ==
++=∈=  (10) 

In addition to ARCH conditions, we also have ȕj ≥ 0, and 1  )(
)(

1
<+∑ = i

qp,max

i i ȕα . The constraint 

on αi+ȕi implies that the unconditional variance of et is finite, whereas its conditional variance 2

tı  

evolves over time. The αi and ȕj are ARCH and GARCH parameters, respectively. Similar to ARCH 

models, GARCH models also observe volatility clustering, leverage effect and heavier tails. Specifying 

the order of a GARCH model is not easy and only lower order GARCH models are used in most 

applications. 

 

3.4. The Integrated GARCH (IGARCH) Model 

IGARCH models are unit-root GARCH models. An IGARCH(p,q) model can be written as 

2

11

2

0

2  , j–t

q

j

j

p

i

i–titttt ıȕ  eα α  ı      ı  e ∑∑ ==
++=∈=  (11) 

where additional constraints are 1
11

=+∑∑ ==
q

j j

p

i i ȕα  and 1 > ȕj > 0. 

 

3.5. The GARCH-M Model 

Often the return of a security may depend on its volatility. In these cases, we use GARCH-M or 

GARCH in mean model. A GARCH(p,q)-M model can be specified as 

tttttt ıe      ekıȝr ∈=++= ,2  

2

i

2

1

0

2

j–t

q
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ji–t
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i

tt ıȕeααı ∑∑ ==
++=  (12) 

The constant parameter k is called the risk premium parameter. 

 

3.6. The Exponential GARCH (EGARCH) Model 

An EGARCH model is specified as 

)( , 2
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For et ~ N(0, 2

tı ) the standardized variable 
t

t

ı
e

 follows a standard normal distribution and 

consequently 
π

  
ı

|e|
E

t

t 2
)( = . The parameters αi capture the leverage effect. For good news 0) ( > 

ı
e

i–t

i–t  

the impact of innovation et–i is 
i–t

i–t
ii ı

e
Ȗα )( +  and for bad news 0) ( < 

ı
e

i–t

i–t  it is 
i–t

i–t
ii ı

e
Ȗα )(– + . If αi 

becomes 0, )( 2

tıIn  responds symmetrically to 
i–t

i–t

ı
e

. To produce a leverage effect αi must be negative. 

The fact that the EGARCH process is specified in terms of log-volatility implies that 2

tı
 
is always 

positive and, consequently, there are no restrictions on the sign of the model parameters. 

 

3.7. The Threshold GARCH (TGARCH) Model/GJR Model 

A TGARCH(p, q) model as proposed by (Glosten et al., 1993) can also handle leverage affects model 

by assuming the following form 

2

1

2

11

2

0

2

i–ti–t

p
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ij–t

q

j

j

p

i

i–tit evȖıȕeααı ∑∑∑ ===
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where { 0  1,

0  0,

 

 

<≥= i-t
i-t
e if

e ifi-tv  (15) 

and αi, γi, and ȕj are non-negative parameters satisfying conditions similar to those of GARCH models. 

It can be seen that a positive et-i contributes 2
itie −  to 2

tσ , whereas a negative et–i has a larger impact 
2)  ( itii e−γ+α  with γi > 0. 

 

 

4.  Neural Networks in Volatility Estimation 
4.1 Estimation of Conditional Volatilities 

Neural networks can be used to estimate the conditional volatility (Giacomini, 2003; Eun and Resnick, 

2004; Bhalla, 2008) of financial time series. Consider that a time series with stochastic volatility 

follows an AR(p)-ARCH(p) process with the following form ( )( ) 1

1

1-2-1-

1

1-2-1-1

 ..., ,,... , , ,         

  ..., ,,... , , ,  

++

++
∈
+=

t

t

htptttt

t

htpttttt

XXrrrr

XXrrrrr

NN
NN

 
 

 (16) 

where ∈t, is i.i.d. with E(∈t) = 0, 1  )( =∈ 2
tE . 

Defining hphp

,t Xz +++ ∈∈= R   ,R ) ...,  , ,(  1

1  zXrr t

htp-tt ...  the AR(p)-ARCH(p) process can be written 

as 

11 )(  )(  ++ ∈+= ttr tt z z  (17) 

We can write ( ) ( ) ( )zzz 22  -   φθ=ψ  (18) 

where [ ] ( )zEt φ==+   z z   r 1 t  (19) [ ] ( )zEt θ==+   z z   s 2

1 t
 (20) [ ] ( )zVart

2

1   z z   r ψ==+ t  (21) 
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Using a neural network ΦNN to approximate φ(z) and ΘNN to approximate θ(z), we obtain ( ) ( )1
ˆ ;  ˆ wzz NNΦ=φ  (22) ( ) ( )2
ˆ ;  ˆ wzz NNΘ=θ  (23) 

where 

( )( )∑−= + Φ= 1
2

111  ; - 
 - 

1
  ˆ

N
pt

tNNt zr w
pN

argminw  (24) 

( )( )∑−= + Θ= 1
2

22  ; - 
 - 

1
  ˆ

N
pt

tNNt zs w
pN

argminw 2
1  (25) 

An estimator of Ψ2
(Z) is obtained as ( ) ( ) ( )zˆ - zˆ  zˆ 22   θ=  (26) 

Hardle et al. (2002) used the approach where the residuals are substituted by the sample 

residuals. Approximating the residuals through the sample residuals ( )tt z ˆ -   ˆ
11 ++ =∈ tr  (27) 

and the squared sample residuals with a neural network ΨNN with parameters 

( )( )∑−= + ψ∈= 1
2

 ; - 
 - 

1
  ˆ

N
pt

tNNt zw
pN

argminw 2
1  (28) 

the estimation of the conditional volatility can be written as ( ) ( )ŵ ;   ˆ 2 zz NNψ=  (29) 

 

4.2. Estimation of Implied Volatilities 

In their landmark paper,Black and Scholes (1973) gave model to determine the price of a call option Ct 

at time t, which is given by the formula ( ) ( )21  -   dKedC -r 

t ΦΦ= tS  (30) 

τσ
τ⎟⎠
⎞⎜⎝

⎛ σ++
=

 

2

1
    

  

2

1

r
K

s
ln t

d  (31) 

τσ=   -   12 dd  (32) 

where St is the spot price of the underlying asset, ı the volatility of the underlying asset price process, r 

the risk free interest rate, τ the time to maturity, K the strike price of the option and Φ the cumulative 

distribution function of the normal distribution. The Black Scholes model assumes that σ is constant 

over the price process of a given underlying asset. 

Since actual volatility of the underlier can not be observed directly, we use the volatility which 

is implied by option prices observed in the markets. This is called implied volatility and is defined as 

the parameter σ̂  that yields the actually observed market price of a particular option when substituted 

into the Black-Scholes formula. The implied volatility of a European put with the same strike and 

maturity can be deduced using the put-call parity. 

-r 

t KePC  -    - tt S=  (33) 

In opposite to the theoretical formulation, the implied volatilities are not constant. They form a 

volatility smile when plotted against the strike prices K at time t,(Hardle et al., 2002) and change also 

according to the time to maturity τ. 
Calculation of implied volatilities at different strikes and maturities yields a surface called 

implied volatility surface on a specified grid using a bi-dimensional kernel smoothing procedure. A 

Nadaraya-Watson estimator with a quartic kernel is usually employed. 
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Figure 4: Volatility Smile 

 

 
 

We can write the dependency of the implied volatility the strike price K or the moneyness 

S
K 

and time to maturity Ĳ as. ( )τ=σ  ,  ˆ Kf  (34) 

or 

⎟⎠
⎞⎜⎝

⎛ τ=σ  ,  ˆ
S

K
f  (35) 

This relation being non linear form can be estimated with neural networks, given that implied 

volatilities for a strike price or moneyness and for different maturities are available to construct the 

training set. The network ΨNN 

⎟⎠
⎞⎜⎝

⎛ψ=σ w
S

K
ˆ ; ,  ˆ  NN

 (36) 

where 

∑= ⎟⎟⎠
⎞⎜⎜⎝

⎛ ⎟⎠
⎞⎜⎝

⎛ τψσ= n
t

NNi S
K

1

2

ˆ ; , - ˆ
1 - 

1
  ˆ w

n
argminw  (37) 

is used to generate implied volatility surface. 

 

 

5.  Experiment 
The experiment described on this section compares one step ahead forecasts of times series produced 

by MLP and RBF networks with different architectures by changing the number of neurons in the 

hidden layer. 

Five different exchange rate time series and ten different architectures are used. A non linear 

time dependency of size (lag) p, is considered for all the series. The experiment uses a network φNN 

with one hidden layer containing h neurons to forecast the realizations of the time series at t + 1, as 

given in Equation 38. ( )12-1-1 ... , , ,  ++ = p-tttt rrr r r NNt  (38) 

Afterwards, the performance of the forecasts are evaluated. 

 

5.1. Time Series 

Five exchange rate time series used are daily observations of:British Pound vs US-Dollar (BPUSD) 

from 28/12/1993 to 28/12/2008, German Mark vs US-Dollar (DEMUSD) from 28/12/1993 to 

28/12/2006, Japanese Yen vs US-Dollar (JPYUSD) from 28/12/1993 to 28/12/2008, Indian Rupees vs 

US-Dollar (IRUSD) from 28/12/1993 to 28/12/2008 and Euro vs US-Dollar (EURUSD) from 

15/11/1998 to 28/12/2008 
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5.2. Transformation 

To eliminate trend and seasonality the time series are transformed by first differences of logarithms. 

After this operation, the time series elements rt represent the logarithm of the financial return of 

holding a unit of the currency for one period: 

( ) ( ) ⎟⎟⎠
⎞⎜⎜⎝

⎛==
1-

1-    -   
t

t

tt
p

p
logplogplogtr  (39) 

The time series N
ttr1=  are split into two sets, the training set and the test set:the training set 

contains roughly 95% of the observations, i.e., t = (1, …, t0), t0 = mod(0.95N) and the test set contains 

roughly 5% of the observations, i.e., t = (t0 + 1, …, N) The table 1 shows the information about the 

time series and size of subsets used. 

 
Table 1: Time series and sample size 
 

Time Series From To t0 N 
BPUSD 28/12/1993 28/12/2008 5206 5480 

DEMUSD 28/12/1993 28/12/2006 4512 4749 

JPYUSD 28/12/1993 28/12/2008 5206 5480 

INRUSD 28/12/1993 28/12/2008 5206 5480 

EURUSD 15/11/1998 28/12/2008 3484 3667 

5.3. Time Dependency 

The process is modeled with lag 5, the realization at t + 1 is dependent on the realizations of the last 5-

trading days. 

 

5.4. Networks 

Various kinds of parameters which can be adjusted in Neural Network architecture are number of units, 

number of hidden layers, type of neurons, learning rates for supervised and unsupervised training and 

initial weights etc. In our ex-periment,the RBF and MLP networks are built in XploRe Software with 

one hidden layer of h neurons forming the architecture 5 – h – 1. The number h of units on the hidden 

layer is increased from 5 to 50 in steps from 5 units. 

For each architecture, the networks are trained on the training sets until a MSE from 5.10
-5

 or 

less is reached. The other parameters are the defaults for RBF and MLP training quantlets from the 

XploRe neural networks library. 

 

5.5. Performance Measures 

The forecasts are made on the test set t = (t0 + 1, …, N). The k = N – (t0 + 1 + lag) forecasts are 

compared with the true realizations. Following performance measures are used. 

 

Normalized Mean Squared Error (NMSE) ( )∑= σ= N
tt

tt

f

r - r

NMSE 2

2

ˆ

ˆ
 

1
  
k

 (40) 

where 2σ̂  is the variance of the training set (in sample unconditional volatility) 

 

Mean Absolute Error (MAE) 

∑== N
tt

t

f

rMAE  r
k

t̂ -    
1

   (41) 

NMSE and MAE are the metrics used to estimate the error of prediction. 
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Function (SIGN) 

∑= δ= N
ttf

SIGN t
k

  
1

   (42) 

where { 0  ˆ  1,

 0,
1 ≥++=δ tr1tr if

otherwise ift  (43) 

To evaluate whether the result of the network can be used as a trading strategy, the fraction of 

predictions with same sign as the true realizations is calculated by the metric SIGN. 

 

 

5.6. Results and Discussion 

5.6.1. Neural Networks 
For each time series, the result is summarized below. 

BPUSD: The RBF networks performed better than the MLP for all architectures, concerning 

NMSE and MAE. The best network is a RBF with 20 hidden units. 

DEMUSD: The MLP networks performed better than the RBF for all architectures (except for 

5 hidden units), concerning NMSE and MAE. The best network is a RBF with 5 hidden units, the 

second best a MLP with 5 hidden units. 

JPYUSD: The RBF networks performed better than the MLP for all architectures, concerning 

NMSE and MAE. The best network is a RBF with 10 hidden units. 

INRUSD: The MLP networks performed better than the RBF for all architectures , concerning 

NMSE and MAE. The best network is a MLP with 15 hidden units. 

EURUSD: The MLP networks performed better than the RBF for 6 architectures while RBF 

networks performed better than the MLP for 4 architectures, concerning NMSE and MAE. The best 

network is a RBF with 25 hidden units. 

In all the cases the result of the network can be considered as a trading strategy, since the value 

of the the function SIGN is greater than 0.5. 

 

5.6.2. Conditional Heteroscedastic Models 
USD/GBP Series 

2 2

-1 1  -0.000065  ;    ;    0.001795 0.952942   0.036520t ta a a −= + = ∈ = + +
t t t t t t
r σ σ σ

2  (44) 

USD/DM Series 
2 2

-1 1  -0.000043  ;    ;    0.000888  0.975946   0.020566t ta a a −= + = ∈ = + +
t t t t t t
r σ σ σ

2  (45) 

USD/JPY Series 
2 2

-1 1  0.000045  ;    ;    0.002829  0.949508   0.041940t ta a a −= + = ∈ = + +
t t t t t t
r σ σ σ

2  (46) 

USD/INR Series 
2 2

-1 1  0.000029  ;    ;    0.000000 0.9829711  0.169468t ta a a −= + = ∈ = + +
t t t t t t
r σ σ σ

2  (47) 

USD/EUR Series 
2 2

-1 1  - 0.000124  ;   ;    0.000545 0.979012  0.019795t ta a a −= + = ∈ = + +
t t t t t t
r σ σ σ

2  (48) 

 

5.6.3. Comparison of Neural Network and Conditional Heteroscedastic Models 
Comparisons of Neural Network models and conditional heteroscedastic models (GARCH, GARCH-

M, EGARCH, TGARCH/GJR and IGARCH) for all the five exchange rates are shows in following 

tables (Tables 2, 3, 4, 5 and 6) 



205 International Research Journal of Finance and Economics - Issue 49 (2010) 

 

Table 2: Comparative analysis of USD/GBP Series 

 
Model NMSE MAE.102 SIGN 

Neural Network 0.56853 0.2274 0.71429 
GARCH(1,1) 1.00011 0.27177 0.63689 

GARCH(1,1)-M 0.86999 0.26832 0.67199 

EGARCH(1,1) 0.89286 0.32988 0.68674 

TGARCH/GJR(1,1) 0.87995 0.26164 0.68790 

IGARCH(1,1) 0.80463 0.27175 0.65564 

 
Table 3: Comparative analysis of USD/DM Series 

 
Model NMSE MAE.102 SIGN 

Neural Network 0.73085 0.35033 0.53571 

GARCH(1,1) 0.83113 0.46988 0.49777 

GARCH(1,1)-M 0.88089 0.44983 0.48563 

EGARCH(1,1) 0.74093 0.36979 0.52728 

TGARCH/GJR(1,1) 0.76097 0.38988 0.50787 

IGARCH(1,1) 0.80471 0.41044 0.49768 

 
Table 4: Comparative analysis of USD/JPY Series 

 
Model NMSE MAE.102 SIGN 

Neural Network 0.74021 0.37706 0.57143 

GARCH(1,1) 0.89899 0.36216 0.52421 

GARCH(1,1)-M 0.84957 0.36010 0.52319 

EGARCH(1,1) 0.79654 0.32844 0.56324 

TGARCH/GJR(1,1) 0.80971 0.32207 0.55919 

IGARCH(1,1) 0.82374 0.36236 0.53760 

 

Comparative analysis clearly show that Neural network has an edge over the conditional 

heteroscedastic models like GARCH, GARCH-M, GJR (TGARCH), IGARCH, EGARCH etc for 

exchange rate forecasting. Neural Network clearly outperform other models in terms of the metric 

"SIGN" consistently. This shows that upward/downward movement of exchange rate is more 

accurately predicted by Neural Networks as compared to conditional heteroscedastic models. However 

in some isolated cases conditional heteroscedastic models did fare better than Neural Networks. These 

cases are mentioned below 

 
Table 5: Comparative analysis of USD/INR Series 

 
Model NMSE MAE.102 SIGN 

Neural Network 2.0925 0.24842 0.69643 

GARCH(1,1) 1.87319 0.30284 0.57721 

GARCH(1,1)-M 1.83982 0.30519 0.55010 

EGARCH(1,1) 1.69866 0.28722 0.61625 

TGARCH/GJR(1,1) 1.64332 0.27517 0.62360 

IGARCH(1,1) 1.68163 0.29829 0.59089 
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Table 6: Comparative analysis of USD/EUR Series 

 
Model NMSE MAE.102 SIGN 

Neural Network 0.88442 0.38644 0.58929 

GARCH(1,1) 0.99998 0.34930 0.48804 

GARCH(1,1)-M 0.93987 0.34918 0.49592 

EGARCH(1,1) 0.89833 0.30927 0.53994 

TGARCH/GJR(1,1) 0.89986 0.31414 0.52785 

IGARCH(1,1) 0.92064 0.34999 0.46256 

 

1. "MAE" metric of GJR is better than that of Neural Networks in case of USD/JPY (exchange 

rate of Japanese Yen) series. 

2. "NMSE" metric of GJR is better than that of Neural Networks in case of USD/INR (exchange 

rate of Indian Rupee) series. 

3. "MAE" metric of EGARCH is better than that of Neural Networks in case of USD/EUR 

(exchange rate of Euro) series. 

Barring these three cases, Neural Networks performed significantly better than conditional 

heteroscedastic models. Within the conditional heteroscedastic models, the performance of IGARCH 

and TGARCH was better than other heteroscedastic models. 

 

 

6.  Estimation of Conditional Volatilities 
Both Neural Networks and GARCH(1,1) models are used to estimate conditional volatilities of 

exchange rate series. The results are found to be comparable. For US/GBP series the estimation of 

conditional volatility using both Neural Networks and the GARCH(1,1) models are shown below. 

Since Volatility can't be observed directly, so comparison between the charts can't be made. 

However since the edge of Neural Networks over the conditional heteroscedasticity models has already 

been shown in case of Exchange rate forecasting, it can be said that Neural Networks will fare better in 

this case too and more profit can be made if volatility estimates based on Neural Networks are used for 

volatility trading strategies. 

 
Figure 5: Log returns and conditional volatilities from the exchange rate British Pound / US Dollar from 

28/12/1993 to 28/12/2008. Estimated with RBF network, 25 hidden units, lag 5 
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Figure 6: GARCH (1,1) Fitted model for British Pound / US Dollar Series 

 

 
 

 

7.  Estimation of Implied Volatilities 
Finally the implied volatility surface are estimated from the data set 31-MAR-2008, 29-SEP-2008 and 

31-DEC-2008.dat using neural networks. The data set contains settlement price of the NIFTY Option 

(underlying asset), strike prices, interest rates, times to maturity and prices from puts and calls traded at 

the National Stock Exchange (NSE), India on 31/03/2008,29/08/2008 and 31/12/2008. 

The implied volatility surface estimated through a MLP network with 15 hidden units is shown 

on Figures 7, 9 and 11. The implied volatility surface estimated through a RBF network with 25 hidden 

units is shown on Figures 8, 10 and 12. All pictures also show the implied volatility curves (red), used 

on the estimation of the surface. The results shows volatility surfaces for pre meltdown, meltdown and 

post meltdown periods. 

The extreme volatilities due to financial meltdown are clearly visible in the figures. 

 

 

Conclusion 
1 The phenomenons of volatility clustering, autocorrelation, heteroscedasticity are observed in Nifty 

returns. 

2 Neural Networks do a fairly good job in forecasting Exchange rate (NMSE 0.6, Sign 0.6).RBF 

networks do considerably better than MLP networks in this case. 

3 Conditional heteroscedastic models can be effectively used to predict mean and volatility of 

NIFTY daily returns. 

4 Within the conditional heteroscedastic models, the performance of IGARCH and TGARCH was 

better than other heteroscedastic models. 

5 Neural Networks performance is better (around 10-15% improvement) than conditional 

heteroscedasticity models like GARCH, GARCH-M, EGARCH, GJR, IGARCH etc in 

forecasting Exchange rate. 
6 Neural network can be effectively employed to estimate the conditional volatility (besides 

existing methods of conditional heteroscedasticity models like GARCH, GARCH-M, EGARCH, 

TGARCH, IGARCH etc.) 

7 Neural network can be effectively employed to estimate the implied volatility of the options. 
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Figure 7: Implied volatility surface estimated using a (2-15-1) MLP. Parameters: strike prices and maturities. 

Data: NIFTY Option at NSE, India on 31/03/2008 

 

 
 
Figure 8: Implied volatility surface estimated using RBF network with 25 hidden units. Parameters: 

moneyness and maturities. Data: NIFTY Option at NSE, India on 31/03/2008 
 

 
 

8 Volatility surface can be effectively generated after getting the forecast of implied volatility of 

options and plotting this along with exercise price and time to maturity. 

9 RBF networks do considerably better than MLP networks in extracting the information necessary 

to perform a good generalization from the training set. The MLP may learn information specific to 

the training set that has no use for generalization. Besides that, we need to consider the possibility 

that MLPs with more than one hidden layer may generalize better, maybe better than RBFs. 

10 The number of hidden units used does not seem to have a straight relation with the forecast 

performance. Networks with few hidden units performed better than networks with many hidden 

units and the way around. 
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Figure 9: Implied volatility surface estimated using a (2-15-1) MLP. Parameters: strike prices and maturities. 

Data: NIFTY Option at NSE, India on 29/08/2008 

 

 
 
 
Figure 10: Implied volatility surface estimated using RBF network with 25 hidden units. Parameters: 

moneyness and maturities. Data: NIFTY Option at NSE, India on 29/08/2008 
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Figure 11: Implied volatility surface estimated using a (2-15-1) MLP. Parameters: strike prices and maturities. 

Data: NIFTY Option at NSE, India on 31/12/2008 
 

 
Figure 12: Implied volatility surface estimated using RBF network with 25 hidden units. Parameters: 

moneyness and maturities. Data: NIFTY Option at NSE, India on 31/12/2008 
 

 
 

11 Neural network can simultaneously and effectively extract the non-linear functional form as well 

as model parameters (as opposed to conditional heteroscedasticity models where the functional 

form needs to be specified for estimation of parameters). Neural networks provide quantitative 

finance with strong support in problems related to non-parametric regression. Also remarkable are 

the heuristic considerations involved on the set up of neural networks: sometimes parameters and 

architectures are chosen only by trial and error. 
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