
1/50

MODULE 01: OOP –
A CONCEPTUAL

OVERVIEW

Professor : Dave Houtman

Office: T323

Office Hrs: Wednesday 13:15 – 14:15

Friday* 5:00 – 5:30

Email: houtmad@algonquincollege.com

* but confirm beforehand

mailto:houtmad@algonquincollege.com

2/50

Object-Oriented Programming (or OOP) is programming methodology that applies a
divide-and-conquer strategy to software development. In OOP, the programmer
considers the composition of the thing being modeled. This involves abstracting the
thing in the real world, and then considering the interaction between its components.

Booch, G. (1991). Object-Oriented Design With Applications. Redwood, California: Benjamin Cummings Publishing Company, pp. 39

1.0 OOP – A Conceptual Overview

3/50

Consider the following hardware analogy. A power
supply can be thought of as a particular hardware
object, one component in a larger system, each of
which has the following features:

• The object performs one well-defined function,
and one function only

• It can be easily replaced if defective

• The inputs and outputs—the public features of
the supply—are standardized, both in terms of
their voltages and currents, and the physical
compatibility of the connectors

• The internal features of the object are hidden;
nothing is made available to the user of the power
supply that doesn’t need to be made available

This is what a well-designed software object should
do. http://www.instructables.com/id/Power-Supply-For-Arduino-

power-and-breadboard/?ALLSTEPS

1.0 OOP – A Conceptual Overview

4/50

Continuing this analogy: we can idealize each power supply as a ‘black box’, whose
internal configuration and properties need not concern us. All that really matters is
the interface to the ‘outside world’

Note that while the operation of this device is internally complicated, the simplicity
of the interface, combined with the standards agreed upon its manufacturers, helps
make each power supply universal, able to be installed in potentially millions of PCs.

Power Supply120 VAC

+3.3 VDC

+5.0 VDC

+12.0 VDC

1.0 OOP – A Conceptual Overview

5/50

With the OOP paradigm, code should work the same way. Each object should have a
well-designed interface to the outside world. The actual details of the
implementation—the ‘insides’—need not concern the user of the code object.

Some Object
input1

output1

output2

outpu3
input2

1.0 OOP – A Conceptual Overview

6/50

1.0 OOP – A Conceptual Overview

Just as a PC is the result of the interaction of separate hardware components, each
computer program results from the interaction between several software objects,
each of whose interactions are well-defined and carefully proscribed.

7/50

Some Object

input1
output1

output2

outpu3

input2

1.0 OOP – A Conceptual Overview

Java is an Object-Oriented Programming Language (OOPL) in which each code
module is packaged into objects. In Object-Oriented Programming, an object’s
attributes are called its properties, while its behaviors are called its methods.
Properties and methods are sometimes collectively referred to as the members of
an object

object

property1

property2

property3

…

method1

method2

method3

…

8/50

1.0 OOP – A Conceptual Overview

Each object is derived from a class in a process called instantiation. When
properties and methods appear in a class, they are called class fields and class
methods. When they appear in an object, they become instance properties and
instance methods.

Colloquially, we often refer to just properties, methods, or members, ignoring
whether or not they appear in classes or objects.

class

field1

field2

field3

…

method1

method2

method3

…

class fields and methods

object

property1

property2

property3

…

method1

method2

method3

…

instance properties and methods

instantiation

9/50

1.0 OOP – A Conceptual Overview

An object is an instance of a class, and while the two concepts are related, a class is
not an object. Rather, a class acts like a template for an object, something like this:

Just as you can't eat the space inside the cookie cutter, in many early OOP languages,
you couldn't execute a pure class method; only the object itself contained executable
code. (Java blurs this distinction somewhat in its use of static members—more on
this shortly. For now, the important point is that a cookie cutter can be used as the
template for one or more cookies.)

class objectRAM (Memory)

10/50

1.0 OOP – A Conceptual Overview

Once the class has been declared, it can be used to instantiate multiple objects:

GingerbreadMan
CookieCutter

11/50

1.0 OOP – A Conceptual Overview

Each class typically contains one or more special methods, called a constructor, that
allows each new object to be instantiated
with its default properties determined
by parameters passed

to the constructor

cookie1

cookie2

cookie3

cookie4

GingerbreadMan
CookieCutter

12/50

1.0 OOP – A Conceptual Overview

Objects occupy space in memory; once they're no longer needed, they should be
deleted from memory. In early OOPLs (like C++) the programmer was responsible for
this task; in other languages (like Java), garbage collection occurs automatically.

memory location
for cookie1

memory location
for cookie2

cookie3

cookie4

'garbage collector'

GingerbreadMan
CookieCutter

13/50

1.0 OOP – A Conceptual Overview

As previously stated, one of the chief benefits of OOP is that it allows the program-
mer to hide the data stored in an object so that the clients of that object can only use
it in the ways prescribed by the designer of the class from which the object was
derived. To retrieve this data, programmers generally provide getter (or accessor)
methods; to save the data, setter (or mutator) methods are employed. Getters and
setters thus correspond to the outputs and inputs of our generic object:

This binding together of methods and properties inside objects is referred to as
encapsulation.

Some Object
input1

output1

output2

outpu3
input2

Setters: Getters:

14/50

1.0 OOP – A Conceptual Overview

private information

A concept closely related to
encapsulation is data hiding.
Variables which should not be
accessible to clients are
protected by declaring them
private: their access
is prohibited (except via
accessor and mutator
methods). private is an
access modifier whose purpose
is to prevent the client of an
object from making
unauthorized changes to the
attributes of the code.

15/50

1.0 OOP – A Conceptual Overview

private information

As a rule, you should only make
changes to properties using mu-
tator (or setter) methods. You
should only retrieve property
values using accessor (or getter)
methods. In other words, getters
and setters act as the sole points
of contact to private fields.

This leads to our first statement
of best practice:

BP#1:
Never access private fields directly,

except in getters and setters

16/50

1.0 OOP – A Conceptual Overview

Note: traditionally, the identifier for a setter method starts with the word ‘set’;
for getters, we prefix the method name with ‘get’.

There is one exception to this convention. Methods that return a boolean data
type are often prefixed with the word ‘has’ or ‘is’, e.g. hasSugar(),
isCertifiedOrganic(), isNutFree(), etc. This improves code readability.
For example

if !(isNutFree())
System.out.printlin(“Warning: May contain nuts”);

17/50

So getters and setters provide the public interface to ‘the outside world’, allowing
objects to interact with other objects in a safe, allowable fashion. Private members
prevent the client of the object from having access to the internal features of the
object.

Employee

setFirstName() getFirstName()

getLastName()

getMiddleInitial()

setLastName()

setMiddleInitial()

setAge() getAge()

etc. etc.

private String firstName;
private String lastName;
private char middleInitial;
private int age;

etc.

1.0 OOP – A Conceptual Overview

18/50

1.0 OOP – A Conceptual Overview

In summary: a class is code module that defines all the essential features that an
object will need to function and interact reliably with the other code module in an
application. The class’s fields

will determine the state of the
object—the features that
characterize each instantiated
gingerbread man, in our
analogy—while the methods
determine the object’s
possible behaviors.

While each object presents
public methods that the user
can call upon to manipulate
the object’s state,
encapsulation ensures that

the object’s internal mechanisms remain hidden. Thus each class is written as a
‘black-box’, allowing access to the internal state of an object only via public methods.

setSize()

setHeartColor()

setDough()

getDough()

getHeartColor()

getSize()

19/50

1.0 OOP – A Conceptual Overview

Consider: the GingerbreadManCookieCutter is but one of a variety of possible cookie
cutters designed to instantiate a specific kind of cookie. Each of these cookie cutters
shares a common set of functionalities and features, but each 'instantiates' a
different cookie object. Each specific cookie cutter class may be considered to have a

common set of features inherited from a more general CookieCutter parent class.
This hypothetical parent class—the presumed 'mother of all cookie cutters'—is
referred to as a superclass; each child class—the specific kind of cookie cutter that

instantiate different cookie types—is referred to as a subclass. For example,

CookieCutter
superclass

SnowflakeCookieCutter subclass,
GingerbreadManCookieCutter subclass, etc.

20/50

1.0 OOP – A Conceptual Overview

This feature, in which one class takes its more-general properties and methods from
its superclass, is called inheritance.

Inheritance is one example of code reuse: build and test code once, and then reuse
it, rather than recreate it elsewhere.

(Be sure to keep code reuse in mind as you go through the following slides.)

CookieCutter
superclass

SnowflakeCookieCutter subclass,
GingerbreadManCookieCutter subclass, etc.

inheritance

21/50

The public and protected members of the superclass get passed down to the
subclasses, and hence can be called upon in any instantiated object. For example,

1.0 OOP – A Conceptual Overview

inheritance

instantiation

instantiation

has access to:

star1.setSize()

star1.getSize()

...

CookieCutter
superclass

public void setSize(…){…}

public int getSize(…){…}

…

inheritance

public void setSize(…){…}

public int getSize(…){…}

…

inherits:

gbman1.setSize()

gbman1.getSize()

...

public void setSize(…){…}

public int getSize(…){…}

…

has access to: inherits:

22/50

We can add new features simply by adding new properties and methods to any
inherited subclass of a superclass (although there are some restrictions, to be dealt
with later). These then become available to any object instantiated from that

subclass.

1.0 OOP – A Conceptual Overview

inheritance

instantiation

instantiation

has access to

star1.setSize()

star1.getSize()

...

gbman1.setSize()

gbman1.getSize()

...

CookieCutter
superclass

public void setSize(…){…}

public int getSize(…){…}

…

inheritance

public void setSize(…){…}

public int getSize(…){…}

…

public void setSize(…){…}

public int getSize(…){…}

…

inherits, and adds:

has access to inherits, and adds:

public void setPoints(…){…}

public void setShape(…){…}

star1.setPoints()

gbman1.setShape()

23/50

Additionally, we can override any protected or public members inherited from
the superclass, revising them in a subclass to suit our purposes. For example, we
can change the size of any newly instantiated gingerbreadman object by overriding
the original superclass setSize() method in its subclass.

1.0 OOP – A Conceptual Overview

instantiation

has access to:

inheritance

gbman2.getSize()

gbman2.setSize()

...

@Override
public void setSize(…){…}

override setSize() in subclass

CookieCutter
superclass

public void setSize(…){…}

public int getSize(…){…}

…

public int getSize(…){…}

…

public void setShape(…){…} gbman2.setShape()

24/50

While we can imagine our general CookieCutter superclass as having certain
features and behaviours—it has a shape and size, it is made of some material like
metal or plastic, it cuts cookies—this class cannot be used to make actual cookies,
since these are the features of a generic cookie cutter only. It is an abstract class.

Only specific cookie cutters, like the GingerBreadManCookieCutter, can make actual
cookies. These are examples of concrete classes, since they can be used to
'instantiate' real cookies. The more general, abstract CookieCutter class, cannot.

This process, in which certain general features are abstracted away from a class into
a superclass, is called abstraction.

Abstraction and encapsulation are complimentary ideas: abstraction addresses the
common observable behaviours of a class, while encapsulation hides the features
that should be kept hidden from the user.*

*See: Abstraction VS Information Hiding VS Encapsulation [Webpage] retrieved from http://stackoverflow.com/questions/24626/abstraction-vs-
information-hiding-vs-encapsulation, 2015. My definition (above) is a rough paraphrase of Booch, G. (1993). Object Oriented Analysis and Design with
Applications, 2e. Don Mills, ON: Benjamin Cummings. pp 49, which is cited in the web page just cited near the top of the page.

1.0 OOP – A Conceptual Overview

http://stackoverflow.com/questions/24626/abstraction-vs-information-hiding-vs-encapsulation

25/50

Furthermore, we can imagine that the
abstract CookieCutter superclass is itself
descended from a Bakeware class, which
itself is descended from a Kitchenware
class—and each of these are themselves
abstract classes.

Collectively, this derived series of super-
and subclasses (whether abstract or
concrete) is known as a class hierarchy; it
describes all the features an instantiated
object will inherit based on the properties
and methods of its parent superclasses.

In each case, the subclasses inherit the
non-private members of the superclass,
which then get 'passed down from
generation to generation', unless they are

overridden in a subclass

CookieCutter class

SnowflakeCookieCutter subclass,
GingerbreadManCookieCutter subclass, etc.

Kitchenware class

Bakeware class

1.0 OOP – A Conceptual Overview

26/50

Encapsulation, inheritance, and
abstraction are considered to be
foundational concepts in OOP.

The fourth and final pillar of the OOP
philosophy is polymorphism. This feature
allows an object of one class to be treated
as if it were derived from any class higher
up in the class hierarchy.

For example, any object derived from the
GingerbreadManCookieCutter class could
be treated as a member of the
CookieCutter class, the Bakeware class, or
the Kitchenware class, since, in effect, a
GingerbreadManCookieCutter belongs to
all of these categories—at different levels
of complexity. SnowflakeCookie class,

GingerbreadManCookie class, etc.

CookieCutter class

Kitchenware class

Bakeware class

1.0 OOP – A Conceptual Overview

27/50

What is polymorphism used for? As one possible example, let's say we wish to store an
array of cookies. If the array is declared as being of type GingerbreadManCookieCutter,
then that array will only be able to hold GingerbreadManCookie objects.

1.0 OOP – A Conceptual Overview

28/50

But if our array is of the more generic CookieCutter type, then it will be able to hold any
kind of cookie object whose subclass descends from the CookieCutter superclass.
Polymorphism allows us to treat the objects of a subclass (cookies derived from specific
cookie cutters) as if they were instances of the more general CookieCutter class: a
gingerbread man cookie is still the product of a cookie cutter, regardless of its specific

features.

1.0 OOP – A Conceptual Overview

29/50

One potential complication can occur when objects are used polymorphically: the user
of a method or variable may attempt to store the wrong kind of object in an array of a
particular type, or pass the wrong kind of object into a method.

For example, say we wish to store cookie and donut objects in an array, so we declare
the array as being of type Bakeware, which allows us to store all baked goods. But this
leaves open the possibility that some user might attempt to store cakes and loaves of
bread in the array as well, which probably wasn’t our intention.

1.0 OOP – A Conceptual Overview

30/50

This problem, in which objects of one type have polymorphic access to the objects (and
their methods) of another, perhaps inappropriate type, is called type safety. Like code
reuse, it forms a major theme in most modern strongly-typed programming languages
(of which Java is one), and it will occupy much of our attention later on in this course.

Java uses generic declarations to handle this problem. Combined with interfaces (a
class-like construct), Java allows the designer of a class to limit the range of possible
polymorphically-related assignments to just the ones deemed to be acceptable: we
should not be able to store baguettes in a tray intended for cookies and biscuits.

(A simpler type safety issue, which you should be familiar with, occurs when we
attempt to store a larger numerical data type, like a long value, into a narrower type,
such as an int. The solution, casting, is potentially dangerous and should be avoided
whenever possible. But it is sometimes necessary.)

1.0 OOP – A Conceptual Overview

31/50

You may be asking: where do these superclasses come from? There are two
possible sources:

1. Someone else builds them; you
import them into your projects
using the import statement

2. You build and test them yourself,
and add them to your Eclipse
project

1.0 OOP – A Conceptual Overview

32/50

Regardless of a class’s parents, each instantiated object gains all the power and
functionality built into the methods it inherits from its superclass(es). This applies
equally well to simple objects, like our conceptual gingerbread man cookies…

…as well as to more sophisticated graphical objects, like those imported in one or
more java libraries, as well as the superclass objects we build into our programs.

javafx.application.Application

javafx.stage.Stage

javafx.scene.Scene

1.0 OOP – A Conceptual Overview

33/50

So every new Java application is a combination of both pre-written library code and
user-developed code…

myObject1

myObject2

myObject3

m
yO

b
ject4

m
yO

b
ject5

libraryObject1

libraryObject2

lib
raryO

b
ject3

lib
raryO

b
ject4

1.0 OOP – A Conceptual Overview

34/50

Communications between objects must be carefully circumscribed. So much of the
business of programming with OOPLs—and much of the latter half of this course—
deals with the interactions between objects, rather than the internal composition of
those objects. Abstraction, polymorphism and generics play key roles in ensuring
that the information passed between objects is appropriate.

myObject1

myObject2

myObject3

m
yO

b
ject4

m
yO

b
ject5

libraryObject1

libraryObject2
lib

raryO
b

ject3

lib
raryO

b
ject4

1.0 OOP – A Conceptual Overview

35/50

For simple projects, we’re done. But more complicated projects may required multiple
code modules, of which this object is merely one component. If so, this component
must be able to interact which other objects appropriately once it is instantiated, so it
too will need suitable setters and getters to allow it to interface with these other code
modules. Really large projects may require hundreds of such components.

myObject1

myObject2

myObject3

m
yO

b
ject4

m
yO

b
ject5

libraryObject1

libraryObject2
lib

raryO
b

ject3

lib
raryO

b
ject4

1.0 OOP – A Conceptual Overview

36/50

Rather than draw ‘black boxes’ with jig-saw puzzle-like connections between them
to represent bespoke classes, we typically use UML class diagrams. Shown below is
a sample UML class diagram for a hypothetical class called Circle. It has three
compartments (boxes), one each for its class name, fields, and methods/
constructors.

This example taken from: Liang D. Y. (2014). Introduction to Java Programming, Comprehensive Version, 10th Ed. Toronto, ON:
Pearson. pp. 324.

Circle

+Circle()
+Circle(newRadius: double)
+getArea(): double
+getPerimeter(): double
+setRadius(newRadius: double): void

-radius: double

1.0 OOP – A Conceptual Overview

37/50

A group of classes acting together are typically stored in a package. (In Eclipse, a
package is really just a subfolder under a project’s src directory.) Package names
should always be lowercase; this helps distinguish them from classes.

Packages have their own symbol, which looks like a file folder, as indicated below.

graphics.primitives

Circle

-radius: double

+Circle()
+Circle(newRadius: double)
+getArea(): double
+getPerimeter(): double
+setRadius(newRadius: double): void

1.0 OOP – A Conceptual Overview

Block

-length: double
-width: double

+Block()
+Block(length: double, width: double)
+getArea(): double
+getPerimeter(): double
+setLength(length: double): void
+setWidth(width: double): void

38/50

Large programs typically contain
multiple packages, with special lines
both inside and between packages
indicating the kinds of connections
between classes and other program
components.

Shown at right is a small fragment of
the UML diagram for a Java-based
Pascal compiler*. The complete
UML diagram includes several
packages and dozens of classes.

*from Writing Compilers and interpreters: A Software
Engineering Approach, 3e; Ronald Mak, Wiley
Publishing, 2009

1.0 OOP – A Conceptual Overview

39/50

Of course, for the OOP methodology to work properly, all classes must be coded
correctly and tested completely. Failure to do so—to take shortcuts in writing the
code, to test code inadequately, or fail to plan ahead—to see the 'big picture'—
means that classes and code—and therefore all their derived subclasses and
objects—will be hobbled from the start.

1.0 OOP – A Conceptual Overview

40/50

To summarize:

• Object-oriented programming is a programming paradigm in which properties
and methods are bundled together into a class in a process called encapsulation.

• A central feature of OOP is code reuse.

• In general, classes must be instantiated into objects to be executable (although
Java has shortcuts around this feature, involving the use of static members).

• Special methods known as getters and setters (or accessors and mutators) are
used to get and set the data stored in objects.

• The four main pillars of OOP are:

1. Data hiding via encapsulation. Data that does not need to be accessible to clients is
kept hidden; at the programmer's discretion, it may be made accessible via getters;

2. Inheritance is a feature that allows a subclass to inherit the properties and methods
of its superclass;

3. Abstraction means that certain common features found in subclasses are abstracted
away into abstract superclasses, which cannot be instantiated;

4. Polymorphism means that a class at one level is treated as if it were derived from a
class at a different level in the same class or object hierarchy.

1.0 OOP – A Conceptual Overview

41/50

OOP programmers disagree over how many 'pillars of OOP' there actually are—the
number varies from three to seven. For example, some programmers view
encapsulation as being a part of abstraction (for reasons touched upon earlier),
thus reducing the total by one.

(See, for example, http://themoderndeveloper.com/the-modern-developer/back-to-basics-three-or-four-
oop-pillars/ or http://www.c4learn.com/cplusplus/cpp-pillars-of-oop/ for discussions on the subject.)

1.0 OOP – A Conceptual Overview

http://themoderndeveloper.com/the-modern-developer/back-to-basics-three-or-four-oop-pillars/
http://www.c4learn.com/cplusplus/cpp-pillars-of-oop/

42/50

Questions

1. Fill in each blank in the sentences below with one of the words high-lighted in
blue in this module. (Note: these questions are typical of those found on exams)

a) An object is the _________ of a class, a process known as _________

b) A getter is also called a __________, while is setter is known as a ___________

c) Unused objects are cleared from memory via a process known as _________

d) The binding together of attributes and their behaviours in a class is known as

e) __________ classes can be derived from both abstract and ___________ classes

f) A parent is to a child as a ____________class is to a ______________class

43/50

Questions

2. Consider the following incomplete, hypothetical class hierarchy. Which
classes are probably abstract, and which are concrete?

Motor Vehicle

Automobiles

Compact

Midsize

Zambonis

Sedan

Cadillac

Industrial

Cement
Trucks

Vans

44/50

Questions

3. (a) For each of the following images, provide the OOP term from the word
cloud below that best describes the relationship between the pictures.

Note: OOP concepts are interrelated, and so any of these questions may have
more than one 'almost-right' answer. Try to pick the word(s) that fit the best.

object hierarchy

45/50

Questions

3. (b) For each of the following images, provide the OOP term from the word
cloud below that best describes the relationship between the pictures (con't)

object hierarchy

46/50

Questions

3. (c) For each of the following images, provide the OOP term from the word
cloud below that best describes the relationship between the pictures (con't)

object hierarchy

47/50

Questions

3. (d) Which of the OOP terms in the word list below best describes what this
picture symbolizes?

object hierarchy

48/50

Questions

3. (e) For each of the following images, provide the OOP term from the word cloud
below that best describes the relationship between the pictures (con't)

object hierarchy

49/50

Questions

3. (f) Which of the OOP terms below best describes what the picture below
symbolizes?

object hierarchy

50/50

Questions

3. (g) Which of the OOP terms below best describes what an ATM does?

object hierarchy

