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Introduction

This work is devoted to making a connection between classical mathematical
modeling and the latest developments in machine learning. To make sense
of the use of mathematical models, their parameters have to be adapted to
the empirical data that is modeled. This process is also called “parameters
estimation” or “inverse modeling”, depending on different literature sources.
For example, having a set of empirical observations of some object’s motion
and a supposed underlying physical model describing it, velocity being a pa-
rameter, we want to describe its behavior, exploiting the model itself as well
as ”historical data” of recorded speed’s volumes, applying both analytical
(e.g. in form of closed solutions coming from classical theory of motion) and
statistical (e.g. data analytics and forecasting) approaches. Analogously, one
can be interested in fitting problems related to the parameters validation for
specific statistical methods and/or stochastic processes used to model, rep-
resent and/or predict phenomena arising in a numerous sets of applications
ranging from Biology (see [1]) to Finance, from social sciences to renewable
energy sectors (see examples of the stochastic models in [2]), etc.

In the case of financial models, the parameters need to be calibrated to
the current market condition and with respect to historical prices. As an in-
troductory example, we can consider options pricing when underlying asset
is described by the Black-Scholes model (see section 2.2 for more mathe-
matical details). This model depends on a single pricing parameter, namely,
volatility and the aim of calibration is to find such a volatility value, that de-
scribes current market prices the best. This value is also often called implied
volatility. In most of the cases, this problem is stated as an optimization
problem: the minimization of errors between modeled data and real mar-
ket ones. However, because of general non-convexity of this optimization
problem and large space of parameters, it is usually solved numerically and
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it takes a significant amount of time that grows with financial models pa-
rameters space or amount of data. Therefore, the calibration process for a
portfolio of different financial instruments can take hours of computational
time even with the use of multiprocessing on several CPUs or even GPUs
running on high performance computers.

While most of today’s applications of Machine Learning (ML) are related
to performing classification or regression problems are given very complex
data, this work shows another promising objective that deep neural net-
works are able to solve - the approximation of complex functions, when de-
pending on time variable, can be even processes, also of stochastic nature.
Since this work is related to the optimization problem, the ability to suc-
cessfully approximate exact solutions of other optimizers is being researched.
We show that for Black-Scholes model and Merton jump model for options
pricing neural networks can efficiently approximate solutions from numerical
optimization algorithms with a significant speedup and a negligible loss of
accuracy. Although, the common fear for the use of ML in important appli-
cations is related to problems with explaining obtained results. Hence, we
show the ways to interpret the parameters provided by the Neural Networks
(NNs) and perform visual sensitivity analysis for easier use of human analysts
and experts. Last but not least, since the market conditions are continuously
changing, we provide an efficient scheme for scheduling retraining of the NNs
to adapt them to the market changes.
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Chapter 1

Problem overview

The goal of this chapter is to introduce the main tools and abstractions
that are driving this research. It starts with a description of two of the
most known and still widely used financial mathematical models, namely
the Black-Scholes model (see [3] and section 2.2) and Metron jump diffusion
model (see [6] and section 2.3 for further details) and how they’re used in
practice. Then we state the general calibration problem and main applica-
tions. In particular, we review the main current approaches to the calibra-
tion, alongside with their advantages and disadvantages, while, at the end,
the ML framework for the general calibration problem is introduced.

1.1 Financial models basics and examples

Broadly speaking, financial mathematical models aim to describe the behav-
ior of some objects of interest in the financial world, e.g. assets, commodities,
their derivatives, structured portfolios, etc. No matter about the particular
setting, such models are characterized by parameters, that define the prop-
erties of the process that is modeled. In Finance, this is the case of, e.g.,
volatility of the underlying asset, probability of price jumps, mean reversion
coefficient etc. Usually, these parameters are parts of Stochastic Differen-
tial Equations (SDEs). Generally, the SDEs describe a change of a price
of an instrument St on a time t with respect to economical constraints and
assumptions about the stochastic process that describes evolution of prices
over time. In this work, we focus on the derivatives as main instruments,
beacuse of their preminent relevance within main financial scenarios.
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1.2 Introduction to model calibration in fi-

nance

Any mathematical model is useless in practice unless the ”right” parameters
are chosen. A simple example is the Black-Scholes formula for call option
pricing (the full Black-Scholes model is to be introduced in section 2.2) which
takes as input six variables: initial price level of the asset St, the its volatility
σ, the strike price K of the option, T is the expiration date or the horizon,
time-to-maturity T − t, the bank account risk rate r and in some scenarios
the dividends paid by the underlying, the following being its output

C(St, t) = N(d1)St −N(d2)PV (K) (1.1)

which gives the price of an call option and where:

d1 =
1

σ
√
T − t

(ln(T ) + (
σ2

2
+ r)(T − t)), (1.2)

d2 = d1 − σ
√
T − t, (1.3)

PV (K) = Ke−r(T−t), (1.4)

and N is the cumulative distribution function of the standard normal
distribution. If you put in numerical values for these variables, the formula
1.1 returns a value for the option at the time t. Using a model with incorrect
parameters, e.g. underestimated volatility σ likely leads to losses.

Therefore, pricing financial instruments is a fundamental issue that often
leads out to very complex computational processes, often involving Monte
Carlo simulations (see [5]). In some cases, optimal parameters can be found
analytically, but in most of the cases, this problem is stated as an optimiza-
tion one. Then, it becomes necessary to define appropriate cost functions
as functions, measuring the difference between modeled behavior and actual
market behavior that needs to minimize. Different choices of this function
will be shown in the next chapters (in particular, in section 3.1), like mean
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square error, mean average error and the Huber loss.

When the loss function is convex, i.e. with a single extremum and even if
the analytical solution is not available, numerical optimization methods, like
gradient descent, Newton method, conjugate gradients, etc can be applied.
But, in most of the cases, the cost function is neither convex, nor differ-
entiable. Hence, heuristic optimization methods are applied, for example,
brute force searches [9], genetic algorithms [12], Bayesian optimization [13]
(see section 3.2 for further details).

1.3 Machine learning for calibration basics

The main disadvantage of above-mentioned algorithms is their execution
speed. Depending on the problem size, they take a significant amount of
time that grows with specific financial models, because of large parameters
space or amount of data. For example, the length of the option chain or
degrees of freedom of specific financial model can be such complications. ML
can be helpful here to approximate the final result of the optimization pro-
cess. There are a lot of theoretical results (like the approximation theorem,
see [14]) and empirical evidences that machine learning algorithms, like deep
neural networks (see, e.g., [15]), are able to approximate very complex func-
tions with high accuracy after being suitably trained on historical data.

This work is devoted to such kind of approach to financial models cali-
bration: having a dataset of a financial model optimized on historical trades,
we train a machine learning model to derive the optimal parameters for the
future calibrations. Instead of current calibration routine that involves it-
erative optimization algorithms, that on each iteration have to evaulate the
function, that is based on Monte-Carlo simulations, we will perform a sin-
gle forward pass of a ML model, that is, in the case of NNs, just a set of
matrices multiplications. The expected speedup supposed to be drastic. In
fact, most of ML models perform prediction stop in milliseconds, while op-
timization process with genetic algorithms can last for hours, when applied
for structured portfolios.
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Chapter 2

Financial models

2.1 Options pricing basics

An (European) option is a contract which gives a holder the right, to buy or
sell an asset (also called underlying) at a particular price (called strike price)
on a specified date, depending on the type of the option. What’s important,
the trader has right to exercise the option, but has no obligation to do it.
There also exist another different types of options like American option, that
allows to execute in any time before the maturity date, Bermudan option
that allows to exercise on a set of specific dates and others (see [9] with more
examples and details). In this study we will concentrate on European style
option.

(a) Profits from buying a call (b) Profits of writing a call

Figure 2.1: Call option profits

There are two main types of European options, called call and put. A
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call option gives the owner of the option the right to buy an underlying asset
at some particular price nevertheless the actual price of the asset is. A call
option is worth money if the price of the underlying at maturity, denoted by
ST , is higher than the strike price K, otherwise it’s worth zero. Hence, its
payoff equals

CT = max(0, ST −K). (2.1)

Consequently, a put option is the right to sell an underlying. A put makes
money when the asset is below the strike price K at maturity, otherwise it’s
worth nothing as well, then we have

PT = max(0, K − ST ). (2.2)

(a) Profits from buying a put (b) Profits of writing a put

Figure 2.2: Put option profits

Figures 2.1 and 2.2 represent the payoff graphs of a put and a call at
maturity T .

The unknown variable in equations 2.1, 2.2 remains ST - value of an
underlying at maturity time T. Our goal now is to compute it. Usually it’s
done with help of stochastic models that are meant to describe the behavior
of underlying asset. In the following two subsections we will recall the basics
of the most celebrated, but still actively used in practice, financial models,
namely Black-Scholes model and the Merton jump model.
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2.2 Black-Scholes model

The Black-Scholes model [3] was introduced to describe dynamics of a deriva-
tive price (European option in our case) over time. The core accomplishement
is well-known Black-Scholes equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
= 0, (2.3)

where St is the price of underlying asset at time t, V (S, t) is the value of
an option for an asset S at time t, K is the strike price, r - annualized risk-
free interest rate. From Black-Scholes formula prices for European call and
put options can be derived in a closed form [3]. The formula for call option
was already introduced in equation 1.1, the formula for the put option is the
following:

P (St, t) = N(−d2)PV (K)−N(−d1)St, (2.4)

where d1, d2 and PV (K) are obtained as in equations 1.2, 1.3 and 1.4.

Black-Scholes model assumes, that underlying prices follow the Geometric
Brownian Motion (GBM, see [4]), namely:

dSt
St

= µdt+ σdWt, (2.5)

which admits following solution:

St = S0e
((µ−σ

2

2
)t+σWt), (2.6)

where µ and σ are the expected return rate and volatility of the under-
lying asset, Wt is the standard Brownian motion and S0 is the underlying
price on the starting time. Example of the sample paths produced by GBM
model are represented in the figure 2.3.

Moreover, the Black-Scholes assumes that:

• there are no arbitrage opportunities. The absence of arbitrage oppor-
tunities means that all risk-free portfolios must earn the same return;

• the underlying asset will pay zero dividends during all the life of the
option;
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• the risk-free interest rate r and the asset volatility σ are constants over
the existence of the option;

• trading is done continuously. Short selling is allowed, the assets are
divisible;

• there are no transaction costs and no taxes related to hedging.

It worth to mention, that not every financial model allows a closed form
solution with respect to derivative pricing, as example, within Merton jump
model framework, that will be reviewed in detail in section 2.3, analytical
solution can’t be derived even for simple European style options. In such
cases, a typical solution is permitted by adopting Monte-Carlo approach,
whose main steps are:

• divide whole time interval from purchase date to expiry date into equal
subintervals

• start iteration from i = 1 to I, where I is number of Monte Carlo
simulations

for every timestep t a random number zt(i) is drawn

calculate ST at final time T running equation 2.4 for all t

calculate value of an option using 2.1 and 2.2

• sum up the inner values, average, and discount them back with the
riskless short rate

To find ST itself, we can use Euler discretization of the underlying process
SDE. For example, when considering the GBM SDE in equation 2.5 it’s the
following:

St = St−∆te
(r−σ2/2)∆t+σ

√
∆tzt (2.7)

where zt is a standard normally distributed random variable, and ∆t is
suitable chosen time step whose value takes into account the desired accuracy
and affordable computational efforts.

Of course, the Black-Scholes model can’t capture all the details of under-
lying process’ nature, but since we are concerned with parameters calibration
problem, it will serve as a proof of concept model because of its simplicity.
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Figure 2.3: Samples of the Geometric Brownian Motion with σ = 0.25

2.3 Merton jump model

The Merton jumps model, introduced in 1976 by Robert Merton, (see [6]),
is a model for stock price behavior that incorporates the idea that prices
can change more strongly, opposed to what can happen with the Black-
Scholes framework. In particular, these movements are supposed to have
the so-called ”jump” structure. The consideration of jumps allows for more
realistic scenarios that are not incorporated in the standard Black-Scholes
model. This causes option prices to increase compared to the Black-Scholes
model and to depend on the risk aversion of investors. The SDE defining the
underlying asset prices in Merton model is the following one:

dSt = (r–rJ)Stdt+ StdZt + JtStdNt (2.8)

where St is the underlying price at time t, r are the constant riskless
short rate, rj is the drift correction for the jump component to maintain risk
neutrality (see [7] for more details),

rJ = λ(eµJ+δ2/2 − 1) (2.9)

σ - is the constant volatility of S, Zt - is a standard Brownian motion, Jt
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Figure 2.4: Samples of the jump diffusion process with σ = 0.25, λ = 0.3, µ
= -0.75 and δ = 0.1

- is a jump component at time t with distribution

log(1 + Jt) ≈ N(log(1 + µJ)− δ2/2, δ2), (2.10)

while Nt is Poisson process with intensity λ > 0 and δ plays role of stan-
dard deviation of the jump size (see more details in [6]).

Since the Merton model doesn’t allow option pricing in closed form, as
it happens for most of the more advanced financial models, we consider the
Euler discretization for equation 2.7 for Monte-Carlo simulations:

St = St−∆t(e
(r−rJ−σ2/2)∆t+σ

√
∆tz1t + (eµJ+δz2t − 1)yt) (2.11)

where z1
t , z

2
t are normally distributed and independent, yt is a Poisson

distributed random variable with intensity λ > 0, being assumed to be inde-
pendent of z1

t , z
2
t .
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Chapter 3

Calibration problem

In this chapter, the financial model calibration problem will be stated math-
ematically and the main algorithms to solve it numerically will be described.
Moreover, the ML framework will be introduced and the connections with
standard methods are going to be established.

3.1 Mathematical framework

We define an option pricing model with M . In this work we consider the:
MBSM , for the Black-Scholes model and MJD for the Merton jump model
with respect to the underlying SDEs (see equations 2.5 and 2.8). The theo-
retical price of the linked options will be denoted by (see more details [16],
[17])

Q(τ) = Mmodel(θ; τ, φ), (3.1)

where θ is the vector of model parameters. In particular, for MBSM

we will have a single parameter θBSM = {σ} while for MJD model, θJD =
{σ, λ, µJ , δ}. Variable τ is a vector, describing properties of the particular
instrument, e.g. maturity date, open interest etc and φ stands for exogenous
variables, which are not directly specified by the pricing model. In partic-
ular, they can obtained from other sources like interest rate curves or news
sentiment.

Model calibration means adjusting these parameters in such a way, that
theoretical Q(τ) describes market prices Qmarket as close as possible with
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respect to the given metric. Usually, Qmarket stands for a set of quotes for
some period of time {Qmarket}i, i = 1...N , where N stands for a number of
quotes for this period. The concept of ”closeness” is described by a loss func-
tion, that usually is in a form of a metric defined within a suitable space.
This loss function sets the objective of our optimization problem and must
be minimized to find the optimal, with respect to specific criteria, for the
parameters choice. In financial context, we are interested in Q(τ) from a
financial model to be as close as possible to Qmarket(τ), otherwise we will
be in risk of overpricing options with low value and underpricing potentially
profitable options.

Since all the parameters lie in a subset of Rm space (with constraints
related to non-negativeness of some parameters like the volatility σ), good
choices for the loss function are the mean absolute error:

L1(θ∗, Qmarket; τ, φ) =
N∑
n−1

|Q(τi)−Qmarket(τi)|, (3.2)

where τi is a properties vector of the ith out of N instruments on the
market, Q(τi) is the value of the ith instrument based on a financial model
and Qmarket(τi) is the market valuation of the instrument; the mean squared
error is defined the following way:

L2(θ∗, Qmarket; τ, φ) =
N∑
n−1

(Q(τi)−Qmarket(τi))
2, (3.3)

while the Huber loss is defined by:

Lδ(θ
∗, Qmarket; τ, φ) =

{
0.5× L1(θ∗, Qmarket; τ, φ), L1(θ∗, Qmarket; τ, φ) ≤ δ

δ × L2(θ∗, Qmarket; τ, φ), otherwise,

(3.4)
where δ is a pre-defined theshold value (see [11] for details). The calibra-

tion problem now is the following optimization problem:

θ = arg min
θ∗

L(θ∗, Qmarket; τ, φ) = Θ(Qmarket, τ, φ) (3.5)

Herefore by a function, that takes market quotes Qmarket, their properties
τ and exogenous variables φ as input, and returns optimal parameters θ∗
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values of the financial model with respect to pre-defined loss function, where
the function

Θ(Qmarket, τ, φ) : RM → Rm. (3.6)

describes the model calibration on task of our interest.

The function in equation 3.5 can be computed in several ways, see section
3.2). In particular we will accurately and efficiently show, that ML algorithms
are able to approximate it, i.e. given the same inputs, ML model and function
Θ(Qmarket, τ, φ) return outputs close to real data with respect to predefined
cost function.

3.2 Optimization algorithms

The optimization problem defined in 3.5 is rather challenging due to several
reasons:

• non-convexity: there can and will be multiple local minimas in the
defined cost function;

• ill-poseness: result of calibration can vary for each optimization run,
because of Monte-Carlo simulations in pricing or stochastic nature of
an optimization algorithm itself;

• non-differentiability: derivatives of different order n of ∂nL(θ∗,Qmarket;τ,φ)
∂θn

are not always available in a closed form, because of Monte-Carlo sim-
ulations in pricing or stochastic optimization as well (see more details
on the problems related to stochastic optimization of non-differentiable
functionals in [18]).

In practice, to avoid the issues stated above, complicated heurictical al-
gorithms are applied and, often, they’re being re-running several times to
try to achieve the optimal value among different local minimas obtained as
results of different runs. This is the main motivation behind this work - to
try to develop approaches that eliminate this need of complex repeating and
time consuming calculations and replacing them with a single, well-posed,
fast and robust approxination using ML-based models.
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3.2.1 Gradient based optimization

If the optimization problem is convex and the mathematical model behind
can be differentiated (e.g., to calculate the implied volatility within the Black-
Scholes model, see [8]), some ”standard” methods can be successfully applied.
Most of them are gradient based optimization methods, like gradient descent,
that sequentially update optimized parameters with the following rule:

θn+1 = θn − λ∇L(θn) (3.7)

where θn is a vector of parameters to be optimized on iteration n, ∇ is the
gradient of a function L that is being optimized with respect to the param-
eters θ and λ controls speed of optimization - with this step the coordinates
of optimal parameters will change in the search space (as it is in equation 3.8).

If the second order partial derivatives of function L with respect to the
parameters θ are available, second-order gradient methods, like Newton al-
gorithm can be applied with the following parameters update rule:

θn+1 = θn − λH[L(θn)]−1∇L(θn), (3.8)

Unfortunately, these algorithms can’t be applied in practice, because of
potential non-convexity, ill-poseness and non-differentiability of the function
L.

3.2.2 Brute force search

Since gradient based approaches are not always available, there is a need
for heuristical algorithms to find the optimal value of a complicated func-
tion. The simplest way to do this is so called ”brute force” or ”random”
search. The latter method basically picks random values of a cost function
and returns optimal value with the following algorithm:

• randomly generate a first parameters set values, consider it as a mini-
mum,

• iterate over i = 1...I, where I - maximum number of iterations, fixed
before the optimization as a hyperparameter
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sample a new set of parameters values uniformly from {min,max}j,
where j - number of parameters of a model and min and max are
minimum and maximum allowed values for given parameters

if a cost function with respect to the new sample has smaller value
than previous one - consider it as a new minimum,

• return minimum of a function.

Concerning theoretical applicability of such an approach, Matyas [20]
showed that purely random sampling of the search-space will inevitably get
a value arbitrarily close to the optimum. Of course, this method is extremely
time consuming, because it guarantees convergence to the optimal parameters
while I → ∞. There are several heuristical improvements over random
search, one of the most successful being the evolutionary algorithms, that
mimic the biological process of evolution in some way to create the most
effective species (e.g. candidates for optimal parameters θ in equation 3.5,
see [19] for further details). In this work we have chosen the differential
evolution (see [21]).

3.2.3 Differential evolution

The differential evolution is a heuristical optimization algorithm used for
multidimensional real-valued functions that does not use the derivatives of
the cost function which means that it does not require the optimization prob-
lem to be differentiable, as it’s needed by gradient-based methods described
in 3.2.1. What’s imporant for our problem, differential evolution can also
be used to optimize functions that are not continuous, ill-posed, noisy (for
example, due to Monte Carlo simulations, that approximate a function with
the use of random variables, hence, introducing noise).

As an evolution-inspired algorithm (see [19]), differential evolution op-
timizes a cost function by creating new candidates for a local optima by
combining existing ones according to heuristical set of rules and keeping the
candidates that have the smaller loss function. This method is very similar
to the brute-force search: it is also based on random search over the space of
parameters of a cost function, but with several improvements, related to the
combining intermediate solution candidates instead of interative replacing,
described in the following algorithm:
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• define cost function L with respect to its parameters θi, i = [1...m],
where m is a dimension of the vector θ;

• define hyperparameters F - differential weight, that factors difference
between solution candidates (see next steps), CR - crossover proba-
bility, which is probability of combining solution candidates, and NP
- population size - initial number of solution candidates, that will be
evolved with time;

• let θ be a set of NP candidates for optimal parameters, initialize them
all randomly;

• for i = 1...N , where N - number of iterations:

for each candidate θj in set of candidates:

pick three (see [21] for the motivation of choice) candidates θa,
θb, θc ;

pick a random index R from dimensionality m of a cost function
L;

compute candidate’s θi new position as follows: draw random
numbers ri for each dimension and if ri < CR or ri = R: set position
of θj as θai + F ∗ (θbi − θci);

if the cost function L with respect to the θj improved, move to a
new position, otherwise stay on the old one;

• at the end, pick the candidate θ with the best value of a cost function
and return it as an approximate optimal solution.

In this work differential evolution is used as reference optimization algo-
rithm for the problem 3.5, e.g. we will try to approximate results of differ-
ential evolution optimization process with ML models.

3.3 Machine learning

As we have stated in 3.2, the optimization problem we’re trying to solve is
particularly challenging both from an analytical and computational point of
view. Even with the use of all the heuristics described in subsections 3.2.2
and 3.2.3, are needed a lot of time and computational power to calibrate a
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financial model to real situation. It will be shown in the Chapter 7, that
differential evolution applied to Merton jump model calibration, can take
150 seconds for a single instrument a single date, single maturity. On the
other hand, in reality, an inverstor has to deal with a structured portfolio
of multiple financial instruments that have to be traded on different dates
and within short, if not ”high frequency” based, times. What we’re looking
for, is for an algorithm, that is able to replicate before defined (probably
noisy, ill-posed, non-convex, or non-differentiable) optimization function (see
equation 3.6), represented by one of the algorithms in the Section 3.2 with
an approximation, that is much faster, well-posed and differentiable.

ML algorithms allow to approximate, interpolate and extrapolate high-
dimensional data. This is why they have been widely used in different areas
(see application examples in [22] for physics, [23] for biology, [24] for social
sciences and [36] for finance). Their concrete implementation and optimiza-
tion strongly relies on the appropriate choice of relevant parameters. Given a
dataset that consists of historical inputs and outputs for the model (namely,
from events that happened in the past) we can train a ML model to minimize
the difference between the actual output that corresponds to the given input
and what this particular ML model outputs for the future observations (also
called out-of-sample data). In our case, we are interested in such a model,
that takes variables Qmarket, τ, φ exploiting the real market data and outputs
parameters {θi} of financial model that are being produced by some known
optimizer (e.g. like brute force or differential evolution in our case). Hence,
we can define a learning problem in terms of finding a function, namely a
machine learning model, that approximates

{θi} = Θ(Qmarket, τ, φ) (3.9)

on the basis of historical values.

Therefore, the main difficulty here is not just to find such a function,
that interpolates Θ on the historical data (interpolation), but such one, that
will work the same for the future values, that will differ from the ones in the
training dataset (extrapolation). In practice, following algorithms are used
to prevent it:

• regularization: setting constraints on the learned parameters of ML
model, forcing them to be smaller, and, hence prevents learning a model
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that simply remembers the training data, because it has more param-
eters than those justified by the observations

• dropout: randomly setting some parameters of ML model to zero while
training to prevent their ”co-adaptation”, namely an effect of learning
the same pattern by two different parameters

• data augmentation: adding more, typically artifically generated data,
to the training dataset

• early stopping: breaking learning process if the cost function doesn’t
improve on out-of-sample data for some time

In this work, all before mentioned approached will be used, see Section 5
for more details.

Coming back to the quest for the function, mentioned before, the associ-
ated definition can be mathematically seen as an auxiliary optimization prob-
lem, where we need to minimize a difference between actual and predicted
financial model parameters, with respect to the ones of the ML model. For
the ease of reading, we will call parameters of financial model as ”parame-
ters” θ and parameters of machine learning model as ”weights” W , therefore
we have:

W = arg min
W ∗

LML(W ∗;Qmarket, τ, φ; θ), (3.10)

where LML is a cost function that defines the difference between actual
and predicted parameters θ based on the inputs Qmarket, τ, φ (market prices
of an instrument its properties and exogenous variables respectively).

In the present thesis we are going to develop a ML approach, which is
built to be differentiable, so that gradient-based approaches approaches are
successfully applied to optimize problem 3.10 to find optimal W ∗. Following
gradient decent and equation 3.7 we obtain following update rule for solving
problem 3.10:

Wn+1 = Wn − λ∇LML(Wn) (3.11)

The general scenario for approximating a function Θ(Qmarket, τ, φ) from
equation 3.6, which will be described in details in Sections 5 and 7 for details
is the following:
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1. select a financial model M , for exaple, the Merton jump model with its
set of parameters θ;

2. select a reference optimization algorithm, for example, differential evo-
lution;

3. define the financial instrument related parameters vector τ and exoge-
nous variables φ;

4. solve calibration problem, stated in 3.5, using reference optimization
algorithm, and save obtained parameters as θ;

5. solve optimization problem 3.10 using Qmarket, τ, φ and obtained value
of θ in step 4, and save ML model with its weights W ∗;

6. use the ML model with weights W ∗ for out-of sample calibrations.
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Chapter 4

Artifical neural networks

Among various ML models like support vector machines, decision trees, non-
parametic approaches (for more details on other ML models see [25]) we are
concentrating on artificial neural networks (ANNs, see [26]) in this work.
ANNs are differentiable functions, which will ease sensibility analysis of cal-
ibration model. Also, they’re showing state of the art results in various
applied fields (see [28], [29]) outperforming another ML approaches. In this
chapter we will review main neural network types that are used in this work
from mathematical point of view, how they are being trained alongside with
particular architectures we have used in this work.

4.1 Multilayer perceptron

Here we will describe a general multilayer NN that consists of L layers. Each
arbitrary layer, say `, has N` neurons x`1, x`2, . . . , x`N` , each with a transfer
function σ`. These transfer (or activation) functions may be different from
layer to layer. As the Delta rule (also, see [27]) states, the activation function
can be given by any differentiable function, but does not need to be linear.
These neurons receive signals from the neurons in the preceding layer, `− 1.
For instance, a neuron x`j receives a signal from x`−1

i multiplied by a weight

w`−1
ij . Hence, we have an N`−1 by N` weight matrix, W `−1, whose elements

are given by W `−1
ij , for i = 1, 2, . . . , N`−1 and j = 1, 2, . . . , N`. Neuron x`j also

has a bias given by b`j, that takes part in linear transformation from layer to
layer.
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Figure 4.1: Example of a MLP architecture

For the sake of notation, we will define output of the very last layer as
yL, the total input to the unit u`i in the layer ` as x`i and the output of the
unit u`i as y`i . In order to compute the output of a NN based on its input,
the following forward propagation procedure is applied:

1. compute activations for layers with known inputs:

y`i = σ(x`i) + b`i

2. compute inputs for the next layer from these activations:

x`i =
∑

j w
`−1
ji y`−1

j

3. repeat steps 1 and 2 until the last layer and return values yL

Now we need to define the way to adjust weights W `
ij of this NN. Since

the whole structure is differentiable, because it consists of combinations of
linear transformations followed by non-linear activation functions, that are
differentiable, we can optimize this function with gradient based approaches
(see section 3.2.1). We need to define a loss function E(yL) and calculate

partial derivatives dE(yL)

dyLi
, depending on the derivatives of the weights in the

previous layers. This scheme leads us to the use of a backpropagation algo-
rithm to calculate these derivatives, that is briefly described now (see more
details in [27])
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In particular, by the chain rule we get partial derivatives with respect to
the weights in any layer:

∂E

∂w`ij
=

∂E

∂x`+1
j

∂x`+1
j

∂w`ij
= y`i

∂E

∂x`+1
j

(4.1)

The partial derivative with respect to the input xj is calculated as

∂E

∂x`j
=
∂E

∂y`j

∂y`j
∂x`j

=
∂E

∂y`j

∂

∂x`j

(
σ(x`j) + b`j

)
=
∂E

∂y`j
σ′(x`j). (4.2)

While, partial derivatives with respect to the outputs are calculated as

∂E

∂y`i
=
∑ ∂E

∂x`+1
j

∂x`+1
j

∂y`i
=
∑ ∂E

∂x`+1
j

wij, (4.3)

and concerning the last output, we also need the derivative of the error
function with respect to it, so that:

∂E

∂yLi
=

d

dyLi
E(yL). (4.4)

Exploiting previous results, the complete backpropagation algorithm for
a multilayer perceptron can be written as follows:

1. compute errors on the output layer L:
∂E
∂yLi

= d
dyLi

E(yL);

2. compute partial derivative of error with respect to neuron input at first
layer ` with known error:

∂E
∂x`j

= σ′(x`j)
∂E
∂y`j

;

3. compute errors on the previous layer:
∂E
∂y`i

=
∑
w`ij

∂E

∂x`+1
j

;

4. repeat steps 2 and 3 for all layers 1...L − 1 until all the errors corre-
sponding to all the weights in the NN are calculated;

5. compute the gradient of the loss function:
∂E
∂w`ij

= y`i
∂E

∂x`+1
j

.
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Summing up steps 1 to 5, we can train a NN with any gradient based
algorithm as in the case of gradient descent and its variations (see section
3.2.1 and [32]).

4.2 Convolutional neural network

In this subsection, we are going to introduce Convolutional Neural Networks
(CNNs) architectures (see figure 4.2 and [28] for details) as the first alterna-
tive to MLP architecture. The main idea behind CNNs is replacing a single
weight matrix W ` with a set of convolution kernels {ω}. It allows to learn
not a single map from layer to layer, but a set of different maps based on con-
volution, that ”finds” local patterns in the activation of the previous layer.
This idea, particularly when applied to computer vision (see [33]) started a so
called ”neural network renaissance” and has several successful applications in
signal processing [35], time series analysis [36], natural language processing
[34] and other areas.

Suppose that we have some N ×N square neuron layer (like a table with
option chain) which is followed by a convolutional layer. If we use an m×m
filter ω, this convolutional layer output will be of size (N−m+1)×(N−m+1).
In order to compute the pre-nonlinearity input (what corresponds to linear
map in MLP, e.g.

∑
j w

`−1
ji y`−1

j ) to some unit x`ij in our layer, we need to
compute the following:

x`ij =
m−1∑
a=0

m−1∑
b=0

ωaby
`−1
(i+a)(j+b). (4.5)

Then, nonlinear activation function (see Section 4.1 for details) for the
result of convolution operation in equation 4.5 is applied:

y`ij = σ(x`ij). (4.6)

Sometimes, to reduce the size of previous layer activation, so called max
pooling layer is used. In particular, we can take some k×k region and output
a single value that basically is the maximum value in that region. The size
of the region is usually chosen depending on the typical pattern size in the
input (see [33] for further information). It helps to reduce dimension of the
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Figure 4.2: Example of a CNN architecture

problem, speed up the training and inference processes, and removes redun-
dant elements of the input that don’t contribute into learning. Since max
pooling was first introduced in computer vision field, it was designed to select
just pixels with high values of activation function in them as candidates for
having a visual object in them.

The learning algorithm for CNNsis the same backpropagation algorithm
as for MLP. Only the partial derivatives for gradient based optimization
needs to be recalculated. Therefore, partial derivatives with respect to the
kernels ωab are:

∂E

∂ωab
=

N−m∑
i=0

N−m∑
j=0

∂E

∂x`ij

∂x`ij
∂ωab

=
N−m∑
i=0

N−m∑
j=0

∂E

∂x`ij
y`−1

(i+a)(j+b), (4.7)

while partial derivatives with respect to the inputs are:

∂E

∂x`ij
=

∂E

∂y`ij

∂y`ij
∂x`ij

=
∂E

∂y`ij

∂

∂x`ij

(
σ(x`ij)

)
=

∂E

∂y`ij
σ′(x`ij), (4.8)

and to the outputs derivatives are:

∂E

∂y`−1
ij

=
m−1∑
a=0

m−1∑
b=0

∂E

∂x`(i−a)(j−b)

∂x`(i−a)(j−b)

∂y`−1
ij

=
m−1∑
a=0

m−1∑
b=0

∂E

∂x`(i−a)(j−b)
ωab (4.9)

Concerning max pooling layers, since they don’t actually contribute to
learning the weights, the error is just backpropagated to the place where it
came from in original dimension.
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Figure 4.3: Example of a RNN architecture

4.3 Recurrent neural network

Recurrent neural networks (RNNs, see [29]) work with sequences of data.
They have inputs xi, that can be multidemensional, outputs yi and hidden
states hi. At a single timestep, the RNN works the same a simple MLP neural
network with one hidden layer (see section 4.2). But in case of RNNs there
are actually two inputs: one is xt on time t, second is a hidden state from
previous timestep t− 1. Hence, we have three separate matrices of weights:
input-to-hidden weights Whx, hidden-to-hidden weights Whh and hidden-to-
output Wyh. Therefore, we jave the following forward equations for RNN:

hi = σ(Whhhi−1 +Whxxi + bh)

ŷi = Wyhhi
(4.10)

To train a recurrent neural network we have to generalize backpropagation
algorithm from MLPs or CNNs. There are alternative approaches, namely
”teacher forcing” and others (see [30] for further details), but they are out
of the scope of this thesis. Since this backpropagation algorithm works on
sequences in time, it is known as backpropagation through time (BPTT, see
[29]). For every input sequence of the length k, the RNN is being unrolled
into a regular MLP that has k hidden layers, but differently to MLPs, it
has k + 1 different inputs (the actual one plus k hidden states). The BPTT
algorithm is the following:

1. initialize weight matrices Whx, Whh, Wyh randomly (see [29] for the
choices of distributions);

2. repeat for i = 1...N iterations:
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unroll a RNN for k time steps (for a sequence of length k);

set the inputs in the unrolled RNN: zeros for hidden states and
actual inputs xi;

perform forward and backward propagation as in regular MLP;

average the gradients for each layer to update the matrices equally
for each step.

RNNs are powerul tools for modeling sequences of data, because, oppo-
sitely to the MLPs or CNNs they model directly dependece between con-
sequent elements of the sequence, while MLP treats a sequence as a single
vector and CNN models just local patterns that depend on the convolution
size. Sequences are regular data structures in finance (like asset prices time
series), see, in particular, subsection 4.3.3 for a case study exploiting the
RNN approach.

4.4 Neural networks architectures

Neural networks types, introduced in Sections 4.1, 4.2, 4.3 need to be de-
fined with particular architectures, e.g. for MLP we need to adjust numbers
of hidden layers, neurons in each hidden layer, activation functions etc. For
CNNs, additionally, we need to define kernel sizes. Analogously, for RNNs
the size of hidden state vector has to be chosen. In practice, above-mentioned
degrees of freedom for building NN architectures are chosen by the experts,
e.g. researchers or developers based on their experience. In this work, for all
types of NNs we have chosen number of layers, neurons and other degrees of
freedom, by running experiments on small subset of the data, checking per-
formance and picking a setting with the best performance using grid search
approach (see [38] for further details). In the following three subsections
we will define architectures of MLP, CNN and RNN for option calibration
problem, stated in equation 3.10, and motivation behind the choices.

4.4.1 Multilayer perceptron

Since multilayer perceptrons are designed to work with vector data, they will
be applied to the vectors from option chains that don’t have spatial struc-
ture. These vectors are obtained by ”flattening”, i.e. collapsing an arbitrary
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matrix (or, in general, tensor) into a vector that contains all the elements
of the initial object. In case of option chains (see more details about option
chains structure in Chapter 5) the input dimension is relatively low (5 vari-
ables for each option and general amount of options per trading date varies
from 10 to 60), so the number of neurons in each layer shouldn’t be very high
either. This is motivated by the idea, that in hidden layer we might want to
reduce the initial hidden space to the lower dimension to eliminate redun-
dant features (like the options, that are not being actually traded). Latest
research shows (see [37] for details), that in terms of “wideness”, i.e. number
of neurons in each layer, and “depth”, i.e. number of hidden layers of neural
network architectures the latter is more crucial since more layer means higher
hierarchy of the features that will be learned, we will stick to this idea as well.

The neural network we build has 5 layers, 64 neurons each with the rec-
tified linear unit (ReLU) [39] as the activation function. The 5-layer neural
network is considered to be “deep”, so we need to take into account, that
some problems like vanishing or exploding gradient can occur. We apply a
very recent technique called “residual connections” (see [40]) to help training
such deep architecture. They are used to allow gradients to flow through
a network directly, without passing through non-linear activation functions.
As a preliminary step, before all activations batch normalization layer (see
[41] for details) is used. Dropout (see [42]) with rate 0.25 was used as main
regularization method after each layer. For additional regularization each
input in training phase was augmented with Gaussian noise with standard
deviation of value 0.05. The grid search to find above-mentioned param-
eters has been performed in the following space: number of hidden layers
from the set of values {1, 3, 5, 7, 10}, number of neurons in each from the
set {16, 32, 64, 128, 256}, dropout rate from the set {0.1, 0.25, 0.5, 0.75} and
Gaussian noise standard deviation from the set {0.01, 0.05, 0.1}.

The output of the neural network depends on how many parameters from
the financial model we want to predict. The only thing that will stay constant
is the fact that there will be no activation function because the value range
for different parameters can be in subset of Rm. For some exceptions, as
volatility, ReLU activation function is used, that doesn’t allow values less
than zero. The visualization of the MLP architecture is represented on the
figure 4.4 and source code for it is in appendix C, listings C.1, C.2.
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4.4.2 Convolutional neural network

Another representation about the input data a matrix of last option prices
and additional variables like bid price, ask price or others, that are the
columns and different strike prices as the rows. This table has spatial struc-
ture, and, hence, spatial patterns. CNNs are designed to learn patterns in
spatial data with arbitrary kernels. To train the CNN the following set of
parameters needs to be defined: number of layers, number of filters in each
layer, size of each filter in each layer (usually set of filters in a single layer has
the same size), activation function and the method to ”flatten” (see 4.4.1)
obtained activation maps into a single vector for regressing the final layer on
it.

In our case, just a single convolutional layer was chosen, because we
don’t expect rich hierarchy in table representing option chain. Over this
convolutional layer, 4 fully-connected layers like in MLP are applied. This
convolutional layer has to learn 64 kernels, each of size 3 × 3 and after ob-
tained activation maps are flattened into a vector with global max pooling
(see [31] for details). The latter takes maximum from each of the activation
maps which allows us to get a 64-dimensional vector as a result of a convolu-
tional layer. The activation function has chosen to be the same - ReLU and
output layer is designed as in the MLP case. The grid search to find the pa-
rameters has been performed in the following space: number of kernels from
the set of values {16, 32, 64, 128} and kernel size from the set {2× 2, 3× 3}.
The visualization of the CNN architecture is represented in figure 4.4 and
corresponding source code for it is in appendix C, listing C.3.

4.4.3 Recurrent neural network

Another important assumption in Finance is that historical events somehow
influence future ones (see more details in [43]). In our case we can assume,
that calibrated parameters from the past N days can help to determine to-
day’s parameters values better than if we just used data from a current day.
This assumption cannot be modeled directly with MLPs or with CNNs (but
can be modeled as a flattened vector of past values). The idea behind using
RNN to extract information from previous days alongside with another ar-
chitecture that works solely on the current day is represented in the figure
4.4 and corresponding source code for it is in appendix C, listing C.4. Let’s
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call the NN for modeling current day as a ”primary NN” and the RNN that
models previous days as ”auxiliary NN”. To the activations from the very
last hidden layer of a primary NN we append last vector ŷi, that is obtained
from the auxiliary NN that has inputs {xi}, where each xi is a vector of
calibrated parameters θ from 7 previous trading days. On this new vector,
that is obtained after concatentation, the last layer is regressed. The size of
the hidden state vector was fixed to be 64 to correspond the dimension used
for MLP and CNN.

33



(a) MLP (b) With CNN (c) With RNN

Figure 4.4: Neural network architectures graphs
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Chapter 5

Dataset description

This chapter explains how the real raw market data we have considered to
test our methods has been appropriately preprocessed and then turned into
training dataset.

5.1 Option chains

The main data structure used in this work is an option chain. The option
chain is a matrix for an underlying asset storing all puts, calls, strike prices,
and option prices for a given maturity period. For this study a historical
dataset of option chains of Apple Inc. (AAPL ticker on the stock market)
options was used from 2009 to 2011 because of availability of this particular
dataset. Option chain contains European call and put options, their high,
low and closing prices on the market, maturity dates and open interest (the
total number of open options that are on the market at that time) for AAPL
options. This data is usually stored in tables, in .csv format. An example of
such kind of a table is on the figure 5.1.

We assume, that the main factors that can help to estimate the model
parameters are:

• time to maturity (T ),

• difference between underlying price and strike price (∆P ),

• last, bid and ask prices for the particular option (C, B, A),
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Figure 5.1: Example of a table with an option chain

• open interest for the particular option (O).

For the sake of simplicity, we calibrate the financial models to price just
the call options. Moreover, since geometric Brownian motion and jump dif-
fusion are relatively primitive financial models, it’s known empirically (see
[44]), that they’re not able to model long-term maturities very well. Thus,
we are going to price only call options for the closest maturity date to avoid
very high errors in calibration.

5.2 Preprocessing

Naturally, the table with variables we have selected above, is just a subtable
of the initial table with option chain. We can turn it into a training example
in several ways. One of the hypotheses can be that spatial position of the
prices in the table plays its role and that such a representation needed that
doesn’t change the initial structure. Hence, each training example will be
stored as a matrix Mm×n, where m is number of variables and n is num-
ber of options traded in current day. This data representation is natural for
convolutional neural networks. Another hypothesis is that this structure is
neglible, and the table of features can be simple flattened into a vector - this
input can be used for regular multilayer perceptrons. The performance of
above-mentioned representations is represented in Chapter 7, tables 7.1 and
7.2.
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Figure 5.2: Example of a part of the option chain variables

Of course, before-mentioned input vectors or matrices have to be normal-
ized before being processed by ML algorithms. We decided to use min-max
normalization, that ”squeezes” values to be in predefined range. We have
chosen a range [0, 1] with following formula:

zi =
xi −min({xi})

max({xi})−min({xi})
, (5.1)

where {xi} are elements of the initial input data structure and {zi} are
corresponding normalized elements. Hence, we obtained normalized and,
depending on the learning algorithm, ”flattened” (see definition in Section
4.4.1) option chains of AAPL, filtered to have only call options for the closest
maturity date as inputs. An example of input structure (not normalized) to
a neural network can be seen in figure 5.2.

Outputs will be parameters of financial model, calibrated to the input
option chains with differential evolution algorithm (see 3.2.3), i.e. optimal
parameters as results of solving the problem from 3.5 for each day of a train-
ing set. The search space for parameters of Black-Scholes model and Merton
jump model for differential evolution optimization is shown on the table 5.1
(minimum and maximum values).
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σ λ µ δ
Black-Scholes model (0, 5) - - -
Merton jump model (0, 5) (0.1, 5) (-3, 3) (0, 3)

Table 5.1: Search space for parameters calibration

Of course, we also split the dataset into two parts: one for fitting the ML
model and second - for evaluation. In particular, data from 2009 has been
used to train the model, while the data from 2010-2011 was exploited to test
performace of the trained ML model.

5.3 Data augmentation

The NYSE and NASDAQ, two major stock exchanges in USA, where most
AAPL options are placed, trade in average about 253 days a year. It means,
that for each year there is slightly more than 250 training examples available,
which is not enough to correctly train the ML model. In particular, when so
few data can be used, then we have a rather high probability to overfit and
produce wrong calibrations on the out-of-sample data. One option is to try
to gather more historical data, but this process is rather long including the
necessity of calibration for each of historical date. We notice, that we already
know a good approximation for the inverse of a function Θ, first introduced
in formula 3.9:

Θ−1(θ; τ, φ) ≈Mmodel(θ; τ, φ) = Qmodel. (5.2)

It is just the normal valuation of the instruments under a given set of
parameters (see [17] for further details). It means that we can generate new
examples with generating random parameters θ, that, although, must be
properly correlated with other parameters τ and φ. For example, for gen-
erating a new training sample for the Black-Scholes model calibration, we
can draw a random value of volatility σ as a property of the underlying and
take time-to-maturity T , strike price K (see Section 2.2 for details) directly
from the market and price the option using equation 2.4. Obtained value of
the option will be an approximarion of the actual market price based on the
randomly drawn volatility σ of the underlying asset. Concerning particular
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Bid price B Ask price A Open interest O
MAE 1.82 0.78 2397.07
R2 0.995 0.998 0.229

Table 5.2: Accuracies of variables reconstruction with multi-output linear
regression

distributions for different parameters, for MBSM single parameter σ has been
drawn from the uniform distribution Uσ ∼ [0, 5], and for MJD its parameters
σ, λ, µ and δ have been drawn from Uσ ∼ [0, 5], Uλ ∼ [0.1, 5], Uµ ∼ [−3, 3]
and Uδ ∼ [0, 3] accordingly.

However, in our case, with random generated θ new artificial examples of
prices of the options can be generated, but not the ask price A, the bid price
B and open interest O as another variables that take part in calibration.
To reconstruct them, the multi-output linear regression (see more details in
[45]) has been fit on the historical data, where bid price and open interest
were regressed over the last price C, that we can easily obtain after drawing
random θ, and difference between underlying price and strike price ∆P . The
accuracies of reconstruction based on multi-output regression can be found
in table 5.2.

Hence, the general algorithm to augment initial dataset with artificially
generated samples is the following:

1. calibrate a financial model for the historical training data;

2. fit a multi-output linear regression to predict O, A, B based on C and
∆P (see Section 5.1 for details on notation);

3. for each training example:

generate N = 100 random parameters θ based on the correlation
matrix;

price options of this trading day based on the randomly drawn θ;

reconstruct other variables based on option prices;

combine variables into an artificial training example and add to the
dataset.
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At the end, for each training example of 2009 trading year we generate
N = 100 (number 100 was chosen after several experiments with numbers
in range from 10 to 1000 as the minimal, that improves training process)
random artificial examples, reconstruct needed variables, and, hence, obtain
large enough dataset to train neural networks on.
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Chapter 6

Model interpretation

This chapter briefly explains current approaches to interpret outputs of mod-
ern neural networks and shows how they can be applied to financial model
calibration.

6.1 Algorithms

Most of the algorithms used to interpret behavior of neural networks aim to
determine the influence of any particular weight and any particular input on
the final output of the model. We are mostly interested in interpreting the
input of the model, which is, in our case, the option chain and its variables
(like last brice C, bid prices B and ask prices A, open interest O, see Section
5.1 for more details). Assuming that the ML model works correctly, we want
to understand, what variables from the option chain influence the predicted
parameters values θ at most. Interpretation algorithms can help to point on
particular option and its specificities in the option chain that influenced a so-
lution, namely, calibrated parameters, at most which can give to the analyst
useful insights about the market state, e.g. find anomalies or illiquid options.
We will inspect these variables visually, making a link between interpretation
approaches for computer vision applications, that inspect pixels of an image,
and for financal model calibration, where we inspect variables in the option
chain. The picture 6.1 explains what these algorithms do in computer vision,
where upper image is an original picture, and the one below is a saliency map
of the original one (see Section 6.1.1). Intuitively, they highlight regions of
interest that most probably contain the objects. Advanced reader can notice,
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Figure 6.1: Example of saliency maps in computer vision

that algorithms in sections 6.1.1 and 6.1.2 resemble approaches for sensitivity
analysis of mathematical models (see [46] for more comprehensive review).

6.1.1 Saliency maps

In computer vision, a saliency map is an image that shows each pixel quality
in terms of containing objects of interest in it (see more in [47]). The goal of
a saliency map is to simplify the representation of an image into something
that is more meaningful and easier to analyze. Let’s start with a simple
linear model

S(I) = ωT I + b (6.1)

where I is an input, w, b are parameters of a linear model and S(I) is a
model prediction. In this case, it is easy to see that the magnitude of elements
of the vector ω defines the importance of the corresponding vector elements
of I for a prediction S(I). In case of highly nonlinear functions like neural
networks, we can approximate S(I) with a linear function using first-order
Taylor expansion, hence, obtaining the result from equation 6.1, and ω can
be expressend as a derivative of S(I) from equation 6.1 with respect to the
input image:

ω =
∂S

∂I
(6.2)

We indeed can always calculate this derivative, because NNs that have
been used in this study are differentiable functions with respect to their
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inputs and their weights (see Chapter 4 for more details). Another inter-
pretation of this saliency map is that the magnitude of the derivative value
indicates which vector elements need to be changed the least to affect the
prediction at most.

The problem with gradient based approaches for NNs interpretation is in
use of such activation functions like ReLU (see [39]), that have zero gradient
when they’re not active:

f(x) =

{
0 for x < 0
x for x ≥ 0

f ′(x) =

{
0 for x < 0
1 for x ≥ 0

(6.3)

which doesn’t bring useful information for interpretation. Another ap-
proach is comparing each neuron’s activation to its ”reference” - activation
that the neuron has given ”reference input” denoted as δn. It has to satisfy
several properties, described in detail in paper [48].

6.1.2 Occlusion

This method is very often used in sensitivity analysis of classical mathemat-
ical models (see [46]). It’s relatively simple: we just need to systematically
peturbate elements of input vector I, replacing each with pre-defined value
(it can be a noise, sampled, for example, from standard Gaussian distribu-
tion, but in this work we replace replace each element, one by one, with zero,
hence, imitating the absence of every particular element, see more details in
[49]). After this we analyse how prediction of the ML changes given a new
peturbated input. The elements of the input vector that affect the prediction
at most (in terms of difference between original prediction with initial input
and prediction from peturbated input), while being replaced with zero, are
assumed to be important for this particular example I.
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Chapter 7

Training and evaluation

This chapter unveils details about implementation of the algorithms and nu-
merical results of their execution, in particular, compares the time needed
for calibration with differential evolution (see subsection 3.2.3) and different
ML models (MLP, CNN and RNN, see Chapter 4 for more details) along-
side with their corresponding accuracies. Also, it shows use cases of models
interpretation and shows a scenario for retraining the ML model over time.

7.1 Implementation details

Main structures that have been used in this work and have been implemented
programmatically are the following:

• market environment;

• stochastic process simulation;

• european option pricing mechanism;

• numerical optimization routines;

• neural networks;

related codes have been written using programming laguage Python,
while basic mathematical routines have been implemented using NumPy (see
[53]) library.
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Concerning the market definition, we have considered its defining as a sep-
arate (Python class) structure embedding financial variables and constants,
namely current date, underlying asset name, contract expiry date, short rate
and others defined in Section 2.1. Stochastic processes that suppose to simu-
late behavior of underlying asset (GBM, jump diffusion process, see Section
2.2 and 2.3 for details) have been implemented as classes that store their
parameters and are able to generate new random paths. The code can be
found in Appendix A.

Option valuation was also implemented as a separate class, that is using
market environment and stochastic process to price the option. To price an
option in this simulation we: generate many prices that the asset might be at
maturity, calculate option payoffs for each of those generated prices, average
them, and then discount the final value (Monte-Carlo approach). This and
previous implementation were taken from [10], you can find a code sample
in Appendix B.

The initial calibration process on the AAPL data (described in Chapter
5) that requires implementation of differential evolution optimization to cre-
ate a dataset was performed with the use of SciPy (see [54]) library and its
subroutines.

Finally, MLP, CNN and RNN were implemented ad trained with a library
Keras (see [55]). it provides a high-level interface for easy building neural
architectures and relies on another library, Tensorflow (see [56]), as backend
with mathematical and numerical primitives. The interpretation module has
been developed using open sourced library DeepExplain (see [57]). Specific
implementations of neural networks architectures one can find in Appendix
C.

7.2 Training results

As optimization algorithm for optimizing a NN was chosen Adam (see [32])
with a learning rate λ = 0.0001 (for all MLPs, CNNs and RNNs). A rela-
tively low value was chosen to stabilize training (see [58]). Every 10 epochs,
if the loss function wasn’t decreased, the learning rate was decayed with a
factor 0.9 to try to find a better local minimum (also, see [58] for the justifi-
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cation of the method). As a loss function mean square error (MSE, defined
in Section 3.1) was used.

All models were initialized to train on a train set for 500 epochs. An
epoch is a full cycle of backpropagating all the examples from the training
set once each. To avoid overfitting, early stopping technique (see [55]) was
applied: if loss function wasn’t improving for 25 epochs, the training process
was stopped and as optimal weight values set was chosen the one after the
last improvement.

Visually, results are represented in figures 7.1 and 7.2. For Black-Scholes
model we can clearly see, that NNs very closely replicate the behavior (and
the errors) made by the differential evolution optimizer. The mean average
errors (MAEs) for all the models and their training and calibration time are
in table 7.1.

On the figure 7.2 we can see how neural network replicates calibration of
the Merton jump model. Situation is a bit different, because in most of the
dates the NN has even lower error than the baseline optimizer. It can be
explained with a fact, that for differential evolution solving optimization for
4 parameters is more difficult problem, it’s also can be seen from the MAE
on the test set, which is even higher than with the Black-Scholes model. We
can conclude, that initially the dataset for calibration Merton jump model
has higher error, which was compensated by artificial data generation for
the neural network, that allowed to achieve better accuracies comparing to
the baseline optimizer. In future work, to avoid this situation we will use
error-adjusted data for training the model (see [17] for details). The mean
average errors (MAEs) for the models trained to calibrate jump model and
their training and calibration time are in the table 7.2.

From the obtained results, we can conclude, that MLP, CNN and RNN
architectures behave very similarly and hypotheses about spatial informa-
tion in the option chain table or about using previous days are not giving
significant improvement comparing to single-day MLP model. Nevertheless,
with the use of neural networks we could reduce calibration time from 1.2,
150 seconds to 0.05, 0.11 seconds for Black-Scholes and Merton jump models
respectively. The mean average error changed from 3.31 to 3.78 (in case of
MLP) for Black-Scholes model calibration and from 6.64 to 6.81 for Merton
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Figure 7.1: Black-Scholes model calibration for in-sample and out-of-sample
data

Differential Evolution MLP CNN RNN
MAE calibration error 3.31 3.78 3.69 3.45
Training time - 200 sec 220 sec 900 sec
Calibration time 1.2 sec 0.05 sec 0.09 sec 0.11 sec

Table 7.1: Results for Black-Scholes model calibration

jump model calibration, which can be considered as not significant.

7.3 Active learning

As it can be seen from ther figures 7.1 and 7.2 that in some particular situa-
tions that parameteres, predicted by the NN, don’t allow to price the options
accurate enough (at least same accurate as differential evolution would). It

Differential Evolution MLP CNN RNN
MAE calibration error 8.43 6.77 6.71 6.81
Training time - 198 sec 202 sec 917 sec
Calibration time 150 sec 0.05 sec 0.09 sec 0.11 sec

Table 7.2: Results for jump diffusion model calibration
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Figure 7.2: Merton jump model calibration for in-sample and out-of-sample
data

can be referred to the regime switches (as it happens in case of financial
crushes, regulation changes, etc) in the market or some events that didn’t
happen in the past, so the trained neural network, even with augmented
data, can’t perform correctly on this totally new sample. In general, this is
normal situation, and developers of machine learning models have to collect
these low-performing samples and train a model again, including them with
some regularity, see [50] for more details.

In our case, we need to adapt to the market changes very quickly, and
computational cost of obtaining a single training example is very high, bea-
cause we need to calibrate it with ”slow” algorithms like differential evolution,
see time needed for a single calibration in tables 7.1 and 7.2. Hence, we want
to minimize the amount of time and computational resources needed for re-
training a model and do it as fast as possible, after a change happened.

We propose to make a calibration on out of sample data only in the
situations when obtained error exceeds the maximal one from base optimizer
on the validation set. It allows to minimize amount of such situations, but if
one appears, we can calibrate a model for the particular day when its realized,
generate 100 random parameters values (as described in Section 5.3), price
options based on them, and train the neural network, already trained on the
”big” training dataset, for 1 epoch. It allows slightly, for 0.02 MAE, decrease
in error for future observations for the experiment with Black-Scholes model
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calibration.

7.4 Results interpretation

To give human experts additional insights about how neural network can be
fruitfully used to calibrate financial model and, potentially, show some new
information about the market condition, we have applied occlusion method
from the Section 6.1.2, to study to what particular variables from the op-
tion chain the machine learning model pays attention to. Picture 7.3 shows
some examples of such interpretations. The more deep the color of a cell is
- the more attention is paid to this particular variable. The columns rep-
resent last option price, bid price, ask price, difference between underlying
asset price and option strike price and open interest for this particular option.

For example, in left picture, where the first 11 AAPL call options on the
06.01.2009 are represented, it can be seen, that for the upper 4 options the
bid price was important, which would be totally ignored by the standard
algorithms. Also, the 10th option is worth attention as the one with very
high open interest comaring to the others. Interpretation methods can also
give insights about when the model behaves incorrectly. For example, on
the right picture on the figure 7.3, where the first 11 AAPL call options
on the 19.05.2009 are shown, we can observe that almost every variable has
deep green color, which means that changing any of them the output of the
model will change significantly too. The latter is the case of a too sensitive
calibration and can be another sign to retrain the model in an active learning
mode, described in Section 7.3.

Figure 7.3: Examples of visualization of results
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Chapter 8

Summary

This works shows, how modern machine learning algorithms, in particular,
deep NNs, are able to approximate solutions of optimization problems. As a
practical problem, financial option pricing calibration was solved (see details
in Chapter 2), as one, that is the most challenging due to the stochastic na-
ture of the underlying data. Usually this calibration is done using complex
heuristical optimization methods, described in Chapter 3, in this work as such
a method differential evolution was used. Different NN types were compared,
in particular, MLPs, CNNs and RNNs (more detailed information on NNs
used in this work one can find in Chapter 4) and we can conclude, that even
multilayer perceptron with residual connections performs reasonably well, so
there is no need to use much more complex models like convolutional neural
networks or recurrent neural networks. The speedup of such an approach is
significant - thousands times faster exploiting neural networks with loss of
accuracy in 0.3-0.5 of mean average error, as it has been shown in Chapter
7.

Moreover, the method for sensitivity analysis and model interpretation is
proposed in Chapter 6, that allows to visualize, what particular options and
their variables are influencing the predicted parameters at most. Last but
not least, we propose a simple yet efficient scheme for scheduling retraining
neural network to adapt to the market changes.

At least two paths of future research are arising. The first one is very
applied: there is a room to apply currently developed framework to new fi-
nancial instruments and corresponding models. Especially with respect to

50



interest rate and volatility models. It’s also important to investigate if mod-
els trained on one set of instruments of particular class can generalize to
another sets of instruments, also called transfer learning ability (see [51]).
Last but not least, several improvements need to be done for the dataset
creation including error-adjusted prices generation.

Another direction is more theoretical. Since models developed in this
work successfully replicate behavior of complex optimization algorithms, it’s
interesting to investigate how this ability generalizes on another algorithms,
another problems and if a model trained to approximate one optimization
problem can be used to solve other related tasks. This is tightly related
to meta-learning (see [52]) - a hot topic in modern optimization, machine
learning and artificial intelligence research.
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Appendix A

Souce code for stochastic
process simulation

1 c l a s s GBM( Simulat ionClass ) :
2

3 de f i n i t ( s e l f , name , mar env , co r r=False ) :
4 super (GBM, s e l f ) . i n i t (name , mar env , co r r )
5

6 de f update ( s e l f , i n i t i a l v a l u e=None , v o l a t i l i t y=None ,
f i n a l d a t e=None ) :

7 i f i n i t i a l v a l u e i s not None :
8 s e l f . i n i t i a l v a l u e = i n i t i a l v a l u e
9 i f v o l a t i l i t y i s not None :

10 s e l f . v o l a t i l i t y = v o l a t i l i t y
11 i f f i n a l d a t e i s not None :
12 s e l f . f i n a l d a t e = f i n a l d a t e
13 s e l f . i n s t rument va lue s = None
14

15 de f gene ra t e paths ( s e l f , f i x e d s e e d=False , day count =365.) :
16 i f s e l f . t ime g r id i s None :
17 s e l f . g e n e r a t e t i m e g r i d ( )
18

19 M = len ( s e l f . t ime g r id )
20 I = s e l f . paths
21 paths = np . z e r o s ( (M, I ) )
22

23 paths [ 0 ] = s e l f . i n i t i a l v a l u e
24

25 i f not s e l f . c o r r e l a t e d :
26 rand = sn random numbers ( ( 1 , M, I ) ,

58



27 f i x e d s e e d=f i x e d s e e d )
28 e l s e :
29 rand = s e l f . random numbers
30

31 s h o r t r a t e = s e l f . d i s count curve . s h o r t r a t e
32

33 f o r t in range (1 , l en ( s e l f . t ime g r id ) ) :
34 # s e l e c t the r i g h t time s l i c e from the r e l e v a n t
35 # random number s e t
36 i f not s e l f . c o r r e l a t e d :
37 ran = rand [ t ]
38 e l s e :
39 ran = np . dot ( s e l f . cho lesky matr ix , rand [ : , t ,

: ] )
40 ran = ran [ s e l f . r n s e t ]
41 dt = ( s e l f . t ime g r id [ t ] − s e l f . t ime g r id [ t − 1 ] ) .

days / day count
42

43 # d i f f e r e n c e between two dates as year f r a c t i o n
44 paths [ t ] = paths [ t − 1 ] ∗ np . exp ( ( s h o r t r a t e − 0 .5
45 ∗ s e l f . v o l a t i l i t y ∗∗ 2) ∗ dt
46 + s e l f . v o l a t i l i t y ∗ np . s q r t ( dt ) ∗ ran )
47 # generate s imulated va lue s f o r the r e s p e c t i v e date
48 s e l f . i n s t rument va lue s = paths

Listing A.1: GBM simulation class

1 c l a s s JD( S imulat ionClass ) :
2

3 de f i n i t ( s e l f , name , mar env , co r r=False ) :
4 super (JD, s e l f ) . i n i t (name , mar env , co r r )
5 t ry :
6 # a d d i t i o n a l parameters needed
7 s e l f . lamb = mar env . g e t con s tan t ( ’ lambda ’ )
8 s e l f .mu = mar env . g e t con s tan t ( ’mu ’ )
9 s e l f . d e l t = mar env . g e t con s tan t ( ’ d e l t a ’ )

10 except Exception as e :
11 pr in t ( e )
12 pr in t ( ’ Error par s ing market environment . ’ )
13

14

15 de f update ( s e l f , i n i t i a l v a l u e=None , v o l a t i l i t y=None , lamb=
None , mu=None , d e l t a=None , f i n a l d a t e=None ) :

16 i f i n i t i a l v a l u e i s not None :
17 s e l f . i n i t i a l v a l u e = i n i t i a l v a l u e
18 i f v o l a t i l i t y i s not None :
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19 s e l f . v o l a t i l i t y = v o l a t i l i t y
20 i f lamb i s not None :
21 s e l f . lamb = lamb
22 i f mu i s not None :
23 s e l f .mu = mu
24 i f d e l t a i s not None :
25 s e l f . d e l t = d e l t a
26 i f f i n a l d a t e i s not None :
27 s e l f . f i n a l d a t e = f i n a l d a t e
28 s e l f . i n s t rument va lue s = None
29

30

31 de f gene ra t e paths ( s e l f , f i x e d s e e d=False , day count =365.) :
32 i f s e l f . t ime g r id i s None :
33 s e l f . g e n e r a t e t i m e g r i d ( )
34

35 M = len ( s e l f . t ime g r id )
36 I = s e l f . paths
37 paths = np . z e r o s ( (M, I ) )
38 paths [ 0 ] = s e l f . i n i t i a l v a l u e
39

40 i f s e l f . c o r r e l a t e d i s Fa l se :
41 # i f not co r r e l a t e d , generate random numbers
42 sn1 = sn random numbers ( ( 1 , M, I ) ,
43 f i x e d s e e d=f i x e d s e e d )
44 e l s e :
45 # i f c o r r e l a t ed , use random number ob j e c t as

provided
46 # in market environment
47 sn1 = s e l f . random numbers
48

49 # standard normally d i s t r i b u t e d pseudorandom numbers
50 # f o r the jump component
51 sn2 = sn random numbers ( ( 1 , M, I ) , f i x e d s e e d=f i x e d s e e d

)
52 r j = s e l f . lamb ∗ (np . exp ( s e l f .mu + 0 .5 ∗ s e l f . d e l t ∗∗ 2)

− 1)
53 s h o r t r a t e = s e l f . d i s count curve . s h o r t r a t e
54

55 f o r t in range (1 , l en ( s e l f . t ime g r id ) ) :
56 # s e l e c t the r i g h t time s l i c e from the r e l e v a n t
57 # random number s e t
58 i f s e l f . c o r r e l a t e d i s Fa l se :
59 ran = sn1 [ t ]
60 e l s e :
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61 # only with c o r r e l a t i o n in p o r t f o l i o context
62 ran = np . dot ( s e l f . cho lesky matr ix , sn1 [ : , t , : ] )
63 ran = ran [ s e l f . r n s e t ]
64 dt = ( s e l f . t ime g r id [ t ] − s e l f . t ime g r id [ t − 1 ] ) .

days / day count
65 # d i f f e r e n c e between two dates as year f r a c t i o n
66 poi = np . random . po i s son ( s e l f . lamb ∗ dt , I )
67 # Poisson−d i s t r i b u t e d pseudorandom numbers f o r jump

component
68 paths [ t ] = paths [ t − 1 ] ∗ (np . exp ( ( s h o r t r a t e − r j
69 − 0 .5 ∗ s e l f . v o l a t i l i t y ∗∗ 2) ∗ dt
70 + s e l f . v o l a t i l i t y ∗ np . s q r t ( dt ) ∗ ran )
71 + (np . exp ( s e l f .mu + s e l f . d e l t ∗
72 sn2 [ t ] ) − 1) ∗ poi )
73

74 s e l f . i n s t rument va lue s = paths

Listing A.2: Jump diffusion simulation class
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Appendix B

Souce code for option valuation

1

2 c l a s s ValuationEuropean ( Valuat ionClass ) :
3

4 de f g e n e r a t e p a y o f f ( s e l f , f i x e d s e e d=False ) :
5

6 t ry :
7 # s t r i k e de f ined ?
8 s t r i k e = s e l f . s t r i k e
9 except :

10 pass
11

12 paths = s e l f . under ly ing . g e t i n s t r u m e n t v a l u e s ( f i x e d s e e d=
f i x e d s e e d )

13 t ime g r id = s e l f . under ly ing . t ime g r id
14 t ry :
15 t ime index = np . where ( t ime g r id == s e l f . maturity ) [ 0 ]
16 t ime index = i n t ( t ime index )
17 except Exception as e :
18 pr in t ( ’ Maturity date not in time gr id o f under ly ing ’ )
19

20 matur i ty va lue = paths [ t ime index ]
21 # average value over whole path
22 mean value = np . mean( paths [ : t ime index ] , a x i s =1)
23 # maximum value over whole path
24 max value = np . amax( paths [ : t ime index ] , a x i s =1) [−1]
25 # minimum value over whole path
26 min value = np . amin ( paths [ : t ime index ] , a x i s =1) [−1]
27 t ry :
28 payo f f = eva l ( s e l f . p a y o f f f u n c )
29 re turn payo f f
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30 except :
31 pr in t ( ’ Error eva lua t ing payo f f f unc t i on ’ )

Listing B.1: European option valuation class
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Appendix C

Souce code for neural networks

1

2 de f dense bn b lock ( inn , s i z e ) :
3 x = Dense ( s i z e , a c t i v a t i o n=’ l i n e a r ’ ) ( inn )
4 x = BatchNormalizat ion ( ) ( x )
5 x = Act ivat ion ( ’ r e l u ’ ) ( x )
6 re turn x
7

8 de f r e s i d u a l b l o c k ( inn , s i z e ) :
9 x = dense bn b lock ( inn , s i z e )

10 x = add ( [ inn , x ] )
11 re turn x

Listing C.1: Basic residual block

1

2 inputs = Input ( shape =(295 , ) )
3 x = GaussianNoise ( 0 . 0 5 ) ( inputs )
4 x = BatchNormalizat ion ( ) ( x )
5

6 f o r i in range (1 , 5) :
7 x = r e s i d u a l b l o c k (x , 64)
8 x = Dropout ( 0 . 2 5 ) ( x )
9

10 p r e d i c t i o n s = Dense (1 , a c t i v a t i o n=’ l i n e a r ’ ) ( x )
11

12 model = Model ( inputs=inputs , outputs=p r e d i c t i o n s )

Listing C.2: Multilayer perceptron

1
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2 inputs = Input ( shape =(295 , ) )
3 x = GaussianNoise ( 0 . 0 5 ) ( inputs )
4 x = Reshape ( (59 , 5) ) ( x )
5 x = BatchNormalizat ion ( ) ( x )
6 x = Conv1D(64 , 3 , a c t i v a l t i o n = ’ r e l u ’ ) ( x )
7 x = GlobalMaxPooling1D ( ) ( x )
8

9 f o r i in range (1 , 5) :
10 x = r e s i d u a l b l o c k (x , 64)
11 x = Dropout ( 0 . 2 5 ) ( x )
12

13 p r e d i c t i o n s = Dense (1 , a c t i v a t i o n=’ l i n e a r ’ ) ( x )
14

15 model = Model ( inputs=inputs , outputs=p r e d i c t i o n s )

Listing C.3: Convolutional neural network

1

2 inputs = Input ( shape =(295 , ) )
3 inputs2 = Input ( shape =(7 , 1 , ) )
4

5 x = GaussianNoise ( 0 . 0 5 ) ( inputs )
6 x = BatchNormalizat ion ( ) ( x )
7 x = dense bn b lock (x , 64)
8

9 f o r i in range (1 , 5) :
10 x = r e s i d u a l b l o c k (x , 64)
11 x = Dropout ( 0 . 2 5 ) ( x )
12

13 rnn = LSTM(64 , r e tu rn s equence s=False ) ( inputs2 )
14 x = concatenate ( [ x , rnn ] )
15 p r e d i c t i o n s = Dense (1 , a c t i v a t i o n=’ l i n e a r ’ ) ( x )
16

17 model = Model ( inputs =[ inputs , inputs2 ] , outputs=p r e d i c t i o n s )

Listing C.4: Recurrent neural network
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