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I present a parametric, bijective transformation to generate heavy tail versions of arbitrary randomvariables.The tail behavior of this
heavy tail Lambert W × 𝐹

𝑋
random variable depends on a tail parameter 𝛿 ≥ 0: for 𝛿 = 0, 𝑌 ≡ 𝑋, for 𝛿 > 0𝑌 has heavier tails than

𝑋. For𝑋 being Gaussian it reduces to Tukey’s ℎ distribution.The Lambert W function provides an explicit inverse transformation,
which can thus remove heavy tails from observed data. It also provides closed-form expressions for the cumulative distribution
(cdf) and probability density function (pdf). As a special case, these yield analytic expression for Tukey’s ℎ pdf and cdf. Parameters
can be estimated by maximum likelihood and applications to S&P 500 log-returns demonstrate the usefulness of the presented
methodology. The R package LambertW implements most of the introduced methodology and is publicly available on CRAN.

1. Introduction

Statistical theory and practice are both tightly linked to
Normality. In theory, many methods require Gaussian data
or noise: (i) regression often assumes Gaussian errors; (ii)
many time series models are based on Gaussian white noise
[1–3]. In such cases, a model MN, parameter estimates and
their standard errors, and other properties are then studied,
all based on the ideal(istic) assumption of Normality.

In practice, however, data/noise often exhibits asymmetry
and heavy tails, for example, wind speed data [4], human
dynamics [5], or Internet traffic data [6]. Particularly notable
examples are financial data [7, 8] and speech signals [9],
which almost exclusively exhibit heavy tails. Thus a model
MN developed for the Gaussian case does not necessarily
provide accurate inference anymore.

One way to overcome this shortcoming is to replaceMN

with a new model M
𝐺
, where 𝐺 is a heavy tail distribution:

(i) regression with Cauchy errors [10]; (ii) forecasting long
memory processes with heavy tail innovations [11, 12], or
ARMA modeling of electricity loads with hyperbolic noise
[13]. See also Adler et al. [14] for a wide range of statistical
applications and methodology for heavy-tailed data.

While such fundamental approaches are attractive from a
theoretical perspective, they can become unsatisfactory from
a practical point of view. Many successful statistical models
and techniques assume Normality, their theory is very well
understood, and many algorithms are implemented for the
simple and often much faster Gaussian case.Thus developing
models based on an entirely unrelated distribution 𝐺 is like
throwing out the (Gaussian) baby with the bathwater.

It would be very useful to transform a Gaussian random
variable 𝑋 to a heavy-tailed random variable 𝑌 and vice
versa and thus rely on knowledge and algorithms for the
well-understood Gaussian case, while still capturing heavy
tails in the data. Optimally such a transformation should
(a) be bijective, (b) include Normality as a special case for
hypothesis testing, and (c) be parametric so the optimal
transformation can be estimated efficiently.

Figure 1 illustrates this pragmatic approach: researchers
can make their observations y as Gaussian as possible (x

𝜏
)

before making inference based on their favorite Gaussian
model MN. This avoids the development of, or the data
analysts waiting for, a whole new theory of M

𝐺
and new

implementations based on a particular heavy-tailed distri-
bution 𝐺, while still improving statistical inference from
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Figure 1: Schematic view of the heavy tail LambertW × 𝐹
𝑋
framework. Latent input𝑋 ∼ 𝐹

𝑋
:𝐻

𝜏
(𝑋) from (6) transforms (solid arrows)𝑋 to

𝑌 ∼ Lambert W × 𝐹
𝑋
and generates heavy tails (right) Observed heavy-tailed 𝑌 and y: (1) use𝑊

𝜏
(⋅) to back-transform y to latent “Normal”

x
𝜏
, (2) use modelMN of your choice (regression, time series models, hypothesis testing, etc.) for inference on x

𝜏
, and (3) convert results back

to the original “heavy-tailed world” of y (right).

heavy-tailed data y. For example, consider y = (𝑦
1
, . . . , 𝑦

500
)

from a standard Cauchy distribution C(0, 1) in Figure 2(a):
modeling heavy tails by a transformation makes it even
possible to Gaussianize this Cauchy sample (Figure 2(c)).
This “nice” data x

𝜏
can then be subsequently analyzed with

common techniques. For example, the location can now be
estimated using the sample average (Figure 2(d)). For details
see Section 6.1.

Liu et al. [15] use a semiparametric approach, where𝑌 has
a nonparanormal distribution if 𝑓(𝑌) ∼ N(𝜇, 𝜎2) and 𝑓(⋅)
is an increasing smooth function; they estimate 𝑓(⋅) using
nonparametric methods. This leads to a greater flexibility in
the distribution of 𝑌, but it suffers from two drawbacks: (i)
nonparametric methods have slower convergence rates and
thus need large samples, and (ii) for identifiability of 𝑓(⋅),
E𝑓(𝑌) ≡ E𝑌 and Var(𝑓(𝑌)) ≡ Var(𝑌) must hold. While
(i) is inherent to nonparametric methods, point (ii) requires
𝑌 to have finite mean and variance, which is often not met
for heavy-tailed data. Thus here we use parametric trans-
formations which do not rely on restrictive identifiability
conditions and also work well for small sample sizes.

The main contributions of this work are threefold: (a) a
metafamily of heavy tail Lambert W × 𝐹

𝑋
distributions (see

also [16]) with Tukey’s ℎ distribution [17] as a special case, (b)
a bijective transformation to “Gaussianize” heavy-tailed data
(Section 2), and (c) simple expressions for the cumulative
distribution function (cdf) 𝐺

𝑌
(𝑦) and probability density

function (pdf) 𝑔
𝑌
(𝑦) (Section 2.4). In particular, analytic

expressions for the pdf and cdf for Tukey’s ℎ (Section 3) are
presented here, to the best of the author’s knowledge, for the
first time in the literature.

Section 4 introduces amethod ofmoments estimator and
studies the maximum likelihood estimator (MLE). Section 5
shows their finite sample properties. As has been shown
in many case studies, Tukey’s ℎ distribution (heavy tail
Lambert W × Gaussian) is useful to model data with uni-
modal, heavy-tailed densities. Applications to S&P 500 log-
returns confirm the usefulness of the Lambert W framework
(Section 6). Finally, we discuss the new methodology and
future work in Section 7. Detailed derivations and proofs
are given in the Supplementary Material available online at
http://dx.doi.org/10.1155/2015/909231.

Computations, figures, and simulations were done in
R [18]. The R package LambertW implements most of the
presented methodology and is publicly available on CRAN.

1.1. Multivariate Extensions. While this work focuses on
the univariate case, multivariate extensions of the presented
methods can be defined component-wise, analogously to the
multivariate version of Tukey’s ℎ distribution [19]. While
this may not make the transformed random variables jointly
Gaussian, it still provides a good starting point for more well-
behaved multivariate estimation.
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Figure 2: Gaussianizing a standard Cauchy sample. For (d) 𝜏(𝑛) was estimated for each fixed 𝑛 = 5, . . . , 500, before Gaussianizing (𝑦
1
, . . . , 𝑦

𝑛
).

1.2. Box-Cox Transformation. A popular method to deal with
skewed, high variance data is the Box-Cox transformation

x
𝜆
=

{

{

{

y𝜆 − 1
𝜆

, if 𝜆 > 0,
log y, if 𝜆 = 0.

(1)

A major limitation of (1) is the nonnegativity constraint on
y, which prohibits its use in many applications. To avoid
this limitation it is common to shift the data, ỹ = y +
|min(y)| ≥ 0, which restricts 𝑌 to a half-open interval.
If, however, the underlying process can occur on the entire
real line, such a shift undermines statistical inference for yet
unobserved data (see [20]). Even if out-of-sample prediction
is not important for the practitioner, Figure 2(b) shows that
the Box-Cox transformation in fact fails to remove heavy tails
from the Cauchy sample. (We use ỹ = y + |min(y)| + 1 and
use boxcox from the MASS R package; ̂𝜆 = 0.37.)

Moreover, the main purpose of the Box-Cox transfor-
mation is to stabilize variance [21–23] and remove right tail
skewness [24]; a lower empirical kurtosis is merely a by-
result of the variance stabilization. In contrast, the Lambert

W framework is designed primarily to model heavy-tailed
random variables and remove heavy tails from data and has
no difficulties with negative values.

2. Generating Heavy Tails Using
Transformations

Random variables exhibit heavy tails if more mass than for a
Gaussian random variable lies at the outer end of the density
support. A random variable 𝑍 has a tail index 𝑎 if its cdf
satisfies 1 − 𝐹

𝑍
(𝑧) ∼ 𝐿(𝑧)𝑧

−𝑎, where 𝐿(𝑧) is a slowly varying
function at infinity, that is, lim

𝑧→∞
𝐿(𝑡𝑧)/𝐿(𝑧) = 1 for all

𝑡 > 0 [25]. (There are various similar definitions of heavy, fat,
or long tails; for this work these differences are not essential.)
The heavy tail index 𝑎 is an important characteristic of 𝑍; for
example, only moments up to order 𝑎 can exist.

2.1. Tukey’s ℎ Distribution. A parametric transformation is
the basis of Tukey’s ℎ random variables [17]

𝑍 = 𝑈 exp(ℎ
2

𝑈
2
) , ℎ ≥ 0, (2)
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Figure 3: Transformation and inverse transformation for 𝛿
ℓ
= 0 and 𝛿

𝑟
= 1/10: identity on the left (same tail behavior) and a heavy-tailed

transformation in the right tail of input 𝑈.

where 𝑈 is standard Normal random variable and ℎ is
the heavy tail parameter. The random variable 𝑍 has tail
parameter 𝑎 = 1/ℎ [17] and reduces to the Gaussian for ℎ = 0.
Morgenthaler and Tukey [26] extend the ℎ distribution to the
skewed, heavy-tailed family of ℎℎ random variables

𝑍 =

{
{
{

{
{
{

{

𝑈 exp(
𝛿
ℓ

2

𝑈
2
) , if 𝑈 ≤ 0,

𝑈 exp(
𝛿
𝑟

2

𝑈
2
) , if 𝑈 > 0,

(3)

where again 𝑈 ∼ N(0, 1). Here 𝛿
ℓ
≥ 0 and 𝛿

𝑟
≥ 0 shape the

left and right tail of 𝑍, respectively; thus transformation (3)
can model skewed and heavy-tailed data; see Figure 3(a). For
the sake of brevity let𝐻

𝛿
(𝑢) := 𝑢 exp((𝛿/2)𝑢2).

However, despite their great flexibility, Tukey’s ℎ and
ℎℎ distributions are not very popular in statistical practice,
because expressions for the cdf or pdf have not been available
in closed form. Although Morgenthaler and Tukey [26]
express the pdf of (2) as (ℎ ≡ 𝛿)

𝑔
𝑍 (
𝑧) =

𝑓
𝑈
(𝐻

−1

𝛿
(𝑧))

𝐻
󸀠

𝛿
(𝐻

−1

𝛿
(𝑧))

, (4)

they fall short of making𝐻−1

𝛿
(𝑧) explicit. So far the inverse of

(2) or (3) has been considered analytically intractable [4, 27].
Thus parameter inference relied on matching empirical and
theoretical quantiles [4, 17, 26], or by themethod ofmoments
[28]. Only recently Headrick et al. [28] provided numerical
approximations to the inverse. However, numerical approx-
imations can be slow and prohibit analytical derivations.
Thus a closed form, analytically tractable pdf, which can
be computed efficiently, is essential for a widespread use of
Tukey’s ℎ (and variants).

In this work I present this long sought closed-form
inverse, which has a large body of literature in mathematics
and is readily available in standard statistics software. For
ease of notation and concision main results are shown for
𝛿
ℓ
= 𝛿

𝑟
= 𝛿; analogous results for 𝛿

ℓ
̸= 𝛿

𝑟
will be stated

without details.

2.2. Heavy Tail Lambert W Random Variables. Tukey’s ℎ
transformation (2) is strongly related to the approach taken
by Goerg [16] to introduce skewness in continuous random
variables 𝑋 ∼ 𝐹

𝑋
(𝑥). In particular, if 𝑍 ∼ Tukey’s ℎ, then

𝑍
2
∼ skewed Lambert W × 𝜒

2

1
with skew parameter 𝛾 = ℎ.

Adapting the skew Lambert W × 𝐹
𝑋
input/output idea

(see Figure 1), Tukey’s ℎ random variables can be generalized
to heavy-tailed Lambert W × 𝐹

𝑋
random variables. (Most

concepts and methods from the skew Lambert W × 𝐹
𝑋
case

transfer one-to-one to the heavy tail Lambert W random
variables presented here.Thus for the sake of concision I refer
to Goerg [16] for details of the Lambert W framework.)

Definition 1. Let𝑈 be a continuous random variable with cdf
𝐹
𝑈
(𝑢 | 𝛽), pdf 𝑓

𝑈
(𝑢 | 𝛽), and parameter vector 𝛽. Then,

𝑍 = 𝑈 exp(𝛿
2

𝑈
2
) , 𝛿 ∈ R, (5)

is a noncentral, nonscaled heavy tail LambertW × 𝐹
𝑈
random

variable with parameter vector 𝜃 = (𝛽, 𝛿), where 𝛿 is the tail
parameter.

Tukey’s ℎ distribution results for 𝑈 being a standard
GaussianN(0, 1).

Definition 2. For a continuous location-scale family random
variable 𝑋 ∼ 𝐹

𝑋
(𝑥 | 𝛽) define a location-scale heavy-tailed

LambertW × 𝐹
𝑋
random variable

𝑌 = {𝑈 exp(𝛿
2

𝑈
2
)}𝜎

𝑋
+ 𝜇

𝑋
, 𝛿 ∈ R, (6)

with parameter vector 𝜃 = (𝛽, 𝛿), where𝑈 = (𝑋−𝜇
𝑋
)/𝜎

𝑋
and

𝜇
𝑋
and𝜎

𝑋
aremean and standard deviation of𝑋, respectively.

The input is not necessarily Gaussian (Tukey’s ℎ) but can
be any other location-scale continuous random variable, for
example, from a uniform distribution, 𝑋 ∼ 𝑈(𝑎, 𝑏) (see
Figure 4).
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Figure 4: Pdf (left) and cdf (right) of a heavy tail (a) “noncentral, nonscaled,” (b) “scale,” and (c and d) “location-scale” Lambert W × 𝐹
𝑋

random variable 𝑌 for various degrees of heavy tails (color, dashed lines).

Definition 3. Let 𝑋 ∼ 𝐹
𝑋
(𝑥/𝑠 | 𝛽) be a continuous scale-

family random variable, with scale parameter 𝑠 and standard
deviation 𝜎

𝑋
; let 𝑈 = 𝑋/𝜎

𝑋
. Then,

𝑌 = 𝑋 exp(𝛿
2

𝑈
2
) , 𝛿 ∈ R, (7)

is a scaled heavy-tailed Lambert W × 𝐹
𝑋
random variable

with parameter 𝜃 = (𝛽, 𝛿).

Let 𝜏 := (𝜇
𝑋
(𝛽), 𝜎

𝑋
(𝛽), 𝛿) define transformation (6). (For

noncentral, nonscale input set 𝜏 = (0, 1, 𝛿); for scale-family
input 𝜏 = (0, 𝜎

𝑋
, 𝛿).) The shape parameter 𝛿(= Tukey’s ℎ)

governs the tail behavior of 𝑌: for 𝛿 > 0 values further away
from 𝜇

𝑋
are increasingly emphasized, leading to a heavy-

tailed version of𝑋; for 𝛿 = 0, 𝑌 ≡ 𝑋, and for 𝛿 < 0 values far
away from the mean are mapped back again closer to 𝜇

𝑋
. For

𝛿 ≥ 0 and 𝑋 ∈ (−∞,∞), also 𝑌 ∈ (−∞,∞). For 𝛿 ≥ 0 and
𝑋 ∈ [0,∞), also 𝑌 ∈ [0,∞).

Remark 4 (only nonnegative 𝛿). Although 𝛿 < 0 gives
interesting properties for 𝑌, it defines a nonbijective trans-
formation and leads to parameter-dependent support and
nonunique input.Thus for the remainder of this work assume
𝛿 ≥ 0, unless stated otherwise.

2.3. Inverse Transformation: “Gaussianize” Heavy-Tailed Data.
Transformation (6) is bijective and its inverse can be
obtained via the Lambert W function, which is the inverse
of 𝑧 = 𝑢 exp(𝑢), that is, that function which satisfies
𝑊(𝑧) exp(𝑊(𝑧)) = 𝑧. It has been studied extensively in
mathematics, physics, and other areas of science [29–31] and
is implemented in the GNU Scientific Library (GSL) [32].
Only recently the Lambert W function received attention
in the statistics literature [16, 33–35]. It has many useful
properties (see Appendix A in the supplementary material

and Corless et al. [29]), in particular, 𝑊(𝑧) is bijective for
𝑧 ≥ 0.

Lemma 5. The inverse transformation of (6) is

𝑊
𝜏 (
𝑌) := 𝑊𝛿

(

𝑌 − 𝜇
𝑋

𝜎
𝑋

)𝜎
𝑋
+ 𝜇

𝑋
= 𝑈𝜎

𝑋
+ 𝜇

𝑋
= 𝑋, (8)

where

𝑊
𝛿 (
𝑧) := sgn (𝑧)(

𝑊(𝛿𝑧
2
)

𝛿

)

1/2

, (9)

and sgn(𝑧) is the sign of 𝑧.𝑊
𝛿
(𝑧) is bijective for all 𝛿 ≥ 0 and

all 𝑧 ∈ R.

Lemma 5 gives for the first time an analytic, bijective
inverse of Tukey’s ℎ transformation:𝐻−1

𝛿
(𝑦) of Morgenthaler

and Tukey [26] is now analytically available as (8). Bijectivity
implies that for any data y and parameter 𝜏, the exact input
x
𝜏
= 𝑊

𝜏
(y) ∼ 𝐹

𝑋
(𝑥) can be obtained.

In view of the importance and popularity of Normality,
we clearly want to back-transform heavy-tailed data to
data from a Gaussian rather than yet another heavy-tailed
distribution. Tail behavior of random variables is typically
compared by their kurtosis 𝛾

2
(𝑋) = E(𝑋 − 𝜇

𝑋
)
4
/𝜎

4

𝑋
, which

equals 3 if 𝑋 is Gaussian. Hence for the future when we
“normalize y” we cannot only center and scale but also
transform it to x

𝜏
with 𝛾

2
(x
𝜏
) = 3 (see Figure 2(c)). While

𝛾
2
(𝑋) = 3 does not guarantee that 𝑋 is Gaussian, it is a good

baseline for a Gaussian sample. Furthermore, it puts different
data not only on the same scale, but also on the same tail.

This data-driven view of the Lambert W framework can
also be useful for kernel density estimation (KDE), where
multivariate data is often prescaled to unit variance, so the
same bandwidth can be used in each dimension [36, 37].Thus
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“normalizing” the Lambert Way can also improve KDE for
heavy-tailed data (see also [38, 39]).

Remark 6 (generalized transformation). Transformation (2)
can be generalized to

𝑍 = 𝑈 exp(𝛿
2

(𝑈
2
)

𝛼

) , 𝛼 > 0. (10)

The inner term 𝑈
2 guarantees bijectivity for all 𝛼 > 0. The

inverse is

𝑊
𝛿,𝛼 (

𝑧) := sgn (𝑧)(
𝑊(𝛼𝛿 (𝑧

2
)

𝛼

)

𝛼𝛿

)

1/2𝛼

. (11)

For comparison with Tukey’s ℎ I consider 𝛼 = 1 only.
For 𝛼 = 1/2 transformation (10) is closely related to skewed
Lambert W × 𝐹

𝑋
distributions.

2.4. Distribution and Density. For ease of notation let

𝑧 =

𝑦 − 𝜇
𝑋

𝜎
𝑋

, 𝑢 = 𝑊
𝛿 (
𝑧) , 𝑥 = 𝑊

𝜏
(𝑦) = 𝑢𝜎

𝑋
+ 𝜇

𝑋
. (12)

Theorem 7. The cdf and pdf of a location-scale heavy tail
Lambert W × 𝐹

𝑋
random variable 𝑌 equal

𝐺
𝑌
(𝑦 | 𝛽, 𝛿) = 𝐹

𝑋
(𝑊

𝛿
(

𝑦 − 𝜇
𝑥

𝜎
𝑥

)𝜎
𝑋
+ 𝜇

𝑋
| 𝛽) , (13)

𝑔
𝑌
(𝑦 | 𝛽, 𝛿)

= 𝑓
𝑋
(𝑊

𝛿
(

𝑦 − 𝜇
𝑋

𝜎
𝑋

)𝜎
𝑋
+ 𝜇

𝑋
| 𝛽)

⋅

𝑊
𝛿
((𝑦 − 𝜇

𝑋
) /𝜎

𝑋
)

((𝑦 − 𝜇
𝑋
) /𝜎

𝑋
) [1 +𝑊(𝛿 ((𝑦 − 𝜇

𝑋
) /𝜎

𝑋
)
2
)]

.

(14)

Clearly, 𝐺
𝑌
(𝑦 | 𝛽, 𝛿 = 0) = 𝐹

𝑋
(𝑦 | 𝛽) and 𝑔

𝑌
(𝑦 | 𝛽, 𝛿 =

0) = 𝑓
𝑋
(𝑦 | 𝛽), since lim

𝛿→0
𝑊
𝛿
(𝑧) = 𝑧 and lim

𝛿→0
𝑊(𝛿𝑧

2
) =

0 for all 𝑧 ∈ R.
For scale family or noncentral, nonscale input set 𝜇

𝑋
= 0

or 𝜇
𝑋
= 0, 𝜎

𝑋
= 1.

The explicit formula (14) allows a fast computation and
theoretical analysis of the likelihood, which is essential for
statistical inference. Detailed properties of (14) are given in
Section 4.1.

Figure 4 shows (13) and (14) for various 𝛿 ≥ 0 with four
different input distributions: for 𝛿 = ℎ = 0 the input equals
the output (solid black); for larger 𝛿 the tails of 𝐺

𝑌
(𝑦 | 𝜃) and

𝑔
𝑌
(𝑦 | 𝜃) get heavier (dashed colored).

2.5. Quantile Function. Quantile fitting has been the standard
technique to estimate 𝜇

𝑋
,𝜎

𝑋
, and 𝛿 of Tukey’s ℎ. In particular,

the medians of 𝑌 and 𝑋 are equal. Thus for symmetric,
location-scale family input the sample median of y is a robust

estimate of 𝜇
𝑋
for any 𝛿 ≥ 0 (see also Section 5). General

quantiles can be computed via [17]

𝑦
𝛼
= 𝑢

𝛼
exp(𝛿

2

𝑢
2

𝛼
)𝜎

𝑋
+ 𝜇

𝑋
, (15)

where 𝑢
𝛼
= 𝑊

𝛿
(𝑧
𝛼
) are the 𝛼-quantiles of 𝐹

𝑈
(𝑢).

3. Tukey’s ℎ Distribution: Gaussian Input

For Gaussian input Lambert W × 𝐹
𝑋
equals Tukey’s ℎ, which

has been studied extensively. Dutta and Babbel [40] show that

E𝑍
𝑛
=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0, if 𝑛 is odd, 𝑛 < 1
𝛿

,

𝑛! (1 − 𝑛𝛿)
−(𝑛+1)/2

2
𝑛/2
(𝑛/2)!

, if 𝑛 is even, 𝑛 < 1
𝛿

,

∄, if 𝑛 is odd, 𝑛 > 1
𝛿

,

∞, if 𝑛 is even, 𝑛 > 1
𝛿

,

(16)

which, in particular, implies that [28]

E𝑍 = E𝑍
3
= 0, if 𝛿 < 1 and 1

3

, respectively, (17)

E𝑍
2
=

1

(1 − 2𝛿)
3/2
, if 𝛿 < 1

2

,

E𝑍
4
= 3

1

(1 − 4𝛿)
5/2
, if 𝛿 < 1

4

.

(18)

Thus the kurtosis of 𝑌 equals (see Figure 5)

𝛾
2 (
𝛿) = 3

(1 − 2𝛿)
3

(1 − 4𝛿)
5/2

for 𝛿 < 1/4. (19)

For 𝛿 = 0, (18) and (19) reduce to the familiarGaussian values.
Expanding (19) around 𝛿 = 0 yields

𝛾
2 (
𝛿) = 3 + 12𝛿 + 66𝛿

2
+ O (𝛿

3
) . (20)

Dropping O(𝛿3) and solving (20) gives a rule of thumb
estimate

̂
𝛿Taylor =

1

66

[√66 𝛾
2
(y) − 162 − 6]

+

, (21)

where 𝛾
2
(y) is the sample kurtosis and [𝑎]

+
= max(𝑎, 0); that

is, ̂𝛿Taylor > 0 if 𝛾2(y) > 3; otherwise, set ̂𝛿Taylor = 0.

Corollary 8. The cdf of Tukey’s ℎ equals

𝐺
𝑌
(𝑦 | 𝜇

𝑋
, 𝜎
𝑋
, 𝛿) = Φ(

𝑊
𝜏
(𝑦) − 𝜇

𝑋

𝜎
𝑋

) , (22)

whereΦ(𝑢) is the cdf of a standard Normal.The pdf equals (for
𝛿 > 0)

𝑔
𝑌
(𝑦 | 𝜇

𝑋
, 𝜎
𝑋
, 𝛿) =

1

√2𝜋

exp(−1 + 𝛿
2

𝑊
𝛿
(

𝑦 − 𝜇
𝑋

𝜎
𝑋

)

2

)

⋅

1

1 +𝑊(𝛿 ((𝑦 − 𝜇
𝑋
) /𝜎

𝑋
)
2
)

.

(23)
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Figure 5: Comparing moments of Lambert W × Gaussian and Student’s 𝑡.

Proof. Take𝑋 ∼N(𝜇
𝑋
, 𝜎

2

𝑋
) in Theorem 7.

Section 4.1 studies functional properties of (23) in more
detail.

3.1. Tukey’s ℎ versus Student’s 𝑡. Student’s 𝑡]-distribution with
] degrees of freedom is often used to model heavy-tailed data
[41, 42], as its tail index equals ]. Thus the 𝑛th moment of a
Student’s 𝑡 random variable 𝑇 exists if 𝑛 < ]. In particular,

E𝑇 = E𝑇
3
= 0 if ] > 1 or > 3,

E𝑇
2
=

]
] − 2

=

1

1 − (2/])
if ] > 2,

(24)

and kurtosis

𝛾
2 (
]) = 3

] − 2
] − 4

= 3

1 − 2 (1/])
1 − 4 (1/])

if ] > 4. (25)

Comparing (24) and (25) with (18) and (19) shows a
natural association between 1/] and 𝛿 and a close similarity
between the first four moments of Student’s 𝑡 and Tukey’s
ℎ (Figure 5). By continuity and monotonicity, the first four
moments of a location-scale 𝑡-distribution can always be
exactly matched by a corresponding location-scale Lambert
W × Gaussian. Thus if Student’s 𝑡 is used to model heavy
tails and not as the true distribution of a test statistic
it might be worthwhile to also fit heavy tail Lambert W
× Gaussian distributions for an equally valuable “second
opinion.” For example, a parallel analysis on S&P 500 log-
returns in Section 6.2 leads to divergent inference regarding
the existence of fourth moments.

4. Parameter Estimation

Due to the lack of a closed form pdf of 𝑌, 𝜃 = (𝛽, 𝛿) has
typically been estimated by matching quantiles or a method
of moments estimator [4, 26, 28]. These methods can now

be replaced by the, fast and usually efficient, maximum
likelihood estimator (MLE). Rayner and MacGillivray [43]
introduce a numerical MLE procedure based on quantile
functions, but they conclude that “sample sizes significantly
larger than 100 should be used to obtain reliable estimates.”
Simulations in Section 5 show that the MLE using the closed
form Lambert W × 𝐹

𝑋
distribution converges quickly and is

accurate even for sample sizes as small as𝑁 = 10.

4.1. Maximum Likelihood Estimation (MLE). For an i.i.d.
sample (𝑦

1
, . . . , 𝑦

𝑁
) = y ∼ 𝑔

𝑌
(𝑦 | 𝛽, 𝛿) the log-likelihood

function equals

ℓ (𝜃; y) =
𝑁

∑

𝑖=1

log𝑔
𝑌
(𝑦

𝑖
| 𝛽, 𝛿) . (26)

The MLE is that 𝜃 = (𝛽, 𝛿) which maximizes (26); that is,

̂
𝜃MLE = (

̂𝛽, ̂𝛿)
MLE

= argmax
𝛽,𝛿
ℓ (𝛽, 𝛿; y) . (27)

Since 𝑔
𝑌
(𝑦
𝑖
| 𝛽, 𝛿) is a function of 𝑓

𝑋
(𝑥
𝑖
| 𝛽), the MLE

depends on the specification of the input density. Equation
(26) can be decomposed as

ℓ (𝛽, 𝛿; y) = ℓ (𝛽; x
𝜏
) +R (𝜏; y) , (28)

where

ℓ (𝛽; x
𝜏
) =

𝑁

∑

𝑖=1

log𝑓
𝑋
(𝑊

𝛿
(

𝑦
𝑖
− 𝜇

𝑋

𝜎
𝑋

)𝜎
𝑋
+ 𝜇

𝑋
| 𝛽)

=

𝑁

∑

𝑖=1

log𝑓
𝑋
(𝑥

𝜏,𝑖
| 𝛽)

(29)

is the log-likelihood of the back-transformed data x
𝜏
=

(𝑥
𝜏,1
, . . . , 𝑥

𝜏,𝑁
) (via (8)) and

R (𝜏; y) =
𝑛

∑

𝑖=1

log𝑅 (𝜇
𝑋
, 𝜎
𝑋
, 𝛿; 𝑦

𝑖
) , (30)
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Figure 6: Log-likelihood decomposition for Lambert W × 𝐹
𝑋
distributions.

where

𝑅 (𝜇
𝑋
, 𝜎
𝑋
, 𝛿; 𝑦

𝑖
)

=

𝑊
𝛿
((𝑦

𝑖
− 𝜇

𝑋
) /𝜎

𝑋
)

((𝑦
𝑖
− 𝜇

𝑋
) /𝜎

𝑋
) [1 + 𝛿 (𝑊

𝛿
((𝑦

𝑖
− 𝜇

𝑋
) /𝜎

𝑋
))
2
]

.

(31)

Note that 𝑅(𝜇
𝑋
, 𝜎
𝑋
, 𝛿; 𝑦

𝑖
) only depends on 𝜇

𝑋
(𝛽) and 𝜎

𝑋
(𝛽)

(and 𝛿), but not necessarily on every coordinate of 𝛽.
Decomposition (28) shows the difference between the

exact MLE (̂𝛽, ̂𝛿) based on y and the approximate MLE ̂𝛽x𝜏
based on x

𝜏
alone: if we knew 𝜏 = (𝜇

𝑋
, 𝜎
𝑋
, 𝛿) beforehand,

then we could back-transform y to x
𝜏
and estimate ̂𝛽x𝜏 from

x
𝜏
(maximize (29) with respect to 𝛽). In practice, however,

𝜏 must also be estimated and this enters the likelihood via
the additive term R(𝜏; y). A little calculation shows that for
any 𝑦

𝑖
∈ R, log𝑅(𝜇

𝑋
, 𝜎
𝑋
, 𝛿; 𝑦

𝑖
) ≤ 0 if 𝛿 ≥ 0, with equality

if and only if 𝛿 = 0. Thus R(𝜏; y) can be interpreted as a
penalty for transforming the data. Maximizing (28) faces a
trade-off between transforming the data to follow 𝑓

𝑋
(𝑥 | 𝛽)

(and increasing ℓ(𝛽; x
𝜏
)) and the penalty of a more extreme

transformation (and decreasingR(𝜏; y)); see Figure 6(b).
Figure 6(a) shows a contour plot of 𝑅(𝜇

𝑋
= 0, 𝜎

𝑋
=

1, 𝛿; 𝑦) as a function of 𝛿 and 𝑦 = 𝑧: it increases (in absolute
value) either if 𝛿 gets larger (for fixed 𝑦) or for larger 𝑦 (for
fixed 𝛿). In both cases, increasing 𝛿 makes the transformed
data𝑊

𝛿
(𝑧) get closer to 0 = 𝜇

𝑋
, which in turn increases its

input likelihood. For 𝛿 = 0, the penalty disappears since input
equals output; for 𝑦 = 0 there is no penalty since𝑊

𝛿
(0) = 0

for all 𝛿.
Figure 6(b) shows an i.i.d. sample (𝑁 = 1000) z ∼

Lambert W × Gaussian with 𝛿 = 1/3 and the decomposition
of the log-likelihood as in (28). Since 𝛽 = (0, 1) is known,
the likelihood and penalty are only functions of 𝛿.Theorem 9

shows that the convexity of the penalty (decreasing, red)
and concavity of the input likelihood (increasing, green) as
a function of 𝛿 holds true in general for any data z, and their
sum (solid, black) has a unique maximum; here ̂𝛿MLE = 0.37
(blue, dashed vertical line). See Theorem 9 below for details.

The maximization of (28) can be carried out numerically.
Here I show existence and uniqueness of ̂𝛿MLE assuming that
𝜇
𝑋
and 𝜎

𝑋
are known. Further theoretical results for ̂𝜃MLE

remain for futurework.Given the “nice” formof𝑔
𝑌
(𝑦), which

is continuous, twice differentiable (under the assumption that
𝑓𝑥(⋅) is twice differentiable), the MLE for 𝜃 = (𝛽, 𝛿) should
have the usual optimality properties, such as being consistent
and efficient [44].

4.1.1. Properties of the MLE for the Heavy Tail Parameter 𝛿.
Without loss of generality let 𝜇

𝑋
= 0 and 𝜎

𝑋
= 1. In this case

ℓ (𝛿; z) ∝ −

1

2

𝑁

∑

𝑖=1

[𝑊
𝛿
(𝑧
𝑖
)]
2
+

𝑁

∑

𝑖=1

log
𝑊
𝛿
(𝑧
𝑖
)

𝑧
𝑖

−

𝑁

∑

𝑖=1

log (1 + 𝛿 [𝑊
𝛿
(𝑧
𝑖
)]
2
)

(32)

= −

1 + 𝛿

2

𝑁

∑

𝑖=1

[𝑊
𝛿
(𝑧
𝑖
)]
2
−

𝑁

∑

𝑖=1

log (1 + 𝛿 [𝑊
𝛿
(𝑧
𝑖
)]
2
) .

(33)

Theorem 9 (see [14]). Let 𝑍 have a Lambert W × Gaussian
distribution, where 𝜇

𝑋
= 0 and 𝜎

𝑋
= 1 are assumed to be

known and fixed. Also consider only 𝛿 ∈ [0,∞). (While for
some samples z the MLE also exists for 𝛿 < 0, it cannot be
guaranteed for all z. If 𝛿 < 0 (and 𝑧 ̸= 0), then𝑊

𝛿
(𝑧) is either
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not unique in R (principal and nonprincipal branch) or does
not have a real-valued solution in R if 𝛿𝑧2 < 𝑒−1.)

(a) If

∑
𝑛

𝑖=1
𝑧
4

𝑖

∑
𝑛

𝑖=1
𝑧
2

𝑖

≤ 3, (34)

then ̂𝛿
𝑀𝐿𝐸

= 0.
If (34) does not hold, then

(b) ̂𝛿
𝑀𝐿𝐸

> 0 exists and is a positive solution to

𝑁

∑

𝑖=1

𝑧
2

𝑖
𝑊

󸀠
(𝛿𝑧

2

𝑖
)(

1

2

𝑊
𝛿
(𝑧
𝑖
)
2
− (

1

2

+

1

1 +𝑊(𝛿𝑧
2

𝑖
)

)) = 0. (35)

(c) There is only one such 𝛿 satisfying (35); that is, ̂𝛿
𝑀𝐿𝐸

is
unique.

Proof. See Appendix B in the supplementary material.

Condition (34) says that ̂𝛿MLE > 0 only if the data
is heavy-tailed enough. Points (b) and (c) guarantee that
there is no ambiguity in the heavy tail estimate. This is an
advantage over Student’s 𝑡-distribution, for example, which
has numerical problems and local maxima for unknown (and
small) ] [45, 46]. On the contrary, ̂𝛿MLE is always a global
maximum.

Given the heavy tails in z one might expect convergence
issues for larger 𝛿. However, 𝑊

𝛿
(𝑍) ∼ N(0, 1) for the true

𝛿 ≥ 0 and close to a standard Gaussian if ̂𝛿MLE ≈ 𝛿. Since the
log-likelihood and its gradient depend on 𝛿 and z only via
𝑊
𝛿
(z) the performance of theMLE should thus not get worse

for large 𝛿 as long as the initial estimate is close enough to the
truth. Simulations in Section 5 support this conjecture, even
for ̂𝜃MLE.

4.2. Iterative Generalized Method of Moments (IGMM). A
disadvantage of the MLE is the mandatory a priori specifi-
cation of the input distribution. Especially for heavy-tailed
data the eye is a bad judge to choose a particular parametric
𝑓
𝑋
(𝑥 | 𝛽). It would be useful to directly estimate 𝜏 without

the intermediate step of estimating 𝜃 first.
Goerg [16] presented an estimator for 𝜏 based on iterative

generalized methods of moments (IGMM). The idea of
IGMM is to find a 𝜏 such that the back-transformed data
x
𝜏
has desired properties, for example, being symmetric or

having kurtosis 3. An estimator for 𝜇
𝑋
, 𝜎

𝑋
, and 𝛿 can be

constructed entirely analogous to the IGMMestimator for the
skewed LambertW× F case. See the SupplementaryMaterial,
Appendix C for details.

IGMM requires less specific knowledge about the input
distribution and is usually also faster than the MLE. Once
𝜏IGMM has been obtained, the back-transformed x

𝜏IGMM
can be

used to check if 𝑋 has characteristics of a known parametric
distribution 𝐹

𝑋
(𝑥 | 𝛽). It must be noted though that testing

for a particular distribution 𝐹
𝑋
is too optimistic as x

𝜏
has

“nicer” properties regarding 𝐹
𝑋
than the true x would have.

However, estimating the transformation requires only three
parameters and for a large enough sample, losing three
degrees of freedom should not matter in practice.

5. Simulations

This section explores finite sample properties of estimators
for 𝜃 = (𝜇

𝑋
, 𝜎
𝑋
, 𝛿) and (𝜇

𝑌
, 𝜎
𝑌
) under Gaussian input

𝑋 ∼ N(𝜇
𝑋
, 𝜎

2

𝑋
). In particular, it compares Gaussian MLE

(estimation of 𝜇
𝑌
and 𝜎

𝑌
only), IGMM and Lambert W ×

Gaussian MLE, and, for a heavy tail competitor, the median.
(For IGMM, optimization was restricted to 𝛿 ∈ [0, 10].) All
results below are based on 𝑛 = 1, 000 replications.

5.1. Estimating 𝛿 Only. Here I show finite sample properties
of ̂𝛿MLE for𝑈 ∼N(0, 1), where 𝜇

𝑋
= 0 and 𝜎

𝑋
= 1 are known

and fixed. Theorem 9 shows that ̂𝛿MLE is unique: either at the
boundary 𝛿 = 0 or at the globally optimal solution to (35).
Results in Table 1 were obtained by numerical optimization
restricted to 𝛿 ≥ 0 (⇔ log 𝛿 ∈ R) using the nlm function in
𝑅.

Table 1 suggests that the MLE is asymptotically unbiased
for every 𝛿 and converges quickly (at about 𝑁 = 400) to its
asymptotic variance, which is increasing with 𝛿. Assuming
𝜇
𝑋
and 𝜎

𝑋
to be known is unrealistic and thus these finite

sample properties are only an indication of the behavior of the
joint MLE, ̂𝜃MLE. Nevertheless they are very remarkable for
extremely heavy-tailed data (𝛿 > 1), where classic average-
based methods typically break down. One reason lies in the
particular form of the likelihood (32) and its gradient (35)
(Theorem 9): although both depend on z, they only do so
through 𝑊

𝛿
(z) = u ∼ N(0, 1). Hence as long as ̂𝛿MLE is

sufficiently close to the true 𝛿, (32) and (35) are functions of
almost Gaussian random variables and standard asymptotic
results should still apply.

5.2. Estimating All Parameters Jointly. Here we consider the
realistic scenario where 𝜇

𝑋
and 𝜎

𝑋
are also unknown. We

consider various sample sizes (𝑁 = 50, 100, and 1000) and
different degrees of heavy tails, 𝛿 ∈ {0, 1/3, 1, 1.5}, each one
representing a particularly interesting situation: (i) Gaussian
data (does additional, superfluous, estimation of𝛿 affect other
estimates?), (ii) fourthmoments do not exist, (iii) nonexisting
mean, and (iv) extremely heavy-tailed data (can we get useful
estimates at all?)

The convergence tolerance for IGMM was set to tol =
1.22 ⋅ 10

−4. Table 2 summarizes the simulation.
The Gaussian MLE estimates 𝜎

𝑌
directly, while IGMM

and the Lambert W × Gaussian MLE estimate 𝛿 and
𝜎
𝑋
, which implicitly give 𝜎̂

𝑌
through 𝜎

𝑌
(𝛿, 𝜎

𝑋
) = 𝜎

𝑋
⋅

(1/√(1 − 2𝛿)
3/2
) if 𝛿 < 1/2 (see (18)). For a fair comparison

each subtable also includes a column for 𝜎̂
𝑌

= 𝜎̂
𝑋
⋅

(1/√(1 − 2
̂
𝛿)
3/2
). Some of these entries contain “∞,” even for

𝛿 < 1/2; this occurs if at least one ̂𝛿 ≥ 1/2. For any 𝛿 < 1,
𝜇
𝑋
= 𝜇

𝑌
, thus 𝜇

𝑋
and 𝜇

𝑌
can be compared directly. For 𝛿 ≥ 1,
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Table 1: Finite sample properties of ̂𝛿MLE. For each𝑁, 𝛿 was estimated 𝑛 = 1,000 times from a random sample z∼Tukey’s ℎ. The left column
for each 𝛿 shows bias, ̂𝛿MLE − 𝛿; each right column shows the root mean square error (RMSE) times√𝑁.

𝑁 𝛿 = 0 𝛿 = 1/10 𝛿 = 1/3 𝛿 = 1/2

10 0.025 0.191 −0.017 0.394 −0.042 0.915 −0.082 1.167

50 0.013 0.187 −0.010 0.492 −0.018 0.931 −0.016 1.156

100 0.010 0.200 −0.010 0.513 −0.009 0.914 −0.006 1.225

400 0.005 0.186 −0.003 0.528 0.000 0.927 −0.004 1.211

1000 0.003 0.197 0.000 0.532 −0.001 0.928 −0.001 1.203

2000 0.003 0.217 −0.001 0.523 0.000 0.935 −0.001 1.130

𝑁 𝛿 = 1 𝛿 = 2 𝛿 = 5

10 −0.054 1.987 −0.104 3.384 −0.050 7.601

50 −0.017 1.948 −0.009 3.529 0.014 7.942

100 −0.014 2.024 −0.001 3.294 0.011 7.798

400 0.001 1.919 −0.002 3.433 0.001 7.855

1000 0.001 1.955 0.001 3.553 −0.001 7.409

2000 0.001 1.896 0.000 3.508 −0.001 7.578

the mean does not exist; each subtable for these 𝛿 interprets
𝜇
𝑌
as the median.

Gaussian Data (𝛿 = 0). This setting checks if imposing the
Lambert W framework, even though it is superfluous, causes
a quality loss in the estimation of 𝜇

𝑌
= 𝜇

𝑋
or 𝜎

𝑌
= 𝜎

𝑋
.

Furthermore, critical values for 𝐻
0
: 𝛿 = 0 (Gaussian) can

be obtained. As in the 𝛿-only case above, Table 2(a) suggests
that estimators are asymptotically unbiased and quickly tend
to a large-sample variance. Additional estimation of 𝛿 does
not affect the efficiency of𝜇

𝑋
compared to estimating solely𝜇.

Estimating 𝜎
𝑌
directly by Gaussian MLE does not give better

results than the Lambert W × Gaussian MLE.

No Fourth Moment (𝛿 = 1/3). Here 𝜎
𝑌
(𝛿, 𝜎

𝑋
= 1) =

2.28, but fourth moments do not exist. This results in an
increasing empirical standard deviation of 𝜎̂

𝑦
as𝑁 grows. In

contrast, estimates for 𝜎
𝑋
are not drifting off. In the presence

of these large heavy tails themedian ismuch less variable than
GaussianMLE and IGMM. Yet, Lambert W ×GaussianMLE
for 𝜇

𝑋
even outperforms the median.

Nonexisting Mean (𝛿 = 1). Both sample moments diverge,
and their standard errors are also growing quickly. The
median still provides a very good estimate for the location
but is again inferior to both Lambert W estimators, which
are closer to the true values and appear to converge to an
asymptotic variance at rate√𝑁.

Extreme Heavy Tails (𝛿 = 1.5). As in Section 5.1, IGMM
and Lambert WMLE continue to provide excellent estimates
even though the data is extremely heavy tailed. Moreover,
Lambert W MLE also has the smallest empirical standard
deviation overall. In particular, the Lambert W MLE for 𝜇

𝑋

has an approximately 15% lower standard deviation than the
median.

The last column shows that for some 𝑁 about 1% of the
𝑛 = 1, 000 simulations generated invalid likelihood values
(NA and ∞). Here the search for the optimal 𝛿 led into

regions with a numerical overflow in the evaluation of𝑊
𝛿
(𝑧).

For a comparable summary, these few cases were omitted and
new simulations added until full 𝑛 = 1, 000 finite estimates
were found. Since this only happened in 1% of the cases and
also such heavy-tailed data is rarely encountered in practice,
this numerical issue is not a limitation in statistical practice.

5.3. Discussion of the Simulations. IGMM performs well
independent of the magnitude of 𝛿. As expected the Lambert
WMLE for 𝜃 has the best properties: it can recover the truth
for all 𝛿, and for 𝛿 = 0 it performs as well as the classic
sample mean and standard deviation. For small 𝛿 it has the
same empirical standard deviation as the Gaussian MLE, but
a lower one than the median for large 𝛿.

Hence the only advantage of estimating 𝜇
𝑌
and 𝜎

𝑌
by

sample moments of y is speed; otherwise the Lambert W ×

Gaussian MLE is at least as good as the Gaussian MLE and
clearly outperforms it in presence of heavy tails.

6. Applications

Tukey’s ℎ distribution has already proven useful to model
heavy-tailed data, but parametric inference was limited to
quantile fitting ormethods ofmoments estimation [4, 27, 28].
Theorem 7 allows us to estimate 𝜃 by ML.

This section applies the presented methodology on sim-
ulated as well as real world data: (i) Section 6.1 demonstrates
Gaussianizing on the Cauchy sample from the Introduction,
and (ii) Section 6.2 shows that heavy tail Lambert W ×

Gaussian distributions provide an excellent fit to daily S&P
500 log-return series.

6.1. Estimating Location of a Cauchy with the Sample Mean.
It is well known that the sample mean y is a poor estimate
of the location parameter of a Cauchy distribution, since the
sampling distribution of y is again a Cauchy (see [47] for a
recent overview); in particular, its variance does not go to 0
for𝑁 → ∞.
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Table 2: In each subtable: (first rows) average, (middle rows) proportion of estimates below truth, and (bottom rows) empirical standard
deviation times√𝑁. True 𝜇

𝑋
= 0 and 𝜎

𝑋
= 1.

(a) Truly Gaussian data: 𝛿 = 0

𝛿 = 0 Median Gaussian MLE IGMM Lambert WMLE NA
𝑁 𝜇

𝑌
𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

Ratio
50 0.00 0.00 0.98 0.00 0.97 0.02 0.99 0.00 0.96 0.02 0.98 0

100 0.00 0.00 0.99 0.00 0.98 0.01 1.00 0.00 0.97 0.01 0.99 0

1000 0.00 0.00 1.00 0.00 0.99 0.00 1.00 0.00 0.99 0.00 1.00 0

50 0.50 0.50 0.57 0.51 0.60 0.66 0.54 0.51 0.65 0.66 0.56 0

100 0.50 0.51 0.56 0.51 0.62 0.62 0.53 0.52 0.65 0.62 0.56 0

1000 0.50 0.49 0.52 0.49 0.62 0.56 0.52 0.49 0.63 0.56 0.52 0

50 1.24 1.01 0.72 1.01 0.76 0.21 0.73 1.02 0.78 0.26 0.72 0

100 1.25 1.02 0.70 1.02 0.76 0.23 0.70 1.03 0.78 0.26 0.70 0

1000 1.26 0.98 0.73 0.98 0.79 0.22 0.73 0.98 0.79 0.22 0.73 0

(b) No fourth moments: 𝛿 = 1/3

𝛿 = 1/3 Median Gaussian MLE IGMM Lambert WMLE NA
𝑁 𝜇

𝑌
𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

Ratio
50 0.00 0.00 1.98 0.00 1.07 0.29 ∞ 0.00 1.01 0.33 ∞ 0

100 0.00 0.00 2.03 0.00 1.04 0.31 ∞ 0.00 1.00 0.33 ∞ 0

1000 0.00 0.00 2.18 0.00 1.00 0.33 2.34 0.00 1.00 0.33 2.34 0

50 0.50 0.51 0.78 0.50 0.38 0.63 0.60 0.50 0.52 0.54 0.54 0

100 0.50 0.51 0.78 0.51 0.42 0.61 0.60 0.50 0.51 0.54 0.54 0

1000 0.48 0.51 0.77 0.51 0.47 0.56 0.55 0.51 0.50 0.53 0.52 0

50 1.27 2.21 6.56 1.44 1.45 1.10 NA 1.23 1.35 1.14 NA 0

100 1.30 2.33 11.28 1.43 1.42 1.12 NA 1.19 1.34 1.09 NA 0

1000 1.23 2.25 16.76 1.39 1.45 1.20 15.97 1.17 1.33 1.08 12.30 0

(c) Non-existing mean: 𝛿 = 1

𝛿 = 1 Median Gaussian MLE IGMM Lambert WMLE NA
𝑁 𝜇

𝑌
𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

Ratio
50 0.00 −0.10 24.6 −0.01 1.18 0.90 ∞ 0.00 1.01 0.99 ∞ 0

100 0.00 0.74 72.4 0.00 1.09 0.95 ∞ 0.00 1.01 0.99 ∞ 0

1000 0.00 3.84 348.1 0.00 1.01 1.00 ∞ 0.00 1.00 1.00 ∞ 0

50 0.53 0.52 1.0 0.51 0.34 0.65 1 0.51 0.52 0.52 1 0

100 0.50 0.52 1.0 0.51 0.38 0.63 1 0.50 0.53 0.53 1 0

1000 0.49 0.52 1.0 0.51 0.48 0.53 1 0.49 0.51 0.51 1 0

50 1.27 65.85 424.3 2.10 2.50 2.32 NA 1.19 1.70 2.16 NA 0

100 1.30 410.75 4050.2 2.01 2.28 2.59 NA 1.17 1.74 2.25 NA 0

1000 1.26 3307.58 104052.7 1.93 2.21 2.81 NA 1.11 1.64 2.18 NA 0

(d) Extreme heavy tails: 𝛿 = 1.5

𝛿 = 1.5 Median Gaussian MLE IGMM Lambert WMLE NA
𝑁 𝜇

𝑌
𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

𝜇
𝑋

𝜎
𝑋

𝛿 𝜎
𝑌

Ratio
50 −0.02 6.84 309 −0.02 1.23 1.37 ∞ −0.01 1.00 1.49 ∞ 0.01

100 0.00 −51.16 3080 −0.01 1.12 1.44 ∞ 0.00 1.01 1.50 ∞ 0.00

1000 0.00 176.13 14251 0.00 1.01 1.49 ∞ 0.00 1.00 1.50 ∞ 0.00

50 0.53 0.48 1 0.51 0.34 0.64 1 0.53 0.53 0.54 1 0.01

100 0.51 0.53 1 0.54 0.37 0.61 1 0.52 0.51 0.51 1 0.00

1000 0.50 0.50 1 0.50 0.47 0.54 1 0.49 0.53 0.52 1 0.00

50 1.32 1347.71 9261 2.57 3.20 3.12 NA 1.15 1.86 2.76 NA 0.01

100 1.33 42156.28 418435 2.39 2.87 3.44 NA 1.12 1.78 2.84 NA 0.00

1000 1.26 124462.82 3903629 2.18 2.66 3.67 NA 1.11 1.80 2.85 NA 0.00
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Table 3: Summary statistics for observed (heavy-tailed) y and back-transformed (Gaussianized) data x
𝜏MLE

. ∗∗ stands for <10−16and ∗ for
<2.2 ⋅ 10

−16.

y ∼ C(0, 1)

(Section 6.1)
y = S&P 500
(Section 6.2)

y x
𝜏

x
𝜆̂

y x
𝜏

Min −161.59 −3.16 0 −7.11 −2.42
Max 952.95 3.81 33.18 4.99 2.23
Mean 2.30 0.03 14.98 0.05 0.05
Median 0.04 0.04 14.96 0.04 0.04
Standard Deviation 46.980 1.06 1.20 0.95 0.71
Skewness 17.43 0.12 3.90 −0.30 −0.04
Kurtosis 343.34 3.21 161.75 7.70 2.93
Shapiro-Wilk ∗ 0.71 ∗∗ ∗ 0.24
Anderson-Darling ∗∗ 0.51 ∗∗ ∗ 0.18

Heavy-tailed Lambert W × Gaussian distributions have
similar properties to a Cauchy for 𝛿 ≈ 1. The mean of𝑋 (𝜇

𝑋
)

equals the location of𝑌 (𝑐) due to symmetry around 𝜇
𝑋
and 𝑐,

respectively. Thus we can estimate 𝜏 from the Cauchy sample
y, transform y to x

𝜏
, get 𝜇

𝑋
from x

𝜏
= 𝑊

𝜏
(y), and thus obtain

an estimate for 𝑐 by 𝑐 = 𝜇
𝑋
.

The random sample y ∼ C(0, 1), with pdf 𝑓(𝑦) = 1/𝜋(1+
𝑦
2
), in Figure 2(a) has heavy tails with two extreme (positive)

observations. A Cauchy ML fit gives 𝑐 = 0.03(0.055) and
𝑠 = 0.86(0.053) (standard errors in parenthesis). A Lambert
W×GaussianMLEgives𝜇

𝑋
= 0.03(0.055),𝜎

𝑋
= 1.05(0.072),

and ̂𝛿 = 0.86(0.082). Thus both fits correctly fail to reject
𝜇
𝑋
= 𝑐 = 0. Table 3(a) shows summary statistics on both

samples. Since the Cauchy distribution does not have a well-
defined mean, y = 2.304(2.101) is not meaningful. However,
x
𝜏MLE

is approximately Gaussian and we can use the sample
average for inference: x

𝜏MLE
= 0.033(0.0472) correctly fails to

reject a zero location for y. The transformed x
𝜏MLE

features
additional Gaussian characteristics (symmetric, no excess
kurtosis), and even the null hypothesis of Normality cannot
be rejected (𝑃-value≥ 0.5). Note, however, that Normality for
the transformed data is only an empirical approximation; the
random variable𝑊

𝜏
((𝑌 − 𝜇

𝑋
)/𝜎

𝑋
), where 𝑌 is Cauchy, does

not have a Normal distribution.
Figure 2(d) shows the cumulative sample average for

the original sample and its Gaussianized version. For a
fair comparison 𝜏(𝑛)MLE was reestimated cumulatively for each
𝑛 = 5, . . . , 500 and then used to compute (𝑥

1
, . . . , 𝑥

𝑛
). The

transformation works extremely well: data point 𝑦
49
is highly

influential for y but has no relevant effect on x
𝜏
(𝑛)

MLE
. Even for

small 𝑛 it is already clear that the location of the underlying
Cauchy distribution is approximately zero.

Although it is a simulated example, it demonstrates that
removing (strong) heavy tails from data works well and
provides “nice” data that can then be analyzed with more
refined Gaussian methods.

6.2. Heavy Tails in Finance: S&P 500 Case Study. A lot of
financial data displays negative skewness and excess kurto-
sis. Since financial data in general is not i.i.d., it is often
modeled with a (skew) Student’s 𝑡-distribution underlying
a (generalized) autoregressive conditional heteroskedastic
(GARCH) [2, 48] or a stochastic volatility (SV) [49, 50]
model. Using the Lambert W approach we can build upon
the knowledge and implications of Normality (and avoid
deriving properties of a GARCH or SV model with heavy-
tailed innovations) and simply “Gaussianize” the returns
before fitting more complex, GARCH or SV, models.

Remark 10. Time series models with Lambert W × Gaussian
white noise are far beyond the scope of this work but can
be a direction of future research. Here I only consider the
unconditional distribution.

Figure 7(a) shows the S&P 500 log-returns with a total
of 𝑁 = 2, 780 daily observations (R package MASS,
dataset SP500). Table 3(b) confirms the heavy tails (sample
kurtosis 7.70) but also indicates negative skewness (−0.296).
As the sample skewness 𝛾

1
(y) is very sensitive to outliers,

we fit a distribution which allows skewness and test for
symmetry. In case of the double-tail Lambert W × Gaussian
this means testing 𝐻

0
: 𝛿

ℓ
= 𝛿

𝑟
= 𝛿 versus 𝐻

1
:

𝛿
ℓ

̸= 𝛿
𝑟
. Using the likelihood expression in (28), we can

use a likelihood ratio test with one degree of freedom (3
versus 4 parameters). The log-likelihood of the double-tail fit
(Table 4(a)) equals −3606.0 = −2972.27 + (−633.73) (input
log-likelihood + penalty), while the symmetric 𝛿 fit gives
−3606.56 = −2971.47 + (−635.09). Here the symmetric fit
gives a transformed sample that is more Gaussian, but it pays
a greater penalty for transforming the data. Comparing twice
their difference to a𝜒2

1
distribution gives a𝑃-value of 0.29. For

comparison, a skew-𝑡 fit [51], with location 𝑐, scale 𝑠, shape
𝛼, and ] degrees of freedom, also yields (Function st.mle

in the R package sn.) a nonsignificant 𝛼̂ (Table 4(b)). Thus
both fits cannot reject symmetry.
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(a) Observed heavy tail returns y
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(b) Gaussianized returns x𝜏MLE

Figure 7: Lambert W Gaussianization of S&P 500 log-returns: 𝜏 = (0.05, 0.70, 0.17). In (a) and (b): data (top left); autocorrelation function
(ACF) (top right); histogram, Gaussian fit, and KDE (bottom left); Normal QQ plot (bottom right).

Assume we have to make a decision if we should trade a
certificate replicating the S&P 500. Since we can either buy
or sell, it is not important if the average return is positive or
negative, as long as it is significantly different from zero.

6.2.1. Gaussian Fit to Returns. Estimating (𝜇
𝑌
, 𝜎
𝑌
) by Gaus-

sianMLE and thus ignoring the heavy tails, 𝜇
𝑌
= 0 cannot be

rejected on a 𝛼 = 1% level (Table 4(e)). Ignoring heavy tails
we would thus decide to not trade a replicating certificate at
all.

6.2.2. Heavy Tail Fit to Returns. Both a heavy tail LambertW
× Gaussian (Table 4(c)) and Student 𝑡-fit (Table 4(d)) reject
the zero mean null (𝑃-values: 10−4 and 3 ⋅ 10−5, resp.).

Location and scale estimates are almost identical, but
tail estimates lead to different conclusions: while for ]̂ =

3.71 only moments up to order 3 exist, in the Lambert W ×

Gaussian case moments up to order 5 exist (1/0.172 = 5.81).
This is especially noteworthy as many theoretical results in
the (financial) time series literature rely on finite fourth
moments [52, 53]; consequently many empirical studies test
this assumption [7, 54]. Here Student’s 𝑡 and a Lambert
W × Gaussian fit give different conclusions. Since previous
empirical studies often use Student’s 𝑡 as a baseline [41], it
might be worthwhile to reexamine their findings in light of
heavy tail Lambert W × Gaussian distributions.

6.2.3. “Gaussianizing” Financial Returns. The back-trans-
formed x

𝜏MLE
is indistinguishable from a Gaussian sample

(Figure 7(b)) and thus demonstrates that a Lambert W ×

Gaussian distribution is indeed appropriate for x
𝜏MLE

. Not
even one test can reject Normality: 𝑃-values are 0.18, 0.18,
0.31, and 0.24, respectively (Anderson-Darling, Cramer-
von-Mises, Shapiro-Francia, Shapiro-Wilk; see Thode [55]).
Table 3(b) confirms that Lambert W “Gaussianiziation” was

successful: 𝛾
1
(x
𝜏
) = −0.039 and 𝛾

2
(x
𝜏
) = 2.93 are within the

typical variation for aGaussian sample of size𝑁 = 2780.Thus

𝑌 = (𝑈𝑒
(0.172/2)𝑈

2

) 0.705 + 0.055, 𝑈 =

𝑋 − 0.055

0.705

,

𝑈 ∼N (0, 1)

(36)

is an adequate (unconditional) LambertW×Gaussianmodel
for the S&P 500 log-returns y. For trading, thismeans that the
expected return is significantly larger than zero (𝜇

𝑋
= 0.055 >

0) and thus replicating certificates should be bought.

6.2.4. Gaussian MLE for Gaussianized Data. For 𝛿
𝑙
= 𝛿

𝑟
≡

𝛿 < 1, also 𝜇
𝑋
≡ 𝜇

𝑌
. We can therefore replace testing

𝜇
𝑦
= 0 versus 𝜇

𝑦
̸= 0 for a non-Gaussian y, with the

very well-understood hypothesis test 𝜇
𝑥
= 0 versus 𝜇

𝑥
̸= 0

for the Gaussian x
𝜏MLE

. In particular, standard errors based
on 𝜎̂/√𝑁 and thus t and 𝑃-values should be closer to the
“truth” (Tables 4(c) and 4(d)) than a Gaussian MLE on the
non-Gaussian y (Table 4(e)). Table 4(f) shows that standard
errors for 𝜇x are even a bit too small compared to the heavy-
tailed versions. Since the “Gaussianizing” transformation was
estimated, treating x

𝜏MLE
as if it was original data is too

optimistic regarding its Normality (recall the penalty (30) in
the total likelihood (28)).

This example confirms that if a model and its theoret-
ical properties are based on Normality, but the observed
data is heavy-tailed, then Gaussianizing the data first gives
more reliable inference than applying Gaussian methods to
the original, heavy-tailed data (Figure 1). Clearly, a joint
estimation of the model parameters based on Lambert W
× Gaussian random variables (or any other heavy-tailed
distribution) would be optimal. However, theoretical prop-
erties and estimation techniques may not be available or
well understood. The Lambert Way to Gaussianize data is
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Table 4: MLE fits to S&P 500 y Tables 4(a), 4(b), 4(c), 4(d), and 4(e)
and the Gaussianized data x

𝜏MLE
Table 4(f).

(a) Double-tail Lambert W × Gaussian = Tukey’s ℎℎ (S&P 500)

Est. se 𝑡 Pr (>|𝑡|)
𝜇
𝑋

0.06 0.015 3.66 0.00
𝜎
𝑋

0.71 0.016 44.00 0.00
𝛿
ℓ

0.19 0.021 8.99 0.00
𝛿
𝑟

0.16 0.019 8.24 0.00

(b) Skew 𝑡 (S&P 500)

Est. se 𝑡 Pr (>|𝑡|)
𝑐 0.10 0.061 1.65 0.10
𝑠 0.67 0.017 38.47 0.00
𝛼 −0.08 0.101 −0.77 0.44
] 3.73 0.297 12.57 0.00

(c) Lambert W × Gaussian = Tukey’s ℎ (S&P 500)

Est. se 𝑡 Pr (>|𝑡|)
𝜇
𝑋

0.06 0.015 3.65 0.000
𝜎
𝑋

0.71 0.016 43.95 0.000
𝛿 0.17 0.016 11.05 0.000

(d) Student’s 𝑡 (S&P 500)

Est. se 𝑡 Pr (>|𝑡|)
𝑐 0.06 0.015 3.65 0.00
𝑠 0.67 0.017 39.51 0.00
] 3.72 0.295 12.61 0.00

(e) Gaussian (S&P 500)

Est. se 𝑡 Pr (>|𝑡|)
𝜇
𝑌

0.05 0.018 2.55 0.01
𝜎
𝑌

0.95 0.013 74.57 0.00

(f) Gaussian (x𝜏MLE )

Est. se 𝑡 Pr (>|𝑡|)
𝜇
𝑥𝜏

0.05 0.013 3.81 0.00
𝜎
𝑥𝜏

0.71 0.009 74.57 0.00

thus a pragmatic method to improve statistical inference
on heavy-tailed data, while preserving the applicability and
interpretation of Gaussian models.

7. Discussion and Outlook

In this work I use the Lambert W function to model
and remove heavy tails from continuous random variables
using a data-transformation approach. For Gaussian random
variables this not only contributes to existing work on
Tukey’s ℎ distribution but also gives convincing empirical
results: unimodal data with heavy tails can be transformed
to Gaussian data. Properties of a Gaussian model MN on
the back-transformed data mimic the features of the “true”
heavy-tailed modelM

𝐺
very closely.

Since Normality is the single most typical and often
required assumption in many areas of statistics, machine

learning, and signal processing, future research can take
many directions. From a theoretical perspective properties of
Lambert W × 𝐹

𝑋
distributions viewed as a generalization of

alreadywell-known distributions𝐹
𝑋
can be studied.This area

will profit from existing literature on the Lambert W func-
tion, which has been discovered only recently by the statistics
community. Empirical work can focus on transforming the
data and comparing approximate Gaussian with joint heavy
tail analyses. The comparisons in this work showed that
approximate inference for Gaussianized data is comparable
with the direct heavy tail modeling and so provides a simple
tool to improve inference for heavy-tailed data in statistical
practice.

I also provide the R package Lambert W, publicly avail-
able at CRAN, to facilitate the use of heavy tail Lambert W
× 𝐹

𝑋
distributions in practice.
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