
How To Write Unmaintainable Code
Ensure a job for life ;-)
Roedy Green
Canadian Mind Products

Introduction
Never ascribe to malice, that which can be explained by incompetence.
- Napoleon

In the interests of creating employment opportunities in the Java programming field, I am passing on these
tips from the masters on how to write code that is so difficult to maintain, that the people who come after
you will take years to make even the simplest changes. Further, if you follow all these rules religiously, you
will even guarantee yourself a lifetime of employment, since no one but you has a hope in hell of
maintaining the code. Then again, if you followed all these rules religiously, even you wouldn't be able to
maintain the code!

You don't want to overdo this. Your code should not look hopelessly unmaintainable, just be that way.
Otherwise it stands the risk of being rewritten or refactored.

General Principles
Quidquid latine dictum sit, altum sonatur.
- Whatever is said in Latin sounds profound.

To foil the maintenance programmer, you have to understand how he thinks. He has your giant program. He
has no time to read it all, much less understand it. He wants to rapidly find the place to make his change,
make it and get out and have no unexpected side effects from the change.

He views your code through a toilet paper tube. He can only see a tiny piece of your program at a time. You
want to make sure he can never get at the big picture from doing that. You want to make it as hard as
possible for him to find the code he is looking for. But even more important, you want to make it as
awkward as possible for him to safely ignore anything.

Programmers are lulled into complacency by conventions. By every once in a while, by subtly violating
convention, you force him to read every line of your code with a magnifying glass.

You might get the idea that every language feature makes code unmaintainable -- not so, only if properly
misused.

Naming
"When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just what I

choose it to mean - neither more nor less."
- Lewis Carroll -- Through the Looking Glass, Chapter 6

Much of the skill in writing unmaintainable code is the art of naming variables and methods. They don't
matter at all to the compiler. That gives you huge latitude to use them to befuddle the maintenance
programmer.

New Uses For Names For Baby

Buy a copy of a baby naming book and you'll never be at a loss for variable names. Fred is a
wonderful name, and easy to type. If you're looking for easy-to-type variable names, try adsf or
aoeu if you type with a DSK keyboard.

Single Letter Variable Names

If you call your variables a, b, c, then it will be impossible to search for instances of them using a
simple text editor. Further, nobody will be able to guess what they are for. If anyone even hints at
breaking the tradition honoured since FØRTRAN of using i, j, and k for indexing variables, namely
replacing them with ii, jj and kk, warn them about what the Spanish Inquisition did to heretics.

Creative Miss-spelling

If you must use descriptive variable and function names, misspell them. By misspelling in some
function and variable names, and spelling it correctly in others (such as SetPintleOpening
SetPintalClosing) we effectively negate the use of grep or IDE search techniques. It works amazingly
well. Add an international flavor by spelling tory or tori in different theatres/theaters.

Be Abstract

In naming functions and variables, make heavy use of abstract words like it, everything, data, handle,
stuff, do, routine, perform and the digits e.g. routineX48, PerformDataFunction, DoIt,
HandleStuff and do_args_method.

A.C.R.O.N.Y.M.S.

Use acronyms to keep the code terse. Real men never define acronyms; they understand them
genetically.

Thesaurus Surrogatisation

To break the boredom, use a thesaurus to look up as much alternate vocabulary as possible to refer to
the same action, e.g. display, show, present. Vaguely hint there is some subtle difference, where none
exists. However, if there are two similar functions that have a crucial difference, always use the same
word in describing both functions (e.g. print to mean "write to a file", "put ink on paper" and "display
on the screen"). Under no circumstances, succumb to demands to write a glossary with the special
purpose project vocabulary unambiguously defined. Doing so would be an unprofessional breach of
the structured design principle of information hiding.

Use Plural Forms From Other Languages

A VMS script kept track of the "statii" returned from various "Vaxen". Esperanto , Klingon and
Hobbitese qualify as languages for these purposes. For pseudo-Esperanto pluraloj, add oj. You will be
doing your part toward world peace.

CapiTaliSaTion

Randomly capitalize the first letter of a syllable in the middle of a word. For example
ComputeRasterHistoGram().

Reuse Names

Wherever the rules of the language permit, give classes, constructors, methods, member variables,
parameters and local variables the same names. For extra points, reuse local variable names inside {}
blocks. The goal is to force the maintenance programmer to carefully examine the scope of every
instance. In particular, in Java, make ordinary methods masquerade as constructors.

Åccented Letters

Use accented characters on variable names. E.g.
typedef struct { int i; } ínt;

where the second ínt's í is actually i-acute. With only a simple text editor, it's nearly impossible to
distinguish the slant of the accent mark.

Exploit Compiler Name Length Limits

If the compiler will only distinguish the first, say, 8 characters of names, then vary the endings e.g.
var_unit_update() in one case and var_unit_setup() in another. The compiler will treat both as
var_unit.

Underscore, a Friend Indeed

Use _ and __ as identifiers.

Mix Languages

Randomly intersperse two languages (human or computer). If your boss insists you use his language,
tell him you can organise your thoughts better in your own language, or, if that does not work, allege
linguistic discrimination and threaten to sue your employers for a vast sum.

Extended ASCII

Extended ASCII characters are perfectly valid as variable names, including ß, Ð, and ñ characters.
They are almost impossible to type without copying/pasting in a simple text editor.

Names From Other Languages

Use foreign language dictionaries as a source for variable names. For example, use the German punkt
for point. Maintenance coders, without your firm grasp of German, will enjoy the multicultural
experience of deciphering the meaning.

Names From Mathematics

Choose variable names that masquerade as mathematical operators, e.g.:
openParen = (slash + asterix) / equals;

Bedazzling Names

Choose variable names with irrelevant emotional connotation. e.g.:
marypoppins = (superman + starship) / god;

This confuses the reader because they have difficulty disassociating the emotional connotations of the
words from the logic they're trying to think about.

Rename and Reuse

This trick works especially well in Ada, a language immune to many of the standard obfuscation
techniques. The people who originally named all the objects and packages you use were morons.
Rather than try to convince them to change, just use renames and subtypes to rename everything to
names of your own devising. Make sure to leave a few references to the old names in, as a trap for the
unwary.

When To Use i

Never use i for the innermost loop variable. Use anything but. Use i liberally for any other purpose
especially for non-int variables. Similarly use n as a loop index.

Conventions Schmentions

Ignore the Sun Java Coding Conventions, after all, Sun does. Fortunately, the compiler won't tattle
when you violate them. The goal is to come up with names that differ subtlely only in case. If you are
forced to use the capitalisation conventions, you can still subvert wherever the choice is ambigous,
e.g. use both inputFilename and inputfileName. Invent your own hopelessly complex naming
conventions, then berate everyone else for not following them.

Lower Case l Looks a Lot Like the Digit 1

Use lower case l to indicate long constants. e.g. 10l is more likely to be mistaken for 101 that 10L is.
Ban any fonts that clearly disambiguate uvw wW gq9 2z 5s il17|!j oO08 `'" ;,. m nn rn {[()]}. Be
creative.

Reuse of Global Names as Private

Declare a global array in module A, and a private one of the same name in the header file for module
B, so that it appears that it's the global array you are using in module B, but it isn't. Make no reference
in the comments to this duplication.

Recycling Revisited

Use scoping as confusingly as possible by recycling variable names in contradictory ways. For
example, suppose you have global variables A and B, and functions foo and bar. If you know that
variable A will be regularly passed to foo and B to bar, make sure to define the functions as function
foo(B) and function bar(A) so that inside the functions A will always be referred to as B and vice
versa. With more functions and globals, you can create vast confusing webs of mutually contradictory
uses of the same names.

Recycle Your Variables

Wherever scope rules permit, reuse existing unrelated variable names. Similarly, use the same
temporary variable for two unrelated purposes (purporting to save stack slots). For a fiendish variant,
morph the variable, for example, assign a value to a variable at the top of a very long method, and
then somewhere in the middle, change the meaning of the variable in a subtle way, such as converting
it from a 0-based coordinate to a 1-based coordinate. Be certain not to document this change in
meaning.

Cd wrttn wtht vwls s mch trsr

When using abbreviations inside variable or method names, break the boredom with several variants
for the same word, and even spell it out longhand once in while. This helps defeat those lazy bums
who use text search to understand only some aspect of your program. Consider variant spellings as a
variant on the ploy, e.g. mixing International colour, with American color and dude-speak kulerz. If
you spell out names in full, there is only one possible way to spell each name. These are too easy for
the maintenance programmer to remember. Because there are so many different ways to abbreviate a
word, with abbreviations, you can have several different variables that all have the same apparent
purpose. As an added bonus, the maintenance programmer might not even notice they are separate
variables.

Misleading names

Make sure that every method does a little bit more (or less) than its name suggests. As a simple
example, a method named isValid(x) should as a side effect convert x to binary and store the
result in a database.

m_

a naming convention from the world of C++ is the use of "m_" in front of members. This is supposed
to help you tell them apart from methods, so long as you forget that "method" also starts with the
letter "m".

o_apple obj_apple

Use an "o" or "obj" prefix for each instance of the class to show that you're thinking of the big,
polymorphic picture.

Hungarian Notation

Hungarian Notation is the tactical nuclear weapon of source code obfuscation techniques; use it! Due
to the sheer volume of source code contaminated by this idiom nothing can kill a maintenance
engineer faster than a well planned Hungarian Notation attack. The following tips will help you
corrupt the original intent of Hungarian Notation:

Insist on using "c" for const in C++ and other languages that directly enforce the const-ness of a
variable.

Seek out and use Hungarian warts that have meaning in languages other than your current
language. For example insist on the PowerBuilder "l_" and "a_ " {local and argument} scoping
prefixes and always use the VB-esque style of having a Hungarian wart for every control type
when coding to C++. Try to stay ignorant of the fact that megs of plainly visible MFC source
code does not use Hungarian warts for control types.

Always violate the Hungarian principle that the most commonly used variables should carry the
least extra information around with them. Achieve this end through the techniques outlined
above and by insisting that each class type have a custom wart prefix. Never allow anyone to
remind you that no wart tells you that something is a class. The importance of this rule cannot
be overstated if you fail to adhere to its principles the source code may become flooded with
shorter variable names that have a higher vowel/consonant ratio. In the worst case scenario this
can lead to a full collapse of obfuscation and the spontaneous reappearance of English Notation
in code!

Flagrantly violate the Hungarian-esque concept that function parameters and other high
visibility symbols must be given meaningful names, but that Hungarian type warts all by
themselves make excellent temporary variable names.

Insist on carrying outright orthogonal information in your Hungarian warts. Consider this real
world example "a_crszkvc30LastNameCol". It took a team of maintenance engineers nearly 3
days to figure out that this whopper variable name described a const, reference, function
argument that was holding information from a database column of type Varchar[30] named
"LastName" which was part of the table's primary key. When properly combined with the
principle that "all variables should be public" this technique has the power to render thousands
of lines of source code obsolete instantly!

Use to your advantage the principle that the human brain can only hold 7 pieces of information
concurrently. For example code written to the above standard has the following properties:

a single assignment statement carries 14 pieces of type and name information.
a single function call that passes three parameters and assigns a result carries 29 pieces of
type and name information.
Seek to improve this excellent, but far too concise, standard. Impress management and
coworkers by recommending a 5 letter day of the week prefix to help isolate code written
on 'Monam' and 'FriPM'.
It is easy to overwhelm the short term memory with even a moderately complex nesting
structure, especially when the maintenance programmer can't see the start and end of
each block on screen simultaneously.

Hungarian Notation Revisited

One followon trick in the Hungarian notation is "change the type of a variable but leave the variable
name unchanged". This is almost invariably done in windows apps with the migration from Win16 :-
WndProc(HWND hW, WORD wMsg, WORD wParam, LONG lParam) to Win32 WndProc(HWND
hW, UINT wMsg, WPARAM wParam, LPARAM lParam) where the w values hint that they are
words, but they really refer to longs. The real value of this approach comes clear with the Win64
migration, when the parameters will be 64 bits wide, but the old "w" and "l" prefixes will remain
forever.

Reduce, Reuse, Recycle

If you have to define a structure to hold data for callbacks, always call the structure PRIVDATA.
Every module can define it's own PRIVDATA. In VC++, this has the advantage of confusing the
debugger so that if you have a PRIVDATA variable and try to expand it in the watch window, it
doesn't know which PRIVDATA you mean, so it just picks one.

Obscure film references

Use constant names like LancelotsFavouriteColour instead of blue and assign it hex value
of $0204FB. The color looks identical to pure blue on the screen, and a maintenance programmer
would have to work out 0204FB (or use some graphic tool) to know what it looks like. Only someone
intimately familiar with Monty Python and the Holy Grail would know that Lancelot's favorite color
was blue. If a maintenance programmer can't quote entire Monty Python movies from memory, he or
she has no business being a programmer.

Camouflage
The longer it takes for a bug to surface, the harder it is to find.
- Roedy Green

Much of the skill in writing unmaintainable code is the art of camouflage, hiding things, or making things
appear to be what they are not. Many depend on the fact the compiler is more capable at making fine
distinctions than either the human eye or the text editor. Here are some of the best camouflaging techniques.

Code That Masquerades As Comments and Vice Versa

Include sections of code that is commented out but at first glance does not appear to be.
for(j=0; j<array_len; j+ =8)

{
total += array[j+0];
total += array[j+1];
total += array[j+2]; /* Main body of
total += array[j+3]; * loop is unrolled
total += array[j+4]; * for greater speed.
total += array[j+5]; */
total += array[j+6];
total += array[j+7];
}

Without the colour coding would you notice that three lines of code are commented out?

namespaces

Struct/union and typedef struct/union are different name spaces in C (not in C++). Use the same name
in both name spaces for structures or unions. Make them, if possible, nearly compatible.

typedef struct {
char* pTr;
size_t lEn;
} snafu;

struct snafu {
unsigned cNt
char* pTr;
size_t lEn;
} A;

Hide Macro Definitions

Hide macro definitions in amongst rubbish comments. The programmer will get bored and not finish
reading the comments thus never discover the macro. Ensure that the macro replaces what looks like a
perfectly legitimate assignment with some bizarre operation, a simple example:

#define a=b a=0-b

Look Busy

use define statements to make made up functions that simply comment out their arguments, e.g.:
#define fastcopy(x,y,z) /*xyz*/
...
fastcopy(array1, array2, size); /* does nothing */

Use Continuation to hide variables

Instead of using
#define local_var xy_z

break up "xy_z" onto two lines:
#define local_var xy\
_z // local_var OK

That way a global search for xy_z will come up with nothing for that file. To the C preprocessor, the
"\" at the end of the line means glue this line to the next one.

Arbitrary Names That Masquerade as Keywords

When documenting, and you need an arbitrary name to represent a filename use "file ". Never use an
obviously arbitrary name like "Charlie.dat" or "Frodo.txt". In general, in your examples, use arbitrary
names that sound as much like reserved keywords as possible. For example, good names for
parameters or variables would be"bank", "blank", "class", "const ", "constant", "input", "key",
"keyword", "kind", "output", "parameter" "parm", "system", "type", "value", "var" and "variable ". If
you use actual reserved words for your arbitrary names, which would be rejected by your command
processor or compiler, so much the better. If you do this well, the users will be hopelessly confused
between reserved keywords and arbitrary names in your example, but you can look innocent, claiming

you did it to help them associate the appropriate purpose with each variable.

Code Names Must Not Match Screen Names

Choose your variable names to have absolutely no relation to the labels used when such variables are
displayed on the screen. E.g. on the screen label the field "Postal Code" but in the code call the
associated variable "zip".

Don't Change Names

Instead of globally renaming to bring two sections of code into sync, use multiple TYPEDEFs of the
same symbol.

How to Hide Forbidden Globals

Since global variables are "evil", define a structure to hold all the things you'd put in globals. Call it
something clever like EverythingYoullEverNeed. Make all functions take a pointer to this structure
(call it handle to confuse things more). This gives the impression that you're not using global
variables, you're accessing everything through a "handle". Then declare one statically so that all the
code is using the same copy anyway.

Hide Instances With Synonyms

Maintenance programmers, in order to see if they'll be any cascading effects to a change they make,
do a global search for the variables named. This can be defeated by this simple expedient of having
synonyms, such as

#define xxx global_var // in file std.h
#define xy_z xxx // in file ..\other\substd.h
#define local_var xy_z // in file ..\codestd\inst.h

These defs should be scattered through different include-files. They are especially effective if the
include-files are located in different directories. The other technique is to reuse a name in every
scope. The compiler can tell them apart, but a simple minded text searcher cannot. Unfortunately
SCIDs in the coming decade will make this simple technique impossible. since the editor understands
the scope rules just as well as the compiler.

Long Similar Variable Names

Use very long variable names or class names that differ from each other by only one character, or
only in upper/lower case. An ideal variable name pair is swimmer and swimner. Exploit the failure
of most fonts to clearly discriminate between ilI1| or oO08 with identifier pairs like parselnt
and parseInt or D0Calc and DOCalc. l is an exceptionally fine choice for a variable name
since it will, to the casual glance, masquerade as the constant 1. In many fonts rn looks like an m. So
how about a variable swirnrner. Create variable names that differ from each other only in case e.g.
HashTable and Hashtable.

Similar-Sounding Similar-Looking Variable Names

Although we have one variable named xy_z, there's certainly no reason not to have many other

variables with similar names, such as xy_Z, xy__z, _xy_z, _xyz, XY_Z, xY_z, and Xy_z.

Variables that resemble others except for capitalization and underlines have the advantage of
confounding those who like remembering names by sound or letter-spelling, rather than by exact
representations.

Overload and Bewilder

In C++, overload library functions by using #define. That way it looks like you are using a familiar
library function where in actuality you are using something totally different.

Choosing The Best Overload Operator

In C++, overload +,-,*,/ to do things totally unrelated to addition, subtraction etc. After all, if the
Stroustroup can use the shift operator to do I/O, why should you not be equally creative? If you
overload +, make sure you do it in a way that i = i + 5; has a totally different meaning from i
+= 5; Here is an example of elevating overloading operator obfuscation to a high art. Overload the
'!' operator for a class, but have the overload have nothing to do with inverting or negating. Make it
return an integer. Then, in order to get a logical value for it, you must use '! !'. However, this inverts
the logic, so [drum roll] you must use '! ! !'. Don't confuse the ! operator, which returns a boolean 0 or
1, with the ~ bitwise logical negation operator.

Overload new

Overload the "new" operator - much more dangerous than overloading the +-/*. This can cause total
havoc if overloaded to do something different from it's original function (but vital to the object's
function so it's very difficult to change). This should ensure users trying to create a dynamic instance
get really stumped. You can combine this with the case sensitivity trickalso have a member function,
and variable called "New".

#define

#define in C++ deserves an entire essay on its own to explore its rich possibilities for obfuscation. Use
lower case #define variables so they masquerade as ordinary variables. Never use parameters to your
preprocessor functions. Do everything with global #defines. One of the most imaginative uses of the
preprocessor I have heard of was requiring five passes through CPP before the code was ready to
compile. Through clever use of defines and ifdefs, a master of obfuscation can make header files
declare different things depending on how many times they are included. This becomes especially
interesting when one header is included in another header. Here is a particularly devious example:

#ifndef DONE

#ifdef TWICE

// put stuff here to declare 3rd time around
void g(char* str);
#define DONE

#else // TWICE
#ifdef ONCE

// put stuff here to declare 2nd time around
void g(void* str);
#define TWICE

#else // ONCE

// put stuff here to declare 1st time around
void g(std::string str);
#define ONCE

#endif // ONCE
#endif // TWICE
#endif // DONE

This one gets fun when passing g() a char*, because a different version of g() will be called
depending on how many times the header was included.

Compiler Directives

Compiler directives were designed with the express purpose of making the same code behave
completely differently. Turn the boolean short-circuiting directive on and off repeatedly and
vigourously, as well as the long strings directive.

Documentation
Any fool can tell the truth, but it requires a man of some sense to know how to lie well.
- Samuel Butler (1835 - 1902)

Incorrect documentation is often worse than no documentation.
- Bertrand Meyer

Since the computer ignores comments and documentation, you can lie outrageously and do everything in
your power to befuddle the poor maintenance programmer.

Lie in the comments

You don't have to actively lie, just fail to keep comments as up to date with the code.

Document the obvious

Pepper the code with comments like /* add 1 to i */ however, never document wooly stuff like the
overall purpose of the package or method.

Document How Not Why

Document only the details of what a program does, not what it is attempting to accomplish. That way,
if there is a bug, the fixer will have no clue what the code should be doing.

Avoid Documenting the "Obvious"

If, for example, you were writing an airline reservation system, make sure there are at least 25 places
in the code that need to be modified if you were to add another airline. Never document where they
are. People who come after you have no business modifying your code without thoroughly
understanding every line of it.

On the Proper Use Of Documentation Templates

Consider function documentation prototypes used to allow automated documentation of the code.
These prototypes should be copied from one function (or method or class) to another, but never fill in
the fields. If for some reason you are forced to fill in the fields make sure that all parameters are
named the same for all functions, and all cautions are the same but of course not related to the current
function at all.

On the Proper Use of Design Documents

When implementing a very complicated algorithm, use the classic software engineering principles of
doing a sound design before beginning coding. Write an extremely detailed design document that
describes each step in a very complicated algorithm. The more detailed this document is, the better.

In fact, the design doc should break the algorithm down into a hierarchy of structured steps, described
in a hierarchy of auto-numbered individual paragraphs in the document. Use headings at least 5 deep.
Make sure that when you are done, you have broken the structure down so completely that there are
over 500 such auto-numbered paragraphs. For example, one paragraph might be(this is a real
example)

1.2.4.6.3.13 - Display all impacts for activity where selected mitigations can apply (short pseudocode
omitted).

then... (and this is the kicker) when you write the code, for each of these paragraphs you write a
corresponding global function named:

Act1_2_4_6_3_13()
Do not document these functions. After all, that's what the design document is for!

Since the design doc is auto-numbered, it will be extremely difficult to keep it up to date with changes
in the code (because the function names, of course, are static, not auto-numbered.) This isn't a
problem for you because you will not try to keep the document up to date. In fact, do everything you
can to destroy all traces of the document.

Those who come after you should only be able to find one or two contradictory, early drafts of the
design document hidden on some dusty shelving in the back room near the dead 286 computers.

Units of Measure

Never document the units of measure of any variable, input, output or parameter. e.g. feet, metres,
cartons. This is not so important in bean counting, but it is very important in engineering work. As a
corollary, never document the units of measure of any conversion constants, or how the values were
derived. It is mild cheating, but very effective, to salt the code with some incorrect units of measure in
the comments. If you are feeling particularly malicious, make up your own unit of measure; name it

after yourself or some obscure person and never define it. If somebody challenges you, tell them you
did so that you could use integer rather than floating point arithmetic.

Gotchas

Never document gotchas in the code. If you suspect there may be a bug in a class, keep it to yourself.
If you have ideas about how the code should be reorganised or rewritten, for heaven's sake, do not
write them down. Remember the words of Thumper in the movie Bambi "If you can't say anything
nice, don't say anything at all". What if the programmer who wrote that code saw your comments?
What if the owner of the company saw them? What if a customer did? You could get yourself fired.
An anonymous comment that says "This needs to be fixed!" can do wonders, especially if it's not clear
what the comment refers to. Keep it vague, and nobody will feel personally criticised.

Documenting Variables

Never put a comment on a variable declaration. Facts about how the variable is used, its bounds, its
legal values, its implied/displayed number of decimal points, its units of measure, its display format,
its data entry rules (e.g. total fill, must enter), when its value can be trusted etc. should be gleaned
from the procedural code. If your boss forces you to write comments, lard method bodies with them,
but never comment a variable declaration, not even a temporary!

Disparage In the Comments

Discourage any attempt to use external maintenance contractors by peppering your code with insulting
references to other leading software companies, especial anyone who might be contracted to do the
work. e.g.:

/* The optimised inner loop.
This stuff is too clever for the dullard at Software Services
Inc., who would
probably use 50 times as memory & time using the dumb routines
in <math.h>.
*/
class clever_SSInc

{
.. .
}

If possible, put insulting stuff in syntactically significant parts of the code, as well as just the
comments so that management will probably break the code if they try to sanitise it before sending it
out for maintenance.

COMMENT AS IF IT WERE CØBØL ON PUNCH CARDS

Always refuse to accept advances in the development environment arena, especially SCIDs.
Disbelieve rumors that all function and variable declarations are never more than one click away and
always assume that code developed in Visual Studio 6.0 will be maintained by someone using edlin or
vi. Insist on Draconian commenting rules to bury the source code proper.

Monty Python Comments

On a method called makeSnafucated insert only the JavaDoc /* make snafucated */. Never define
what snafucated means anywhere. Only a fool does not already know, with complete certainty, what
snafucated means. For classic examples of this technique, consult the Sun AWT JavaDOC.

Program Design
The cardinal rule of writing unmaintainable code is to specify each fact in as many places as
possible and in as many ways as possible.
- Roedy Green

The key to writing maintainable code is to specify each fact about the application in only one place.
To change your mind, you need change it in only one place, and you are guaranteed the entire
program will still work. Therefore, the key to writing unmaintainable code is to specify a fact over
and over, in as many places as possible, in as many variant ways as possible. Happily, languages like
Java go out of their way to make writing this sort of unmaintainable code easy. For example, it is
almost impossible to change the type of a widely used variable because all the casts and conversion
functions will no longer work, and the types of the associated temporary variables will no longer be
appropriate. Further, if the variable is displayed on the screen, all the associated display and data entry
code has to be tracked down and manually modified. The Algol family of languages which include C
and Java treat storing data in an array, Hashtable, flat file and database with totally different syntax.
In languages like Abundance, and to some extent Smalltalk, the syntax is identical; just the
declaration changes. Take advantage of Java's ineptitude. Put data you know will grow too large for
RAM, for now into an array. That way the maintenance programmer will have a horrendous task
converting from array to file access later. Similarly place tiny files in databases so the maintenance
programmer can have the fun of converting them to array access when it comes time to performance
tune.

Java Casts

Java's casting scheme is a gift from the Gods. You can use it without guilt since the language requires
it. Every time you retrieve an object from a Collection you must cast it back to its original type. Thus
the type of the variable may be specified in dozens of places. If the type later changes, all the casts
must be changed to match. The compiler may or may not detect if the hapless maintenance
programmer fails to catch them all (or changes one too many). In a similar way, all matching casts to
(short) need to be changed to (int) if the type of a variable changes from short to int.
There is a movement afoot in invent a generic cast operator (cast) and a generic conversion
operator (convert) that would require no maintenance when the type of variable changes. Make
sure this heresy never makes it into the language specification. Vote no on RFE 114691 and on
genericity which would eliminate the need for many casts.

Exploit Java's Redundancy

Java insists you specify the type of every variable twice. Java programmers are so used to this
redundancy they won't notice if you make the two types slightly different, as in this example:

Bubblegum b = new Bubblegom();
Unfortunately the popularity of the ++ operator makes it harder to get away with pseudo-redundant
code like this:

swimmer = swimner + 1;

Never Validate

Never check input data for any kind of correctness or discrepancies. It will demonstrate that you
absolutely trust the company's equipment as well as that you are a perfect team player who trusts all
project partners and system operators. Always return reasonable values even when data inputs are
questionable or erroneous.

Be polite, Never Assert

Avoid the assert() mechanism, because it could turn a three-day debug fest into a ten minute one.

Avoid Encapsulation

In the interests of efficiency, avoid encapsulation. Callers of a method need all the external clues they
can get to remind them how the method works inside.

Clone & Modify

In the name of efficiency, use cut/paste/clone/modify. This works much faster than using many small
reusable modules. This is especially useful in shops that measure your progress by the number of lines
of code you've written.

Use Static Arrays

If a module in a library needs an array to hold an image, just define a static array. Nobody will ever
have an image bigger than 512 x 512, so a fixed-size array is OK. For best precision, make it an array
of doubles. Bonus effect for hiding a 2 Meg static array which causes the program to exceed the
memory of the client's machine and thrash like crazy even if they never use your routine.

Dummy Interfaces

Write an empty interface called something like "WrittenByMe", and make all of your classes
implement it. Then, write wrapper classes for any of Java's built-in classes that you use. The idea is to
make sure that every single object in your program implements this interface. Finally, write all
methods so that both their arguments and return types are WrittenByMe. This makes it nearly
impossible to figure out what some methods do, and introduces all sorts of entertaining casting
requirements. For a further extension, have each team member have his/her own personal interface
(e.g., WrittenByJoe); any class worked on by a programmer gets to implement his/her interface. You
can then arbitrary refer to objects by any one of a large number of meaningless interfaces!

Giant Listeners

Never create separate Listeners for each Component. Always have one listener for every button in
your project and simply use massive if...else statements to test for which button was pressed.

Too Much Of A Good ThingTM

Go wild with encapsulation and oo. For example:

myPanel.add(getMyButton());
private JButton getMyButton()

{
return myButton;
}

That one probably did not even seem funny. Don't worry. It will some day.

Friendly Friend

Use as often as possible the friend-declaration in C++. Combine this with handing the pointer of the
creating class to a created class. Now you don't need to fritter away your time in thinking about
interfaces. Additionally you should use the keywords private and protected to prove that your classes
are well encapsulated.

Use Three Dimensional Arrays

Lots of them. Move data between the arrays in convoluted ways, say, filling the columns in arrayB
with the rows from arrayA. Doing it with an offset of 1, for no apparent reason, is a nice touch.
Makes the maintenance programmer nervous.

Mix and Match

Use both accessor methods and public variables. That way, you can change an object's variable
without the overhead of calling the accessor, but still claim that the class is a "Java Bean". This has
the additional advantage of frustrating the maintenence programmer who adds a logging function to
try to figure out who is changing the value.

Wrap, wrap, wrap

Whenever you have to use methods in code you did not write, insulate your code from that other dirty
code by at least one layer of wrapper. After all, the other author might some time in the future
recklessly rename every method. Then where would you be? You could of course, if he did such a
thing, insulate your code from the changes by writing a wrapper or you could let VAJ handle the
global rename. However, this is the perfect excuse to preemptively cut him off at the pass with a
wrapper layer of indirection, before he does anything idiotic. One of Java's main faults is that there is
no way to solve many simple problems without dummy wrapper methods that do nothing but call
another method of the same name, or a closely related name. This means it is possible to write
wrappers four-levels deep that do absolutely nothing, and almost no one will notice. To maximise the
obscuration, at each level, rename the methods, selecting random synonyms from a thesaurus. This
gives the illusion something of note is happening. Further, the renaming helps ensure the lack of
consistent project terminology. To ensure no one attempts to prune your levels back to a reasonable
number, invoke some of your code bypassing the wrappers at each of the levels.

Wrap Wrap Wrap Some More

Make sure all API functions are wrapped at least 6-8 times, with function definitions in separate
source files. Using #defines to make handy shortcuts to these functions also helps.

No Secrets!

Declare every method and variable public. After all, somebody, sometime might want to use it. Once
a method has been declared public, it can't very well be retracted, now can it? This makes it very
difficult to later change the way anything works under the covers. It also has the delightful side effect
of obscuring what a class is for. If the boss asks if you are out of your mind, tell him you are
following the classic principles of transparent interfaces.

The Kama Sutra

This technique has the added advantage of driving any users or documenters of the package to
distraction as well as the maintenance programmers. Create a dozen overloaded variants of the same
method that differ in only the most minute detail. I think it was Oscar Wilde who observed that
positions 47 and 115 of the Kama Sutra were the same except in 115 the woman had her fingers
crossed. Users of the package then have to carefully peruse the long list of methods to figure out just
which variant to use. The technique also balloons the documentation and thus ensures it will more
likely be out of date. If the boss asks why you are doing this, explain it is solely for the convenience
of the users. Again for the full effect, clone any common logic and sit back and wait for it the copies
to gradually get out of sync.

Permute and Baffle

Reverse the parameters on a method called drawRectangle(height, width) to drawRectangle(width,
height) without making any change whatsoever to the name of the method. Then a few releases later,
reverse it back again. The maintenance programmers can't tell by quickly looking at any call if it has
been adjusted yet. Generalisations are left as an exercise for the reader.

Theme and Variations

Instead of using a parameter to a single method, create as many separate methods as you can. For
example instead of setAlignment(int alignment) where alignment is an enumerated
constant, for left, right, center, create three methods setLeftAlignment,
setRightAlignment, and setCenterAlignment. Of course, for the full effect, you must
clone the common logic to make it hard to keep in sync.

Static Is Good

Make as many of your variables as possible static. If you don't need more than one instance of the
class in this program, no one else ever will either. Again, if other coders in the project complain, tell
them about the execution speed improvement you're getting.

Cargill's Quandry

Take advantage of Cargill's quandary (I think this was his) "any design problem can be solved by
adding an additional level of indirection, except for too many levels of indirection." Decompose OO
programs until it becomes nearly impossible to find a method which actually updates program state.
Better yet, arrange all such occurrences to be activated as callbacks from by traversing pointer forests
which are known to contain every function pointer used within the entire system. Arrange for the
forest traversals to be activated as side-effects from releasing reference counted objects previously

created via deep copies which aren't really all that deep.

Packratting

Keep all of your unused and outdated methods and variables around in your code. After all - if you
needed to use it once in 1976, who knows if you will want to use it again sometime? Sure the
program's changed since then, but it might just as easily change back, you "don't want to have to
reinvent the wheel" (supervisors love talk like that). If you have left the comments on those methods
and variables untouched, and sufficiently cryptic, anyone maintaining the code will be too scared to
touch them.

And That's Final

Make all of your leaf classes final. After all, you're done with the project - certainly no one else could
possibly improve on your work by extending your classes. And it might even be a security flaw - after
all, isn't java.lang.String final for just this reason? If other coders in your project complain, tell them
about the execution speed improvement you're getting.

Eschew The Interface

In Java, disdain the interface. If your supervisors complain, tell them that Java interfaces force you to
"cut-and-paste" code between different classes that implement the same interface the same way, and
they know how hard that would be to maintain. Instead, do as the Java AWT designers did - put lots
of functionality in your classes that can only be used by classes that inherit from them, and use lots of
"instanceof" checks in your methods. This way, if someone wants to reuse your code, they have to
extend your classes. If they want to reuse your code from two different classes - tough luck, they can't
extend both of them at once! If an interface is unavoidable, make an all-purpose one and name it
something like "ImplementableIface." Another gem from academia is to append "Impl" to the names
of classes that implement interfaces. This can be used to great advantage, e.g. with classes that
implement Runnable.

Avoid Layouts

Never use layouts. That way when the maintenance programmer adds one more field he will have to
manually adjust the absolute co-ordinates of every other thing displayed on the screen. If your boss
forces you to use a layout, use a single giant GridBagLayout, and hard code in absolute grid co-
ordinates.

Environment variables

If you have to write classes for some other programmer to use, put environment-checking code
(getenv() in C++ / System.getProperty() in Java) in your classes' nameless static initializers, and pass
all your arguments to the classes this way, rather than in the constructor methods. The advantage is
that the initializer methods get called as soon as the class program binaries get loaded, even before
any of the classes get instantiated, so they will usually get executed before the program main(). In
other words, there will be no way for the rest of the program to modify these parameters before they
get read into your classes - the users better have set up all their environment variables just the way
you had them!

Table Driven Logic

Eschew any form of table-driven logic. It starts out innocently enough, but soon leads to end users
proofreading and then shudder, even modifying the tables for themselves.

Modify Mom's Fields

In Java, all primitives passed as parameters are effectively read-only because they are passed by
value. The callee can modify the parameters, but that has no effect on the caller's variables. In contrast
all objects passed are read-write. The reference is passed by value, which means the object itself is
effectively passed by reference. The callee can do whatever it wants to the fields in your object. Never
document whether a method actually modifies the fields in each of the passed parameters. Name your
methods to suggest they only look at the fields when they actually change them.

The Magic Of Global Variables

Instead of using exceptions to handle error processing, have your error message routine set a global
variable. Then make sure that every long-running loop in the system checks this global flag and
terminates if an error occurs. Add another global variable to signal when a user presses the 'reset'
button. Of course all the major loops in the system also have to check this second flag. Hide a few
loops that don't terminate on demand.

Globals, We Can't Stress These Enough!

If God didn't want us to use global variables, he wouldn't have invented them. Rather than disappoint
God, use and set as many global variables as possible. Each function should use and set at least two of
them, even if there's no reason to do this. After all, any good maintenance programmer will soon
figure out this is an exercise in detective work, and she'll be happy for the exercise that separates real
maintenance programmers from the dabblers.

Globals, One More Time, Boys

Global variables save you from having to specify arguments in functions. Take full advantage of this.
Elect one or more of these global variables to specify what kinds of processes to do on the others.
Maintenance programmers foolishly assume that C functions will not have side effects. Make sure
they squirrel results and internal state information away in global variables.

Side Effects

In C, functions are supposed to be idempotent, (without side effects). I hope that hint is sufficient.

Backing Out

Within the body of a loop, assume that the loop action is successful and immediately update all
pointer variables. If an exception is later detected on that loop action, back out the pointer
advancements as side effects of a conditional expression following the loop body.

Local Variables

Never use local variables. Whenever you feel the temptation to use one, make it into an instance or
static variable instead to unselfishly share it with all the other methods of the class. This will save you
work later when other methods need similar declarations. C++ programmers can go a step further by
making all variables global.

Reduce, Reuse, Recycle

If you have to define a structure to hold data for callbacks, always call the structure PRIVDATA.
Every module can define it's own PRIVDATA. In VC++, this has the advantage of confusing the
debugger so that if you have a PRIVDATA variable and try to expand it in the watch window, it
doesn't know which PRIVDATA you mean, so it just picks one.

Configuration Files

These usually have the form keyword=value. The values are loaded into Java variables at load time.
The most obvious obfuscation technique is to use slightly different names for the keywords and the
Java variables. Use configuration files even for constants that never change at run time. Parameter file
variables require at least five times as much code to maintain as a simple variable would.

Bloated classes

To ensure your classes are bounded in the most obtuse way possible, make sure you include
peripheral, obscure methods and attributes in every class. For example, a class that defines
astrophysical orbit geometry really should have a method that computes ocean tide schedules and
attributes that comprise a Crane weather model. Not only does this over-define the class, it makes
finding these methods in the general system code like looking for a guitar pick in a landfill.

Subclass With Abandon

Object oriented programming is a godsend for writing unmaintainable code. If you have a class with
10 properties (member/method) in it, consider a base class with only one property and subclassing it 9
levels deep so that each descendant adds one property. By the time you get to the last descendant
class, you'll have all 10 properties. If possible, put each class declaration in a separate file. This has
the added effect of bloating your INCLUDE or USES statements, and forces the maintainer to open
that many more files in his or her editor. Make sure you create at least one instance of each subclass.

Coding Obfuscation
Sedulously eschew obfuscatory hyperverbosity and prolixity.

Obfuscated C

Follow the obfuscated C contests on the Internet and sit at the lotus feet of the masters.

Find a Forth or APL Guru

In those worlds, the terser your code and the more bizarre the way it works, the more you are revered.

I'll Take a Dozen

Never use one housekeeping variable when you could just as easily use two or three.

Jude the Obscure

Always look for the most obscure way to do common tasks. For example, instead of using arrays to
convert an integer to the corresponding string, use code like this:

char *p;
switch (n)
{
case 1:
 p = "one";
 if (0)
case 2:
 p = "two";
 if (0)
case 3:
 p = "three";
 printf("%s", p);
 break;
}

Foolish Consistency Is the Hobgoblin of Little Minds

When you need a character constant, use many different formats ' ', 32, 0x20, 040. Make liberal use of
the fact that 10 and 010 are not the same number in C or Java.

Casting

Pass all data as a void * and then typecast to the appropriate structure. Using byte offsets into the data
instead of structure casting is fun too.

The Nested Switch

(a switch within a switch) is the most difficult type of nesting for the human mind to unravel.

Exploit Implicit Conversion

Memorize all of the subtle implicit conversion rules in the programming language. Take full
advantage of them. Never use a picture variable (in COBOL or PL/I) or a general conversion routine
(such as sprintf in C). Be sure to use floating-point variables as indexes into arrays, characters as loop
counters, and perform string functions on numbers. After all, all of these operations are well-defined
and will only add to the terseness of your source code. Any maintainer who tries to understand them
will be very grateful to you because they will have to read and learn the entire chapter on implicit data
type conversion; a chapter that they probably had completely overlooked before working on your
programs.

Raw ints

When using ComboBoxes, use a switch statement with integer cases rather than named constants for
the possible values.

Semicolons!

Always use semicolons whenever they are syntactically allowed. For example:
if(a);
else;

{
int d;
d = c;
}
;

Use Octal

Smuggle octal literals into a list of decimal numbers like this:
array = new int []

{
111,
120,
013,
121,
};

Convert Indirectly

Java offers great opportunity for obfuscation whenever you have to convert. As a simple example, if
you have to convert a double to a String, go circuitously, via Double with new
Double(d).toString() rather than the more direct Double.toString(d). You can, of
course, be far more circuitous than that! Avoid any conversion techniques recommended by the
Conversion Amanuensis. You get bonus points for every extra temporary object you leave littering the
heap after your conversion.

Nesting

Nest as deeply as you can. Good coders can get up to 10 levels of () on a single line and 20 { } in a
single method. C++ coders have the additional powerful option of preprocessor nesting totally
independent of the nest structure of the underlying code. You earn extra Brownie points whenever the
beginning and end of a block appear on separate pages in a printed listing. Wherever possible, convert
nested ifs into nested [?] ternaries. If they span several lines, so much the better.

Numeric Literals

If you have an array with 100 elements in it, hard code the literal 100 in as many places in the
program as possible. Never use a static final named constant for the 100, or refer to it as

myArray.length. To make changing this constant even more difficult, use the literal 50 instead
of 100/2, or 99 instead of 100-1. You can futher disguise the 100 by checking for a == 101 instead
of a > 100 or a > 99 instead of a >= 100.

Consider things like page sizes, where the lines consisting of x header, y body, and z footer lines, you
can apply the obfuscations independently to each of these and to their partial or total sums.

These time-honoured techniques are especially effective in a program with two unrelated arrays that
just accidentally happen to both have 100 elements. If the maintenance programmer has to change the
length of one of them, he will have to decipher every use of the literal 100 in the program to
determine which array it applies to. He is almost sure to make at least one error, hopefully one that
won't show up for years later.

There are even more fiendish variants. To lull the maintenance programmer into a false sense of
security, dutifully create the named constant, but very occasionally "accidentally" use the literal 100
value instead of the named constant. Most fiendish of all, in place of the literal 100 or the correct
named constant, sporadically use some other unrelated named constant that just accidentally happens
to have the value 100, for now. It almost goes without saying that you should avoid any consistent
naming scheme that would associate an array name with its size constant.

C's Eccentric View Of Arrays

C compilers transform myArray[i] into *(myArray + i), which is equivalent to *(i +
myArray) which is equivalent to i[myArray]. Experts know to put this to good use. To really
disguise things, generate the index with a function:

int myfunc(int q, int p) { return p%q; }
...
myfunc(6291, 8)[Array];

Unfortunately, these techniques can only be used in native C classes, not Java.

L o n g L i n e s

Try to pack as much as possible into a single line. This saves the overhead of temporary variables,
and makes source files shorter by eliminating new line characters and white space. Tipremove all
white space around operators. Good programmers can often hit the 255 character line length limit
imposed by some editors. The bonus of long lines is that programmers who cannot read 6 point type
must scroll to view them.

Exceptions

I am going to let you in on a little-known coding secret. Exceptions are a pain in the behind.
Properly-written code never fails, so exceptions are actually unnecessary. Don't waste time on them.
Subclassing exceptions is for incompetents who know their code will fail. You can greatly simplify
your program by having only a single try/catch in the entire application (in main) that calls
System.exit(). Just stick a perfectly standard set of throws on every method header whether they could
actually throw any exceptions or not.

When To Use Exceptions

Use exceptions for non-exceptional conditions. Routinely terminate loops with an
ArrayIndexOutOfBoundsException. Pass return standard results from a method in an
exception.

Use threads With Abandon

title says it all.

Lawyer Code

Follow the language lawyer discussions in the newsgroups about what various bits of tricky code
should do e.g. a=a++; or f(a++,a++); then sprinkle your code liberally with the examples. In
C, the effects of pre/post decrement code such as

++b ? (++b + *(b-1)) 0
are not defined by the language spec. Every compiler is free to evaluate in a different order. This
makes them doubly deadly. Similarly, take advantage of the complex tokenising rules of C and Java
by removing all spaces.

Early Returns

Rigidly follow the guidelines about no goto, no early returns, and no labelled breaks especially when
you can increase the if/else nesting depth by at least 5 levels.

Avoid {}

Never put in any { } surrounding your if/else blocks unless they are syntactically obligatory. If you
have a deeply nested mixture of if/else statements and blocks, especially with misleading indentation,
you can trip up even an expert maintenance programmer. For best results with this technique, use
Perl. You can pepper the code with additional ifs after the statements, to amazing effect.

Tabs From Hell

Never underestimate how much havoc you can create by indenting with tabs instead of spaces,
especially when there is no corporate standard on how much indenting a tab represents. Embed tabs
inside string literals, or use a tool to convert spaces to tabs that will do that for you.

Magic Matrix Locations

Use special values in certain matrix locations as flags. A good choice is the [3][0] element in a
transformation matrix used with a homogeneous coordinate system.

Magic Array Slots revisited

If you need several variables of a given type, just define an array of them, then access them by
number. Pick a numbering convention that only you know and don't document it. And don't bother to
define #define constants for the indexes. Everybody should just know that the global variable
widget[15] is the cancel button. This is just an up-to-date variant on using absolute numerical

addresses in assembler code.

Never Beautify

Never use an automated source code tidier (beautifier) to keep your code aligned. Lobby to have them
banned them from your company on the grounds they create false deltas in PVCS/CVS (version
control tracking) or that every programmer should have his own indenting style held forever
sacrosanct for any module he wrote. Insist that other programmers observe those idiosyncratic
conventions in "his " modules. Banning beautifiers is quite easy, even though they save the millions
of keystrokes doing manual alignment and days wasted misinterpreting poorly aligned code. Just
insist that everyone use the same tidied format, not just for storing in the common repository, but also
while they are editing. This starts an RWAR and the boss, to keep the peace, will ban automated
tidying. Without automated tidying, you are now free to accidentally misalign the code to give the
optical illusion that bodies of loops and ifs are longer or shorter than they really are, or that else
clauses match a different if than they really do. e.g.

if(a)
 if(b) x=y;
else x=z;

The Macro Preprocessor

It offers great opportunities for obfuscation. The key technique is to nest macro expansions several
layers deep so that you have to discover all the various parts in many different *.hpp files. Placing
executable code into macros then including those macros in every *.cpp file (even those that never
use those macros) will maximize the amount of recompilation necessary if ever that code changes.

Exploit Schizophrenia

Java is schizophrenic about array declarations. You can do them the old C, way String x[], (which
uses mixed pre-postfix notation) or the new way String[] x, which uses pure prefix notation. If you
want to really confuse people, mix the notationse.g.

byte[] rowvector, colvector , matrix[];
which is equivalent to:

byte[] rowvector;
byte[] colvector;
byte[][] matrix;

Hide Error Recovery Code

Use nesting to put the error recovery for a function call as far as possible away from the call. This
simple example can be elaborated to 10 or 12 levels of nest:

if (function_A() == OK)
{
if (function_B() == OK)

{
/* Normal completion stuff */
}

else

{
/* some error recovery for Function_B */
}

}
else

{
/* some error recovery for Function_A */
}

Pseudo C

The real reason for #define was to help programmers who are familiar with another programming
language to switch to C. Maybe you will find declarations like #define begin { " or "
#define end } useful to write more interesting code.

Confounding Imports

Keep the maintenance programmer guessing about what packages the methods you are using are in.
Instead of:

import MyPackage.Read;
import MyPackage.Write;

use:
import Mypackage. *;

Never fully qualify any method or class no matter how obscure. Let the maintenance programmer
guess which of the packages/classes it belongs to. Of course, inconsistency in when you fully qualify
and how you do your imports helps most.

Toilet Tubing

Never under any circumstances allow the code from more than one function or procedure to appear on
the screen at once. To achieve this with short routines, use the following handy tricks:

Blank lines are generally used to separate logical blocks of code. Each line is a logical block in
and of itself. Put blank lines between each line.

Never comment your code at the end of a line. Put it on the line above. If you're forced to
comment at the end of the line, pick the longest line of code in the entire file, add 10 spaces,
and left-align all end-of-line comments to that column.

Comments at the top of procedures should use templates that are at least 15 lines long and make
liberal use of blank lines. Here's a handy template:
/*
/* Procedure Name:
/*
/* Original procedure name:
/*
/* Author:
/*
/* Date of creation:
/*

/* Dates of modification:
/*
/* Modification authors:
/*
/* Original file name:
/*
/* Purpose:
/*
/* Intent:
/*
/* Designation:
/*
/* Classes used:
/*
/* Constants:
/*
/* Local variables:
/*
/* Parameters:
/*
/* Date of creation:
/*
/* Purpose:
*/

The technique of putting so much redundant information in documentation almost guarantees it will
soon go out of date, and will help befuddle maintenance programmers foolish enough to trust it.

Testing
I don't need to test my programs. I have an error-correcting modem.
- Om I. Baud

Leaving bugs in your programs gives the maintenance programmer who comes along later something
interesting to do. A well done bug should leave absolutely no clue as to when it was introduced or where.
The laziest way to accomplish this is simply never to test your code.

Never Test

Never test any code that handles the error cases, machine crashes, or OS glitches. Never check return
codes from the OS. That code never gets executed anyway and slows down your test times. Besides,
how can you possibly test your code to handle disk errors, file read errors, OS crashes, and all those
sorts of events? Why, you would have to either an incredibly unreliable computer or a test scaffold
that mimicked such a thing. Modern hardware never fails, and who wants to write code just for testing
purposes? It isn't any fun. If users complain, just blame the OS or hardware. They'll never know.

Never, Ever Do Any Performance Testing

Hey, if it isn't fast enough, just tell the customer to buy a faster machine. If you did do performance

testing, you might find a bottleneck, which might lead to algorithm changes, which might lead to a
complete redesign of your product. Who wants that? Besides, performance problems that crop up at
the customer site mean a free trip for you to some exotic location. Just keep your shots up-to-date and
your passport handy.

Never Write Any Test Cases

Never perform code coverage or path coverage testing. Automated testing is for wimps. Figure out
which features account for 90% of the uses of your routines, and allocate 90% of the tests to those
paths. After all, this technique probably tests only about 60% of your source code, and you have just
saved yourself 40% of the test effort. This can help you make up the schedule on the back-end of the
project. You'll be long gone by the time anyone notices that all those nice "marketing features" don't
work. The big, famous software companies test code this way; so should you. And if for some reason,
you are still around, see the next item.

Testing is for cowards

A brave coder will bypass that step. Too many programmers are afraid of their boss, afraid of losing
their job, afraid of customer hate mail and afraid of being sued. This fear paralyzes action, and
reduces productivity. Studies have shown that eliminating the test phase means that managers can set
ship dates well in advance, an obvious aid in the planning process. With fear gone, innovation and
experimentation can blossom. The role of the programmer is to produce code, and debugging can be
done by a cooperative effort on the part of the help desk and the legacy maintenance group.

If we have full confidence in our coding ability, then testing will be unnecessary. If we look at this
logically, then any fool can recognise that testing does not even attempt to solve a technical problem,
rather, this is a problem of emotional confidence. A more efficient solution to this lack of confidence
issue is to eliminate testing completely and send our programmers to self-esteem courses. After all, if
we choose to do testing, then we have to test every program change, but we only need to send the
programmers to one course on building self-esteem. The cost benefit is as amazing as it is obvious.

Ensuring It Only Works In Debug Mode

If you've defined TESTING as 1
#define TESTING 1

this gives you the wonderful opportunity to have separate code sections, such as
#if TESTING==1
#endif

which can contain such indispensable tidbits as
x = rt_val;

so that if anyone resets TESTING to 0, the program won't work. And with the tiniest bit of
imaginative work, it will not only befuddle the logic, but confound the compiler as well.

Choice Of Language
Philosophy is a battle against the bewitchment of our intelligence by means of language.
- Ludwig Wittgenstein

Computer languages are gradually evolving to become more fool proof. Using state of the art languages is

unmanly. Insist on using the oldest language you can get away with, octal machine language if you can
(Like Hans und Frans, I am no girlie man; I am so virile I used to code by plugging gold tipped wires into a
plugboard of IBM unit record equipment (punch cards), or by poking holes in paper tape with a hand
punch), failing that assembler, failing that FORTRAN or COBOL, failing that C, and BASIC, failing that
C++.

FØRTRAN

Write all your code in FORTRAN. If your boss ask why, you can reply that there are lots of very
useful libraries that you can use thus saving time. However the chances of writing maintainable code
in FORTRAN are zero, and therefore following the unmaintainable coding guidelines is a lot easier.

Avoid Ada

About 20% of these techniques can't be used in Ada. Refuse to use Ada. If your manager presses you,
insist that no-one else uses it, and point out that it doesn't work with your large suite of tools like lint
and plummer that work around C's failings.

Use ASM

Convert all common utility functions into asm.

Use QBASIC

Leave all important library functions written in QBASIC, then just write an asm wrapper to handle the
large->medium memory model mapping.

Inline Assembler

Sprinkle your code with bits of inline assembler just for fun. Almost no one understands assembler
anymore. Even a few lines of it can stop a maintenance programmer cold.

MASM call C

If you have assembler modules which are called from C, try to call C back from the assembler as
often as possible, even if it's only for a trivial purpose and make sure you make full use of the goto,
bcc and other charming obfuscations of assembler.

Avoid Maintainability Tools

Avoid coding in Abundance, or using any of its principles kludged into other languages. It was
designed from the ground up with the primary goal of making the maintenance programmer's job
easier. Similarly avoid Eiffel or Ada since they were designed to catch bugs before a program goes
into production.

Dealing With Others

Hell is other people.
- Jean-Paul Sartre, No Exit, 1934

There are many hints sprinkled thoroughout the tips above on how to rattle maintenance programmers
though frustration, and how to foil your boss's attempts to stop you from writing unmaintainable code, or
even how to foment an RWAR that involves everyone on the topic of how code should be formatted in the
repository.

Your Boss Knows Best

If your boss thinks that his or her 20 year old FORTRAN experience is an excellent guide to
contemporary programming, rigidly follow all his or her recommendations. As a result, the boss will
trust you. That may help you in your career. You will learn many new methods to obfuscate program
code.

Subvert The Help Desk

One way to help ensure the code is full of bugs is to ensure the maintenance programmers never hear
about them. This requires subverting the help desk. Never answer the phone. Use an automated voice
that says "thank you for calling the helpline. To reach a real person press "1" or leave a voice mail
wait for the tone". Email help requests should be ignored other than to assign them a tracking number.
The standard response to any problem is " I think your account is locked out. The person able to
authorise reinstatement is not available just now."

Keep Your Mouth Shut

Be never vigilant of the next Y2K. If you ever spot something that could sneak up on a fixed deadline
and destroy all life in the western hemisphere then do not openly discuss it until we are under the
critical 4 year event window of panic and opportunity. Do not tell friends, coworkers, or other
competent people of your discovery. Under no circumstances attempt to publish anything that might
hint at this new and tremendously profitable threat. Do send one normal priority, jargon encrypted,
memo to upper management to cover-your-a$$. If at all possible attach the jargon encrypted
information as a rider on an otherwise unrelated plain-text memo pertaining to a more immediately
pressing business concern. Rest assured that we all see the threat too. Sleep sound at night knowing
that long after you've been forced into early retirement you will be begged to come back at a
logarithmically increased hourly rate!

Baffle 'Em With Bullshit

Subtlety is a wonderful thing, although sometimes a sledge-hammer is more subtle than other tools.
So, a refinement on misleading comments create classes with names like FooFactory containing
comments with references to the GoF creational patterns (ideally with http links to bogus UML design
documents) that have nothing to do with object creation. Play off the maintainer's delusions of
competence. More subtly, create Java classes with protected constructors and methods like Foo f =
Foo.newInstance()that return actual new instances, rather than the expected singleton. The
opportunities for side-effects are endless.

Book Of The Month Club

Join a computer book of the month club. Select authors who appear to be too busy writing books to
have had any time to actually write any code themselves. Browse the local bookstore for titles with
lots of cloud diagrams in them and no coding examples. Skim these books to learn obscure pedantic
words you can use to intimidate the whippersnappers that come after you. Your code should impress.
If people can't understand your vocabulary, they must assume that you are very intelligent and that
your algorithms are very deep. Avoid any sort of homely analogies in your algorithm explanations.

Roll Your Own
You've always wanted to write system level code. Now is your chance. Ignore the standard libraries and
write your own. It will look great on your resumé.

Roll Your Own BNF

Always document your command syntax with your own, unique, undocumented brand of BNF
notation. Never explain the syntax by providing a suite of annotated sample valid and invalid
commands. That would demonstrate a complete lack of academic rigour. Railway diagrams are almost
as gauche. Make sure there is no obvious way of telling a terminal symbol (something you would
actually type) from an intermediate one -- something that represents a phrase in the syntax. Never use
typeface, colour, caps, or any other visual clues to help the reader distinguish the two. Use the exact
same punctuation glyphs in your BNF notation that you use in the command language itself, so the
reader can never tell if a (...), [...], {...} or "..." is something you actually type as part of the command,
or is intended to give clues about which syntax elements are obligatory, repeatable or optional in your
BNF notation. After all, if they are too stupid to figure out your variant of BNF, they have no
business using your program.

Roll Your Own Allocator

Everyone knows that debugging your dynamic storage is complicated and time consuming. Instead of
making sure each class has no storage leaks, reinvent your own storage allocator. It just mallocs space
out of a big arena. Instead of freeing storage, force your users to periodically perform a system reset
that clears the heap. There's only a few things the system needs to keep track of across resets -- lots
easier than plugging all the storage leaks; and so long as the users remember to periodically reset the
system, they'll never run out of heap space. Imagine them trying to change this strategy once
deployed!

Tricks In Offbeat Languages
Programming in Basic causes brain damage.
- Edsger Wybe Dijkstra

SQL Aliasing

Alias table names to one or two letters. Better still alias them to the names of other unrelated existing
tables.

SQL Outer Join

Mix the various flavours of outer join syntax just to keep everyone on their toes.

JavaScript Scope

"Optimise" JavaScript code taking advantage of the fact a function can access all local variables in the
scope of the caller.

Visual Basic Declarations

Instead of:
dim Count_num as string
dim Color_var as string
dim counter as integer

use:
Dim Count_num$, Color_var$, counter%

Visual Basic Madness

If reading from a text file, read 15 characters more than you need to then embed the actual text string
like so:

ReadChars = .ReadChars (29,0)
ReadChar = trim(left(mid(ReadChar,len(ReadChar)-
15,len(ReadChar)-5),7))
If ReadChars = "alongsentancewithoutanyspaces"
Mid,14,24 = "withoutanys"
and left,5 = "without"

Delphi/Pascal Only

Don't use functions and procedures. Use the label/goto statements then jump around a lot inside your
code using this. It'll drive 'em mad trying to trace through this. Another idea, is just to use this for the
hang of it and scramble your code up jumping to and fro in some haphazard fashion.

Perl

Use trailing if's and unless's especially at the end of really long lines.

Lisp

LISP is a dream language for the writer of unmaintainable code. Consider these baffling fragments:
(lambda (*<8-]= *<8-[=) (or *<8-]= *<8-[=))

(defun :-] (<) (= < 2))

(defun !(!)(if(and(funcall(lambda(!)(if(and '(< 0)(< ! 2))1
nil))(1+ !))
(not(null '(lambda(!)(if(< 1 !)t nil)))))1(* !(!(1- !)))))

Visual Foxpro

This one is specific to Visual Foxpro. A variable is undefined and can't be used unless you assign a
value to it. This is what happens when you check a variable's type:

lcx = TYPE('somevariable')
The value of lcx will be 'U' or undefined. BUT if you assign scope to the variable it sort of defines it
and makes it a logical FALSE. Neat, huh!?

LOCAL lcx
lcx = TYPE('somevariable')

The value of lcx is now 'L' or logical. It is further defined the value of FALSE. Just imagine the power
of this in writing unmaintainable code.

LOCAL lc_one, lc_two, lc_three... , lc_n

IF lc_one
DO
some_incredibly_complex_operation_that_will_neverbe_executed
WITH
make_sure_to_pass_parameters
ENDIF

IF lc_two
DO
some_incredibly_complex_operation_that_will_neverbe_executed
WITH
make_sure_to_pass_parameters
ENDIF

PROCEDURE some_incredibly_complex_oper....
* put tons of code here that will never be executed
* why not cut and paste your main procedure!
ENDIF

Miscellaneous Techniques
If you give someone a program, you will frustrate them for a day; if you teach them how to
program, you will frustrate them for a lifetime.
- Anonymous

. 1 Don't Recompile

Let's start off with probably the most fiendish technique ever devised: Compile the code to an
executable. If it works, then just make one or two small little changes in the source code...in each
module. But don't bother recompiling these. You can do that later when you have more time, and
when there's time for debugging. When the hapless maintenance programmer years later makes a
change and the code no longer works, she will erroneously assume it must be something she recently
changed. You will send her off on a wild goose chase that will keep her busy for weeks.

. 2 Foiling Debuggers

A very simple way to confound people trying to understand your code by tracing it with a line

debugger, is to make the lines long. In particular, put the then clause on the same line as the if. They
can't place breakpoints. They can't tell which branch of an if was taken.

. 3 S.I. vs American Measure

In engineering work there are two ways to code. One is to convert all inputs to S.I. (metric) units of
measure, then do your calculations then convert back to various civil units of measure for output. The
other is to maintain the various mixed measure systems throughout. Always choose the second. It's the
American way!

. 4 CANI

Constant And Never-ending Improvement. Make "improvements" to your code often, and force users
to upgrade often - after all, no one wants to be running an outdated version. Just because they think
they're happy with the program as it is, just think how much happier they will be after you've "fixed"
it! Don't tell anyone what the differences between versions are unless you are forced to - after all, why
tell someone about bugs in the old version they might never have noticed otherwise?

. 5 About Box

The About Box should contain only the name of the program, the names of the coders and a copyright
notice written in legalese. Ideally it should link to several megs of code that produce an entertaining
animated display. However, it should never contain a description of what the program is for, its
minor version number, or the date of the most recent code revision, or the website where to get the
updates, or the author's email address. This way all the users will soon all be running on different
versions, and will attempt to install version N+2 before installing version N+1.

. 6 Ch ch ch Changes

The more changes you can make between versions the better, you don't want users to become bored
with the same old API or user interface year after year. Finally, if you can make this change without
the users noticing, this is better still - it will keep them on their toes, and keep them from becoming
complacent.

. 7 Put C Prototypes In Individual Files

instead of common headers. This has the dual advantage of requiring a change in parameter data type
to be maintained in every file, and avoids any chance that the compiler or linker will detect type
mismatches. This will be especially helpful when porting from 32 -> 64 bit platforms.

. 8 No Skill Required

You don't need great skill to write unmaintainable code. Just leap in and start coding. Keep in mind
that management still measures productivity in lines of code even if you have to delete most of it
later.

. 9 Carry Only One Hammer

Stick with what you know and travel light; if you only carry a hammer then all problems are nails.

. 10 Standards Schmandards

Whenever possible ignore the coding standards currently in use by thousands of developers in your
project's target language and environment. For example insist on STL style coding standards when
writing an MFC based application.

. 11 Reverse the Usual True False Convention

Reverse the usual definitions of true and false. Sounds very obvious but it works great. You can hide:
#define TRUE 0
#define FALSE 1

somewhere deep in the code so that it is dredged up from the bowels of the program from some file
that noone ever looks at anymore. Then force the program to do comparisons like:

if (var == TRUE)
if (var != FALSE)

someone is bound to "correct" the apparent redundancy, and use var elsewhere in the usual way:
if (var)

Another technique is to make TRUE and FALSE have the same value, though most would consider
that out and out cheating. Using values 1 and 2 or -1 and 0 is a more subtle way to trip people up and
still look respectable. You can use this same technique in Java by defining a static constant called
TRUE. Programmers might be more suspicious you are up to no good since there is a built-in literal
true in Java.

. 12 Third Party Libraries

Include powerful third party libraries in your project and then don't use them. With practice you can
remain completely ignorant of good tools and add the unused tools to your resumé in your "Other
Tools" section.

. 13 Avoid Libraries

Feign ignorance of libraries that are directly included with your development tool. If coding in Visual
C++ ignore the presence of MFC or the STL and code all character strings and arrays by hand; this
helps keep your pointer skills sharp and it automatically foils any attempts to extend the code.

. 14 Create a Build Order

Make it so elaborate that no maintainer could ever get any of his or her fixes to compile. Keep secret
SmartJ which renders make scripts almost obsolete. Similarly, keep secret that the javac compiler
is also available as a class. On pain of death, never reveal how easy it is to write and maintain a
speedy little custom java program to find the files and do the make that directly invokes the
sun.tools.javac.Main compile class.

. 15 More Fun With Make

Have the makefile-generated-batch-file copy source files from multiple directories with

undocumented overrwrite rules. This permits code branching without the need for any fancy source
code control system, and stops your successors ever finding out which version of DoUsefulWork() is
the one they should edit.

. 16 Collect Coding Standards

Find all the tips you can on writing maintainable code such as the Square Box Suggestions and
flagrantly violate them.

. 17 IDE, Not Me!

Put all the code in the makefileyour successors will be really impressed how you managed to write a
makefile which generates a batch file that generates some header files and then builds the app, such
that they can never tell what effects a change will have, or be able to migrate to a modern IDE. For
maximum effect use an obsolete make tool, such as an early brain dead version of NMAKE without
the notion of dependencies.

. 18 Bypassing Company Coding Standards

Some companies have a strict policy of no numeric literals; you must use named constants. It is fairly
easy to foil the intent of this policy. For example, one clever C++ programmer wrote:

#define K_ONE 1
#define K_TWO 2
#define K_THOUSAND 999

. 19 Compiler Warnings

Be sure to leave in some compiler warnings. Use the handy "-" prefix in make to suppress the failure
of the make due to any and all compiler errors. This way, if a maintenance programmer carelessly
inserts an error into your source code, the make tool will nonetheless try to rebuild the entire package;
it might even succeed! And any programmer who compiles your code by hand will think that they
have broken some existing code or header when all that has really happened is that they have
stumbled across your harmless warnings. They will again be grateful to you for the enjoyment of the
process that they will have to follow to find out that the error was there all along. Extra bonus points
make sure that your program cannot possibly compile with any of the compiler error checking
diagnostics enabled. Sure, the compiler may be able to do subscripts bounds checking, but real
programmers don't use this feature, and neither should you. Why let the compiler check for errors
when you can use your own lucrative and rewarding time to find these subtle bugs?

. 20 Combine Bug Fixes With Upgrades

Never put out a "bug fix only" release. Be sure to combine bug fixes with database format changes,
complex user interface changes, and complete rewrites of the administration interfaces. That way, it
will be so hard to upgrade that people will get used to the bugs and start calling them features. And
the people that really want these "features" to work differently will have an incentive to upgrade to the
new versions. This will save you maintenance work in the long run, and get you more revenue from
your customers.

. 21 Change File Formats With Each Release Of Your Product

Yeah, your customers will demand upwards compatibility, so go ahead and do that. But make sure
that there is no backwards compatibility. That will prevent customers from backing out the newer
release, and coupled with a sensible bug fix policy (see above), will guarantee that once on a newer
release, they will stay there. Extra bonus points Figure out how to get the old version to not even
recognise files created by the newer versions. That way, they not only can't read them, they will deny
that they are even created by the same application! Hint PC word processors provide a useful example
of this sophisticated behaviour.

. 22 Compensate For Bugs

Don't worry about finding the root cause of bugs in the code. Simply put in compensating code in the
higher-level routines. This is a great intellectual exercise, akin to 3D chess, and will keep future code
maintainers entertained for hours as they try to figure out whether the problem is in the low-level
routines that generate the data or in the high-level routines that change various cases all around. This
technique is great for compilers, which are inherently multi-pass programs. You can completely avoid
fixing problems in the early passes by simply making the later passes more complicated. With luck,
you will never have to speak to the little snot who supposedly maintains the front-end of the compiler.
Extra bonus points make sure the back-end breaks if the front-end ever generates the correct data.

. 23 Use Spin Locks

Avoid actual synchronization primitives in favor of a variety of spin locks -- repeatedly sleep then test
a (non-volatile) global variable until it meets your criterion. Spin locks are much easier to use and
more "general" and "flexible " than the system objects.

. 24 Sprinkle sync code liberally

Sprinkle some system synchronization primitives in places where they are not needed. I came across
one critical section in a section of code where there was no possibility of a second thread. I
challenged the original developer and he indicated that it helped document that the code was, well,
"critical!"

. 25 Graceful Degradation

If your system includes an NT device driver, require the application to malloc I/O buffers and lock
them in memory for the duration of any transactions, and free/unlock them after. This will result in an
application that crashes NT if prematurely terminated with that buffer locked. But nobody at the client
site likely will be able to change the device driver, so they won't have a choice.

. 26 Custom Script Language

Incorporate a scripting command language into your client/server apps that is byte compiled at
runtime.

. 27 Compiler Dependent Code

If you discover a bug in your compiler or interpreter, be sure to make that behaviour essential for your

code to work properly. After all you don't use another compiler, and neither should anyone else!

. 28 A Real Life Example

Here's a real life example written by a master. Let's look at all the different techniques he packed into
this single C function.

void* Realocate(void*buf, int os, int ns)
{

void*temp;
temp = malloc(os);
memcpy((void*)temp, (void*)buf, os);
free(buf);
buf = malloc(ns);
memset(buf, 0, ns);
memcpy((void*)buf, (void*)temp, ns);
return buf;

}
Reinvent simple functions which are part of the standard libraries.
The word Realocate is not spelled correctly. Never underestimate the power of creative spelling.
Make a temporary copy of input buffer for no real reason.
Cast things for no reason. memcpy() takes (void*), so cast our pointers even though they're
already (void*). Bonus for the fact that you could pass anything anyway.
Never bothered to free temp. This will cause a slow memory leak, that may not show up until
the program has been running for days.
Copy more than necessary from the buffer just in case. This will only cause a core dump on
Unix, not Windows.
It should be obvious that os and ns stand for "old size" and "new size".
After allocating buf, memset it to 0. Don't use calloc() because somebody might rewrite the
ANSI spec so that calloc() fills the buffer with something other than 0. (Never mind the fact that
we're about to copy exactly the same amount of data into buf.)

. 29 How To Fix Unused Variable Errors

If your compiler issues "unused local variable" warnings, don't get rid of the variable. Instead, just
find a clever way to use it. My favorite is...
i = i;

. 30 It's The Size That Counts

It almost goes without saying that the larger a function is, the better it is. And the more jumps and
GOTOs the better. That way, any change must be analysed through many scenarios. It snarls the
maintenance programmer in the spaghettiness of it all. And if the function is truly gargantuan, it
becomes the Godzilla of the maintenance programmers, stomping them mercilessly to the ground
before they have an idea of what's happened.

. 31 A Picture is a 1000 Words; A Function is 1000 Lines

Make the body of every method as long as possible - hopefully you never write any methods or
functions with fewer than a thousand lines of code, deeply nested, of course.

. 32 One Missing File

Make sure that one or more critical files is missing. This is best done with includes of includes. For
example, in your main module, you have

#include <stdcode.h>
Stdcode.h is available. But in stdcode.h, there's a reference to

#include "a:\\refcode.h"
and refcode.h is no where to be found.

. 33 Write Everywhere, Read Nowhere

At least one variable should be set everywhere and used almost nowhere. Unfortunately, modern
compilers usually stop you from doing the reverse, read everywhere, write nowhere, but you can still
do it in C or C++.

Philosophy
The people who design languages are the people who write the compilers and system classes. Quite
naturally they design to make their work easy and mathematically elegant. However, there are 10,000
maintenance programmers to every compiler writer. The grunt maintenance programmers have absolutely no
say in the design of languages. Yet the total amount of code they write dwarfs the code in the compilers.

An example of the result of this sort of elitist thinking is the JDBC interface. It makes life easy for the
JDBC implementor, but a nightmare for the maintenance programmer. It is far clumsier than the
FORTRAN interface that came out with SQL three decades ago.

Maintenance programmers, if somebody ever consulted them, would demand ways to hide the housekeeping
details so they could see the forest for the trees. They would demand all sorts of shortcuts so they would not
have to type so much and so they could see more of the program at once on the screen. They would
complain loudly about the myriad petty time-wasting tasks the compilers demand of them.

There are some efforts in this direction NetRexx, Bali, and visual editors (e.g. IBM's Visual Age is a start)
that can collapse detail irrelevant to the current purpose.

The Shoemaker Has No Shoes
Imagine having an accountant as a client who insisted on maintaining his general ledgers using a word
processor. You would do you best to persuade him that his data should be structured. He needs validation
with cross field checks. You would persuade him he could do so much more with that data when stored in a
database, including controlled simultaneous update.

Imagine taking on a software developer as a client. He insists on maintaining all his data (source code) with
a text editor. He is not yet even exploiting the word processor's colour, type size or fonts.

Think of what might happen if we started storing source code as structured data. We could view the same
source code in many alternate ways, e.g. as Java, as NextRex, as a decision table, as a flow chart, as a loop
structure skeleton (with the detail stripped off), as Java with various levels of detail or comments removed,
as Java with highlights on the variables and method invocations of current interest, or as Java with
generated comments about argument names and/or types. We could display complex arithmetic expressions

in 2D, the way TeX and mathematicians do. You could see code with additional or fewer parentheses,
(depending on how comfortable you feel with the precedence rules). Parenthesis nests could use varying size
and colour to help matching by eye. With changes as transparent overlay sets that you can optionally remove
or apply, you could watch in real time as other programmers on your team, working in a different country,
modified code in classes that you were working on too.

You could use the full colour abilities of the modern screen to give subliminal clues, e.g. by automatically
assigning a portion of the spectrum to each package/class using a pastel shades as the backgrounds to any
references to methods or variables of that class. You could bold face the definition of any identifier to make
it stand out.

You could ask what methods/constructors will produce an object of type X? What methods will accept an
object of type X as a parameter? What variables are accessible in this point in the code? By clicking on a
method invocation or variable reference, you could see its definition, helping sort out which version of a
given method will actually be invoked. You could ask to globally visit all references to a given method or
variable, and tick them off once each was dealt with. You could do quite a bit of code writing by point and
click.

Some of these ideas would not pan out. But the best way to find out which would be valuable in practice is
to try them. Once we had the basic tool, we could experiment with hundreds of similar ideas to make life
easier for the maintenance programmer.

I discuss this further in the SCID student project.

An early version of this article appeared in Java Developers' Journal (volume 2 issue 6). I also spoke on this
topic in 1997 November at the Colorado Summit Conference. It has been gradually growing ever since.

This essay is a joke! I apologise if anyone took this literally. Canadians think it gauche to label jokes with a
:-). People paid no attention when I harped about how to write __maintainable code. I found people were
more receptive hearing all the goofy things people often do to muck it up. Checking for unmaintainable
design patterns is a rapid way to defend against malicious or inadvertent sloppiness.

The original was published on Roedy Green's Mindproducts site.

