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Preface

During the last decade Lévy processes and other stochastic processes with
jumps have become increasingly popular for modelling market fluctuations,
both for risk management and option pricing purposes. More than a hundred
research papers related to this topic have been published to this date in various
finance and applied mathematics journals, leading to a considerable literature
which is difficult to master for the nonspecialist. The time seems therefore
ripe for a book which can give a self-contained overview of the important
aspects of this body of research in a way that can be relevant for applications.

While there exists a considerable volume of mathematical literature related
to processes with jumps and Lévy processes in particular, this literature is
quite technical and difficult to access for readers not specialized in stochastic
analysis. On the other hand many of the applications of jump processes in
financial modelling use fairly sophisticated analytical and probabilistic tools
which are only explained in advanced mathematical texts. As a result, the
recent body of research on the use of jump processes in financial modelling has
been difficult to access for end users, who are sometimes under the impression
that jump processes and Lévy processes are complicated notions beyond their
reach.

We believe that it is not so; the concepts and tools necessary for understand-
ing and implementing these models can be explained in simple terms and in
fact are sometimes much more simple and intuitive than the ones involved in
the Black-Scholes model and diffusion models.

The motivation for our manuscript is precisely to provide a self-contained
overview of theoretical, numerical and empirical research on the use of jump
processes in financial modelling, understandable by students, researchers and
quants familiar with quantitative methods in finance at the level of classical
Black-Scholes option pricing theory.

Our goal has been to:

- explain the motivation for using Lévy processes in financial modelling in
terms understandable for nonspecialists

- motivate, through intuitive explanations, the necessity of introducing the
various mathematical tools used in the modelling process

- provide precise mathematical statements of results while trying to avoid
unnecessary technicalities

- emphasize clarity of exposition over the generality of results in order to
maximize their ease of use in applications

- illustrate the mathematical concepts by many numerical and empirical
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examples

- provide details of numerical implementation for pricing and calibration
algorithms

- provide real examples of uses of jump processes in option pricing and risk
management

- provide a pedagogical exposition which can be used as teaching material
for a graduate course for students in applied mathematics or quantitative
finance.

The goal of the present work is not:

- to be a comprehensive treatise on mathematical properties of Lévy pro-
cesses: such treatises already exist [49, 215, 345]. Here we intend to focus on
the mathematical tools necessary in the context of financial modelling, thus
omitting other mathematically interesting topics related to Lévy processes.

- to give the most general statement of mathematical results: we have
preferred to explain a concept on an example relevant for financial modelling
instead of giving abstract theorems.

- to provide an exhaustive survey of the literature on Lévy processes in
finance: rather than presenting a catalogue of models we have emphasized
common aspects of models in order to provide modelling tools and tried to
illustrate their use through examples.

The first part of the book (Chapters 2, 3, 4 and 5) presents a concise in-
troduction to the mathematical theory of Lévy processes — processes with
independent stationary increments which are building blocks for constructing
models with jumps. Chapter 2 presents some preliminary notions on proba-
bility spaces, random variables and the Poisson process. Lévy processes are
defined in Chapter 3 and their main properties are discussed: behavior of sam-
ple paths, distributional properties, the Markov property and their relation
to martingales. Examples of one-dimensional Lévy processes frequently used
in mathematical finance are presented and studied in Chapter 4. Chapter 5
presents some multidimensional models and tools for building them.

The second part (Chapters 6 and 7) deals with simulation and estimation
of models with jumps. Chapter 6 presents various methods for Monte Carlo
simulation of Lévy processes in one or several dimensions. Chapter 7 discusses
statistical properties of Lévy processes, their advantages and their drawbacks
for modelling financial time series.

The third and longest part of the book (Chapters 8 to 13) focuses on op-
tion pricing models based on jump processes. After a short introduction to
stochastic calculus for jump processes in Chapter 8, we study in Chapter 9
the concept of equivalent change of measure, its relevance in arbitrage pricing
theory and its application to Lévy processes. This allows us to show that
the models with jumps we consider correspond to arbitrage-free, incomplete
markets. These notions are further developed in Chapter 10, where we review
different approaches to option pricing and hedging in incomplete markets. We
then focus on a tractable class of models with jumps: exponential-Lévy mod-
els, in which the price of the underlying asset is modelled by the exponential of
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a Lévy process. Chapter 11 explores properties of option prices in these mod-
els, using Fourier-based pricing methods. Option prices in exponential-Lévy
models can also be expressed as solutions of certain integro-differential equa-
tions: these equations are derived in Chapter 12 and numerical algorithms for
solving them are presented. Chapter 13 discusses the problem of model cali-
bration: retrieving parameters of an option pricing model from market prices
of options. Several algorithms for solving this problem are presented in the
context of exponential-Lévy models and their implementation and empirical
performance is discussed.

The last part of the book deals with models with jumps which are not in the
exponential-Lévy class. The simplest extensions of exponential-Lévy models
are models in which log-returns are independent but not stationary. These
time-inhomogeneous models are discussed in Chapter 14. Stochastic volatility
models are another important class of models which have been the focus of a
lot of recent research. Chapter 15 discusses stochastic volatility models based
on Lévy processes.

Some of the results in the book are standard and well known in the litera-
ture. In this case our effort has focused on presenting them in a pedagogical
way, avoiding unnecessary technicalities, giving appropriate references for fur-
ther reading when necessary. Some other parts — in particular the material
in Chapters 5, 12, 13, 14 — are based on research work done by the authors
and collaborators.

One important question was the level of mathematical detail used to treat
all these topics. Many research papers dealing with financial applications of
jump processes are so technical that they are inaccessible to readers without a
graduate degree in probability theory. While technical content is unavoidable,
we believe that an alternative exposition is possible, provided that generality
is sacrificed in order to gain in clarity. In particular we have chosen to explain
the main ideas using Poisson processes and Lévy processes which are tractable
examples of models with jumps, mentioning semimartingales briefly in Chap-
ter 8. Accordingly, we have adopted the approach to stochastic integration
proposed by P. Protter [324] , which is more amenable to the applications
considered here. Mathematical definitions and proofs are given in detail when
we believe that they are important in the context of financial modelling: this
is the case, for example, for the construction of stochastic integrals in Chapter
8. For results of purely “technical” nature we have given appropriate refer-
ences. Sections with higher technical content are signaled by a (*) and can
be skipped at first reading.

Another issue was the level of generality. What classes of models should
be considered? Here the approaches in the financial modelling literature tend
to be extreme; while some books are entirely focused on diffusion models
and Brownian motion, others consider a knowledge of semimartingale theory
more or less as a prerequisite. While semimartingales provide the general
framework for stochastic integration and theoretical developments in arbi-
trage theory, financial modelling is focused on computing quantities so model
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building in quantitative finance has almost exclusively focused on Markovian
models and more precisely tractable Markovian models, which are the only
ones used in option pricing and risk management. We have therefore chosen
to develop the main ideas using Lévy processes, which form a tractable sub-
class of jump processes for which the theory can be explained in reasonably
simple terms. Extensions beyond Lévy processes are considered in the last
part of the book, where time-inhomogeneous models and stochastic volatility
models with jumps are considered.

We have assumed that the reader is typically familiar with the Black-Scholes
model and the machinery behind it — Brownian motion, the It6 formula for
continuous processes — but have tried to explain in detail notions specific to
jump processes. In particular the Poisson process seems not to be known to
many students trained in Black-Scholes theory!

We have tried not to give a catalog of models: since research papers typi-
cally focus on specific models we have chosen here a complementary approach
namely to provide tools for building, understanding and using models with
jumps and referring the reader to appropriate references for details of a par-
ticular model. The reader will judge whether we have succeeded in attaining
these objectives!

This book grew out of a graduate course on “Lévy processes and applica-
tions in finance” given by R. Cont at ENSAE in 2000. R. Cont thanks Griselda
Deelstra and Jean-Michel Grandmont for the opportunity to teach this course
and the graduate students of ENSAE, Université de Paris IX (DEA MASE)
and Paris I (DEA MMME) for their participation and interest in this topic
which encouraged us to write this book. The material in Chapter 12 resulted
from joint work with Ekaterina Voltchkova, who deserves special thanks for
the numerous discussions we had on the subject and suggestions for improv-
ing this chapter. We also thank Yann Braouezec, Andreas Kyprianou, Cecilia
Mancini and Olivier Pantz for their comments on a preliminary version of
the manuscript. Finally we are grateful to Dilip Madan and the editor Sunil
Nair for encouraging this project and to the CRC editorial staff who helped
us during the final stages: Jasmin Naim, Helena Redshaw, Jamie Sigal and
especially Andrea Demby for her careful reading of the manuscript.

Though we have done our best to avoid mistakes, they are unavoidable and
we will be grateful to the readers who take their time to inform us of the
errors and omissions they might remark. An updated list of corrections, as
well as other additional material, will be made available on the website:

http://www.cmap.polytechnique.fr/ rama/Jumps/

We hope that this volume will stimulate the interest of students and re-
searchers in applied mathematics and quantitative finance and make the realm
of discontinuous stochastic models more accessible to those interested in using
them.

Rama CONT and Peter TANKOV
Palaiseau (France), July 2003.
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Chapter 1

Financial modelling beyond
Brownian motion

In the end, a theory is accepted not because it is confirmed by conven-
tional empirical tests, but because researchers persuade one another that
the theory is correct and relevant.

Fischer Black (1986)

In the galaxy of stochastic processes used to model price fluctuations, Brow-
nian motion is undoubtedly the brightest star. A Brownian motion is a ran-
dom process W, with independent, stationary increments that follow a Gaus-
sian distribution. Brownian motion is the most widely studied stochastic
process and the mother of the modern stochastic analysis. Brownian motion
and financial modelling have been tied together from the very beginning of
the latter, when Louis Bachelier [18] proposed to model the price S; of an
asset at the Paris Bourse as:

Sy = So + oWs. (1.1)

The multiplicative version of Bachelier’s model led to the commonly used
Black-Scholes model [60] where the log-price In S; follows a Brownian motion:

Sy = Soexp|ut + o W]
or, in local form:

2
a5 _ odW + (n+ 0—)dt. (1.2)

St 2
The process S is sometimes called a geometric Brownian motion. Figure 1.1
represents two curves: the evolution of (the logarithm of) the stock price for
SLM Corporation (NYSE:SLM) between January 1993 and December 1996
and a sample path of Brownian motion, with the same average volatility as
the stock over the three-year period considered. For the untrained eye, it may
be difficult to tell which is which: the evolution of the stock does look like a
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sample path of Brownian motion and examples such as Figure 1.1 are given
in many texts on quantitative finance to motivate the use of Brownian motion
for modelling price movements.

0.4 T

021 /N'

Vw .
o“‘ﬂ*\ M’J 'UVMW
\ f

I W

-1
1993 1995 1997
SLM (NYSE) log—price vs Gaussian model. 1993-1996.

FIGURE 1.1: Evolution of the log price for SLM (NYSE), 1993-1996, com-
pared with a sample path of Brownian motion with same annualized return
and volatility. Which is which?

An important property of Brownian motion is the continuity of its sample
paths: a typical path ¢ — B, is a continuous function of time. This remark
already allows to distinguish the two curves seen on Figure 1.1: a closer look
shows that, unlike Brownian motion, the SLM stock price undergoes several
abrupt downward jumps during this period, which appear as discontinuities
in the price trajectory.

Another property of Brownian motion is its scale invariance: the statistical
properties of Brownian motion are the same at all time resolutions. Figure
1.2 shows a zoom on the preceding figure, with only the first three months of
the three-year period considered above. Clearly, the Brownian path in Fig-
ure 1.2 (left) resembles the one in Figure 1.1 and, if the scales were removed
from the vertical axis one could not tell them apart. But the evolution of
stock price (Figure 1.2, right) does not seem to verify this scale invariance
property: the jumps become more visible and now account for more than half
of the downward moves in the three-month period! The difference becomes
more obvious when we zoom in closer on the price behavior: Figure 1.3 shows
the evolution of SLM over a one-month period (February 1993), compared
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SLM (NYSE), Jan-March 1993,

FIGURE 1.2: Evolution of SLM (NYSE), January-March 1993, compared
with a scenario simulated from a Black-Scholes model with same annualized
return and volatility.

to the simulated sample path of the Brownian motion over the same period.
While the Brownian path looks the same as over three years or three months,
the price behavior over this period is clearly dominated by a large downward
jump, which accounts for half of the monthly return. Finally, if we go down
to an intraday scale, shown in Figure 1.4, we see that the price moves essen-
tially through jumps while the Brownian model retains the same continuous
behavior as over the long horizons.

These examples show that while Brownian motion does not distinguish
between time scales, price behavior does: prices move essentially by jumps
at intraday scales, they still manifest discontinuous behavior at the scale of
months and only after coarse-graining their behavior over longer time scales
do we obtain something that resembles Brownian motion. Even though a
Black-Scholes model can be chosen to give the right variance of returns at a
given time horizon, it does not behave properly under time aggregation, i.e.,
across time scales. Since it is difficult to model the behavior of asset returns
equally well across all time scales, ranging from several minutes to several
years, it is crucial to specify from the onset which time scales are relevant
for applications. The perspective of this book being oriented towards option
pricing models, the relevant time scales for our purpose range between several
days and several months. At these time scales, as seen in Figures 1.2 and 1.3,
discontinuities cannot be ignored.

Of course, the Black-Scholes model is not the only continuous time model
built on Brownian motion: nonlinear Markov diffusions where instantaneous
volatility can depend on the price and time via a local volatility function have
been proposed by Dupire [122], Derman and Kani [112]:

dsS;

t

Another possibility is given by stochastic volatility models [196, 203] where
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o . . . . . . . . . SLM (NYSE), Feb 1993,

FIGURE 1.3: Price behavior of SLM (NYSE), February 1993, compared
with a scenario simulated from a Black-Scholes model with same annualized
return and volatility.

SLM (NYSE), 11 Feb 1993,

FIGURE 1.4: Price behavior of SLM (NYSE) on February 11, 1993, com-
pared with a scenario simulated from a Black-Scholes model with same annu-
alized return and volatility.

the price S; is the component of a bivariate diffusion (S;,o;) driven by a
two-dimensional Brownian motion (W}, W2):

s,
S
o= f(V3)  dY; = qudt + v dW}. (1.5)

= 0 dW} + pdt, (1.4)

While these models have more flexible statistical properties, they share with
Brownian motion the property of continuity, which does not seem to be shared
by real prices over the time scales of interest. Assuming that prices move in
a continuous manner amounts to neglecting the abrupt movements in which
most of the risk is concentrated.

Since the continuity of paths plays a crucial role in the properties of diffu-
sion models, one would like to know whether results obtained in such models
are robust to the removal of the continuity hypothesis. This book presents
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various stochastic models in which prices are allowed to display a discontin-
uous behavior, similar to that of market prices at the time scales of interest.
By examining some of the main issues studied in quantitative finance in the
framework of models with jumps, we will observe that many results obtained
in diffusion models are actually not robust to the presence of jumps in prices
and thus deserve to be reconsidered anew when jumps are taken into account.

A common approach to promote the use of models with jumps, has been to
compare them systematically with the Black-Scholes model, given by Equa-
tion (1.2), and conclude that the alternative model is superior in describing
empirical observations and its modelling flexibility. Since most classes of mod-
els with jumps include the Black-Scholes model as a particular instance, this
approach is not serious and we shall not adopt it here. The universe of dif-
fusion models extends far beyond the Black-Scholes framework and the full
spectrum of diffusion models, including local volatility models and stochastic
volatility models has to be considered in a comparative evaluation of modelling
approaches. Our objective is not so much to promote the use of discontinuous
models as to provide the reader with the necessary background to understand,
explore and compare models with jumps with the more well-known diffusion
models.

In the rest of this introductory chapter we will review some of the strengths
and weaknesses of diffusion models in three contexts: capturing the empirical
properties of asset returns, representing the main features of option prices and
providing appropriate tools and insights for hedging and risk management.
We will see that, while diffusion models offer a high flexibility and can be
fine-tuned to obtain various properties, these properties appear as generic in
models with jumps.

1.1 Models in the light of empirical facts

More striking than the comparison of price trajectories to those of Brownian
paths is the comparison of returns, i.e., increments of the log-price, which are
the relevant quantities for an investor. Figure 1.5 compares the five-minute
returns on the Yen/Deutschemark exchange rate to increments of a Brownian
motion with the same average volatility. While both return series have the
same variance, the Brownian model achieves it by generating returns which
always have roughly the same amplitude whereas the Yen/DM returns are
widely dispersed in their amplitude and manifest frequent large peaks cor-
responding to “jumps” in the price. This high variability is a constantly
observed feature of financial asset returns. In statistical terms this results in
heavy tails in the empirical distribution of returns: the tail of the distribution
decays slowly at infinity and very large moves have a significant probabil-
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ity of occurring. This well-known fact leads to a poor representation of the
distribution of returns by a normal distribution. And no book on financial

04 L L L L L L L L L o 5 0 s
x10*

FIGURE 1.5: Five-minute log-returns for Yen/Deutschemark exchange
rate, 1992-1995, compared with log-returns of a Black-Scholes model with
same annualized mean and variance.

risk is nowadays complete without a reference to the traditional six-standard
deviation market moves which are commonly observed on all markets, even
the largest and the most liquid ones. Since for a normal random variable
the probability of occurrence of a value six times the standard deviation is
less than 1078, in a Gaussian model a daily return of such magnitude occurs
less than once in a million years! Saying that such a model underestimates
risk is a polite understatement. Isn’t this an overwhelming argument against
diffusion models based on Brownian motion?

Well, not really. Let us immediately dissipate a frequently encountered
misconception: nonlinear diffusion processes such as (1.3) or (1.4) are not
Gaussian processes, even though the driving noise is Gaussian. In fact, as
pointed out by Bibby and Sorensen [367], an appropriate choice of a nonlinear
diffusion coefficient (along with a linear drift) can generate diffusion processes
with arbitrary heavy tails. This observation discards some casual arguments
that attempt to dismiss diffusion models simply by pointing to the heavy tails
of returns. But, since the only degree of freedom for tuning the local behavior
of a diffusion process is the diffusion coefficient, these heavy tails are produced
at the price of obtaining highly varying (nonstationary) diffusion coefficients in
local volatility models or unrealistically high values of “volatility of volatility”
in diffusion-based stochastic volatility models.

By contrast, we will observe that the simplest Markovian models with jumps
— Lévy processes — generically lead to highly variable returns with realis-
tic tail behavior without the need for introducing nonstationarity, choosing
extreme parameter values or adding unobservable random factors.

But the strongest argument for using discontinuous models is not a statis-
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tical one: it is the presence of jumps in the price! While diffusion models can
generate heavy tails in returns, they cannot generate sudden, discontinuous
moves in prices. In a diffusion model tail events are the result of the accu-
mulation of many small moves. Even in diffusion-based stochastic volatility
models where market volatility can fluctuate autonomously, it cannot change
suddenly. As a result, short-term market movements are approximately Gaus-
sian and their size is predictable. A purist would argue that one cannot tell
whether a given large price move is a true discontinuity since observations
are made in discrete time. Though true, this remark misses a point: the
question is not really to identify whether the price trajectory is objectively
discontinuous (if this means anything at all), but rather to propose a model
which reproduces the realistic properties of price behavior at the time scales
of interest in a generic manner, i.e., without the need to fine-tune parameters
to extreme values. While large sudden moves are generic properties of models
with jumps, they are only obtainable in diffusion processes at the price of
fine tuning parameters to extreme values. In a diffusion model the notion of
a sudden, unpredictable market move, which corresponds to our perception
of risk, is difficult to capture and this is where jumps are helpful. We will
review the statistical properties of market prices in more detail in Chapter 7
but it should be clear from the onset that the question of using continuous
or discontinuous models has important consequences for the representation of
risk and is not a purely statistical issue.

1.2 Evidence from option markets

Although an outsider could imagine that the main objective of a stochastic
model is to capture the empirical properties of prices, the driving force be-
hind the introduction of continuous-time stochastic models in finance has been
the development of option pricing models, which serve a somewhat different
purpose. Here the logic is different from the traditional time series models
in econometrics: an option pricing model is used as a device for capturing
the features of option prices quoted on the market, relating prices of market
instruments in an arbitrage-free manner (pricing of “vanilla” options consis-
tently with the market) and extrapolating the notion of value to instruments
not priced on the market (pricing of exotic options). In short, an option pric-
ing model is an arbitrage-free interpolation and extrapolation tool. Option
pricing models are also used to compute hedging strategies and to quantify
the risk associated with a given position. Given these remarks, a particular
class of models may do a good job in representing time series of returns, but
a poor one as a model for pricing and hedging.

© 2004 by CRC Press LLC



1.2.1 Implied volatility smiles and skews

A first requirement for an option pricing model is to capture the state of
the options market at a given instant. To achieve this, the parameters of the
model are chosen to “fit” the market prices of options or at least to reproduce
the main features of these prices, a procedure known as the “calibration” of
the model to the market prices. The need for models which can calibrate
market prices has been one of the main thrusts behind the generalization of
the Black-Scholes model.

The market prices of options are usually represented in terms of their Black-
Scholes implied volatilities of the corresponding options. Recall that a Euro-
pean call option on an asset S; paying no dividends, with maturity date T
and strike price K is defined as a contingent claim with payoff (Sp — K)*
at maturity. Denoting by 7 = T — ¢ the time remaining to maturity, the
Black-Scholes formula for the value of this call option is:

CB5(S,,K,1,0) = SyN(d,) — Ke ""N(dy), (1.6)

—lnm+7(r+"—;) —lnm—i—T(r—";)
d1: ; d2:

o\ T o\ T

where m = K/S; is the moneyness and N(u) = (271')_1/2 . exp(—é)dz.
Let us now consider, in a market where the hypotheses of the Black-Scholes
model do not necessarily hold, a call option whose (observed) market price
is denoted by C;(T,K). Since the Black-Scholes value of a call option, as
a function of the volatility parameter, is strictly increasing from |0, 4+o00[ to
1(Se—Ke™ )T, Spl, given any observed market price within this range, one can
find a value of the volatility parameter 3;(7, K) such that the corresponding
Black-Scholes price matches the market price:

(1.7)

3 N(T,K)>0, OB, K,7,%T K))=CT,K). (1.8)
In Rebonato’s terms [330] the implied volatility is thus a “wrong number
which, plugged into the wrong formula, gives the right answer.” Prices in op-
tion markets are commonly quoted in terms of Black-Scholes implied volatility.
This does not mean that market participants believe in the hypotheses of the
Black-Scholes model — they do not : the Black-Scholes formula is not used as
a pricing model for vanilla options but as a tool for translating market prices
into a representation in terms of implied volatility.
For fixed ¢, the implied volatility (T, K) depends on the characteristics
of the option such as the maturity 7" and the strike level K: the function

S (T, K) — Sy(T, K) (1.9)

is called the implied volatility surface at date t. A typical implied volatility
surface is displayed in Figure 1.6. A large body of empirical and theoretical
literature deals with the profile of the implied volatility surface for various
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markets as a function of (T, K) -or (m,7) - at a given date, i.e., with (¢,S;)
fixed. While the Black-Scholes model predicts a flat profile for the implied
volatility surface:

S(T,K)=0

it is a well documented empirical fact that the implied volatility is not constant
as a function of strike nor as a function of time to maturity [94, 95, 121, 330].
This phenomenon can be seen in Figure 1.6 in the case of DAX index options
and in Figure 1.7 for S&P 500 index options. The following properties of
implied volatility surfaces have been empirically observed [94, 95, 330]:

1. Smiles and skews: for equity and foreign exchange options, implied
volatilities ¥4(T, K) display a strong dependence with respect to the
strike price: this dependence may be decreasing (“skew”) or U-shaped
(“smile”) and has greatly increased since the 1987 crash.

2. Flattening of the smile: the dependence of ¥;(T, K) with respect to
K decreases with maturity; the smile/ skew flattens out as maturity
increases.

3. Floating smiles: if expressed in terms of relative strikes (moneyness
m = K/S;), implied volatility patterns vary less in time than when
expressed as a function of the strike K.

Coming up with a pricing model which can reproduce these features has be-
come known as the “smile problem” and, sure enough, a plethora of general-
izations of the Black-Scholes model have been proposed to deal with it.

How do diffusion models fare with the smile problem? Well, at the level
of “fitting” the shape of the implied volatility surface, they do fairly well: as
shown by Dupire [122] for any arbitrage-free profile Cy (T, K),T € [0, T*],K >
0 of call option prices observed at ¢ = 0, there is a unique “local volatility
function” o(t, S) given by

90 (T, K) + Kr252(T, K
U(T,K):\/23T(’ )+ Krgg (1K) (1.10)

2
K253 (T, K)
which is consistent with these option prices, in the sense that the model (1.3)
with o(.,.) given by (1.10) gives back the market prices C(T, K) for the call
options.

For long maturities, this leads to local volatilities which are roughly con-
stant, predicting a future smile that is much flatter than current smiles which
is, in the words of E. Derman, “an uncomfortable and unrealistic forecast that
contradicts the omnipresent nature of the skew.” More generally, though local
volatility models can fit practically any cross section of prices they give rise
to non-intuitive profiles of local volatility which, to this day, have received no
interpretation in terms of market dynamics. This means that local volatility
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models, while providing an elegant solution to the “calibration” problem, do
not give an explanation of the smile phenomenon.

Diffusion-based stochastic volatility models can also reproduce the profile
of implied volatilities at a given maturity fairly well [196, 150]. However, they
have more trouble across maturities, i.e., they cannot yield a realistic term
structure of implied volatilities [330, 42]. In particular the “at-the-money
skew”, which is the slope of implied volatility when plotted against In(K/S;),
decays as 1/T in most stochastic volatility models [150], at odds with market
skews which decay more slowly. In addition, stochastic volatility models re-
quire a negative correlation between movements in stock and movements in
volatility for the presence of a skew. While this can be reasonably interpreted
in terms of a “leverage” effect, it does not explain why in some markets such
as options on major foreign exchange rates the “skew” becomes a smile: does
the nature of the leverage effect vary with the underlying asset? Nor does this
interpretation explain why the smile/skew patterns increased right after the
1987 crash: did the “leverage” effect change its nature after the crash? Since
the instantaneous volatility is unobservable, assertions about its (instanta-
neous) correlation with the returns are difficult to test but it should be clear
from these remarks that the explanation of the implied volatility skew offered
by stochastic volatility models is no more “structural” than the explanation
offered by local volatility models.

Models with jumps, by contrast, not only lead to a variety of smile/ skew
patterns but also propose a simple explanation in terms of market antici-
pations: the presence of a skew is attributed to the fear of large negative
jumps by market participants. This is clearly consistent with the fact that
the skew/smile features in implied volatility patterns have greatly increased
since the 1987 crash; they reflect the “jump fear” of the market participants
having experienced the crash [42, 40]. Jump processes also allow to explain
the distinction between skew and smile in terms of asymmetry of jumps an-
ticipated by the market: for index options, the fear of a large downward jump
leads to a downward skew as in Figure 1.6 while in foreign exchange mar-
kets such as USD/EUR where the market moves are symmetric, jumps are
expected to be symmetric thus giving rise to smiles.

1.2.2 Short-term options

The shortcomings discussed above are exacerbated when we look at options
with short maturities. The very ezistence of a market for short-term options
is evidence that jumps in the price are not only present but also recognized
as being present by participants in the options market. How else could the
underlying asset move 10% out of the money in a few days?

Not only are short-term options traded at significant prices but their mar-
ket implied volatilities also exhibit a significant skew, as shown for S&P 500
options in Figure 1.7. This feature is unattainable in diffusion-based stochas-
tic volatility models: in these models, the volatility and the price are both
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FIGURE 1.6: Implied volatilities of DAX index options, 2001.

continuous and their movements are conditionally Gaussian so one would re-
quire ridiculously high values of “volatility of volatility” to obtain realistic
short-term skews. In a local volatility model, one can always obtain an arbi-
trary short-term skew but at the price of a very high variability in the local
volatility surface, which is difficult to use or interpret. By contrast, we will
see in Chapter 11 that models with jumps generically lead to significant skews
for short maturities and this behavior can be used to test for the presence of
jumps using short-term option prices [85, 314]. More generally, we will see in
Chapter 15 that by adding jumps to returns in a stochastic volatility model as
in [41] one can easily enhance the empirical performance for short maturities
of stochastic volatility models which have an otherwise reasonable behavior
for long maturities.

1.3 Hedging and risk management

In the language of financial theory, one-dimensional diffusion models (“local
volatility” models) are examples of complete markets: any option can be per-
fectly replicated by a self-financing strategy involving the underlying and cash.
In such markets, options are redundant; they are perfectly substitutable by
trading in the underlying so the very existence of an options market becomes
a mystery. Of course, this mystery is easily solved: in real markets, perfect
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FIGURE 1.7: Left: The implied volatility surface for S&P 500 options.
Right: At-the-money skew g—E(K = 5,T) as a function of the maturity T (in
days).

hedging is not possible and options enable market participants to hedge risks
that cannot be hedged by trading in the underlying only. Options thus allow
a better allocation and transfer of risk among market participants, which was
the purpose for the creation of derivatives markets in the first place [339].

While these facts are readily recognized by most users of option pricing mod-
els, the usage has been to twist the complete market framework of diffusion
models to adapt it to market realities. On the practical side one complements
delta hedging (hedging with the underlying) with gamma and vega hedging.
These strategies — while clearly enhancing the performance of “replication”
strategies proposed in such models — appear clearly at odds with the model:
indeed, in a complete market diffusion model vega and gamma hedges are
redundant with respect to delta hedging. On the theoretical side, it has
been shown [129] that the Black-Scholes delta-hedging strategy is valid out-
side the lognormal framework if one uses upper bounds for volatility to price
and hedge contingent claims: this property is known as the robustness of
the Black-Scholes formula. However, as we will see in Chapter 10, the upper
bound for “volatility” in a model with jumps is...infinity! In other words, the
only way to perfectly hedge a call option against jumps is to buy and hold the
underlying asset. This remark shows that, when moving from diffusion-based
complete market models to more realistic models, the concept of “replication,”
which is central in diffusion models, does not provide the right framework for
hedging and risk management.

Complete market models where every claim can be perfectly hedged by the
underlying also fail to explain the common practice of quasi-static hedging
of exotic options with vanilla options [5]. Again, this is a natural thing to
do in a model with jumps since in such incomplete markets options are not
redundant assets and such static (vega) hedges may be used to reduce the
residual risk associated with the jumps. Also, as we will see in Chapter 10,
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the hedge ratio in models with jumps takes into account the possibility of a
large move in the underlying asset and therefore partly captures the gamma
risk.

Stochastic volatility models do recognize the impossibility of perfectly hedg-
ing options with the underlying. However in diffusion-based stochastic volatil-
ity models completeness can be restored by adding a single option to the set of
available hedging instruments: stochastic volatility models then recommend
setting up a perfect hedge by trading dynamically in the underlying and one
option. While options are available and used for hedging, this is often done
in a static framework for liquidity reasons: dynamic hedging with options
remains a challenge both in theory and practice.

By contrast, from the point of view of the discontinuous price models con-
sidered in this book, the nonexistence of a perfect hedge is not a market im-
perfection but an imperfection of complete market models! We will see that in
models with jumps, “riskless replication” is an exception rather than the rule:
any hedging strategy has a residual risk which cannot be hedged away to zero
and should be taken into account in the exposure of the portfolio. This offers
a more realistic picture of risk management of option portfolios. Unlike what
is suggested by complete market models, option trading is a risky business!

In the models that we will consider — exponential-Lévy models, jump-
diffusion models, stochastic volatility models with jumps — one has to recog-
nize from the onset the impossibility of perfect hedges and to distinguish the
theoretical concept of replication from the practical concept of hedging: the
hedging problem is concerned with approzimating a target future payoff by a
trading strategy and involves some risks which need to quantified and mini-
mized by an appropriate choice of hedging strategy, instead of simply being
ignored. These points will be discussed in more detail in Chapter 10.

1.4 Objectives

Table 1.1 lists some of the main messages coming out of more than three
decades of financial modelling and risk management and compares them with
the messages conveyed by diffusion models and models with jumps. This brief
comparison shows that, aside from having various empirical, computational
and statistical features that have motivated their use in the first place, discon-
tinuous models deliver qualitatively different messages about the key issues of
hedging, replication and risk.

Our point, which will be stressed again in Chapter 10, is not so much that
diffusion models such as (1.3), (1.4) or even (1.2) do not give good “fits”
of empirical data: in fact, they do quite well in some circumstances. The
point is that they have the wrong qualitative properties and therefore can
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TABLE 1.1:

jumps.

Modelling market moves: diffusion models vs. models with

Empirical facts

Large, sudden move-
ments in prices.

Heavy tails.

Options are risky in-
vestments.

Markets are incom-
plete; some risks can-
not be hedged.

Concentration: losses
are concentrated in a
few large downward
moves.

Some hedging strate-
gies are better than
others.

Exotic options are
hedged using vanilla
(call/put) options.

Diffusion models

Difficult: need very large
volatilities.

Possible by  choosing
nonlinear volatility
structures.

Options can be hedged in
a risk-free manner.

Markets are complete.

Continuity: price move-
ments are conditionally
Gaussian; large sudden
moves do not occur.

All  hedging strategies
lead to the zero residual
risk, regardless of the risk
measure used.

Options are redundant:
any payoff can be repli-
cated by dynamic hedg-
ing with the underlying.

Models with jumps

Generic property.

Generic property.

Perfect hedges do not
exist: options are risky

investments.
Markets are incom-
plete.

Discontinuity: jumps/
discontinuities in prices
can give rise to large
losses.

Hedging strategy is
obtained by solving
portfolio optimization
problem.

Options are not redun-
dant: using vanilla op-
tions can allow to re-
duce hedging error.

© 2004 by CRC Press LLC



convey erroneous intuitions about price fluctuations and the risk resulting
from them. We will argue that, when viewed as a subset of the larger family
of jump-diffusion models, which are the object of this book, diffusion models
should be considered as singularities: while they should certainly be included
in all finance textbooks as pedagogical examples, their conclusions for risk
measurement and management cannot be taken seriously.

The points outlined above should have convinced the reader that in the
models considered in this book we are not merely speaking about a general-
ization of the classical Black-Scholes model in view of “fitting” the distribution
of returns or implied volatility curves with some additional parameters. In
addition to matching empirical observations, these models will force us to
critically reconsider some of the main concepts which are the backbone of the
realm of diffusion models: arbitrage pricing, riskless hedges, market complete-
ness and even the Ito formulal

Our goal has been to provide the reader with the necessary tools for un-
derstanding these models and the concepts behind them. Instead of heading
for the full generality of “semimartingale” theory we have chosen to focus on
tractable families of models with jumps — Lévy processes, additive processes
and stochastic volatility models with jumps. The main ideas and modelling
tools can be introduced in these models without falling into excessive abstrac-
tion.

Exponential Lévy models, introduced in Chapters 3 and 4, offer analyti-
cally tractable examples of positive jump processes and are the main focus of
the book. They are simple enough to allow a detailed study both in terms
of statistical properties (Chapter 7) and as models for risk-neutral dynam-
ics, i.e., option pricing models (Chapter 11). The availability of closed-form
expressions for characteristic function of Lévy processes (Chapter 3) enables
us to use Fourier transform methods for option pricing. Also, the Markov
property of the price will allow us to express option prices as solutions of
partial integro-differential equations (Chapter 12). The flexibility of choice of
the Lévy measure allows us to calibrate the model to market prices of options
and reproduce implied volatility skews/smiles (Chapter 13).

We will see nevertheless that time-homogeneous models such as Lévy pro-
cesses do not allow for a flexible representation of the term structure of im-
plied volatility and imply empirically undesirable features for forward smiles/
skews. In the last part of the book, we will introduce extensions of these mod-
els allowing to correct these shortcomings while preserving the mathematical
tractability: additive processes (Chapter 14) and stochastic volatility models
with jumps (Chapter 15).

Finally, let us stress that we are not striving to promote the systematic
use of the models studied in this book. In the course of the exposition we
will point our their shortcomings as well as their advantages. We simply aim
at providing the necessary background so that jump processes and models
built using them will, hopefully, hold no mystery for the reader by the time
(s)he has gone through the material proposed here. Table 1.2 provides an

© 2004 by CRC Press LLC



TABLE 1.2: Topics presented in this book

Concepts Mathematical tools Chapter
Constructing models Poisson random measures 2

with jumps Lévy processes 3,4
Multivariate models Lévy copulas )

Time series modelling | Statistical methods 7
Arbitrage pricing Changes of measure 9
Hedging in incomplete | Stochastic calculus 8
markets

Model calibration Inverse problems and regular- | 13

ization methods

Numerical methods for | Monte Carlo simulation 6
option pricing Fourier transform methods 11

Finite difference methods 12
Time-inhomogeneous Additive processes 14
models

Stochastic  volatility | Ornstein-Uhlenbeck processes | 15
models with jumps Time-changed Lévy processes

outline of the different topics presented in this book and the chapters where
they are discussed. The chapters have been designed to be as self-contained
as possible. However, to learn the necessary mathematical tools, the reader
should go through Chapters 2 and 3 before passing to the rest of the book.
In addition, it is recommended to read Chapter 8 before passing to Chapters
10 and 12 and to read Chapter 9 before continuing with Chapter 13.
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Chapter 2

Basic tools

Lorsque l'on expose devant un public de mathématiciens [...] on peut
supposer que chacun connait les variétés de Stein ou les nombres de Betti
d’un espace topologique; mais si ’on a besoin d’une intégrale stochastique,
on doit définir a partir de zéro les filtrations, les processus prévisibles,
les martingales, etc. Il y a la quelque chose d’anormal. Les raisons en
sont bien stir nombreuses, a commencer par le vocabulaire esotérique des
probabilistes. . .

Laurent Schwartz

Modern probability theory has become the natural language for formulating
quantitative models of financial markets. This chapter presents, in the form
of a crash course, some of its tools and concepts that will be important in the
sequel. Although the reader is assumed to have some background knowledge
on random variables and probability, there are some tricky notions that we
have found useful to recall. Instead of giving a catalog of definitions and
theorems, which can be found elsewhere, we have tried to justify why these
definitions are relevant and to promote an intuitive understanding of the main
results.

The mathematical concept of measure is important in the study of stochas-
tic processes in general and jump processes in particular. Basic definitions
and notions from measure theory are recalled in Section 2.1. Section 2.2 re-
calls some facts about random variables, probability spaces and characteristic
functions. Basic notions on stochastic processes are recalled in Section 2.4.
A fundamental example of a stochastic process is the Poisson process, dis-
cussed in Section 2.5. The study of the Poisson process naturally leads to the
notion of Poisson random measures, introduced in Section 2.6. Our presenta-
tion is concise and motivated by applications of these concepts in the sequel:
references for further reading are provided at the end of the chapter.
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2.1 Measure theory
2.1.1 o-algebras and measures

The notion of measure is a straightforward generalization of the more fa-
miliar notions of length, area and volume to more abstract settings. Consider
a set E, which we will usually take to be R? or some space of R%-valued
functions. Intuitively, a measure p on E associates to certain subsets A C E,
called measurable sets, a positive (possibly infinite) number p(A4) € [0, oo],
called the measure of A. By analogy with the notions of area or volume, it
is natural to say that the empty set § has measure 0: u(f) = 0. Also, if A
and B are disjoint measurable sets, A|J B should also be measurable and its
measure is naturally defined to be u(A|J B) = u(A) + p(B). This is the addi-
tivity property. In order to consider limits it is useful to extend this property
to infinite sequences: if (A, )nen is a sequence of disjoint measurable subsets
then

p(lJ A = 3 plAn). (1)

n>1 n>1

This countable additivity property is sometimes known under the (obscure)
name of g-additivity.

Note that we have not excluded that p(A) = co for some A: returning to
the analogy with volume, the volume of a half space is infinite, for instance. In
particular (E) may be finite or infinite. If u(F) < oo then for any measurable
set A, since its complement A° verifies A|J A® = E, the additivity property
can be used to define the measure of the complement A° by

1(A®) = p(E) — p(A).

Therefore it is natural to require that for any measurable set A its complement
A€ is also measurable.

These remarks can be summarized by saying that the domain of definition
of a measure on F is a collection of subsets of E which

e contains the empty set : () € £.

e is stable under unions:

Ap € £, (Ap)nz1 disjoint = | ] A, € €. (2.2)

n>1

e contains the complementary of every element: VA € £, A¢ € €.

Such a collection of subsets is called a o-algebra. We will usually denote o-
algebras by curly letters like £, 8 or F. A measurable set will then be an
element of the o-algebra.
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All this is fine, but how does one construct such o-algebras? Usually we
start with a collection of sets that we would like to be measurable (say, in-
tervals if we are on the real line) and then keep adding new sets by taking
reunions and complements until the collection forms a o-algebra. The fol-
lowing result (see e.g., [153, Chapter 1]) shows that this operation is always
possible:

PROPOSITION 2.1

Given a collection A of subsets of E, there exists a unique o-algebra denoted
o (A) with the following property: if any o-algebra F' contains A then o(A) C
F'. o(A) is the smallest o-algebra containing A and is called the o-algebra
generated by A.

An important example is the case where F has a topology, i.e., the notion of
open subset is defined on E. This is the case of E = R? and more generally,
of function spaces for which a notion of convergence is available. The o-
algebra generated by all open subsets is called the Borel o-algebra ' and we
will denote it by B(E) or simply B. An element B € B is called a Borel set.
Obviously any open or closed set is a Borel set but a Borel set can be horribly
complicated. Defining measures on B will ensure that all open and closed sets
are measurable. Unless otherwise specified, we will systematically consider
the Borel o-algebra in all the examples of measures encountered in the sequel.

Having defined o-algebras, we are now ready to properly define a measure:

DEFINITION 2.1 Measure Let £ be a o-algebra of subsets of E.
(E,€&) is called a measurable space. A (positive) measure on (E,E) is defined
as a function

p: € — [0, 00]
A p(A)

such that
1. pu(0) =0.

2. For any sequence of disjoint sets A, € €

1 U Ap) = ZM(An)~ (2.3)

n>1 n>1
An element A € £ is called a measurable set and p(A) its measure.

1In French: tribu borélienne, literally “Borelian tribe”!
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Here we have required that p(A) be positive but one can also consider non-
positive measures: if g4 and u_ are two (positive) measures then p = pp —p_
verifies the properties given in Definition (2.1) and is called a signed measure.
It is not clear at this stage why such objects might be interesting to consider
so we postpone their discussion until later. In the sequel the term “measure”
will be used synonymously with “positive measure.”

A well-known example of a measure is the Lebesgue measure on R%: it is
defined on the Borel o-algebra B(R?) and corresponds to the (d-dimensional)
notion of volume:

A(A) = /Adm.

More generally for any positive continuous function p : R — RT one can
define a measure on RY as follows:

i BR?) = [0,00]

[0, 00
A Ap(x)d:r = /lAp(x)dx. (2.4)

The function p is called the density of p with respect to the Lebesgue measure
A. More generally, the Equation (2.4) defines a positive measure for every
positive measurable function p (measurable functions are defined in the next
section).

Dirac measures are other important examples of measures. The Dirac mea-
sure 4, associated to a point x € E is defined as follows: §,(A) =1ifz € A
and 0,(A) =0 if x ¢ A. More generally one can consider a sum of such Dirac
measures. Given a countable set of points X = {z;,i = 0,1,2,...} C E the
counting measure px = . 0, is defined in the following way: for any A C E,
1x (A) counts the number of points z; in A:

p(A) = #{i,z € A} = lyca. (2.5)

i>1

A measurable set may have zero measure without being empty. Going
back to the analogy with length and volume, we can note that the area of a
line segment is zero, the “length” of a point is also defined to be zero. The
existence of nontrivial sets of measure zero is the origin of many subtleties in
measure theory. If A is a measurable set with u(A) = 0, it is then natural
to set u(B) = 0 for any B C A. Such sets — subsets of sets of measure zero
— are called null sets. If all null sets are not already included in &£, one can
always include them by adding all null sets to £: the new c-algebra is then
said to be complete.

A measure p is said to be integer valued if for any measurable set A, p(A)
is a (positive) integer. An example of an integer valued measure is a Dirac
measure. More generally, any counting measure is an integer valued measure.
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If i is a measure on F, u(FE) need not be finite. A measure p on (F,E)
is said to be finite if u(F) < 400 (which entails that u(A) is finite for any
measurable set A). The quantity p(E) is usually called the (total) mass of p.
For example, a Dirac measure is a finite measure with mass 1. The counting
measure py associated to the set X = {x1,x9,...} is finite if X is finite and
its mass px (E) is simply the number of elements in X.

A finite measure with mass 1 is called a probability measure. In this case
(E, &, ) is called a probability space. Probability measures will be considered
in more detail in Section 2.2.

Not all measures we will encounter will be finite measures. A well-known
example is the Lebesgue measure on R?: the total mass is infinite. A more
flexible notion is that of a Radon measure:

DEFINITION 2.2 Radon measure Let E C R?. A Radon measure on
(E,B) is a measure ji such that for every compact ? measurable set B € B,
u(B) < 0.

For example the Lebesgue measure on R is a Radon measure: the length
of any bounded interval is finite. Dirac measures and any finite linear com-
bination of Dirac measures are also examples of Radon measures. We will
encounter these fundamental examples recurrently later on. More generally,
a measure 4 on F C R? is called o-finite if

[ee]
E=|JE with u(E;) <o, (2.6)
=1

This condition holds for example if 4 is a finite measure or a Radon measure.

The examples given above — the Lebesgue measure and Dirac measures —
differ in a fundamental way: while Dirac measures are concentrated on a finite
number of points, the Lebesgue measure assigns zero measure to any finite
set. A measure pg which gives zero mass to any point is said to be diffuse or
atomless:

Ve € E, po({z}) =0. (2.7)
The Lebesgue measure is an example of a diffuse measure. Measures with

a continuous density with respect to the Lebesgue measure on R% are other
examples of diffuse measures.

The following result shows that any Radon measure can be decomposed
into a diffuse part and a sum of Dirac measures:

2A compact subset of R? is simply a bounded closed subset.
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PROPOSITION 2.2 Decomposition of Radon measures
Any Radon measure ji can be decomposed into a sum of a diffuse measure pg
and a linear combination of Dirac measures [227]:

M:MO+ij51j T EE,bj > 0. (28)

Jj=1

If 110 = 0 then p is said to be a (purely) atomic measure. Dirac measures
and linear combinations of Dirac measures are atomic measures.

2.1.2 Measures meet functions: integration

Let us now consider two measurable spaces (F,€&) and (F,F). In most
applications we will be interested in evaluating a measure on a set of the
form:

{r € E, f(x) € A}.

For a given function f, there is no reason for this set to be measurable. This
motivates the following definition:

DEFINITION 2.3 Measurable function A function f: E — F 1is
called measurable if for any measurable set A € F, the set

F7HA) ={z € B, f(x) € A}

is a measurable subset of E.

As noted above we will often consider measures on sets which already have a
metric or topological structure such as R% equipped with the Euclidean metric.
On such spaces the notion of continuity for functions is well defined and one
can then ask whether there is a relation between continuity and measurability
for a function f : £ — F. In general, there is no relation between these
notions. However it is desirable that the notion of measurability be defined
such that all continuous functions be measurable. This is automatically true
if the Borel g-algebra is chosen (since f is continuous if and only if f~1(A) is
open for every open set), which explains why we will choose it all the time.
Hence in the following, whenever the notion of continuous function makes
sense, all continuous functions will be measurable.

Simple examples of measurable functions f : £ — R are functions of the
form

f = ch]-Aja (29)
j=1

where (A;) are measurable sets and ¢; € R. These functions are sometimes
called simple functions. The integral of such a simple function with respect
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to a measure p is defined as

n

n(f) =Y ein(Ay). (2.10)

j=1
Having defined integrals for simple functions, we extend it to any positive
measurable function f : E — R by setting

w(f) = sup{p(p), ¢ simple function, ¢ < f}. (2.11)

The integral u(f) is allowed to be infinite. Since any measurable function
f + E — R can be written as the sum of its positive and negative parts
f=fT"—=f", fT,f~ > 0 we can define separately u(fT), u(f~) as above.
If w(f), u(f7) are not infinite we say that f is p-integrable and we define
w(f) = p(fr) = u(f), called the integral of u with respect to f. When p is
the Lebesgue measure, u(f) is simply the Lebesgue integral of f; by analogy
with this case p(f) is denoted using the “differential” notation

un=[ s, (2.12)

If the measure p has the decomposition (2.8) then the integral in (2.12) can
be interpreted as

u() = [ F@naldo) + 3 bis(ay). (2.13)

Two measurable functions f, g on E are said to be equal u-almost everywhere
if they differ only on a null set:

f=gu-ae = ul{r B, [(x)+g@)}) =0

If f, g are p-integrable then

fegu-ae = [ f@un = [ gt

2.1.3 Absolute continuity and densities

Consider now a measurable space (F, ) with measures puq and po defined
on it. How can these two measures be compared?

A natural idea to compare p; and po is to look at the ratio us(A)/u1(A)
for various measurable sets A. Of course this is only possible if us(A) = 0
every time pq(A) = 0. This remark motivates the following definition:

DEFINITION 2.4 Absolute continuity = A measure uo is said to be
absolutely continuous with respect to py if for any measurable set A

11 (A) = 0 = 113(A) = 0. (2.14)

© 2004 by CRC Press LLC



Absolute continuity can be characterized in the following way:

PROPOSITION 2.3 Radon-Nikodym theorem
If s is absolutely continuous with respect to py then there exists a measurable
function Z : E — [0,00[ such that for any measurable set A

p2(A) :/ Zdpy = p1(Z14). (2.15)
A
The function Z is called the density or Radon-Nikodym derivative of uo with
respect to py and denoted as Z—ﬁ?. For any ps-integrable function f
na(f)= [ fiwe=(52) = [ dmzs. (216)

Therefore if p5 is absolutely continuous with respect to p1, an integral with
respect to uo is a weighted integral with respect to uq, the weight being given
by the density Z.

If both po is absolutely continuous with respect to p1 and p; is absolutely
continuous with respect to pus then p; and ps are said to be equivalent mea-
sures. This is equivalent to stating that Z > 0. The term “equivalent” is
somewhat confusing: it would be more appropriate to say that p; and po are
comparable. However this is the usual terminology and we will continue to
use it.

2.2 Random variables
2.2.1 Random variables and probability spaces

Consider a set €, called the set of scenarios, equipped with a o-algebra F.
In a financial modelling context, €2 will represent the different scenarios which
can occur in the market, each scenario w € 2 being described in terms of the
evolution of prices of different instruments. A probability measure on (£, F)
is a positive finite measure P with total mass 1. (Q,F,P) is then called a
probability space. A measurable set A € F, called an event, is therefore a set
of scenarios to which a probability can be assigned. A probability measure
assigns a probability between 0 and 1 to each event:

P:F —[0,1]
A P(A).

Probability measures will be usually denoted by letters such as P, Q.
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An event A with probability P(A) = 1 is said to occur almost surely. If
P(A) = 0 this is interpreted by saying the event A is impossible. If we are
dealing with several probability measures defined on the same set then one
should be more specific: we will then replace “almost surely” or “impossible”
by “P-almost surely” or “impossible under P.” A P-null set is a subset of
an impossible event. As before, we can complete F to include all null sets.
This means we assign probability zero to subsets of impossible events, which
is intuitively reasonable. Unless stated otherwise, we shall consider complete
versions of all g-algebras. We will say that a property holds P-almost surely
(P a.s. for short) if the set of w € Q for which the property does not hold is
a null set.

As in Section 2.1.3, one can speak of absolute continuity and equivalence
for probability measures: two probability measures P and Q on (2, F) are
equivalent (or comparable) if they define the same impossible events:

PrQ < VAeF, P(A) =0 < Q(A) =0]. (2.17)
A random wvariable X taking values in F is a measurable function
X: Q- FE,

where (2, F,P) is a probability space. An element w € 2 is called a scenario
of randomness. X (w) represents the outcome of the random variable if the
scenario w happens and is called the realization of X in the scenario w. If X
and Y are two random variables, we write “X =Y P a.s.” (almost surely) if
P{w e O, X(w) =Y (w)} = 1. The law (or distribution) of X is the probability
measure on F defined by:

pix(A) = P(X € A). (2.18)

If ux = py then X and Y are said to be identical in law and we write X dy.
Obviously if X =Y almost surely, they are identical in law.

X : Q — FE is called a real-valued random variable when £ C R. As in
Section 2.1.2, one can define the integral of a positive random variable X
with respect to P: this quantity, called the expectation of X with respect to
P and denoted by E¥[X] = [, X(w)dP(w), is either a positive number or
+oo. If E¥[X] < oo then X is said to be P-integrable. By decomposing
any real-valued random variable Y into its positive and negative parts Y =
Y, — Y_, one sees that if E¥[ |[Y|] < co then Y_,Y, are integrable and the
expectation E[Y] = E[Yy]| — E[Y_] is well-defined. The set of (real-valued)
random variables Y verifying ||Y||; = EF[ |Y| ] < oo is denoted by L*(Q,P).

It is sometimes useful to allow “infinite” values for positive random vari-
ables, i.e., choose E = [0,00[U{+00}. Of course if Y € L'(Q,P) then Y is
almost surely finite.
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2.2.2 What is (Q,F,P) anyway?

While many discussions of stochastic models start with the magic sentence
“let (2, F,P) be a probability space” one can actually follow such discussions
without having the slightest idea what €2 is and who lives inside. So here
comes the question that many beginners are dying to ask without daring to:
what is “Q, F,P” and why do we need it? Indeed, for many users of proba-
bility and statistics, a random variable X is synonymous with its probability
distribution pux and all computations such as sums, expectations, etc., done
on random variables amount to analytical operations such as integrations,
Fourier transforms, convolutions, etc., done on their distributions. For defin-
ing such operations, you do not need a probability space. Isn’t this all there
is to it?

One can in fact compute quite a lot of things without using probability
spaces in an essential way. However the notions of probability space and
random variable are central in modern probability theory so it is important
to understand why and when these concepts are relevant.

From a modelling perspective, the starting point is a set of observations
taking values in some set F (think for instance of numerical measurement,
E = R) for which we would like to build a stochastic model. We would like
to represent such observations x1,...,x, as samples drawn from a random
variable X defined on some probability space (€, F,P). It is important to see
that the only natural ingredient here is the set F where the random variables
will take their values: the set of events () is not given a priori and there are
many different ways to construct a probability space (2, F,P) for modelling
the same set of observations.

Sometimes it is natural to identify 2 with F| i.e., to identify the randomness
w with its observed effect. For example if we consider the outcome of a dice
rolling experiment as an integer-valued random variable X, we can define the
set of events to be precisely the set of possible outcomes: Q = {1,2,3,4,5,6}.
In this case, X(w) = w: the outcome of the randomness is identified with
the randomness itself. This choice of €2 is called the canonical space for the
random variable X. In this case the random variable X is simply the identity
map X (w) = w and the probability measure P is formally the same as the
distribution of X. Note that here X is a one-to-one map: given the outcome
of X one knows which scenario has happened so any other random variable Y
is completely determined by the observation of X. Therefore using the canon-
ical construction for the random variable X, we cannot define, on the same
probability space, another random variable which is independent of X: X will
be the sole source of randomness for all other variables in the model. These
remarks also show that, although the canonical construction is the simplest
way to construct a probability space for representing a given random variable,
it forces us to identify this particular random variable with the “source of ran-
domness” in the model. Therefore when we want to deal with models with a
sufficiently rich structure, we need to distinguish €2 — the set of scenarios of
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randomness — from FE, the set of values of our random variables.

Let us give an example where it is natural to distinguish the source of ran-
domness from the random variable itself. For instance, if one is modelling the
market value of a stock at some date T in the future as a random variable
S1, one may consider that the stock value is affected by many factors such as
external news, market supply and demand, economic indicators, etc., summed
up in some abstract variable w, which may not even have a numerical repre-
sentation: it corresponds to a scenario for the future evolution of the market.
S1(w) is then the stock value if the market scenario which occurs is given by
w. If the only interesting quantity in the model is the stock price then one
can always label the scenario w by the value of the stock price S;(w), which
amounts to identifying all scenarios where the stock S takes the same value
and using the canonical construction described above. However if one con-
siders a richer model where there are now other stocks Ss,Ss,... involved,
it is more natural to distinguish the scenario w from the random variables
S1(w), Sa(w), ... whose values are observed in these scenarios but may not
completely pin them down: knowing Si(w), Se(w), ... one does not necessar-
ily know which scenario has happened. In this way one reserves the possibility
of adding more random variables later on without changing the probability
space.

These comments, although a bit abstract at first sight, have the following
important consequence: the probabilistic description of a random variable
X can be reduced to the knowledge of its distribution px only in the case
where the random variable X is the only source of randomness. In this case,
a stochastic model can be built using a canonical construction for X. In all
other cases — in fact as soon as we are concerned with a second random vari-
able which is not a deterministic function of X — the underlying probability
measure P contains more information on X than just its distribution. In par-
ticular, it contains all the information about the dependence of the random
variable X with respect to all other random variables in the model: specifying
P means specifying the joint distributions of all random variables constructed
on 2. For instance, knowing the distributions ux, py of two variables XY
does not allow to compute their covariance or joint moments. Only in the
case where all random variables involved are mutually independent can one
reduce all computations to operations on their distributions. This is the case
covered in most introductory texts on probability, which explains why one can
go quite far, for example in the study of random walks, without formalizing
the notion of probability space.

2.2.3 Characteristic functions

The characteristic function of a random variable is the Fourier transform of
its distribution. Many probabilistic properties of random variables correspond
to analytical properties of their characteristic functions, making this concept
very useful for studying random variables.
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DEFINITION 2.5 Characteristic function The characteristic func-
tion of the R%-valued random variable X is the function ®x : R* — R defined

by

Vz € RY ®x(2) = Elexp(iz.X)] = /Rd e duy (z). (2.19)

The characteristic function of a random variable completely characterizes
its law: two variables with the same characteristic function are identically dis-
tributed. A characteristic function is always continuous and verifies ® x (0) =
1. Additional smoothness properties of ®x depend on the existence of mo-
ments of the random variable X. The n-th moment of a random variable X
on R is defined by m,(X) = E[X"]. The absolute moments of X are the
quantities my, (| X]) = F[|X|"]. The n-th centered moment p, is defined as
the n-th moment of X — E[X]:

pn(X) = E[(X = E[X])"]. (2.20)

The moments of a random variable may or may not exist, depending on how
fast the distribution px decays at infinity. For example, for the exponential
distribution all moments are well-defined while the Student t distribution
with n degrees of freedom (see Table 2.1) only has moments of orders up to
n. The moments of a random variable are related to the derivatives at 0 of
its characteristic function:

PROPOSITION 2.4 Characteristic function and moments

1. If E[|X|"] < oo then ®x has n continuous derivatives at z =0 and

k
Vk=1...n, msz[X’“]—la&

Tk 9zk (O) (221)

2. If ®x has 2n continuous derivatives at z = 0 then E[|X|*"] < oo and

1 0"dy
_ — k1 —
3. X possesses finite moments of all orders iff z — ®x(z) is C* at z = 0.
Then the moments of X are related to the derivatives of ®x by:

10"®x
n=EX"]=— 0). 2.23
ma = BIX"] = =25 (0) (223)
If (X;,i = 1...n) are independent random variables, the characteristic

function of S,, = X1 + X9 +---+ X, is the product of characteristic functions
of individual variables:

dg (2) = H Dy, (2). (2.24)
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2.2.4 Moment generating function

DEFINITION 2.6 Moment generating function The moment gen-
erating function of R¥-valued random variable X is the function Mx defined
by

Vu € RY, Mx(u) = Elexp(u.X))]. (2.25)

Contrarily to the characteristic function, which is always well-defined (as the
Fourier transform of a probability measure), the moment generating function
is not always defined: the integral in (2.25) may not converge for some (or
all) values of u. When My is well-defined, it can be formally related to the
characteristic function ®x by:

Mx (u) = ®x(—iu). (2.26)

If the moment generating function Mx of a random variable X on R is defined
on a neighborhood [—¢, €] of zero then in particular all (polynomial) moments
of X are finite and can be recovered from the derivatives of M in the following
manner:

O"Mx
my =
oum

(0). (2.27)

2.2.5 Cumulant generating function

Let X be a random variable and ®x its characteristic functions. As men-
tioned above ®x(0) = 1 and Py is continuous at z = 0 so Px(z) # 0 in
a neighborhood of z = 0. One can then define a continuous version of the
logarithm of ®x: there exists a unique continuous function ¥y defined in a
neighborhood of zero such that

Ux(0)=0 and ®x(z)=exp[Px(z)] (2.28)

The function ¥y is called the cumulant generating function or log-characteristic
function of X. Note that if ®x(z) # 0 for all z, the cumulant generating func-
tion can be extended to all R?. The cumulants or semi-invariants of X are
defined by:

en(X) = Z_ina;jnx (0). (2.29)

By expanding the exponential function at z = 0 and using (2.25), the n-th cu-
mulant can be expressed as a polynomial function of the moments my(X), k =
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1...n or the central moments ux(X) defined in (2.20). For instance

a(X)=m(X) =FEX, (2.30)
co(X) = pa(X) = ma(X) — my(X)? = Var(X), (2.31)
c3(X) = p3(X) = m3(X) — 3ma(X)mq (X) + 2mq (X)?, (2.32)
ca(X) = pa(X) — 3p2(X). (2.33)

Scale-free versions of cumulants can be obtained by normalizing ¢, by the
n-th power of the standard deviation:

_ ) _ aX)
s( _CQ(SXW’ #( )_CQ(X)2'

The quantity s(X) is called the skewness coefficient of X: if s(X) > 0, X
is said to be positively skewed. The quantity x(X) is called the (excess)
kurtosis of X. X is said to be leptokurtic or “fat-tailed” if x(X) > 0. Note
that if X follows a normal distribution, Wx is a second degree polynomial so
Vn > 3,¢,(X) = 0. This allows to view s(X), x(X) and higher cumulants as
measures of deviation from normality. By construction the skewness and the
kurtosis are invariant to a change of scale:

(2.34)

YAS0,  s(AX)=s(X) k(AX) = r(X). (2.35)

Cumulant generating functions of independent variables add up when the
variables are added: from (2.24) one easily deduces that, if (X;);—; ., are
independent random variables then

Uxy44x,(2) = Z Ux, (2)- (2.36)

2.3 Convergence of random variables

When considering sequences or families of random variables, one can give
several different meanings to the notion of convergence. In this section we
define and compare these different notions of convergence which will be useful
in the sequel. While we define convergence in terms of sequences (indexed by
integers), our definitions also hold for continuously indexed families.

2.3.1 Almost-sure convergence

Consider a sequence of random variables (X,,),>1 taking values in some
normed vector space E, for instance E = R?. Recall that a random variable
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TABLE 2.1:

Some probability distributions and their characteristic

functions.

Distribution Density Characteristic function

Exponential o

() = ae™ 1,0 D(z) = o
Two-sided ex-
i _ & —alal
ponential wlx) = —e o
2 ®(z)
o £ |2
Gamma
XY 1 1
= ¢ 1, d(2) = ,
H(I) F(C) € >0 (Z) (1 — ’L)\_lZ)C
Gaussian )
pw(z) = exp(—570) 2,2
210 ®(2) = exp(———+i72)
Cauchy
c
)= D(2) = exp(—c|z| +ivz
W)= e | %) = ep(—elel +ir)
Symmetric
a-stable
Not known in closed form D(z) = exp(—c|z]?)
Student t

I((n+1)/2) (1+ x_Q)—(n+1)/2

vnrl'(n/2) n

Not known in closed form
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is defined as a function X :  — FE of the “randomness” w € 2. One could
then consider applying to random variables various notions of convergence
which exist for sequences of functions. The simplest notion of convergence for
functions is that of pointwise convergence which requires that for each w € €,
the sequence (X, (w)),>1 converge to X (w) in E. This notion turns out to
be too strong in many cases since we are asking convergence for all samples
w € Q without taking into account that many events may in fact be negligible,
i.e., of probability zero. The notion of almost-sure convergence takes this fact
into account and requires pointwise convergence only for realizations which
have a nonzero probability of occurrence:

DEFINITION 2.7 Almost-sure convergence A sequence (X,,) of ran-
dom variables on (Q, F,P) is said to converge almost surely to a random vari-
able X if

P(lim X, = X) = 1. (2.37)

n—oo

For the above definition to make sense the variables (X,,),>1 have to be
defined on the same probability space (€2, F,P). Note that almost sure con-
vergence does not imply convergence of moments: if X,, — X almost surely,
E[XF] may be defined for all n > 1 but have no limit as n — oo.

2.3.2 Convergence in probability

While the almost-sure convergence of (X,,),>1 deals with the behavior of
typical samples (X, (w))n>1, the notion of convergence in probability only
puts a condition on the probability of events when n — oo:

DEFINITION 2.8 Convergence in probability A sequence (X,,) of
random variables on (Q, F,P) is said to converge in probability to a random
variable X if for each € > 0

lim P(|X, — X| > ¢) = 0. (2.38)

We denote convergence in probability by

X, & X (2.39)

n—oo
Almost sure convergence implies convergence in probability but the two no-

tions are not equivalent. Also note that convergence in probability requires
that the variables (X,,),>1 be defined on the same probability space (2, F,P).
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2.3.3 Convergence in distribution

In many situations, especially in a modelling context, the random variable
is not a directly observable quantity itself and the only observable quantities
are expectations of various functions of this random variable: E[f(X)]. These
quantities will in fact be the same for two random variables having the same
distribution. In this context, a meaningful notion of convergence from the
point of view of observation is asking that E[f(X,,)] converge to E[f(X)] for
a given set of “observables” or test functions f : F — R. If the set of test
functions is rich enough, this will ensure the uniqueness of the law of X but
will not distinguish between two limits X and X’ with the same distribution
1. A commonly used choice of test functions is the set of bounded continuous
functions f : E — R, which we denote by C*(E,R).

DEFINITION 2.9 Convergence in distribution A sequence (X,,)
of random wvariables with values in E is said to converge in distribution to a
random variable X if, for any bounded continuous function f: E — R

Bf(X,)] —_BIf(X)]. (2.40)

Denote by pu, the distribution of X, : u, is a probability measure on E.
Then Equation (2.40) is equivalent to:

n—oo
€T

veCER, [ dn@i@ — [d@i@. e

E
In this form it is clear that, unlike almost-sure convergence, convergence in
distribution is defined not in terms of the random variables themselves but in
terms of their distributions. Therefore sometimes convergence in distribution
of (X,,)n>1 is also called weak convergence of the measures (fi,)n>1 on E. We

write:
fn=p or X,LX. (2.42)

An important feature of convergence in distribution is that, unlike the other
notions of convergence mentioned above, it does not require the variables to
be defined on a common probability space. Nevertheless, in the case where
the variables (X,,) are defined on the same space, convergence in distribution
leads to convergence of probabilities of (regular) events in the following sense:

PROPOSITION 2.5
If (X)) converges in distribution to X, then for any set A with boundary 0A,

p(OA) = 0= [B(X, € A) = p(4) — P(X € A) = p(A).  (243)

Note also that, unlike other notions of convergence, convergence in distri-
bution is not “stable under sums”: if (X,,) and (Y;,) converge in distribution
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to X and Y, it is not true in general that (X, + ;) converges in distribu-
tion to (X +Y). However from the definition it is readily observed that if
(X,,) converge in distribution to X then for any continuous function g, g(X,,)
converges in distribution to g(X).

The notion of weak convergence is relevant in studying numerical approx-
imations obtained by discretizing continuous time models [243, 193]. As we
will see in Chapter 10, option prices can be expressed as (risk-neutral) expec-
tations of their payoffs, so weak convergence of discrete time models to their
continuous time counterparts will imply convergence of the option prices in
the discretized model to the option prices in the continuous time model [193].

The following characterization of convergence in distribution in terms of
pointwise convergence of characteristic functions is useful in practice:

PROPOSITION 2.6
(Xn)n>1 converges in distribution to X, if and only if for every z € R?

Dy, (2) = Px(2). (2.44)

Note however that pointwise convergence of (Px, ) does not imply the ex-
istence of a weak limit for (X,,) since the pointwise limit of (®x, ) is not
necessarily a characteristic function.

Convergence in distribution does not necessarily entail convergence of mo-
ments: one cannot choose f to be a polynomial in (2.41) since polynomials
are not bounded. In fact the moments of X,,, X need not even exist.

When (X,,) and X are defined on the same probability space, convergence
in distribution is the weakest notion of convergence among the above; almost
sure convergence entails convergence in probability, which entails convergence
in distribution.

2.4 Stochastic processes

A stochastic® process is a family (X;);c(o,r) of random variables indexed
by time. The time parameter t may be either discrete or continuous, but
in this book we will consider continuous-time stochastic processes. For each
realization of the randomness w, the trajectory X (w) : ¢ — X;(w) defines
a function of time, called the sample path of the process. Thus stochastic
processes can also be viewed as random functions: random variables taking
values in function spaces. Some of these function spaces will be defined in
Section 2.4.1.

3Stochastic is just a fancy word for random!
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A further step must be taken if one interprets the index ¢ as time: one
needs to take into account the fact that events become less uncertain as more
information becomes available through time. In order to precisely formulate
these intuitively important notions one needs to describe how information
is revealed progressively. This is done by introducing the important (and
delicate) notion of filtration, discussed in Section 2.4.2, which will allow us
to define the important notions of past information, predictability and non-
anticipativeness and to classify processes and random times according to these
properties.

Finally, a stochastic process can also be seen as a function X : [0, T]xQ — E
of both time ¢ and the randomness w. This point of view leads us to define
notions of joint measurability and the concepts of optional and predictable
processes, discussed in Section 2.4.5.

2.4.1 Stochastic processes as random functions

In order to define stochastic processes as function-valued random variables,
one needs to define measures on function spaces. The simplest choice of
function space for a stochastic process taking values in R¢ is the set of all
functions f : [0,7] — R? but this space happens to be too large: it contains
many “pathological” functions and it is not easy to define measures on this
space. Furthermore we expect the stochastic processes we work with to have
sample paths with some more specific properties.

Random processes with continuous sample paths can be constructed as
random variables defined on the space of continuous functions C([0, 7], R9).
The usual topology on this space is defined by the sup norm

£ 1o = sw @I, (2.45)

0,77

which in turn can be used to construct a Borel o-algebra, on which measures
can be defined. The most well-known example is the Wiener measure, a
Gaussian measure on C([0,T],R%) describing the Wiener process. However
most of the processes encountered in this book will not have continuous sample
paths. We need therefore a space that allows for discontinuous functions. The
class of cadlag* functions happens to be a convenient class of discontinuous
functions:

DEFINITION 2.10 Cadlag function A function f : [0,T] — R? is
said to be cadlag if it is right-continuous with left limits: for each t € [0,T]

4The obscure word “cadlag” is a French acronym for “continu & droite, limite & gauche”
which simply means “right-continuous with left limits.” While most books use this termi-
nology some authors use the (unpronounceable) English acronym “rcll.”
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the limits

Ft=) = lim_ f(s) ft+) = lm f(s)  (2.46)

s—t,s<t s—t,s>t
exist and f(t) = f(t+).

Of course, any continuous function is cadlag but cadlag functions can have
discontinuities. If ¢ is a discontinuity point we denote by

Af(t) = f(t) - f(t-) (2.47)

the “jump” of f at t. However, cadlag functions cannot jump around too
wildly. A cadlag function f can have at most a countable number of discon-
tinuities: {t € [0,T], f(¢) # f(t—)} is finite or countable [153]. Also, for any
€ > 0, the number of discontinuities (“jumps”) on [0, 7] larger than e should
be finite. So a cadlag function on [0, 7] has a finite number of “large jumps”
(larger than €) and a possibly infinite, but countable number of small jumps.

An example of cadlag function is a step function having a jump at some
point Ty, whose value at Tj is defined to be the value after the jump: f =
Liz,,r((t). In this case f(To—) = 0, f(To+) = f(To) = 1 and Af(Tp) = 1.
More generally, given a continuous function g : [0,7] — R and constants
fi,i=0...n—1landtg =0<1t; <--- <t, =T, the following function is
cadlag:

n—1
FO) =g) + D Filie i ((t)- (2.48)
1=0

The function g can be interpreted as the continuous component of f to which
the jumps have been added: the jumps of f occur at ¢;,7 > 1 with Af(¢;) =
fi — fi—1. Not every cadlag function has such a neat decomposition into a
continuous and a jump part but this example is typical. Cadlag functions are
therefore natural models for the trajectories of processes with jumps.

REMARK 2.1 Cadlag or caglad? In the above example the function
is right-continuous at jump times ¢; simply because we have defined its value
at ¢; to be the value after the jump: f(t;) := f(t;+). If we had defined
f(t;) to be the value before the jump f(¢;) := f(t;—) we would have obtained
a left-continuous function with right limits (“caglad”). The reader might
wonder whether it makes any difference to interchange left and right. Yes, it
does make a difference: since t is interpreted as a time variable, right means
“after” and left means “before”! If a right continuous function has a jump at
time ¢, then the value f(t) is not foreseeable by following the trajectory up to
time ¢: the discontinuity is seen as a sudden event. By contrast, if the sample
paths were [left-continuous, an observer approaching ¢ along the path could
predict the value at ¢. In the context of financial modelling, jumps represent
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sudden, unforeseeable events so the choice of right-continuity is natural. On
the other hand, if we want to model a discontinuous process whose values are
predictable we should use a caglad process. This will be the case when we
model trading strategies in Chapter 8.

It is possible to define a topology and a notion of convergence on the
space of cadlag functions. For details we refer the reader to [215] or [364].
Equipped with this topology and the corresponding Borel o-algebra (see Sec-
tion 2.1.2), the space of cadlag functions is known as the Skorokhod space and
denoted by D([0,T],R%) or simply D([0, T]) if the context is clear. Obviously
C([0,T]) € D([0,7]). A random variable with values in D([0,T]) is called
a cadlag process. In all the models considered in this book, prices will be
modelled as cadlag processes so when we will speak of “path space,” we will
refer to D([0,T1).

2.4.2 Filtrations and histories

The interpretation of the index ¢ as a time variable introduces a dynamic
aspect which needs to be taken into account by properly defining the notions of
information, causality and predictability in the context of a stochastic model.

In a dynamic context, as time goes on, more information is progressively
revealed to the observer. The result is that many quantities which are viewed
as “random” at t = 0 may change status at a later time ¢ > 0 if their value
is revealed by the information available at time ¢t. We must add some time-
dependent ingredient to the structure of our probability space (Q, F,P) to
accommodate this additional feature. This is usually done using the concept
of filtration:

DEFINITION 2.11 Information Hlow A filtration or information flow
on (Q, F,P) is an increasing family of o-algebras (Fi)iepo,r): YVt > 5 > 0, Fs C
Fi CF.

F; is then interpreted as the information known at time ¢, which increases
with time. Naturally if we start with a set of events F then F; C F. A prob-
ability space (2, F,P) equipped with a filtration is called a filtered probability
space. From an intuitive point of view, the probability of occurrence of a ran-
dom event will change with time as more information is revealed. However,
instead of changing the probability measure P with time, we will keep P fixed
and model the impact of information by conditioning on the information F;.

The information flow being described by the filtration F;, we can now dis-
tinguish quantities which are known given the current information from those
which are still viewed as random at time t. An event A € F; is an event such
that given the information F; at time t the observer can decide whether A has
occurred or not. Similarly, an F;-measurable random variable is nothing else
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but a random variable whose value will be revealed at time t. A process whose
value at time t is revealed by the information F; is said to be nonanticipating:

DEFINITION 2.12 Nonanticipating process A stochastic process
(Xt)tefo,1) 15 said to be nonanticipating with respect to the information struc-
ture (Fi)iejo,1) or Fi-adapted if, for eacht € [0,T], the value of X is revealed
at time t: the random variable X; is Fi-measurable.

A nonanticipating process is also called an adapted process: (X¢):eo, 1) is
said to be (F)seo, 1) -adapted. While the term “adapted” is certainly less self-
explanatory than “nonanticipating,” it is commonly used in the literature.
If the only observation available is the past values of a stochastic process X,
then the information is represented by the history (also called the natural
filtration) of X defined as follows:

DEFINITION 2.13 History of a process The history of a process X
is the information flow (]:{X)te[O,T] where F{X is the o-algebra generated by
the past values of the process, completed by the null sets:

FYX =0(Xes€0,4])\/N. (2.49)

One can think of F;¥ as containing all the information one can extract
from having observed the path of X between 0 and . All explicit examples
of information flow we will use will correspond to the history of a set of asset
prices. Notice that ;¥ has been completed by adding the null sets; all the
null sets are stuffed into Fy. This means that if a certain evolution for X
between 0 and 7T is deemed impossible, its impossibility is already known at
t=0.

2.4.3 Random times

We will often have to deal with events happening at random times. A
random time is nothing else than a positive random variable 7" > 0 which
represents the time at which some event is going to take place. Given an
information flow (F;), a natural question is whether given the information in
F: one can determine whether the event has happened (7 < t) or not (7 > ).
If the answer is yes, the random time 7 is called a nonanticipating random
time or stopping time. In other words, T is a nonanticipating random time
((F:)-stopping time) if

Vt207 {Tgt}e./ft

If Ty and T5 are stopping times then T3 A To = inf{T},T»} is also a stopping
time. The term “stopping time” seems to imply that something is going to
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stop at the 7: given a stopping time 7 and a nonanticipating process (X;) one
can define a new process X, s, the process X stopped at 7, by:

Xop =X ift <7 Xopy= X, if t > 1. (2.50)

Examples of stopping times are hitting times: given a nonanticipating cadlag
process X, the hitting time of an open set A is defined by the first time when
X reaches A:

Ta = inf{t >0, X, € A}. (2.51)

At any given time ¢, it is enough to know the past positions of X; to see
whether the set A has been reached (T4 < t) or not (T4 > t). A frequently
encountered example is the following: if X is a real-valued process starting
from 0 and a > 0, the ezit time of X from the interval | — 0o, a] is defined as

T, = inf{t > 0, X; > a}. (2.52)

Tt is the hitting time T4 associated with the open interval A =]a, col.
An example of a random time which is not a stopping time is the first
instant ¢ € [0,7] when X reaches its maximum:

Thax = inf{t € [0, 7], X; = sup X} (2.53)
s€[0,T]

Obviously in order to know the value of the maximum one must first wait
until 7" to observe the whole path on [0,T]. Therefore given the information
F; at time t < T one cannot decide whether T}, has occurred or not.

Given an information flow F; and a nonanticipating random time 7, the
information set F, can be defined as the information obtained by observing
all nonanticipating (cadlag) processes at 7, i.e., the o-algebra generated by
these observations: F, = o(X,, X nonanticipating cadlag process). It can be
shown that this definition is equivalent to the following (see [110, p. 186] or
[324, Chapter 1]):

Fr={AeF vte0,T,An{t <7} e F}. (2.54)

2.4.4 Martingales

Consider now a probability space (Q, F,P) equipped with an information
flow ft.

DEFINITION 2.14 Martingale A cadlag process (Xt)iepo, 1) 15 said
to be a martingale if X is nonanticipating (adapted to Fy), E[|X¢|] is finite
for any t € [0, T] and
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In other words, the best prediction of a martingale’s future value is its
present value. A familiar example of a martingale is the Wiener process (W;).

Notice that the definition of martingale makes sense only when the under-
lying information flow (F)c(o,7] and the probability measure P have been
specified. To avoid confusion one should speak of (P, F;)-martingales. When
several probability measures are involved, we shall use the term P-martingale
to emphasize the fact the notion of martingale depends on the probability
measure P.

A typical way to construct a martingale is the following: given a random
variable H revealed at T' (i.e., Fpr-measurable) with E|H| < oo, the process
(M¢)iepo,r) defined by M; = E[H|F;] is a martingale. Conversely any mar-
tingale (M;)¢cjo,7) can be written in this form, by choosing as H = My the
terminal value.®

An obvious consequence of (2.55) is that a martingale has constant expec-
tation: V¢ € [0,7], E[X;] = E[Xo]. One can wonder whether any “driftless”
process is a martingale. The answer is no; if (W) is a scalar Wiener process,
W3 has constant expectation E[W] = 0 but is not a martingale: indeed, if
s>t

E[W3|F,] = E[(W, — W, + W,)3|F)
E[(Wy = W,)2 + W2+ 3(W, — Wo)W2 + 3(W, — W)W, | Fi]
E[(Wy — W,)%] + W2 + SWEE[W, — W] + 3E[(W, — W,)2]W;

=0+W>+0+3(t—s)W, # W2

However, if one asks that the process be driftless when computed at random
times, then this property actually characterizes martingales [325]: if F[X,] =
E[Xy] for any stopping time 7 then X is a martingale.

A fundamental property of martingales is the “sampling property”: the
martingale property (2.55) is verified when ¢, s are replaced by nonanticipating
random times.

PROPOSITION 2.7 Sampling theorem
If (M¢)ieo,1) is a martingale and Ty, Ty are nonanticipating random times
(stopping times) with T > Ty > Ty > 0 a.s. then

E[Mr,|Fr,] = Mr, . (2.56)

For a proof see [116] or [324, Section I.2]. In particular, a martingale stopped
at a nonanticipating random time is still a martingale.

A process (X¢)ie[o,7] is a called a local martingale if there exists a sequence
of stopping times (7;,) with T,, — oo a.s. such that (X7, )iepo, 7] is @ martin-
gale. Thus a local martingale behaves like a martingale up to some stopping

5Note that here we define processes and martingales in particular on a finite time interval
[0, T7; these results do not hold if the time parameter ¢ € [0, 00 .
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time T,,, which can be chosen as large as one wants. Obviously any mar-
tingale is a local martingale but there exist local martingales which are not
martingales; this is the origin of many subtleties in martingale theory.

2.4.5 Predictable processes (*)

So far we have defined a stochastic process (X¢);c[o,7) either by considering
it as a function of time for fixed w — the sample path ¢ — X;(w) — or as a
function of w for a fixed ¢ — the random variable X;. Of course it is natural
to consider these two aspects jointly by considering X as a function defined
on [0,T] x Q. This requires defining o-algebras and measurable functions ©
on [0, 7] x Q. At first sight we could consider the o-algebra generated by
products B x A where A € F and B C [0,7] is measurable. But if we are
given an information flow (F%).eqo, ) we would like the previously defined class
of nonanticipating cadlag processes to be measurable functions on [0,7]. The
simplest choice is then to take the o-algebra generated by these processes:

DEFINITION 2.15 Optional processes The optional o-algebra is the
o-algebra O generated on [0,T] x Q by all nonanticipating (adapted) cadlag
processes. A process X : [0,T] x Q +— R? which is measurable with respect to
O s called an optional process.”

With this definition, any nonanticipating cadlag process is optional but the
sample paths of an optional process need not be cadlag in general: nonan-
ticipating cadlag processes “generate” optional processes the same way that
continuous functions “generate” measurable functions.

The distinction made in Section 2.4.1 between left and right continuity and
its interpretation in terms of sudden vs. predictable jumps motivates the
definition of another o-algebra on [0,T] x

DEFINITION 2.16 Predictable processes The predictable o-algebra
is the o-algebra P generated on [0, T] x Q by all nonanticipating (adapted) left-
continuous processes. A mapping X : [0,T] x Q R? which is measurable
with respect to P is called a predictable process.

While the name “predictable” is justified given the discussion above, the
name “optional” is less transparent. We will not use this notion very often so
we will stick to this terminology. Any left-continuous process is therefore pre-
dictable (by definition): this is intuitive if lim,_; s«¢ Xs = X, then the value
of X, is “announced” by the values at preceding instants. In the sense of

6See Section 2.1.2.
"The term “optional” has nothing to do with options!
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Definition 2.16, all predictable processes are “generated” from left-continuous
processes (in the same way that all Borel sets are “generated” from open inter-
vals). However there are predictable processes which are not left continuous
(which is less intuitive). In the same way, any nonanticipating process with
cadlag trajectories is “optional,” but the notion of optional process allows
sample paths to be more irregular.

Cadlag / Right-continuous + nonanticipating = Optional

Caglad / Left-continuous + nonanticipating = Predictable

The distinction between optional and predictable process will become clear in
Chapter 10 when we will use these notions in a financial modelling context:
state variables such as market prices will be modelled as optional processes
while the decisions of an investor — hedging strategies, portfolios — will be
represented by predictable processes.

The practical-minded reader might wonder why we bother to consider pro-
cesses more general than cadlag, if cadlag or piecewise continuous processes
are already rich enough to model discontinuities. As we shall observe in the
next chapters, in all models that we will encounter, prices will follow cad-
lag processes and all explicit examples of predictable processes will be left-
continuous. Also, on the theoretical side we will see that it is possible to
discuss stochastic integration, It6’s formula, stochastic differential equations
and changes of measure only using cadlag processes. However when using
results of the type “there exists a predictable process such that...” we will
need to consider more general predictable processes. Typical examples are
martingale representation theorems, discussed in Chapter 10.

2.5 The Poisson process

The Poisson process is a fundamental example of a stochastic process with
discontinuous trajectories and will be used as a building block for constructing
more complex jump processes.

2.5.1 Exponential random variables

Properties of exponential random variables and their sums will play an
important role in defining Markov processes with jumps. We review some of
these important properties in this section.

A positive random variable Y is said to follow an exponential distribution
with parameter A > 0 if it has a probability density function of the form

e M1, (2.57)
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The distribution function of Y is then given by
Vy € 0,00, Fy(y) =P <y)=1—exp(-Ay). (2.58)

Fy is invertible and its inverse is given by:
-1 1
vy € 10,1, By (y) = - In(1 —y). (2.59)

A simple consequence is that if U is uniformly distributed on [0,1] then
—% InU is exponentially distributed with parameter A. This result will be
used in Chapter 6 to simulate random variables with exponential distribu-
tion.

The exponential distribution has the following important property: if T is
an exponential random variable,

Vit 0, P(T>t+s|T>t)= 7ft+s ey _ P(T (2.60)
,$ >0, > >1) = = > 5). .
S 8| ) j’too )\C_Aydy ( S)

In other words, if one interprets T as a random time, the distribution of T'—¢
knowing T' > t is the same as the distribution of T itself: this property is
usually called the “absence of memory.” In fact the exponential distribution
is the only distribution with this property:

PROPOSITION 2.8 Absence of memory
Let T > 0 be a (nonzero) random variable such that

Vi, s >0, P(T >t+s|T >t) =P(T > s). (2.61)

Then T has an exponential distribution.

PROOF Let g(t) = P(T > t). Using Bayes rule we obtain that g is a
multiplicative function:

Vt,s >0 g(t+s)=P(T >t+s|T >t)P(T >t)=g(s)g(t).
Since 1 — g is a distribution function, g is decreasing and right-continuous;

together with the multiplicative property this implies that g(t) = exp(—/\tﬁ
for some A > 0.

Let (7;,¢ = 1...n) be independent exponential random variables with pa-
rameter A and define Ty, = 71+ - -+7%. Then (T1, Tz, ..., T,) has a probability
density on R™ given by

Ne Mo cocr, (Bry ooy t), (2.62)
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and the random variable T, = 71 + - - - + 7, has probability density

palt) = Ae ™ Egtznl)! 1o0,00((1)- (2.63)

Sums of i.i.d. exponential variables bear a close relationship with the order
statistics of uniformly distributed random variables. Let Uy,...,U, be in-
dependent random variables, uniformly distributed on [a,b]. Arrange them
in increasing order and call them (Y7,...,Y,): Y, = max{U;,i = 1...n},
Yoo1 =max({U;,i =1...n}\ {Y,}), ete. Y1 <--- <Y, are called the order
statistics of Uy, ..., U, and their density is given by

n!
(b—a)" La<ys <ya<-<yn<b} (T)- (2.64)

The law with density given by (2.64) is sometimes called the Dirichlet distri-
bution and denoted by D, ([a,b]). Starting with Equation (2.62), one can see
that the expression (2.62) can be rearranged in order to make (2.63) appear:

AN M Locp coct, (B oo tn)
. (At n—1)!
= Ae M"%ltnm X (ﬂi_l)lo<t1<---<tn(t1a s ,tn),
. n

which is simply the product of (2.63) with a D,,_1([0,t,]) density. This leads
to the following result:

PROPOSITION 2.9
Let (15,0 = 1...n + 1) be independent exponential random variables with
parameter X and define Ty =1 + -+ + 1. Then

1. The law of (Th,...,Ty) knowing T,11 =t is D,([0,1]).

2. The vector (Til Yoy TZLI) is independent from T, 11 and has the law
Dy ([0, 1]).

The above proposition is interesting in practice since it gives us a way to
simulate from the joint law of (T%,...,T,) by using independent uniformly
distributed random variables. We will put this property to use in Chapter 6.

PROPOSITION 2.10

Let Uy,...,U, be independent random wvariables, uniformly distributed on
[0,1], Uqy < --- < Uy be the corresponding order statistics and V' be an
independent random variable with a density given by (2.63). Then the vari-
ables

VU, V(U —Un)), V(Us) = Ugy), - V(Urny = Un—1))

form a sequence of independent exponential variables with parameter .
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2.5.2 The Poisson distribution

An integer valued random variable NV is said to follow a Poisson distribution
with parameter \ if

A

VYneN, P(N=n)=ce¢ T
n!

(2.65)

The Poisson distribution has a well-defined moment generating function given
by:
M (u) = exp[A(e" —1)]. (2.66)

There is an intimate connection between the Poisson distribution and sums
of independent exponential random variables:

PROPOSITION 2.11
If (1:)i>1 are independent exponential random variables with parameter X
then, for any t > 0 the random variable

n
Ny =inf{n>1,> 7 >t} (2.67)

i=1

follows a Poisson distribution with parameter \t:

()\t)n

n!

Vn €N, P(N; =n) = e (2.68)

PROOF  Let T}, = Zle 7; Vk. The density of (T4, ..., Tk) is given by
)‘k10<t1<‘..<tk6_/\t’“dt1...dtk.

Since P(N; = n) =P(T,, <t < Tp41), it can be computed as:

P(N; =n) = / Nle Matidty dt,dty, g
0<t1 <.ty <t<tp41

At)™
= A”e—*t/ dty...dt, = e_)‘t( ') .
0<ty <...tp<t n:

[

One interesting property of the Poisson distribution is the stability under
convolution: if Y7 and Y5 are independent Poisson variables with parameters
A1 and Ao, then Y7 + Y5 also follows a Poisson law with parameter \; + As.
This can be readily deduced from the form of the moment generating function,
noting that My, +v, = My, My, .
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In particular this leads to the following consequence: for any integer n,
a Poisson random variable Y with parameter A can be expressed as a sum
of n independent (Poisson) random variables Y;, with parameter A/n. This
property, called infinite divisibility, can be interpreted as saying that a Poisson
random variable can be “divided” into an arbitrary number of i.i.d. random
variables. We will encounter this important property again in Chapter 3.

2.5.3 The Poisson process: definition and properties

DEFINITION 2.17 Poisson process Let (1;);>1 be a sequence of in-
dependent exponential random variables with parameter A and T, = Z?:l Ti.
The process (Ng,t > 0) defined by

Ny = Z li>T, (2.69)

n>1
18 called a Poisson process with intensity .
The Poisson process is therefore defined as a counting process: it counts
the number of random times (7},) which occur between 0 and ¢, where (T, —

Ty—1)n>1 is an ii.d. sequence of exponential variables. The following prop-
erties of the Poisson process can be easily deduced:

PROPOSITION 2.12
Let (N¢)i>0 be a Poisson process.

1. For any t > 0, Ny is almost surely finite.

2. For any w, the sample path t — Ni(w) is piecewise constant and in-
creases by jumps of size 1.

3. The sample paths t — Ny are right continuous with left limite (cadlag).
4. For any t > 0, N;_ = N; with probability 1.

5. (Ny) is continuous in probability:

vt >0, N, ﬂt N, (2.70)

6. For anyt >0, N; follows a Poisson distribution with parameter \t:

Vn €N, P(N; =n) = ea D" (2.71)

n!
7. The characteristic function of Ny is given by

Ele™Nt] = exp{At(e™ — 1)}, Yu € R. (2.72)
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8. (Ny) has independent increments: for anyty < -+ <tn, No,—N¢ ...,
N, — Ny, , Ny, are independent random variables.

9. The increments of N are homogeneous: for any t > s, Ny — N has the
same distribution as Ni_s.

10. (N¢) has the Markov property:

Vt > s, E[f(N¢)|Nu,u < s] = E[f(N¢)|N].

PROOF

1. Let Q = {w € Q, L2 (w) — 1}. By the law of large numbers, =

with probability 1 so P(€) = 1. For any w € 3,7, (w) — 00 so

-1

Yw € Q,3Ing(w) > 1, Vn > ng(w), T (w) > t.

So P(N; < 00) = P(€2;) = 1: the number of terms in the sum (2.17) is
almost surely finite.

2. From the expression (2.17) it is obvious that NV, is constant on each
interval |T},, T}, 1] and increases by one at each T,,. Since the number
of jump points in each interval [0, ¢] is almost surely finite, property (2)
follows.

3. The cadlag property can be seen by comparing the definition of the
Poisson process to the example (2.48).

4. For a given w € , the points of discontinuity of N;(w) are {T},(w),n >
1}. But for a given ¢, P(t € {T},(w),n > 1}) = 0. So, with probability
1, t is not a discontinuity point: N;_ = N; with probability 1.

5. Consequence of the above, since almost sure convergence entails conver-
gence in probability.

6. This point was shown in proposition (2.11).
7. This is a easy consequence of the previous one.
8. Let 0 < t; <--- <t, and compute:

P(Ny, = ki, Nyy — Ny, = ko, ..., Ny, = Ny =ky).  (2.73)

n—1

Define j, = >, ki for ¢ > 1. Then the above probability can be
rewritten as:

P(Tj, <t1 <Tj41, 1), <ta <Thpi,..., Ty, <ty <Tj,11).
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Conditionally on Tj, < t, < Tj, 41, (Th,Ts,...,T;,) are distributed
as the order statistics of j, uniform random variables on [0,¢,]. The
conditional probability

P(Tj, <t1 < Tj11, Ty <ta < Tjypn,. o | Ty, <tn < Ty, 41) (2.74)

is then equal to the probability that, given j,, independent random vari-
ables Ut,...,U,,, uniformly distributed on [0,¢,], k1 of them fall into
the interval [0, ¢1], ko of them fall into the interval |¢q, t5], etc. The prob-
ability that Uy belongs to [t;_1,t;] being (t; — t;—1)/t,, the conditional
probability (2.74) is given by

jnlﬁ o (=t
t%" kl' o kz'

To obtain the unconditional probability (2.73), we multiply this ex-
pression by the density of INV; , which is a Poisson distribution with
parameter \t,. After simplification this gives

k .
\in gt 2 ﬁ (ti —tia)" '

k! L

Finally, substituting j, = k1 + k2 + - - - + k,, we see that the probability
of interest factorizes into a product of n terms:
P(Ntl == kl, Nt2 — Ntl = kQ, ey Ntn — Ntn—l == kn)

o {)\tl}kle—)\tl n {)\(ti —t¢,1)}ki6_)‘(ti_ti*1)
R 11 k! :

=2

The joint law of the increments has a product form, which shows their
independence. Moreover, each term in the product is recognized to be
the density of a Poisson law with parameter A(t; — ¢t;_1) which shows
the homogeneity of the increments.

9. The Markov property follows from the independence of increments:

E[f(N)INu,u < s] = E[f(Ny = Ns + Ng)[Nu,u < 5]
= E[f(Ny — Ngs + N)|Ng].

since N; — Ny is independent of N,,u < s.

I

Let us now comment on the properties (2), (3) and (4) which seem somewhat
paradoxical: on one hand we assert that with probability one, any sample path
of the Poisson process is discontinuous (in fact it only moves by jumps) and
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on the other hand at any given point ¢, the sample function is continuous
with probability 1! We will encounter this feature for all the jump processes
considered later: it is due to the fact that the points of discontinuity of the
process form a set of zero measure. A typical path of a Poisson process is
shown in Figure 2.1.

Sample paths of a Poisson process Sample path of a compensated Poisson process

af —_— —_— \

I T N
| v f\\ \\\\'\ |

1 — b

L L Iy L L L L L
0 5 10 15 0 5 10 15 20 25 30

FIGURE 2.1: Left: Sample paths of a Poisson process with intensity A = 1.
Right: Sample path of a compensated Poisson process with intensity A = 1.

The right continuity (cadlag property) of the Poisson process is not really
a “property”: we have defined Ny in such a way that at a discontinuity point
N; = N;y, i.e., we have chosen the right-continuous (cadlag) version of the
Poisson process. Another choice would have been the left-continuous one:

N =)l (2.75)

n>0

The difference between N and N’ is that the values of N’ in the near future
are foreseeable since N, — Ny as s — t, s < t while the values of N are “unpre-
dictable” given the past. The jumps of N are interpreted as sudden events®,
which corresponds to our initial motivation for including jumps in models of
price dynamics. Hence we will always use the cadlag version (N;);>o of the
Poisson process. Following these remarks, for other examples of jump pro-
cess that we will encounter, we will always choose a right-continuous (cadlag)
version.

Poisson processes have some other useful properties which we mention here.
First, a superposition of independent Poisson processes is again a Poisson
process:

8See the discussion in Section 2.4.5.

© 2004 by CRC Press LLC



PROPOSITION 2.13 Sum of independent Poisson processes
If (N}i>o0 and (N?)i>o are independent Poisson processes with intensities
A1, A2 then (N} + N2)i>o is a Poisson process with intensity A1 + Aa.

A second useful property of Poisson processes is the so-called thinning prop-
erty. Let (N¢);>0 be a Poisson process with intensity A and define a new pro-
cess X; by “thinning” N;: take all the jump events (T},,n > 1) corresponding
to N, keep them with probability 0 < p < 1 or delete them with probability
1 — p, independently from each other. Now order the points which have not
been deleted: T7,...,T),... and define

st

X = Z I7s >4 (2.76)

n>1

Then the process X is a Poisson process with intensity pA. Another way to
see this result is the following: if the arrival T,, of each event in the Poisson
process N is marked with probability p, independently from event to event,
then the process of marked events thus obtained is again a Poisson process
whose intensity is equal to the intensity of N, decreased by the marking
probability: Ax = pA.

2.5.4 Compensated Poisson processes

Define the “centered” version of the Poisson process N; by
Ny = N; — Mt. (2.77)
N, follows a centered version of the Poisson law with characteristic function:
Py (2) = exp[M (e — 1 —i2)]. (2.78)

As the Poisson process, N also has independent increments and it is easy to
show that:

E[N|Ng,s < t] = E[N; — N5 + Ng|N;]
= E[N; — Ng]+ Ny = A(t — s) + Ng,

so (Ny) has the martingale property:
Vt > s, E[N;|N,] = N,. (2.79)

(Nt)tzo is called a compensated Poisson process and (the deterministic expres-
sion) (At);>o is called the compensator of (N;);>¢: it is the quantity which
has to be subtracted from N in order to obtain a martingale. Sample paths of
the Poisson and compensated Poisson process are shown in Figure 2.1. Note
that the compensated Poisson process is no longer integer valued: unlike the
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Poisson process, it is not a counting process. Its rescaled version N;/\ has
the same first two moments as a standard Wiener process:

Ny

E =0 Var

Ny
7] =t (2.80)

Figure 2.2 compares N, /A with a standard Wiener process. The two graphs
look similar and this is not a coincidence: when the intensity of its jumps
increases, the (interpolated) compensated Poisson process converges in distri-
bution to a Wiener process [153]:

N ~>OO
(f) A (Wt)tG[O T]- (281)
te[0,T

This result is a consequence of the Donsker invariance principle [228, Theo-
rem 14.9] and may be seen as a “functional” central limit theorem on Q =
D([0,T1).

Sample path of a compensated Poisson process

%“\

\M‘ \\\ W\\ !

-5
t 0 5 35

FIGURE 2.2: Left: Sample paths of a Wiener process with o = 1. Right:
Sample path of a compensated Poisson process with intensity A = 5, rescaled
to have the same variance as the Wiener process.

2.5.5 Counting processes

The Poisson process N; counts the number of random times {7,,n > 1}
occurring in [0, t], where the random times T, are partial sums of a sequence
of i.i.d. exponential random variables. More generally, given an increasing
sequence of random times {7T},,,n > 1} with P(T;, — oco) = 1, one can define
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the associated counting process (X;);>0 by

Xi = Z Lz, =#{n>1,T, > t}.

n>1

X is simply the number of random times {7},,n > 1} occurring in [0, ¢]. The
condition P(7,, — oo) = 1 guarantees that, with probability 1, X; is well-
defined (finite) for any ¢t > 0. Like the Poisson process, (X;);>o is a cadlag
process with piecewise constant trajectories: its sample paths move by jumps
of size +1.

If the random times (7,,) are constructed as partial sums of a sequence
of i.i.d. exponential random variables, then X is a Poisson process. For a
general counting process, the sequence of random times (73,) can have any
distribution and dependence structure. The following lemma shows that the
only counting processes with independent stationary increments are Poisson
processes:

LEMMA 2.1

Let (X}) be a counting process with stationary independent increments. Then
(Xy) is a Poisson process.

PROOF This is an elementary result, but its combinatorial proof (see
for example [324, Chapter 1]) is rather long, so we prefer to give a shorter
but less elementary one, which has an additional benefit of illustrating Doob’s
sampling theorem (Proposition 2.7).

Let Ty, = inf{t > 0: X; > k}. Define for n > 1,Y,, =T, — T;,—1. The first
step is to prove that Y7 has exponential distribution.

]P){Y1>t+8|Y1>t}:P{Xt+5:0|Xt:0}
—P{Xy— X, =0 X, =0} =P{X,y, — X, = 0}
= P{X, =0} = P{Y} > s}.

We have shown Y; to have the memoryless property. Thus, by Proposition
2.8 it is an exponential random variable.

The second step is to show that (X1y, — Xy, )e>o0 is independent from Y;
and has the same law as (X;);>0. To see this observe that Y is a nonanticipat-
ing (stopping) time for the process X; because the event {¥; <t} = {X;, > 1}
does not depend on the trajectory of X after t. Let f(t) = E[e?*X¢] for u fixed.
Independence and stationarity of increments of (X;) entail that for all s,¢ > 0,
f(s+1t) = f(s)f(t) and that
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is a martingale. Let Y{* = n AY;. As Y{" is a bounded stopping time, using
Doob’s optional sampling theorem we obtain:

E[eiu(Xyln+t7Xy1n)+i1)Y1"|fY1n] _ f(;‘(—’)_/nyi ) wYy" — f(t)eivyln.
1

Therefore

E[eiu(Xyl’”+t7Xyl"L )+ivY1"] _ E[eiUYI"]E[eiuXt } .

By the dominated convergence theorem we can compute the limit n — oo:

E[eiu(Xlerthyl)Jrile} _ E[eile}E[eiuXi].

This result shows both that the process (Xy,++ — Xy, )¢>0 is independent from
Y7 (because we could have taken any number of increments) and that it has
the same distribution as (X¢);>0. This property allows to conclude that Y3 is
independent from Y7 and has an exponential distribution, Y3 is independent
from Y5 and Y7 and has exponential distribution so the result is obtained by
induction.

2.6 Random measures and point processes

The Poisson process (N;)¢>o was defined in Section 2.5 as a counting pro-
cess: if T1,T5, ... is the sequence of jump times of N, then Ny is simply the
number of jumps between 0 and ¢:

Ne=#{i>1, T, €[0,t]}. (2.82)
Similarly, if ¢ > s then
Ny — Ny = #{i > 1, T; €]s,t]}.

The jump times 77, T, . . . form a random configuration of points on [0, co[ and
the Poisson process N; counts the number of such points in the interval [0, ¢].
This counting procedure defines a measure M on [0, 00[ : for any measurable
set A C RT let

M(w,A) =#{i > 1, T;(w) € A}. (2.83)

Then M(w,.) is a positive, integer valued measure and M (A) is finite with
probability 1 for any bounded set A. Note that the measure M (w,.) depends
on w: it is thus a random measure. The intensity A of the Poisson process
determines the average value of the random measure M: E[M(A)] = A A4]
where |A| is the Lebesgue measure of A.
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M is called the random jump measure® associated to the Poisson process

N. The Poisson process may be expressed in terms of the random measure
M in the following way:

Ni(w) = M(w,[0,t]) = o M(w,ds). (2.84)

The properties of the Poisson process translate into the following properties
for the measure M: for disjoint intervals [t1,t],. .., [tn,t]]

1. M([t.t,]) is the number of jumps of the Poisson process in [tg,t}]: it
is a Poisson random variable with parameter (¢}, — t).

2. For two disjoint intervals j # k, M ([t;,t}]) and M([tx,t}]) are indepen-
dent random variables.

3. More generally for any (measurable) set A, M(A) follows a Poisson
distribution with parameter A|A| where |[A| = [, dz is the Lebesgue
measure of A.

The random measure M can also be viewed as the “derivative” of the Poisson
process. Recall that each trajectory ¢ — Ny(w) of a Poisson process is an
increasing step function. Hence its derivative (in the sense of distributions)
is a positive measure: in fact it is simply the superposition of Dirac masses
located at the jump times:

d
ENt(w) = M(w,[0,t]) where M = Z(;Ti(“’)' (2.85)

i>1

In the same way, one can associate a random measure to the compensated
Poisson process N, defined in Section 2.5.4, by:

M(w,A) = M(w,A) — /A Adt = M(w, A) — M A. (2.86)

M (A) then verifies E[M(A)] = 0 and Var[M(A)] = A A|. Note that unlike
M, M is neither integer valued (counting measure) nor positive: it is a signed
measure. M is an example of a compensated random measure and the measure
A — M|A| is called the compensator of M. Note that here the compensator is
none other than X times the Lebesgue measure: A[A| = E[M(A)] and M is
the “centered” version of M.

This construction can be generalized in various ways, leading to the notions

of Poisson random measure, point process, and marked point process.

9Note that in most texts M and N are denoted by the same letter, which can be quite
confusing for the beginner.
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2.6.1 Poisson random measures

The measure M defined in (2.83) specifies a random counting measure on
R™ such that for any measurable set A C RT, E[M(A)] is given by A times
the Lebesgue measure of A. One can extend this construction to more general
settings, replacing RT by a £ C R? and the Lebesgue measure by any Radon'?
measure g on E:

DEFINITION 2.18 Poisson random measure Let (2, F,P) be a prob-
ability space, E C R and p a given (positive) Radon measure ji on (E,E). A
Poisson random measure on E with intensity measure p is an integer valued
random measure:

M:QxE—N
(w, A) — M(w, A),

such that

1. For (almost all) w € Q, M(w,.) is an integer-valued Radon measure on
E: for any bounded measurable A C E, M(A) < oo is an integer valued
random variable.

2. For each measurable set A C E, M(.,A) = M(A) is a Poisson random
variable with parameter u(A):

VEeN, P(M(A)=k) = e—ni) WA (2.87)

3. For disjoint measurable sets Ay, ..., A, € &, the variables M (A1), ...,,
M(A,) are independent.

The following result allows to construct, given any Radon measure pu, a
Poisson random measure with intensity u:

PROPOSITION 2.14 Construction of Poisson random measures
For any Radon measure ju on E C R?, there exists a Poisson random measure
M on E with intensity p.

PROOF We give an explicit construction of M from a sequence of inde-
pendent random variables. We begin by considering the case u(E) < oo.

1. Take X1, Xs, ...to beii.d. random variables so that P(X; € A) = Zgg%

108ee Definition 2.2.
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2. Take M(FE) to be a Poisson random variable on (2, F,P) with mean
w(E), independent of the X;.

3. Define M(A) = S MPE) 1 ,(X;), for all A€ €.

It is then easily verified that this M is a Poisson random measure with inten-
sity . If u(E) = oo, since u is a Radon measure we can represent £ C RY
as B = |J;2, E; where pu(E;) < oo and construct Poisson random measures
M;(+), where the intensity of M; is the restriction of p to F;. Make the M;(+)
independent and define M(A) = Y .2, M;(A) for all A € £. The superpo-
sition and thinning properties of Poisson random variables (see Section 2.56
imply that M has the desired properties.

The construction given in this proof shows that in fact any Poisson ran-
dom measure on F can be represented as a counting measure associated to a
random sequence of points'! in E: there exists { X, (w),n > 1} such that:

VAEE,  Mw,A)=> 1a(Xn(w)). (2.88)

n>1

M is thus a sum of Dirac masses located at the random points (X, )p>1:

M= ix,.

n>1

Since we require M(A) to be finite for any compact A C F, this puts a
constraint on the sequence (X,,)n>1: AN {X,,n > 1} should be a.s. finite
for any compact subset A C FE, i.e., the sequence should not accumulate at a
point in E.

A Poisson random measure on F can also be considered as as a random
variable taking values in the M(FE), the set of Radon measures on E (see
Definition 2.2), on which a topology is defined as follows: a sequence p,, of
Radon measures on £ C R? is said to converge to a Radon measure y if for any
[+ E — R with compact support [ fdu, — [ fdu. Therefore the notions of
convergence defined for random variables in Section 2.2 also apply to Poisson
random measures. The following criterion [228] is useful for studying their
convergence:

PROPOSITION 2.15 Convergence of Poisson random measures
Let (M,)n>1 be a sequence of Poisson random measures on E C R with
intensities (fn)n>1. Then (My)n>1 converges in distribution if and only if
the intensities (p,) converge to a Radon measure p. Then M, = M where
M is a Poisson random measure with intensity .

1 For this reason Poisson random measures are also called “Poisson point processes”, al-
though the word “process” is confusing since there is no time variable involved yet.
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2.6.2 Compensated Poisson random measure

In the same way as we defined the compensated Poisson process from the
Poisson process in Section 2.5.4, one can construct the compensated Poisson
random measure M by subtracting from M its intensity measure:

M(A) = M(A) — u(A). (2.89)

From the definition of Poisson random measures, one easily deduces that for

disjoint compact sets Ai,..., A, € &, the variables M(Al), o, M(A4,) are
independent and verify

E[M(A;)] =0 Var[M(Ai)] = p(4q).

2.6.3 Building jump processes from Poisson random mea-
sures

Consider now a Poisson random measure M on E = [0,7] x R4\ {0}: as
above, it can be described as the counting measure associated to a random
configuration of points (7,,Y,,) € E:

M= Z (1 v,)- (2.90)

n>1

Intuitively, each point (7}, (w),Y,(w)) € [0,T] x R? corresponds to an ob-
servation made at time T, and described by a (nonzero) random variable
Y, (w) € R4.

Since we want to interpret the first coordinate ¢ as time, we introduce as
in Section 2.4.2 an information flow F; on (2, F,P). We will say that M
is a nonanticipating Poisson random measure (or a Poisson random measure

adapted to F; ) if:

e (T,)n>1 are nonanticipating random times.

e Y, is revealed at T,: Y, is Fr, -measurable.

For each w, M(w,.) is a measure on E = [0, 7] x R4\{0} and we can define,
as in Section 2.1.2, integrals with respect to this measure. First, for simple
functions f = Z;;l ¢;la, where ¢; > 0 and A; C E are disjoint measurable
sets, we define M (f) = >0, ¢;M(A;): M(f) is a random variable with ex-
pectation E[M(f)] = >I, ¢iu(A;). Next, for positive measurable function
f: E — [0,00[ we define M (f) = lim,, oo M(f) where f,, T fis an increasing
sequence of simple functions. By the monotone convergence theorem, M (f)
is a random variable with values in [0, co[U{oo} and (possibly infinite) expec-
tation E[M(f)] = p(f). For a real-valued (measurable) function f : F — R,
one can decompose f into its positive and negative part: f = fi — f_. If f
verifies

U= [ [ Helntas x dy) < o0 (291)
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then the positive random variables M (f;), M(f-) have finite expectation:
EM(f+)] = p(f+) < p(]f]) < oco. In particular, M(fy), M(f-) are almost
surely finite: we can therefore define M(f) := M(fy) — M(f-) and M(f)
thus defined is a random variable with expectation

BV =p() = [ St <)

Integrating f with respect to M up to time t, i.e., restricting the integral to
[0,¢] x R4\ {0} yields a nonanticipating stochastic process:

XtZ/O/Rd\{O}f(S,y)M(ds dy)= > f(Tn.Ya). (292

{n,T,€[0,t]}

The second sum runs over the events (7,,,Y;,) which have occurred before ¢,
ie., T < t. (X¢(f))teo,r) is thus a jump process whose jumps happen at
the random times T, and have amplitudes given by f(7),,Y,). As remarked
above, this construction makes sense if f verifies (2.91).

Similarly, under condition (2.91), one can define the integral of f with
respect to the compensated Poisson measure M. The resulting process, called
the compensated integral, is in fact a martingale:

PROPOSITION 2.16 Compensated Poisson integrals

Let M be a nonanticipating Poisson random measure on E = [0, T] x R%\ {0}
with intensity p with compensated random measure M=DM-— wand f: E—
R? verifying (2.91). Then the process

t ~
Xo= [0, S @

:/0 /Rd\{o} f(s,y)M(ds dy) —/0 /Rd\{o} f(s,y) n(ds dy) (2.93)

s a martingale.

Note that, even though the integrals defined in this section are random
variables, they are defined pathwise i.e., for any w € Q.

2.6.4 Marked point processes (*)

As observed above, a Poisson random measure on [0, 7] x R? can be repre-
sented as a counting measure:

Mw,.) = Z O(T, (), Y (w)) (2.94)

n>1
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for some random sequence (7, Y;,)n>1 of points in [0, 7] x R, Using this rep-
resentation one can define integer valued random measures with more complex
dependence properties: given a random sequence (7,,,Y,,) € [0,T] x E where
(Th)n>1 is a sequence of nonanticipating random times describing the occur-
rence of some events and Y,, € E C R? a quantity observed at time T}, (Y, is
Fr, measurable), we can define a counting measure M by (2.94). M is called
an integer valued random measure on [0,7] x E and the random sequence
(T, Y,) € [0,T] x E is then called a marked point process. The random
variables (Y,,)n>1 are called “marks”.

DEFINITION 2.19 Marked point process A marked point process
on (U, F,(F),P) is a sequence (Ty,Yn)n>1 where

o (T,,)n>1 is an increasing sequence of nonanticipating random times with
T, — oo almost surely as n — .

o (Y,)n>1 is a sequence of random variables taking values in E.

o The value of Y, is revealed at T),: Y, is Fr, measurable.

The condition T,, — oo guarantees that the number of events occurring on
[0,T7] is a.s. finite. For each w € ), M (w,.) is a counting measure on [0, 7] x E.
If p is a diffuse measure'?, i.e., u({(t,y)}) = 0 for all points (t,y) € E then,
with probability 1, each point occurs at most once: M ({(¢,y)}) =0 or 1.

Marked point processes do not have the independence properties of Pois-
son random measures: if A; N As = 0 then M([0,¢] x A1), M([0,¢] x As) are
not independent anymore, nor are they Poisson random variables: they allow
for arbitrary distributions and dependence structures. Any Poisson random
measure on [0,7] x R can be represented as in (2.94) but (7},) does not neces-
sarily verify T;,, — oo so all Poisson random measures cannot be represented
by marked point processes: only those with 1([0,7] x R%) < oo.

For a function f : [0,T] x E — RY verifying Jio.17 1 (£,9)|pu(dt dy) one
can construct the integral with respect to the random measure M: it is given
by the random variable

M= [ M) = ST 29)

n>1

One can then construct a jump process from f as in Section 2.6.1:

Xp= [ L SepMUsd = ST [T @259

{n,Tne[0,t]}

128¢ee Section 2.1.
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(Xt(f))tejo,7) is a nonanticipating jump process with cadlag trajectories whose
jumps are described by the marked point process M: the jumps occur at
(T)n>1 and their amplitudes are given by f(T,,Y,,). This construction gives
a systematic way of generating jump processes from marked point processes.

Conversely, to each cadlag process (Xt)te[O,T] with values in R? one can
associate a random measure .Jx on [0, 7] x R? called the jump measure, in the
following manner. As mentioned in Section 2.4, X has at most a countable
number of jumps: {t € [0,T], AX; = X; — X;_ # 0} is countable: its
elements can be arranged in a sequence (T7,),>1 (not necessarily increasing),
which are the (random) jump times of X. At time 7,,, the process X has
a discontinuity of size V,, = X7, — X7, € R4\ {0}. (T, Ys)n>1 defines
a marked point process on [0,7] x R?\ {0} which contains all information
about the jumps of the process X: the jump times 7T;, and the jump sizes Y,,.
The associated random measure, which we denote by Jx, is called the jump
measure of the process X:

AX,#£0
Ix(@,) =D 6Ty = D, Stax,: (2.97)
n>1 te[0,T]

In intuitive terms, for any measurable subset A C R¢:

Jx ([0,] x A) := number of jumps of X occurring between 0 and ¢
whose amplitude belongs to A.

The random measure Jx contains all information about the discontinuities
(jumps) of the process X: it tells us when the jumps occur and how big they
are. Jx does not tell us anything about the continuous component of X. It is
easy to see that X has continuous sample paths if and only if Jx = 0 almost
surely (which simply means that there are no jumps!).

All quantities involving the jumps of X can be computed by integrating
various functions against Jx. For example if f(¢,y) = y? then one obtains
the sum of the squares of the jumps of X:

/ v Ux(dtdy) = > (AXy)% (2.98)
[0, T]xR te[0,7]

Such expressions may involve infinite sums and we will see, in Chapters 3 and

8, when and in what sense they converge.

Example 2.1 Jump measure of a Poisson process

The jump measure of the Poisson process (2.69) is given by Jy = Zn21 d(1,.1):

In(0,] x A) = #{i>1, T, €[0,4]} ifleA
=0 ifl¢A
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Example 2.2
Consider a sequence of nonanticipating random times T4, T, . . . and let (X,,)n>1
be a sequence of random variables such that X, is revealed at T;,. Then

X = Z X, Toin]

n>1

defines a cadlag process with jump times 7, and jump sizes AXp, = X, —
X, —1. Its jump measure is given by:

Jx = Z (T X —X1)-

n>1
If T, — oo a.s. then (T),, X, — X;,—1)n>1 defines a marked point process. I

Finally, let us note that if X is a jump process built from a Poisson random
measure M as in (2.96):

M= by Xe= / F(s,y)M(ds dy)

et [0,¢] x R4\ {0}

then the jump measure Jx can be expressed in terms of the Poisson random
measure M by

Jx =)0, 17, v, (2.99)

n>1

Further reading

General references on topics covered in this chapter are [228] or [153]. For
general notions on probability spaces, random variables, characteristic func-
tions and various notions of convergence we refer the reader to the excellent
introductory text by Jacod and Protter [214]. Poisson processes are treated
in most texts on stochastic processes; the link with point processes is treated,
in increasing level of difficulty by Kingman [235], Bouleau [68], Resnick [333],
Fristedt & Gray [153], Neveu [306]. A short introduction to Poisson random
measures is given in [205]. Point processes are considered in more detail in
[227] using a measure theory viewpoint. A modern treatment using martin-
gales is given in [306, 73] see also [295].
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Simeon-Denis Poisson

The Poisson distribution and the Poisson process were named after the
French mathematician Simeon-Denis Poisson (1781-1840). Poisson studied
mathematics at Ecole Polytechnique in Paris, under Joseph Louis Lagrange,
Pierre Simon Laplace and Jean Baptiste Fourier. Elected to the French
Academy of Sciences at age 30, he held academic positions at Ecole Poly-
technique and Sorbonne. Poisson made major contributions to the theories of
electricity and magnetism, the motion of the moon, the calculus of variations,
differential geometry and, of course, probability theory. Poisson found the
limiting form of the binomial distribution that is now named after him: the
Poisson distribution. The importance of this discovery was only recognized
years later, by Chebyshev in Russia. His works on probability appeared in
the book Recherches sur la probabilité des jugements en matiére criminelle
et en matiere civile, précédées des regles générales du calcul des probabilités,
published in 1837, where he was the first to use the notion of cumulative
distribution function, to define the density as its derivative and to develop
an asymptotic theory of central limit type with remainder for hypergeometric
sampling [362]. The expression “law of large numbers” is due to Poisson: “La
loi universelle des grands nombres est a la base de toutes les applications du
calcul des probabilités” 3. Poisson was also the first to compute the Fourier
transform of x — exp(—|z|) and thus discovered what is now (erroneously)

13The universal law of large numbers lies at the foundation of all applications of probability
theory.
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called the “Cauchy distribution” (also called the Lorentzian curve by physi-
cists). He observed in particular that the law of large numbers did not apply
to this distribution, which does not possess a first moment, thus finding the
first counterexample to the law of large numbers [173, 120].

Poisson was also interested in the use of statistics in the study of social phe-
nomena. In his book Recherches sur la probabilité des jugements, Poisson ad-
vocated the use of probability as the natural way of describing socio-economic
phenomena. Herbert Solomon writes in [173]: “While Poisson’s name is com-
monplace to us, the breadth and variety of Poisson’s work is neglected in
formal courses undertaken by even the most advanced students.”
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Chapter 3

Lévy processes: definitions and
properties

Dans la galaxie des mathématiques, le cas du calcul des probabilités est un
peu spécial car tout le monde n’est pas d’accord pour savoir si cette disci-
pline appartient aux mathématiques. .. Voila qui, en un certain sens, nous
redonne de I'espoir car si les probabilités ne sont pas des mathématiques
peut-étre gardons nous une chance d’y comprendre quelque chose?

Marc Petit L’équation de Kolmogoroff, Ramsay: Paris, p 221.

Just as random walks — sums of independent identically distributed ran-
dom variables — provide the simplest examples of stochastic processes in
discrete time, their continuous-time relatives — processes with independent
stationary increments, called Lévy processes in honor of the French mathe-
matician Paul Lévy — provide key examples of stochastic processes in con-
tinuous time and provide ingredients for building continuous-time stochastic
models. The Poisson process and the Wiener process, discussed in Chapter 2,
are fundamental examples of Lévy processes. We will see later in this chapter
that they can be thought of as building blocks of Lévy processes because every
Lévy process is a superposition of a Wiener process and a (possibly infinite)
number of independent Poisson processes.

In this chapter, we introduce Lévy processes and discuss some of their gen-
eral properties. The next one will be devoted to several parametric examples
of Lévy processes. First, in Sections 3.2 and 3.3, we discuss compound Pois-
son processes, which are the simplest examples of Lévy processes and can be
considered as Poisson processes with random jump sizes. The class of com-
pound Poisson processes is both simple to study and rich enough to introduce
two important theoretical tools: the Lévy-Khinchin formula that allows to
study distributional properties of Lévy processes and the Lévy-Itd decom-
position, that describes the structure of their sample paths. For compound
Poisson processes the proofs are elementary and we give them in full detail.
In Section 3.4 we show how the fundamental results obtained in compound
Poisson case can be extended to a more general setting. Here we prefer to
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explain the principles underlying the proofs rather than give full mathemati-
cal details. Finally, in last sections of the chapter we use the Lévy-Khinchin
formula and the Lévy-Ito6 decomposition to derive the fundamental properties
of Lévy processes.

3.1 From random walks to Lévy processes

DEFINITION 3.1 Lévy process A cadlag' stochastic process (X)i>0
on (0, F,P) with values in R? such that Xo = 0 is called a Lévy process if it
possesses the following properties:

1. Independent increments: for every increasing sequence of times tg ... 1.,
the random variables Xy, X¢, — X4, ..., Xy, — Xy are independent.

n—1

2. Stationary increments: the law of Xi1n — X; does not depend on t.

3. Stochastic continuity: Ve > 0, }l'ir% P(|Xi1n — X¢| > €)= 0.

The third condition does not imply in any way that the sample paths are
continuous: as noted in Proposition 2.12, it is verified by the Poisson process.
It serves to exclude processes with jumps at fixed (nonrandom) times, which
can be regarded as “calendar effects” and are not interesting for our purpose.
It means that for given time ¢, the probability of seeing a jump at ¢ is zero:
discontinuities occur at random times.

If we sample a Lévy process at regular time intervals 0, A, 2A, ..., we obtain
arandom walk: defining S,,(A) = X,,a, we can write S, (A) = 22;01 Y}, where
Yi = X(k11)a — X are i.i.d random variables whose distribution is the same
as the distribution of X . Since this can be done for any sampling interval A
we see that by specifying a Lévy process we have specified a whole family of
random walks S, (A): these models simply correspond to sampling the Lévy
process X at different frequencies.

Choosing nA = t, we see that for any ¢ > 0 and any n > 1, X; = S,(A)
can be represented as a sum of n i.i.d. random variables whose distribution is
that of X;,,: X; can be “divided” into n i.i.d. parts. A distribution having
this property is said to be infinitely divisible:

1Some authors do not impose the cadlag (right-continuity and left limits) property in the
definition of a Lévy process but it can be shown (see [324, Theorem 30] or [345, Chapter 1])
that every Lévy process (defined without the cadlag property) has a unique modification
that is cadlag, therefore the cadlag property can be assumed without loss of generality.
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DEFINITION 3.2 Infinite divisibility A probability distribution F
on R? is said to be infinitely divisible if for any integer n > 2, there exists n
1.4.d. random variables Y1, ...Y,, such that Y1 + ... +Y,, has distribution F.

Since the distribution of i.i.d. sums is given by convolution of the distri-
bution of the summands, if we denote by u the distribution of the Yj-s in
the definition above, then F' = p % p % --- % y is the n-th convolution of .
So an infinitely divisible distribution can also be defined as a distribution F'
for which the n-th convolution root is still a probability distribution, for any
n > 2.

Thus, if X is a Lévy process, for any ¢ > 0 the distribution of X, is infinitely
divisible. This puts a constraint on the possible choices of distributions for
X;: whereas the increments of a discrete-time random walk can have arbi-
trary distribution, the distribution of increments of a Lévy process has to be
infinitely divisible.

The most common examples of infinitely divisible laws are: the Gaussian
distribution, the gamma distribution, a-stable distributions and the Pois-
son distribution: a random variable having any of these distributions can be
decomposed into a sum of n i.i.d. parts having the same distribution but
with modified parameters. For example, if X ~ N(u,0?) then one can write
X = Zz;é Y, where Y} are i.i.d. with law N(uu/n,02/n). Less trivial exam-
ples are the log-normal, Pareto, Student distributions. Finally, an example of
distribution which is not infinitely divisible is the uniform law on an interval.

Conversely, given an infinitely divisible distribution F', it is easy to see that
for any n > 1 by chopping it into n i.i.d. components we can construct a
random walk model on a time grid with step size 1/n such that the law of the
position at ¢t = 1 is given by F. In the limit, this procedure can be used to
construct a continuous time Lévy process (X;);>o such that the law of X; if
given by F:

PROPOSITION 3.1 Infinite divisibility and Lévy processes

Let (Xy)i>0 be a Lévy process. Then for everyt, X, has an infinitely divisible
distribution. Conversely, if F' is an infinitely divisible distribution then there
exists a Lévy process (Xy) such that the distribution of X1 is given by F.

The direct implication was shown above. For the proof of the converse
statement see [345, Corollary 11.6].
Define the characteristic function of Xj:
®y(2) = Dy, (2) = E[e™*™], zecRL
For t > s, by writing Xy s = X + (X415 — X;) and using the fact that

Xi1s — X, is independent of X, we obtain that ¢ — ®;(z) is a multiplicative
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function:

Drys(z) = Px,, . (2) = Px,(2)Px, .~ x.(2)
= (I)Xs(z)‘I)Xt(Z) = (I)S(I)t.

The stochastic continuity of ¢ — X; implies in particular that X; — Xy in
distribution when s — t. Therefore, from Proposition 2.6, ®x_(z) — ®x,(2)
when s — ¢ so t — ®4(z) is a continuous function of ¢. Together with the
multiplicative property ®;+(z) = P4(2).P+(z) this implies that t — Py(2) is
an exponential function:

PROPOSITION 3.2 Characteristic function of a Lévy process
Let (X;)i>0 be a Lévy process on R?. There exists a continuous function
1 : R4 — R called the characteristic exponent of X, such that:

E[eiZ.Xt} _ e“/’@)j z € Rd. (31)

Recalling the definition of the cumulant generating function of a random
variable (2.29), we see that 1 is the cumulant generating function of X;:
1 = ¥x, and that the cumulant generating function of X, varies linearly in ¢:
Uy, =tWx, =t. The law of X, is therefore determined by the knowledge
of the law of X : the only degree of freedom we have in specifying a Lévy
process is to specify the distribution of X for a single time (say, t = 1).

3.2 Compound Poisson processes

DEFINITION 3.3 Compound Poisson process A compound Poisson
process with intensity A > 0 and jump size distribution f is a stochastic process
X, defined as

N,
X, = ZY“ (3.2)
i=1

where jumps sizes Y; are i.4.d. with distribution f and (Ny) is a Poisson
process with intensity X, independent from (Y;)i>1.
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FIGURE 3.1: Left: A compound Poisson process with a Gaussian distri-

bution of jump sizes. Right: A jump diffusion: Lévy process with Gaussian
component and finite jump intensity.

The following properties of a compound Poisson process are easily deduced
from the definition:

1. The sample paths of X are cadlag piecewise constant functions.

2. The jump times (7;);>1 have the same law as the jump times of the Pois-
son process IVy: they can be expressed as partial sums of independent
exponential random variables with parameter .

3. The jump sizes (Y;);>1 are independent and identically distributed with
law f.

The Poisson process itself can be seen as a compound Poisson process on
R such that Y; = 1. This explains the origin of term “compound Poisson” in
the definition.

Let R(n),n > 0 be a random walk with step size distribution f: R(n) =
Z?:o Y;. The compound Poisson process X; can be obtained by changing the
time of R with an independent Poisson process Ny X; = R(N;). X; thus
describes the position of a random walk after a random number of time steps,
given by N;. This operation is similar to the subordination of Lévy processes,
to be discussed in Chapter 4.

The left graph in Figure 3.1 depicts a typical trajectory of a compound
Poisson process — note the piecewise constant path. Compound Poisson pro-
cesses are Lévy processes and they are the only Lévy processes with piecewise
constant sample paths, as shown by the following proposition.

PROPOSITION 3.3
(X1)i>0 is compound Poisson process if and only if it is a Lévy process and
its sample paths are piecewise constant functions.
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PROOF of the “if” part Let (X;);>¢ be a Lévy process with piecewise
constant paths. To show that it is a compound Poisson process we need to
prove properties 2 and 3 of Definition 3.3. Let us first prove property 2. We
can construct, path by path, a process (N, ¢ > 0) which counts the jumps of
X:

Ny =#{0<s<t: X, #X,}. (3.3)

Since the trajectories of X are piecewise constant, X has a finite number
of jumps in any finite interval which entails that NV; is finite for all finite ¢.
Hence, it is a counting process. Let h < ¢t. Then

No—Npy=#{h<s<t: X, #X,=#{h<s<t:Xe —Xn#X,—Xp}

Hence, Ny — N}, depends only on (X — X3), h < s < t. Therefore, from the
independence and stationarity of increments of (X3) it follows that (IV;) also
has independent and stationary increments. Lemma 2.1 entails that (IV;) is a
Poisson process, which proves property 2 of Definition 3.3.

Using the process N, we can compute the jump sizesof X: Y,, = Xg —Xg, _
where S, = inf{t : Ny > n}. To check property 3 of Definition 3.3 and
complete the proof of the “if” part, it remains to show that these jump sizes
are i.i.d. Let us prove that they are independent. First we would like to show
that the increments of X conditionally on the trajectory of N are independent.
Let ¢ > s and consider the following four sets:

AleU(XS) Blea(Nr,rgs)
As €o(Xy— Xs) By €o(N,.— Ng,r>s)

such that P(By) > 0 and P(Bs3) > 0. The independence of increments of
X implies that processes (X, — X4, 7 > s) and (X,,r < s) are independent.
Hence,

P[Al n 31 n AQ n Bg] = ]P)[Al N Bl]P[AQ n Bg]

Moreover,

- Ay and Bj are independent from Bs.

- As and Bs are independent from Bj.

- By and By are independent from each other.

Therefore, the conditional probability of interest can be expressed as follows:

P[A; N B1]P[A; N By

P[B1|P[By]
_ P[A, N By N By)P[A3 N By N By
; P[B1|°P[B,]?

P[A; N Az|By N By] =

= P[A1|B1 N B]P[As| By N By).

This proves that X; — X and X, are independent conditionally on the trajec-
tory of N. In particular, choosing B; = {N; = 1} and By = {N, — N, = 1}
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we obtain that Y; and Y5 are independent. Since we could have taken any
number of increments of X and not just two of them, this proves that (Y;);>1
are independent.

Finally, to prove that the jump sizes have the same law, observe that the
two-dimensional process (X, Vi) has stationary increments. Therefore, for
every n > 0 and for every s > h > 0,

E[f(X3)|Ny =1,N, — Nj, = n]
= E[f(Xs+h - Xs)|Ns+h —Ny=1,Ny— Nj, = n],

where f is any bounded Borel function. This entails that for every n > 0, ¥;
and Y, 42 have the same law which completes the proof.

PROOF of the “only if” part Let (X¢)i>0 be a compound Poisson
process.

e Independence of increments. Let 0 < r < s and let f and g be bounded
Borel functions on R?. To ease the notation, we prove only that X, is inde-
pendent from X, — X, but the same reasoning applies to any finite number
of increments. We must show that

E[f(X;)g(Xs = Xp)] = Elf (X:)|E[g(Xs = X))

From the representation X, = Z Y and X, — X, = ZfV:sN 41 Yi the fol-
lowing observations can be made:

- Conditionally on the trajectory of Ny for ¢t € [0,s], X, and X — X, are
independent because the first expression only depends on Y; for i < N, and
the second expression only depends on Y; for i > N,..

- The expectation E[f(X,) ’Nt,t < s] depends only on N, and the expectation
Elg(Xs — XT)’Nt,t < s] depends only on N; — N,

Now, using the independence of increments of the Poisson process, we can
write:

E[f(Xr)g(Xs - X ]

E[E[f( XT) (X5 — X,)|Ni, t < ]
E[E[f(X,)|Ni,t < s]E[g(Xs — X,)| Ny, t < 8]
E[E X0)|Nost < s||E[B[g(X, = X,)| Ny, t < s]]
= E[f (X, )]E[ (X5 — X))

e Stationarity of increments. Let 0 < r < s as above and let f be a bounded
Borel function. Using the observations made above, we can write:

Elf(Xs — X,) Z Y| Ny, t < s]]
1=N,+1
SZ Y| Nyt < s]) = ZY|Nt,t<s = B[f(X._)].
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e Stochastic continuity. X; only jumps if N; does. By Proposition 2.12, for
every t > 0,
s<t

P(N, = Ny) = 1.

Hence, for every ¢ > 0,
s<t

P(X, = X)) = 1.

Since almost sure convergence entails convergence in probability, this implies
stochastic continuity. [

Since any cadlag function may be approximated by a piecewise constant
function, one may expect that general Lévy processes can be well approxi-
mated by compound Poisson ones and that by studying compound Poisson
processes one can gain an insight into the properties of Lévy processes.

PROPOSITION 3.4 Characteristic function of a compound Poisson
process

Let (Xy)i>0 be a compound Poisson process on R?. Its characteristic function
has the following representation:

Elexpiu.X;] = exp {t)\/ (e"" — l)f(dx)} , YueR? (3.4)
Rd
where \ denotes the jump intensity and [ the jump size distribution.

Comparing (3.4) with the characteristic function of the Poisson process
(2.72) we see that a compound Poisson random variable can be represented
as a superposition of independent Poisson processes with different jump sizes.
The total intensity of Poisson processes with jump sizes in the interval [z, z +
dz] is determined by the density \f(dz).

PROOF  Conditioning the expectation on N; and denoting the character-
istic function of f by f, we find
Elexpiu.X] = E[Elexpiu.X;]|N;] = E[(f ()]
_ 5 O )

n!

— exp{M(f(u) — 1)}
n=0

= exp {t)\ /Rd(em — 1)f(dx)} :
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For one-dimensional compound Poisson processes the characteristic func-
tion has a simpler form:

o0

— 00

Elexp{inX,}] = exp {m / (eive — 1) f(d:v)} . VueR

Introducing a new measure v(A) = Af(A), we can rewrite the formula (3.4)
as follows:

Elexpiu.X,;] = exp {t/Rd(ei“-r - l)y(dx)} , YueRL (3.5)

v is called the Lévy measure of process (X¢);>0. v is a positive measure on
R but not a probability measure since [v(dz) = X # 1. Formula (3.5) is a
particular case of the so called Lévy-Khinchin representation (see Theorem
3.1).

3.3 Jump measures of compound Poisson processes

We will now use the notion of random measure, introduced in Section 2.6,
to study the behavior of jumps of a compound Poisson process. As shown in
Section 2.6.4, to every cadlag process and in particular to every compound
Poisson process (X;)¢>0 on R? one can associate a random measure on R? x
[0, oo[ describing the jumps of X: for any measurable set B C R? x [0, 00|

Jx(B) = #{(t,X: — X;—) € B}. (3.6)

For every measurable set A C R? Jx([t;,ts] x A) counts the number of
jump times of X between ¢; and to such that their jump sizes are in A. The
following proposition shows that Jx is a Poisson random measure in the sense
of Definition 2.18.

PROPOSITION 3.5 Jump measure of a compound Poisson process

Let (X¢)i>0 be a compound Poisson process with intensity X and jump size
distribution f. Its jump measure Jx is a Poisson random measure on R x
[0, co[ with intensity measure p(dx x dt) = v(dx)dt = Af(dx)dt.

This proposition suggests an alternative interpretation of the Lévy measure
of a compound Poisson process as the average number of jumps per unit of
time. In fact, we will see in the sequel that this interpretation is much more
general than the one that uses the jump size distribution. It can be used
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to define the Lévy measure for all Lévy processes and not only compound
Poisson ones as follows:

DEFINITION 3.4 Lévy measure  Let (X;)i>0 be a Lévy process on
R?. The measure v on R* defined by:

v(A) = E[#{t€[0,1]: AX, #0, AX, € A}], AecBR?) (3.7)

is called the Lévy measure of X : v(A) is the expected number, per unit time,
of jumps whose size belongs to A.

PROOF of Proposition 3.5  From the Definition (3.6) it is clear that
Jx is an integer valued measure. Let us first check that Jx(B) is Poisson
distributed. It is sufficient to prove this property for a set of the form B =
A X [t1,t2] with A € B(R?). Let (N;);>0 be the Poisson process, counting the
jumps of X. Conditionally on the trajectory of N, the jump sizes Y; are i.i.d.
and Jx ([t1,t2] x A) is a sum of N (t3) — N(t1) i.i.d. Bernoulli variables taking
value 1 with probability f(A). Therefore,

E[eiujx([tl,tz]xA)] — E[E[eiqu([thtz]xA)|Nt’t > 0]]
= E[{e" f(A) + 1 = fND"NE) = exp{A(t2 — t1) f(A) (" — 1)}

because N (t2) — N (t1) is Poisson distributed with parameter A(t2 —¢;). Thus,
Jx ([t1,t2] x A) is a Poisson random variable with parameter f(A)A(t2 — t1)
which was to be shown.

Now let us check the independence of measures of disjoint sets. First, let
us show that if A and B are two disjoint Borel sets in R? then Jx ([t1,t2] x A)
and Jx ([t1,t2] x B) are independent. Conditionally on the trajectory of N,
the expression iuJx ([t1,t2] X A) +ivJx ([t1,t2] x B) is a sum of N (t2) — N(t1)
i.i.d. random variables taking values:

iu  with probability f(A);
iv  with probability f(B);
0 with probability 1 — f(A) — f(B).

Proceeding like in the first part of the proof, we factorize the characteristic
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function as follows
E[ei’U.JX ([tl ,tQ] XA)+’£U.]X ([tl ,tQ] XB)]

= E[{(e™ — 1)f(A) + (e — 1) f(B) + 1}N(t2)=N ()]

= exp{A(t2 — t2)(f(A)(e™ — 1) + f(B) (™ — 1))}
_ E[eiqu([thtz}XA)]E[eiva([thtz}XB)].

Second, let [t1,t3] and [s1,s2] be two disjoint intervals. The independence
of Jx ([t1,t2] x A) and Jx ([s1, s2] x B) follows directly from the independence
of increments of the process X.

Now the independence of jump measures of any finite number of disjoint
sets of [0, 0co[xRY follows from the additivity of Jx and from the fact that the
methods used in this proof work for any finite number of sets. I

Proposition 3.5 implies that every compound Poisson process can be repre-
sented in the following form:

Xi= > AX,= / xJx (ds x dz), (3.8)
s€[0,t] (0,6 xR?

where Jx is a Poisson random measure with intensity measure v(dz)d¢. This
is a special case of the Lévy-It6 decomposition for Lévy processes. Here we
have only rewritten the process X as the sum of its jumps. Since a compound
Poisson process has almost surely a finite number of jumps in interval [0, ],
the stochastic integral appearing in (3.8) is a finite sum, so there are no
convergence problems.

The following lemma is a useful tool for computing various quantities, re-
lated to Poisson random measures. It is somewhat analogous to Proposition
2.9.

LEMMA 3.1
Let M be a Poisson random measure with intensity measure p and let A
be a measurable set such that 0 < p(A) < oo. Then the following two ran-

dom measures on the subsets of A have the same distribution conditionally on
M(A):

° M’A, the restriction of M to A.

o My defined by ]\/ZA(B) = #{X,; € B} for all measurable subsets B of A,
where X;,i = 1,..., M(A) are independent and distributed on A with
the law %. In other words, J/W\A is the counting measure of M(A)
independent random points, identically distributed on A.
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PROOF  Let By, -+, By be measurable disjoint subsets of A and denote
B=A\(BiU---UBy)and n=n— ), n;. Then
P{M(B1) =ny,..., M(Bg) = ny|M(A) = n}
_ P{M(B)) =ni,..., M(By) = ny, M(B) = 7}
P{M(A) = n}

_ (u(Bl)>”1 (M(Bk)>"k u(B)
nil.oong!nl \ p(A) T\ u(A) w(A) )’
which is clearly equal to the distribution of JT/[\A(Bl),...,]\/IA(Bk). Using

the additivity of measures, we can show that the sets By,..., By must not
necessarily be disjoint. The statement of the lemma follows.

As an application of the preceding lemma, consider the following result.

PROPOSITION 3.6 Exponential formula for Poisson random mea-
sures

Let M be a Poisson random measure with intensity measure . Then the
following formula holds for every measurable set B such that u(B) < oo and
for all functions f such that fB el @ p(dx) < oo:

Eexp { /B f(x)M(dx)} — oxp { /B (/@ _ 1)u(dx)} . (3.9)

PROOF Condition the expectation on p(B) and use Lemma 3.1. 0

In the sequel we will see that to obtain this formula we do not need the
assumption that both p(B) and [, ef(® p(dz) be finite, it suffices only to
require [p,|e/®) — 1|p(dx) < oo.

Proposition 3.6 allows to establish a one-to-one correspondence between
compound Poisson processes and Poisson random measures with intensity
measures of the form v(dz)dt with v finite. Indeed, let v be a finite measure
on R? and let M be a Poisson random measure on R? x [0, co[ with intensity
measure v(dz)dt. Then one can show using Proposition 3.6 that Equation
(3.8) defines a compound Poisson process with Lévy measure v.

3.4 Infinite activity Lévy processes

In the preceding section, we saw that every piecewise constant Lévy process
X? can be represented in the form (3.8) for some Poisson random measure
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with intensity measure of the form v(dx)dt where v is a finite measure, defined
by

v(A) = B[#{t € [0,1]: AX? #0, AX? € A}], A€ BRY. (3.10)

Given a Brownian motion with drift vt + W;, independent from X°, the sum
X = X + ~t + W, defines another Lévy process, which can be decomposed
as:

Xp=yt+ Wit > AX5:7t+Wt+/ aJx (ds x dx),
s€[0,t] [0,¢]xR4

where Jx is a Poisson random measure on [0, co[xR? with intensity v(dz)dt.

Can every Lévy process be represented in this form? Given a Lévy process
Xt, we can still define its Lévy measure v as above. v(A) is still finite for
any compact set A such that 0 ¢ A: if this were not true, the process would
have an infinite number of jumps of finite size on [0, T, which contradicts the
cadlag property. So v defines a Radon measure on R?\ {0}. But v is not
necessarily a finite measure: the above restriction still allows it to blow up at
zero and X may have an infinite number of small jumps on [0, 7]. In this case
the sum of the jumps becomes an infinite series and its convergence imposes
some conditions on the measure v, under which we obtain a decomposition of
X similar to the one above:

PROPOSITION 3.7 Lévy-It6 decomposition

Let (X¢)i>0 be a Lévy process on R? and v its Lévy measure, given by Defi-
nition 3.4.

e v is a Radon measure on R%\ {0} and verifies:
/ |z|?v(dx) < oo / v(dx) < .
|| <1 |z|>1

o The jump measure of X, denoted by Jx, is a Poisson random measure
on [0, 00[ xR with intensity measure v(dx)dt.

e There exist a vector v and a d-dimensional Brownian motion* (Bi)i>o
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with covariance matriz A such that

X, =~t+ B+ X!+ 11%15(5, where (3.11)
g
Xl = / xJx(ds x dx) and
|z|>1,5€[0,t]
X: = / x{Jx(ds x dx) — v(dx)ds}

e<|z|<1,s€[0,t]

= / xJx (ds x dz).

e<|z|<1,s€[0,t]

The terms in (3.11) are independent and the convergence in the last term is
almost sure and uniform in t on [0,T].

The Lévy-Ito decomposition entails that for every Lévy process there exist
a vector 7, a positive definite matrix A and a positive measure v that uniquely
determine its distribution. The triplet (A, v, ) is called characteristic triplet
or Lévy triplet of the process X;.

Given the importance of this result, let us comment a bit on the meaning of
the terms in (3.11). First, vt + By is a continuous Gaussian Lévy process and
every Gaussian Lévy process is continuous and can be written in this form and
can be described by two parameters: the drift v and the covariance matrix of
Brownian motion, denoted by A.

The other two terms are discontinuous processes incorporating the jumps of
X and are described by the Lévy measure v. The condition flyl>l v(dy) < oo
means that X has a finite number of jumps with absolute value larger than

1. So the sum
|AX,|>1

X! = Z AX,

0<s<t

contains almost surely a finite number of terms and X! is a compound Poisson
process. There is nothing special about the threshold AX = 1: for any € > 0,
the sum of jumps with amplitude between ¢ and 1:

1>|AX |>e
Xi= ) AX.= / xJx (ds x dx) (3.12)

e<|z|<1,s€[0,t]

2In terminology used here a Brownian motion may have arbitrary covariance matrix whereas
the term Wiener process is used for a standard Brownian motion, with unit covariance
matrix.
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is again a well-defined compound Poisson process. However, contrarily to
the compound Poisson case, v can have a singularity at zero: there can be
infinitely many small jumps and their sum does not necessarily converge. This
prevents us from making € go to 0 directly in Expression 3.12. In order to
obtain convergence we have to center the remainder term, i.e., replace the
jump integral by its compensated version, defined in Section 2.6.2:

X: = / 2x(ds x dz) (3.13)

e<|z|<1,5€[0,t]

which, as seen in Proposition 2.16, is a martingale. While X¢ can be in-
terpreted as an infinite superposition of independent Poisson processes, 5(5
should be seen as an infinite superposition of independent compensated, i.e.,
centered Poisson processes to which a “central-limit” type argument can now
be applied to show convergence (see below).

An important implication of the Lévy-It6 decomposition is that every Lévy
process is a combination of a Brownian motion with drift and a possibly
infinite sum of independent compound Poisson processes. This also means
that every Lévy process can be approximated with arbitrary precision by a
jump-diffusion process, that is by the sum of Brownian motion with drift
and a compound Poisson process, a point which is useful both in theory and
in practice. The right graph of Figure 3.1 shows a typical trajectory of a
jump-diffusion process.

The Lévy-Itd6 decomposition was originally found by Lévy [251] using a
direct analysis of the paths of Lévy processes and completed by Itd [206].
There are many proofs available in the literature. A probabilistic approach
close to the original proof of Lévy is given in [164]. We will not give a detailed
proof but sketch the main ideas of this approach:

PROOF of the Lévy-Ité decomposition (outline)

First, we construct a Poisson random measure Jx on [0, ] xR? from the jumps
of (X;). Since (X;) is cadlag, for any positive € the set {t: |X; — X;_| > ¢}
is finite and the Poisson random measure (of any closed set not containing
0) can be constructed using Proposition 3.5. The intensity measure of Jx is
homogeneous and equal to v(dz)dt. Throughout the rest of the proof we can
suppose without loss of generality that all jumps of (X;) are smaller than 1
in absolute value. The next step is to prove the following lemma.

LEMMA 3.2
Let (X,Y;) be a Lévy process. If (Yi) is compound Poisson and (X;) and
(Y;) never jump together, then they are independent.

For a proof see for example [228, Lemma 13.6].
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This lemma together with the exponential formula (3.6) allows to prove
that the Lévy measure v satisfies the integrability condition

/(|ax|2 A v(dx) < oo. (3.14)

We give this part of the proof in full detail to explain the origin of this con-
dition. Since the Lévy measure of any closed set not containing zero is finite,
it is sufficient to prove that for some 6 > 0, flz\<5 |z|?v(dx) < oo.

Let X§ be as above in (3.13) and let R = X; — X;7. Then (X{, Rf) is
a Lévy process because (X;) is. Clearly for some u and some t we have
|E exp{iuX,} > 0|. Let us fix this u and this ¢. Since by Lemma 3.2, (X7)
and (RF) are independent,

Eexp{iuX:} = Eexp{iuR; } F exp{iuX;},

and this means that | E exp{iuX}| is bounded from below by a positive num-
ber which does not depend on e. By the exponential formula (Proposition 3.6)
this is equivalent to

‘exp {t/w>€(ei“"” - 1)u(dx)}’ >0 >0,

which implies that f\x\>s(1 — cos(uz))v(dz) < C < oo. Making ¢ tend to zero,
we obtain the desired result (3.14).

Now we can use it to show the convergence of Xg. Consider a sequence
{e,} | 0 and let ¥, = X;"*' — X", All the variables Y; have zero mean
and (3.14) entails that > VarY; < co. Hence, by Kolmogorov’s three series
Theorem [228, Theorem 3.18], > Y; converges almost surely, which means
that Xf converges almost surely as ¢ — 0. Using Kolmogorov’s maximum
inequality [228, Lemma 3.15], one can show that the convergence is uniform
in t.

To complete the proof, consider the process X{ = X; —lim Xf It is a Lévy
process which is independent from lim Xf by Lemma 3.2. It is continuous,
because Xf converges uniformly in ¢ and therefore one can interchange the
limits. Finally, the Feller-Lévy central limit Theorem [228, Theorem 4.15&
implies that it is also Gaussian.

Our knowledge of the structure of paths of a Lévy process allows to obtain
almost without additional work the second fundamental result of the theory:
the expression of the characteristic function of a Lévy process in terms of its
characteristic triplet (A4, v,).
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THEOREM 3.1 Lévy-Khinchin representation
Let (Xt)i>0 be a Lévy process on R% with characteristic triplet (A,v,7).
Then

E[eiz‘Xt] _ etw(z), z € ]Rd (315)

1 .
with  ¢(z) = —§z.Az +iy.2 + /Rd(ezz'x — 1 —izaljy<i)v(de).

For real-valued Lévy processes, the formula (3.15) takes the form

Ele#¥t] = e 2 eR
. 1 2 . >~ 12T .
with  (z) = —§Az +ivz + (e =1 —izal|y <y )v(dr).
—00
An equivalent version of the Lévy-Khinchin representation may be obtained
by truncating the jumps larger than an arbitrary number &:

1 )
P(z) = —§Z.Az + iy .z + /]Rd(e”'“J —1—iz.aly <. )v(dr),

where N =+ /d $(1|m|§s - 1|z‘51)u(dx).
R

More generally, for every bounded measurable function g : R? — R satisfying
g(x) =14 o(|z]) as z — 0 and g(z) = O(1/|z|) as © — oo, one can write:

U(z) = —%z.Az +iv9.z +/ (e*® —1 —iz.xg(zx))v(dr).
Rd

Such a function g is called the truncation function and the characteristic
triplet (A,v,~9) is called the characteristic triplet of X with respect to the
truncation function g. Different choices of ¢ do not affect A and v which
are intrinsic parameters of the Lévy process, but v depends on the choice of
truncation function so one should avoid calling it “the drift” of the process.
Various choices of the truncation function have been used in the literature.
Paul Lévy used the truncation function g(z) = ﬁ while most recent texts
use g(z) = 1j5/<1. In the sequel, when we refer to the Lévy triplet of a Lévy
process we implicitly refer to the truncation function g(z) = 1j,<1.

If the Lévy measure satisfies the additional condition f\x\>1 |zjv(dz) < oo

there is no need to truncate large jumps and one can use the simpler form

1 )
¥(z) = —§Z~A2 + 1.2 + / (% —1 —iz.ax)v(de).
Rd

In this case it can be shown that E[X;] = 7.t and . is called the center of
process (X;). It is linked to v by the relation . = v + f|x\>1 av(dz).
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PROOF of Theorem 3.1  The Lévy-Ito decomposition (Theorem 3.7)
shows that for every ¢, the random variable X{ + X! + X converges almost
surely to X; when € tends to 0. Since almost sure convergence implies conver-
gence in distribution, the characteristic function of X + X! + X7 converges
to the characteristic function of X;. Since X¢, X} and X¢ are independent,

1
Elexp{iz.(X{ + X} + X0)}] = exp{—EtZ.Az + ity.z}

X exp{t/ Dl(e”“ - 1)V(dm)}exp{t/ (€% —1 —iz.x)v(dr)}

e<|z|<1

and this expression converges to (3.15) for every z when ¢ tends to 0. I

When v(R?) = oo (infinite activity case), the set of jump times of every
trajectory of the Lévy process is countably infinite and dense in [0, co[. The
countability follows directly from the fact that the paths are cadlag. To prove
that the set of jump times is dense in [0, co[, consider a time interval [a, b] and
let

and Y, = / Jx (dz x dt).
e(n)<|z|<e(n—1),tla,b]

Then, if the Lévy measure has no atoms, Y; are independent and identically
Poisson distributed random variables. The total number of jumps in the
interval [a,b] is equal to Y .°, Y;, hence, by the law of large numbers, it is
almost surely infinite. Since this is true for every nonempty time interval
[a, b], this means that the set of jump times is dense in [0, co[. The proof can
be easily modified to include the case when the Lévy measure has atoms.

Since any infinitely divisible distribution is the distribution at time ¢t = 1 of
some Lévy process, the Lévy-Khinchin formula also gives the a general repre-
sentation for the characteristic function of any infinitely divisible distribution:
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THEOREM 3.2 Characteristic function of infinitely divisible dis-
tributions

Let F be an infinitely divisible distribution on R®. Its characteristic function
can be represented as:

Dp(z) =¥, 2z e R?

1 )
U(z) = —Ez.Az +iv.2 + /Rd(e”'z — 1 —iz.xly<)v(dz),

where A is a symmetric positive n x n matriz, v € R and v is a positive
Radon measure on R?\ {0} verifying:

/ |z|?v(dz) < oo / v(dx) < 0.
lz|<1 |z|>1

v is called the Lévy measure of the distribution F.

3.5 Pathwise properties of Lévy processes

In this section, using the Lévy-Ito decomposition, we deduce some proper-
ties of typical sample paths of a Lévy process from analytical properties of its
characteristic triplet (A4, v,).

Piecewise constant trajectories We saw in the preceding section (Propo-
sition 3.3) that almost all trajectories of a Lévy process are piecewise constant
if and only if it is of compound Poisson type. Combining this with the For-
mula (3.4), which gives the characteristic function of a compound Poisson
processes, we obtain the following criterion:

PROPOSITION 3.8

A Lévy process has piecewise constant trajectories if and only if its charac-
teristic triplet satisfies the following conditions: A = 0, fRd v(dx) < co and
v = flw\<1 av(dx) or equivalently, if its characteristic exponent is of the form:

P(z) = /Oo (e™® — 1) v(dr) with v(R) < oco.

— 00

© 2004 by CRC Press LLC



Lévy processes of finite variation We recall that the total variation of
a function f : [a,b] — R is defined by

TV(f) = sup_Z |F(t:) = f(tiza)l,

where the supremum is taken over all finite partitions a =ty < t; < --- <
tn—1 < t, = b of the interval [a,b]. In particular, in one dimension every
increasing or decreasing function is of finite variation and every function of
finite variation is a difference of two increasing functions.

A Lévy process is said to be of finite variation if its trajectories are functions
of finite variation with probability 1.

PROPOSITION 3.9 Finite variation Lévy processes
A Lévy process is of finite variation if and only if its characteristic triplet
(A,v,v) satisfies:

A=0 and f|1;\§1 |z|v(dz) < oo. (3.16)

PROOF The if part. Under the stated conditions, X; can be represented
in the following form:

X, = bt +/ xJx (ds x dx) + lim X¢,
|z|>1,5€[0,t] el0
where X z/ xJx(ds x dx).
e<|z|<1,s€[0,t]

The first two terms are of finite variation, therefore we only need to consider
the third term. Its variation on the interval [0,¢] is

TV(X]) = / || Jx (ds x dz).
e<|z|<1,s€[0,t]

Since the integrand in the right-hand side is positive, we obtain, using Fubini’s
theorem

E[TV(X{)] =t / v (de),

e<lz|<1

which converges to a finite value when & — 0. Therefore E[TV (lim.|o X§)] <
o0, which implies that the variation of X; is almost surely finite.

The only if part. Consider the Lévy-Ito decomposition (3.11) of X;. Since
the variation of any cadlag function is greater or equal to the sum of its jumps,

© 2004 by CRC Press LLC



we have for every € > 0:

V(X)) > / (| Jx (ds x d)

e<|z|<1,s€[0,t]
= t/ |z|v(dx) +/ |x|(Jx (ds x dx) — v(dx)ds).
<|z|<1 <|z|<1,5€(0,t]

Using the exponential formula (Proposition 3.6), one can show that the vari-
ance of the second term in the last line is equal to tfeg\z|<1,se[0,t] |z|?v(dx).
Hence, by the same argument that was used in the proof of Lévy-Ito decompo-
sition, the second term converges almost surely to something finite. Therefore,
if the condition [(|z| A1)v(dz) < oo is not satisfied, the first term in the last
line will diverge and the variation of X; will be infinite. Suppose now that
this condition is satisfied. This means that X; may be written as

Xt:Xf—i—/ xJx(ds x dx),
[0,t] x R4

where the second term is of finite variation. Since trajectories of Brownian
motion are almost surely of infinite variation (see [335]), if A is nonzero, X,
will also have infinite variation. Therefore we must have A = 0.

The preceding proposition shows that in the finite variation case Lévy-Ito
decomposition and Lévy-Khinchin representation can be simplified:

COROLLARY 3.1 Lévy-Ité decomposition and Lévy-Khinchin
representation in the finite-variation case

Let (X;)¢>0 be a Lévy process of finite variation with Lévy triplet given by
(1,0,7). Then X can be expressed as the sum of its jumps between 0 and t
and a linear drift term:

AX,#0
X, = bt + / wlx(ds x dz) =bt+ »  AX, (3.17)
[0,¢]xR¢ s€[0,t]

and its characteristic function can be expressed as:
Ele*Xt] = expt {ib.z —l—/ (e — 1)V(da:)} , (3.18)
Rd

where b =y — fl v(dz).

w\<1

Note that the Lévy triplet of X is not given by (b,0,v) but by (v,0,v). In
fact, as mentioned before v is not an intrinsic quantity and depends on the
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truncation function used in the Lévy-Khinchin representation while bt has an
intrinsic interpretation as the continuous part of X.

Increasing Lévy processes (subordinators) Increasing Lévy processes
are also called subordinators because they can be used as time changes for
other Lévy process (see Chapter 4). They are very important ingredients for
building Lévy-based models in finance.

PROPOSITION 3.10
Let (X¢)i>0 be a Lévy process on R. The following conditions are equivalent:

i. Xy >0 a.s. for somet > 0.
1. X¢ >0 a.s. for everyt > 0.

iti. Sample paths of (X;) are almost surely nondecreasing: t > s = Xy > X
a.s.

iv. The characteristic triplet of (X;) satisfies A = 0, v((—o0,0]) = 0,
fooc(x A Dv(dz) < oo and b > 0, that is, (X;) has no diffusion com-
ponent, only positive jumps of finite variation and positive drift.

PROOF i = idit. For every n, X; is a sum of n i.i.d. random variables
Xijns Xotym — Ximy - Xo — X(n—1)t/n- This means that all these variables
are almost surely nonnegative. With the same logic we can prove that for
any two rationals p and ¢ such that 0 < p < g, Xy — X+ > 0 a.s. Since the
trajectories are right-continuous, this entails that they are nondecreasing.

The implications itz = it and it = ¢ are trivial.

iv = 4ii. Under the conditions of (iv) the process is of finite variation,
therefore equal to the sum of its jumps plus an increasing linear function.
For every trajectory the number of negative jumps on any fixed interval is
a Poisson random variable with intensity 0, hence, almost surely zero. This
means that almost every trajectory is nondecreasing.

114 = 4v. Since the trajectories are nondecreasing, they are of finite vari-
ation. Therefore, A = 0 and ffooo(x A 1)v(dz) < oo. For trajectories to be
nonincreasing, there must be no negative jumps, hence v(] — 00,0]) = 0. If a
function is nondecreasing then after removing some of its jumps, we obtain
another nondecreasing function. When we remove all jumps from a trajec-
tory of X;, we obtain a deterministic function bt which must therefore be
nondecreasing. This allows to conclude that b > 0.

An important example of subordinator is introduced by the following propo-
sition.
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PROPOSITION 3.11

Let (X¢)i>o0 be a Lévy process on R? and let f : R? — [0,00] be a positive
function such that f(z) = O(|z|?) when © — 0. Then the process (St)i>o0
defined by

Se= Y f(AX,) (3.19)

s<t
AX#0

18 a subordinator.

PROOF  Let us first show that the sum in (3.19) converges to something
finite. By truncating large jumps we can suppose that for each s, AX; < ¢
for some ¢ > 0 and f(AX,) < CAX?2 for some C > 0. But then

E[S] = / F@)dsv(dz) < oo. (3.20)
[0,t] xR

Since all the terms in the sum are positive, this means that it always converges
and S; is almost surely finite for all ¢. The fact that S has independent and
stationary increments follows directly from independence and stationarity of
increments of X. To prove that it is continuous in probability one can once
again suppose that jumps of X; are bounded (because the compound Poisson
part is always continuous in probability). But then E[|S; —Ss|]] — 0 as s — t.
Therefore, S is continuous in probability.

The choice f(z) = 22 yields the sum of squared jumps

Se= Y |AXP (3.21)
AN %o

This process which by the above proposition is a subordinator, is usually
denoted [X, X]? and called the “discontinuous quadratic variation” of X. We
will encounter it again in Section 8.2.

REMARK 3.1 There exist Lévy processes without diffusion component,
having no negative jumps, but satisfying fol |z|v(dx) = co. The above proposi-
tion entails that these processes cannot have increasing trajectories, whatever
drift coefficient they may have. The explanation of this “mysterious” behavior
is that in this case the process is not equal to the sum of its jumps, because
the jumps must be compensated. These compensation terms add up to an
“infinitely strong” negative drift between the jumps, which cannot be made
positive by changing the drift coefficient.
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3.6 Distributional properties

If (Xi)¢>0 is a Lévy process then for any ¢ > 0, the distribution of X,
is infinitely divisible and has a characteristic function of the form (3.15).
However, X; does not always have a density: indeed, if X; is a compound
Poisson process we have

P(X;=0)=e >0 (3.22)

so the probability distribution has an atom at zero for all ¢. But if X is not
a compound Poisson process, then X; has a continuous density; we give the
following result for d = 1 from [312]:

PROPOSITION 3.12 Existence of a smooth density
Let X be a real-valued Lévy process with Lévy triplet (a2, v, 7).

e Ifo >0 or v(R) = oo then X; has a continuous density p,(.) on R

o [f the Lévy measure v verifies
33 €0, 2], limlionfe_ﬁ/ |z|2dv(x) > 0 (3.23)
then for each t > 0, X; has a smooth density p:(.) such that
oo 9"p
pe(.) € C°(R) Vn > 1, (t,z) — 0. (3.24)

t

These and other properties of the density may be obtained using the Lévy-
Khinchin representation and the properties of the Fourier transform, see [345,
Chapter 5].

Relation between probability density and Lévy density In the com-
pound Poisson case there is a simple relation between probability distribution
at time t and the jump size distribution/Lévy measure. Let (X;);>0 be a
compound Poisson process with intensity A and jump size distribution f and
(N¢)i>0 be the number of jumps of X on [0,¢]. Then

> €_>‘t<)\t)"
P{X; € A} =) P{X, € A|N, = n}—
n=0 :
= e M)
=M+ f*"(A)%, (3.25)
n=1 :

© 2004 by CRC Press LLC



where f*" denotes the n-th convolution power of f, and Jj is the Dirac mea-
sure concentrated at 0. As noted above, this probability measure does not
have a density because P{X; = 0} > 0. However, if the jump size distri-
bution has a density with respect to Lebesgue measure, then the law of X,
is absolutely continuous everywhere except at zero (because convolution of
absolutely continuous distributions is absolutely continuous), i.e., the law of
X; can be decomposed as

P{X;, € A} = e Mlgea + / pie(z)dx where
A

o0 efkt n
@) = 3 rr@ 2 g
n=1

n!

where we denote the jump size density by f(x). pf© is the density condi-
tional on the fact that the process has jumped at least once. This implies in
particular the following asymptotic relation:

lim p°(2) = A (&) =v(@) Vo £0,

where v(z) is the Lévy density. This means that the Lévy density describes
the small time behavior of the probability density.

This relation also gives the small time behavior for expectations of functions
of X;: given any bounded measurable function f such that f(0) =0,

ltifE%E[f(Xt)] = ltifg% 9 f(z)pe(dx) = y f(z)v(dx). (3.26)

In the infinite activity setting the classical asymptotic result for expectations
(see [345, Corollary 8.9]) is weaker: it states that the formula (3.26) holds for
any bounded continuous function f vanishing in the neighborhood of zero.
More results on the relation between probability density of X; and the Lévy
measure for infinite-activity processes may be found in [33] and [341].

Moments and cumulants The tail behavior of the distribution of a Lévy
process and its moments are determined by the Lévy measure, as shown by
the following proposition, which is a consequence of [345, Theorem 25.3].

PROPOSITION 3.13 Moments and cumulants of a Lévy process
Let (X;)¢>0 be a Lévy process on R with characteristic triplet (A,v,v). The
n-th absolute moment of X¢, E[|X¢|"] is finite for some t or, equivalently,
for every t > 0 if and only if f\z\zl |x|"v(dx) < co. In this case moments of
X can be computed from the its characteristic function by differentiation. In
particular, the form of cumulants (defined in Section 2.2.5) of X, is especially
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simple:

BIX,)] = t(y + / vt

oo

co(Xy) = Var Xy = t(A + / v (dr)),

— 00

cn(Xy) = t/oo 2"v(dx) forn > 3.

— 00

This entails in particular that all infinitely divisible distributions are lep-
tokurtic since ¢4(X;) > 0. Also, the cumulants of the distribution of X
increase linearly with ¢. In particular the kurtosis and skewness® of Xa (or,
equivalently, of the increments XA — X3 are given by:

5(Xa) = c3(X)  s(Xy) ca(Xa)  K(Xy)
YT (X)) VA a(Xa2 A

Therefore the increments of a Lévy process or, equivalently, all infinitely di-
visible distributions are always leptokurtic but the kurtosis (and skewness, if
there is any) decreases with the time scale over which increments are com-
puted: the skewness falls as A~'/2 while the kurtosis decays as 1/A.

K(Xa) = . (3.27)

PROPOSITION 3.14 Exponential moments

Let (X¢)i>0 be a Lévy process on R with characteristic triplet (A,v,v) and let
u € R. The exponential moment E[e*Xt] is finite for some t or, equivalently,
for allt > 0 if and only if flm’\>1 e“y(dx) < oo. In this case

E[euXt] _ et'(/)(—iu).
where 1 is the characteristic exponent of the Lévy process defined by (3.15).

For a proof see [345, Theorem 25.17].

3.7 Stable laws and processes

A remarkable property of Brownian motion is its selfsimilarity property: if
W is a Wiener process on R then

Wat) d
Ya >0, ( (W) y>0.
NG =0 t)t>0

3See Equation (2.34) for a definition of skewness and kurtosis.
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If we consider a Brownian motion with drift By = W; 4+ vt then this property
is only verified up to a translation:

Bat
Va
A natural question is whether there exist other real valued Lévy processes that

share this selfsimilarity property: a Lévy process X; is said to be selfsimilar
if

Va > 0, ( ) Z (Bt + Vat)i>o.
>0

Xat d
: = (X .
Va >0, 3b(a) >0 (b(a)>t>0 (Xt)i>0

Since the characteristic function of X; has the form ®x, (z) = exp[—t(z)],
this property is equivalent to the following property of the characteristic func-
tion:

Va >0, 3b(a) >0: @x,(2)* = Px,(2b(a)) Vz.

The distributions that verify this property are called strictly stable distribu-
tions. More precisely, we have the following definition.

DEFINITION 3.5 A random variable X € R? is said to have stable
distribution if for every a > 0 there exist b(a) > 0 and c(a) € R? such that

Dx(2)* = Dx(2b(a))e’™*, VzeRY (3.28)
It is said to have a strictly stable distribution if
Bx(2)* = dx(zbla)), VzeRL (3.29)

The name stable comes from the following stability under addition property:
if X has stable distribution and X™ ..., X are independent copies of X
then there exist a positive number ¢,, and a vector d such that

XO 4.4 xmLe x4d. (3.30)

This property is clearly verified if the distribution of X is that of a selfsimilar
Lévy process at a given time t.

It can be shown (see [344, corollary 2.1.3]) that for every stable distribution
there exists a constant a € (0,2] such that in Equation (3.28), b(a) = al/®.
This constant is called the index of stability and stable distributions with index
« are also referred to as a-stable distributions. The only 2-stable distributions
are Gaussian.

A selfsimilar Lévy process therefore has strictly stable distribution at all
times. For this reason, such processes are also called strictly stable Lévy
processes. A strictly a-stable Lévy process satisfies:

X,
Va > 0, < 1/i> L (X))es0. (3.31)
a t>0
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In the case of the Wiener process v = 2. More generally, an a-stable Lévy
process satisfies this relation up to a translation:

Va >0, Iec R (Xat)t>0 4 (a/*X; + ct)s>o0.

A stable Lévy process defines a family of stable distributions and the con-
verse is also true: every stable distribution is infinitely divisible and can be
seen as the distribution at a given time of a stable Lévy process. The following
result gives the form of characteristic triplet of all stable Lévy processes and
stable distributions:

PROPOSITION 3.15 Stable distributions and Lévy processes

A distribution on R? is a-stable with 0 < o < 2 if and only if it is infinitely
divisible with characteristic triplet (0,v,7) and there exists a finite measure A
on S, a unit sphere of R?, such that

> dr
s 0 r
A distribution on R? is a-stable with o = 2 if and only if it is Gaussian.

A proof is given in [345, Theorem 14.3], see also [344].

For real-valued stable variables and Lévy processes (d = 1) the above rep-
resentation can be made explicit: if X is a real-valued a-stable variable with
0 < a < 2 then its Lévy measure is of the form

A
v(z) = —oglaso + 2o T Li<o (3.33)

for some positive constants A and B. The characteristic function at time 1 of
a real-valued stable random variable X has the form

Dx(z) =exp {700‘|z\°‘(1 — i sgn z tan %) +iuz} , a1,
2

Dx(2) =exp {—0’|Z|(1 +1i8—sgnzlog|z|) + iuz} , ifa=1, (3.34)
™

where a € (0,2], 0 > 0, § € [-1,1] and p € R. In the sequel, a stable
distribution on R in this parameterization is denoted by S, (o, 3,v). In this
representation, o is the scale parameter (note that is has nothing to do with
the Gaussian component if o < 2), p is the shift parameter (when « # 1 this
is not true: see [344, Section 1.2]), o determines the shape of the distribution
and [ its skewness. When 8 =0 and u = 0, X is said to have a symmetric
stable distribution and the characteristic function is given by

D (2) = exp(—0°[2]").
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The explicit form of the Lévy measure (3.33) shows that a-stable distribu-
tions on R never admit a second moment, and they only admit a first moment
if @« > 1. The probability density of an a-stable law is not known in closed
form except in the following three cases (plus the degenerate case of a constant
random variable)

e The Gaussian distribution Si(o,0, 1) with density (note the nonstan-
dard parameterization)

1
20T

e The Cauchy distribution S (0,0, 1) with density

e (@=m)?/40” (3.35)

(@ - p)? +07)

(3.36)

e The Lévy distribution Sy /5(0,1, 1) with density

o \1/2 o
(%) mexp{—m}lwu. (3.37)

While the first two distributions are symmetric around their mean, the last one
is concentrated on (1, 00). Despite the fact that closed formulae for probability
density are only available in these three cases, closed-form algorithms for
simulating stable random variables on R exist for all values of parameters
(see Chapter 6).

3.8 Lévy processes as Markov processes

An important property of Lévy processes is the Markov property, which
states that conditionally on X;, the evolution of the process after time ¢ is
independent on its past before this moment. In other words, for every random
variable Y depending on the history F; of X; one must have

E[Y|F] = E[Y|X).
The transition kernel of process X; is defined as follows:
P, (z,B) =P{X, € B| X, =z}, VBebhb. (3.38)

The Markov property implies the following relation between transition kernels
(known as the Chapman-Kolmogorov equations):

P B) = [ Pustadp)Poay. B).
R
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Tt is easily seen from the Definition (3.38) that the transition kernels of Lévy
processes are homogeneous in space and time, that is,

Ps’t(l',B) = Po’t,S(O,B — il')

Lévy processes are completely characterized by this condition (see [345, The-
orem 10.5]): they are the only Markov processes which are homogeneous in
space and time.

Lévy processes satisfy a stronger version of the Markov property, namely,
for all ¢, the process (X;+s — X¢)s>0 has the same law as the process (Xs)s>0
and is independent from (X,)o<s<¢-

Finally, the strong Markov property of Lévy processes allows to replace the
nonrandom time ¢ by any random time which is nonanticipating with respect
to the history of X (see Section 2.4.2): if 7 is a nonanticipating random time,
then the process YV; = X4, — X is again a Lévy process, independent from
F- and with same law as (X;)¢>o.

The transition operator for Markov processes is defined as follows:

Fif(x) = E[f(x + X))

Chapman-Kolmogorov equations and the time homogeneity of transition ker-
nels imply the following semigroup relation between transition operators:

PtPS:Pt+s'

Let Cy be the set of continuous functions vanishing at infinity. Then for any
t>0,PfeCyand

Y ltifg P f(z) = f(x). (3.39)

where the convergence is in the sense of supremum norm on Cy. This property
is called the Feller property. A semigroup P; verifying the Feller property
(3.39) can be described by means of its infinitesimal generator L which is a
linear operator defined by

Lf =lim P = 1), (3.40)

where the convergence is in the sense of supremum norm on Cy and f should
be such that the right-hand side of (3.40) exists. The infinitesimal generator
of a Lévy process can be expressed in terms of its characteristic triplet:

PROPOSITION 3.16 Infinitesimal generator of a Lévy process
Let (X;)i>0 be a Lévy process on R with characteristic triplet (A,v,~). Then
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the infinitesimal generator of X is defined for any f € C3(R) as

L Y
:§%=:jax8x Z;a_

+ [ s+ - Zyj S @y | v, (31

where C2(R?) is the set of twice continuously differentiable functions, vanish-
ing at infinity.

We will give a proof of this result in a slightly different setting in Chapter
12. For a classical proof see [345, Theorem 31.5]. We will see in Chapters 8
and 12 that the computation of expectations of various functionals of Lévy
processes can be transformed into partial integro-differential equations involv-
ing the infinitesimal generator. Due to this fact, infinitesimal generators are
important tools in option pricing.

3.9 Lévy processes and martingales

The notion of martingale (see Section 2.4.4) is crucial for probability theory
and mathematical finance. Different martingales can be constructed from
Lévy processes using their independent increments property.

PROPOSITION 3.17

Let (X;)i>0 be a real-valued process with independent increments. Then
eiuXt ) )
1. (7E[eth]>t20 s a martingale Vu € R.

2. If for some u € R, E[e"~Xt] < oo Vt > 0 then (ET:TX);]) . is a martin-
t>

gale.

3. If E[X¢] < oo Vt > 0 then M; = Xy — E[X¢] is a martingale (and also a
process with independent increments).

4. If Var[Xy] < oo Vt > 0 then (M;)? — E[(M,;)?] is a martingale, where M
is the martingale defined above.

If (X%) is a Lévy processes, for all of the processes of this proposition to be
martingales it suffices that the corresponding moments be finite for one value
of t (see Theorems 25.17 and 25.3 in [345]).
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These statements follow from the independent increments property. Details
of the proof are left to the reader as an exercise.

Sometimes, in particular in financial applications, it is important to check
whether a given Lévy process or its exponential is a martingale. We will now
obtain the necessary and sufficient conditions.

PROPOSITION 3.18
Let (X4)i>0 be a Lévy process on R with characteristic triplet (A, v, 7).

1. (X}) is a martingale if and only if flx|>1 |z|v(dz) < 0o and

5 —|—/ azv(dz) = 0.
|| =1

2. exp(X:) is a martingale if and only sz‘w Tv(dr) < oo and

|>1€

A o0
5 T +/ (€ =1 = al<1)v(dr) = 0. (342)

This proposition is a consequence of Proposition 3.17 and the Lévy-Khinchin
formula. Exponential of Lévy processes are further discussed in section 8.4.

Further reading

A summary of properties of Lévy processes can be found in [51]. The mono-
graph by Sato [345] is a detailed study of Lévy processes and their properties
using an analytic viewpoint. The original probabilistic approach introduced
by Paul Lévy was to analyze the sample paths of a Lévy process directly, this
approach is detailed in [164]. An analytical approach of the Lévy Khinchin
formula is given in [208, 209]. Bertoin’s book [49] treats more advanced topics
on Lévy processes, not discussed in the first two references, including local
times and excursion theory. A detailed treatment of subordinators is given
in the Saint Flour lectures of Bertoin [50]. Stroock [370] discusses in detail
the Lévy-Khinchin representation and the construction of Lévy processes as
Markov processes using [t0’s original approach. Stable laws and processes are
discussed in detail in [344] and in the monograph by Zolotarev [394].
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REMARK 3.2 Lévy flights a-stable Lévy processes (see Section
3.7) are known in the physics literature under the name of Lévy flights or
anomalous diffusions and have been extensively used for modelling physical
phenomena; see, e.g., [26]. Lévy flights are Lévy processes with infinite vari-
ance and possess scale invariance and self-similarity properties (see Section
7.4 for a discussion of self-similarity). Some authors have used the names
“Lévy process” and “Lévy flight” interchangeably, giving the wrong impres-
sion that all Lévy processes have infinite variance and scaling properties.

It should be clear to the reader that Lévy processes are much more general
than Lévy flights and do not share most of their properties (except, of course,
independence and stationarity of increments). In fact, all the examples of
Lévy processes given in Chapter 4 have finite variance and are neither self-
similar nor self-affine.

Non-Gaussian a-stable distributions are also referred to as “Lévy distri-
butions” in the physics literature. Finally, to add to the confusion, some
authors in the mathematics literature call the a-stable distribution with
a = 1/2 the “Lévy distribution.” I
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Paul Lévy

Lévy processes were named after the French mathematician Paul Lévy, one
of the founding fathers of the modern theory of stochastic processes. Lévy
was born into a family counting several mathematicians. His grandfather was
a professor of mathematics and Paul’s father, Lucien Lévy, was an examiner
at the Ecole Polytechnique and wrote papers on geometry. Paul attended the
Lycée Saint Louis in Paris where he achieved brilliant results, winning prizes
not only in mathematics but also in Greek, chemistry and physics. He ranked
first in the entrance examination to the Ecole Normale Supérieure and second
for entry to the Ecole Polytechnique. He chose to attend the Ecole Polytech-
nique and in 1905, while still an undergraduate there, he published his first
paper on semi-convergent series. In 1919 Lévy was asked to give three lectures
at the Ecole Polytechnique on “... notions of calculus of probabilities and the
role of Gaussian law in the theory of errors.” Taylor writes in [377]: “At that
time there was no mathematical theory of probability — only a collection of
small computational problems. Now it is a fully-fledged branch of mathemat-
ics using techniques from all branches of modern analysis and making its own
contribution of ideas, problems, results and useful machinery to be applied
elsewhere. If there is one person who has influenced the establishment and
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growth of probability theory more than any other, that person must be Paul
Lévy.”

This was the beginning of his lifelong interest in probability theory, which
lead to the discovery of a wealth of results, many of which have become to-
day standard material for undergraduate and graduate courses in probability
theory. He made major contributions to the study of Gaussian variables and
processes, the law of large numbers, the central limit theorem, stable laws,
infinitely divisible laws and pioneered the study of processes with independent
and stationary increments, now known as Lévy processes. The book he wrote
on this topic, Théorie de l’addition des variables aléatoires, has served as an
inspiration to many researchers in probability and physics, where stable pro-
cesses with independent increments have become known as Lévy flights. He
pioneered the study of the properties of Brownian paths, in which he intro-
duced the notion of local time. These studies culminated in his classic book
Processus stochastiques et mouvement Brownien [260].

Michel Loeve, in [264], gives a vivid description of Lévy’s contributions:
“Paul Lévy was a painter in the probabilistic world. Like the very great
painting geniuses, his palette was his own and his paintings transmuted forever
our vision of reality. .. His three main, somewhat overlapping, periods were:
the limit laws period, the great period of additive processes and of martingales
painted in pathtime colours, and the Brownian pathfinder period.”

Although he was a contemporary of Kolmogorov, Lévy did not adopt the
axiomatic approach to probability. Joseph Doob writes of Lévy: “[Paul Lévy]
is not a formalist. It is typical of his approach to mathematics that he defines
the random variables of a stochastic process successively rather than postu-
lating a measure space and a family of functions on it with stated properties,
that he is not sympathetic with the delicate formalism that discriminates be-
tween the Markov and strong Markov properties, and that he rejects the idea
that the axiom of choice is a separate axiom which need not be accepted. He
has always traveled an independent path, partly because he found it painful
to follow the ideas of others.”

This attitude was in strong contrast to the mathematicians of his time,
especially in France where the Bourbaki movement dominated the academic
scene. Adding this to the fact that probability theory was not regarded as a
branch of mathematics by many of his contemporary mathematicians, one can
see why his ideas did not receive in France the attention they deserved at the
time of their publication. P.A. Meyer writes: “Malgré son titre de professeur,
malgré son élection a U'Institut [...], Paul Lévy a été méconnu en France. Son
oeuvre y était considérée avec condéscendance, et on entendait fréquemment
dire que ‘ce n’était pas un mathématicien.”’*

4 Authors translation: Although he was a professor and a member of the Institut [i.e., the
Academy of Sciences], Paul Lévy was not well recognized in France. His work was not
highly considered and one frequently heard that ‘he was not a mathematician’.

© 2004 by CRC Press LLC



However, Paul Lévy’s work was progressively recognized at an international
level. The first issue of Annals of Probability, an international journal of
probability theory, was dedicated to his memory in 1973, two years after his
death.

An excellent mathematical biography is given by Loéve in [264]. For those
who read French, the Web site:

http://www.annales.org/archives/x/paullevy.html

contains interesting biographical notes by Benoit Mandelbrot, Paul-André
Meyer and Jacques Neveu. Paul Lévy has also written a scientific autobi-
ography [253]. Lévy’s role in the discovery of the central limit theorem is
discussed by LeCam in [247]. Other biographies include [233, 377, 74, 354].
The collected papers of Paul Lévy have been published in six volumes by
Ecole Polytechnique [254, 255, 256, 257, 258, 259].
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Chapter 4

Building Lévy processes

Having discussed general properties of Lévy processes in Chapter 13, we will
now give some tractable examples of Lévy processes which can be used in
model building. Rather than giving an exhaustive inventory of all Lévy pro-
cesses that can be found in the financial modelling literature, we will discuss
various transformations which allow to build new Lévy processes from known
ones, emphasizing the relations between various models.

4.1 Model building with Lévy processes

Let us start by some general considerations on Lévy processes, their use as
models for price dynamics and different ways to specify such models.

4.1.1 “Jump-diffusions” vs. infinite activity Lévy processes

Financial models with jumps fall into two categories. In the first category,
called jump-diffusion models, the “normal” evolution of prices is given by a
diffusion process, punctuated by jumps at random intervals. Here the jumps
represent rare events — crashes and large drawdowns. Such an evolution
can be represented by modelling the (log-)price as a Lévy process with a
nonzero Gaussian component and a jump part, which is a compound Poisson
process with finitely many jumps in every time interval. Examples of such
models are the Merton jump-diffusion model with Gaussian jumps [291] and
the Kou model with double exponential jumps [238]. In Chapter 15, we will
see a model combining compound Poisson jumps and stochastic volatility: the
Bates model [41]. In these models, the dynamical structure of the process is
easy to understand and describe, since the distribution of jump sizes is known.
They are easy to simulate and efficient Monte Carlo methods for pricing path-
dependent options can be used. Models of this type also perform quite well
for the purposes of implied volatility smile interpolation (see Chapter 13).
However they rarely lead to closed-form densities: statistical estimation and
computation of moments or quantiles may be quite difficult.

The second category consists of models with infinite number of jumps in
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TABLE 4.1:

two modelling approaches

Compound Poisson or infinite activity: a comparison of

Jump-diffusion models

Must contain a Brownian compo-
nent.

Jumps are rare events.

Distribution of jump sizes is

known.
Perform well for implied volatility
smile interpolation.

Densities not known in closed form.

Easy to simulate.

Infinite activity models

Do not necessarily contain a Brow-
nian component.

The process moves essentially by
jumps.

“Distribution of jump sizes” does
not exist: jumps arrive infinitely
often.

Give a realistic description of the
historical price process.

Closed form densities available in
some cases.

In some cases can be represented

via Brownian subordination, which
gives additional tractability.

every interval, which we will call infinite activity models. In these models,
one does not need to introduce a Brownian component since the dynamics of
jumps is already rich enough to generate nontrivial small time behavior [80]
and it has been argued [270, 80, 160] that such models give a more realistic
description of the price process at various time scales. In addition, many
models from this class can be constructed via Brownian subordination (this
point will be addressed in detail below), which gives them additional analytical
tractability compared to jump-diffusion models.

One could also consider pure jump processes of finite activity without dif-
fusion component [320] but these models do not lead to a realistic description
of price dynamics.

Table 4.1 compares the advantages and drawbacks of these two categories.
It should be kept in mind that since the price process is observed on a discrete
grid, it is difficult if not impossible to see empirically to which category the
price process belongs. The choice is more a question of modelling convenience
than an empirical one.

There are three convenient ways to define a parametric Lévy process, sum-
marized in Table 4.2.

The first approach is to obtain a Lévy process by subordinating a Brownian
motion with an independent increasing Lévy process. Here the characteris-
tic function of the resulting process can be obtained immediately, but we
do not always have an explicit formula for the Lévy measure. Due to the
conditionally Gaussian structure of the process, simulation and some compu-
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tations can be considerably simplified (for instance, call option price can be
expressed as an integral involving Black-Scholes prices). The interpretation of
the subordinator as a “business time” [162] makes models of this type easier to
understand and interpret. Multidimensional extensions are also possible: one
can take a multidimensional Brownian motion and change the time scale of
all components with the same subordinator. However, we will see in Chapter
5 that dependence structures obtained using this method are rather limited
and sometimes have dependence properties with undesirable features.

The second approach is to specify the Lévy measure directly. We will
illustrate it later in this chapter using the example of tempered stable process.
This approach provides a dynamic vision of the Lévy process because we model
directly the jump structure and we know, via the Lévy-Khinchin formula, the
distribution of the process at any time, although sometimes it is not very
explicit.

The third approach is to specify an infinitely divisible density as the density
of increments at a given time scale, say A. Generalized hyperbolic processes
(see Section 4.6) can be constructed in this way. In this approach it is easy to
simulate the increments of the process at the same time scale and to estimate
parameters of the distribution if data are sampled with the same period A,
but in general the Lévy measure is not known. Therefore, unless this distri-
bution belongs to some parametric class closed under convolution, we do not
know the law of the increments at other time scales. In particular, given an
infinitely divisible distribution it is not easy to infer from its density whether
the corresponding Lévy process has a Gaussian component or whether it has
finite or infinite activity.

4.2 Building new Lévy processes from known ones

To construct new Lévy processes, we use three basic types of transforma-
tions, under which the class of Lévy processes is invariant: linear transforma-
tions, subordination (time changing a Lévy process with another increasing
Lévy process) and exponential tilting of the Lévy measure. We start with a
rather intuitive result about linear transformation of Lévy processes.

4.2.1 Linear transformations

THEOREM 4.1

Let (X;)i>0 be a Lévy process on RY with characteristic triplet (A,v,~) and
let M be an n x d matriz. Then Y, = MX; is a Lévy process on R™ with
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TABLE 4.2:

Three approaches to building Lévy processes

Brownian subordi-
nation
Interpretation as

“Brownian motion in
business time”.

Simulation is easy if we
know how to simulate
the subordinator.

Estimation via maxi-
mum likelihood may be
difficult.

Multivariate gener-
alizations possible
using multidimensional

Specifying the Lévy
measure

Clear vision of the
pathwise properties.

Simulation is quite in-
volved.

Estimation can be done
by approximating the
transition density.

Rich variety of models.

Specifying probabil-
ity density for t = A

Structure of jumps is
not known.

Simulation is easy on a

grid of size A.

Estimation is easy for
data with sampling in-
terval A.

The infinite divisibility
of a given model may
be diffucult to prove.

Brownian motion.

characteristic triplet (Ay,vy,yy) where

Ay = MAM, (4.1)
vy(B)=v({z: Mx € B}), VB < B(R"), (4.2
v = M+ / (110 (8) — s, () (dy). (4.3)

Sy is the image by M of a unit ball in R: Sy = {Mz : |z| <1},

PROOF  (Y});>¢ is clearly a Lévy process on R"™, so we only need to prove
that (4.2) defines a Lévy measure, that the integral in (4.3) is finite and that
(Ay,vy,7vy) is the characteristic triplet of Y. The measure vy is a positive
measure on R™. It satisfies

[P A vtan) = [ (31l 2 D) < o0

because the norm of M is finite. Hence, vy is a Lévy measure on R™.

Let us now turn to the integral in (4.3). It is sufficient to integrate not over
the whole R™ but over its subspace S C R" defined by S = {Mz : z € RY}
because the measure vy is concentrated on this subspace. Therefore we can
multiply the integrand in (4.3) by the indicator function of this subspace,
obtaining

F(@y) = y(Ly <y (y) — 1s, (y))1s(y)-
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We will show that the integral is finite by proving that there exist two con-
stants 0 < ¢ < C' < oo such that f(y) = 0 for all y such that |y| > C and
f(y) =0 for all y such that |y| < c.

C' can be taken equal to any constant greater than max(|M]|, 1). Indeed, if
ly| > max(|M], 1) then one cannot find an z € R? satisfying at the same time
|z] <1 and Mz =y, therefore, 1¢,<1}(y) and 1g, (y) are both equal to zero
and f(y) =0.

On the other hand, the mapping M : R — S which to every z € R?
associates Mx is a continuous linear surjection between Banach spaces, hence,
by the open mapping theorem, it maps open sets into open sets. Therefore,
the set S; = {Mz : x € R |z| < 1} is open in S. This means that the set
SiNn{y e S : |yl < 1} is also open in S. Since this set contains zero, we
have found a neighborhood of zero in S such that f(y) = 0 for every y in this
neighborhood. This means that there exists ¢ > 0 such that f(y) = 0 for all
y such that |y| < ¢ and the finiteness of the integral is shown.

To complete the proof, we use the Lévy-Khinchin formula for process X;:

E[eiu'MXt} _ E[ethu‘Xt]
1 ot
= expt{—thu.AMtu + iy M + / (e’Mt“'x —1—iM u.xljy < )v(dz)}
Rd

1 .
= exp t{fgu.Ayu +ivy.u+ / (e — 1 —iuxljy<) vy (dz)}.

n

Example 4.1 Sums of independent Lévy processes
Let (X);>0 and (Y;)¢>0 be two independent Lévy processes with characteristic

triplets (A1,v1,71) and (Aa, v2,72). Using Theorem 4.1 with M = (i) and

Proposition 5.3 from Chapter 5 we obtain that X; 4+ Y; is a Lévy process with
characteristic triplet (A, v,~y) where

A=A+ A,
W(B) = 11(B) + 1(B) VB € B(R),

Y=m+7 - / yv(dy).
[—v2,—1]U[1,V2]

I

For Lévy processes of finite variation, Theorem 4.1 can be simplified. Na-
mely, let (X¢)i>0 be a Lévy process of finite variation on R? with characteristic
function

Ele*X] = expt {ib.z + /Rd(e”-z - 1)1/(dx)} (4.4)
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and let M be an n x d matrix. Then Y; = M X; is a Lévy process on R with
Lévy measure vy (B) = v({x : Mz € B}) and by = Mb.

4.2.2 Subordination

Let (St)¢>0 be a subordinator, that is, a Lévy process satisfying one of
the equivalent conditions of Proposition 3.10, which means in particular that
its trajectories are almost surely increasing. Since S; is a positive random
variable for all ¢, we describe it using Laplace transform rather than Fourier
transform. Let the characteristic triplet of S be (0, p,b). Then the moment
generating function of S} is

Ele*%] = et ' vy <0, where I(u)=bu Jr/ (e"® —1)p(dx). (4.5)
0

We call I(u) the Laplace exponent of S. Since process S is increasing it can
be interpreted as a “time deformation” and used to “time change” other Lévy
processes as shown by the following theorem.

THEOREM 4.2 Subordination of a Lévy process

Fiz a probability space (Q, F,P). Let (X;)i>0 be a Lévy process on RY with
characteristic exponent W(u) and triplet (A,v,v) and let (S)t>0 be a sub-
ordinator with Laplace exponent l(u) and triplet (0,p,b). Then the process
(Y2)i>o0 defined for each w € Q by Y (t,w) = X(S(t,w),w) is a Lévy process.
Its characteristic function is

E[ewYt] _ etl(‘l’(“))’ (46)

i.e., the characteristic exponent of Y is obtained by composition of the Laplace
exponent of S with the characteristic exponent of X. The triplet (AY ,vY¥ ~4Y)
of Y is given by

AY =bA,
vY(B) = bv(B) + / h pX(B)p(ds), VB e B(R?), (4.7)
0

| " p(ds) [ o), (4.8)

0 lz|<1
where p;* is the probability distribution of X;.

(Y2)i>0 is said to be subordinate to the process (X;)i>o-

PROOF  Let us first prove that Y is a Lévy process. Denote by F;°
the filtration of (S;);>0 with 7% = F5. For every sequence of times ¢, <
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t; < ... < t, we obtain, using the independent increments property of X,
Lévy-Khinchin formula for X and the independent increments property of S:

=E {E ﬁeiui(X(Sti)X(Stil))‘}_S] }
i=1
=F {ﬁE {eiui(x(sti)fx(smﬂ)) ’]-‘S} } =F {ﬁe(sf,istil)xy(ui)}

i=1 i=1

n

Hei“i(x(sti)*x(stm))

i=1

E

n n

E {e<sti—sti_1)wui>} -TI= {ez‘ui(X(stn—X(sf,,;_l))}.
i=1 i=

Therefore, Y has independent increments. The stationarity of increments can
be shown in the same way. To show that Y is continuous in probability, first
observe that every Lévy process is uniformly continuous in probability, due
to the stationarity of its increments. Further, for every ¢ > 0 and § > 0, one
can write:

P{IX(5.) = X(S)] > ¢}
< P{IX(S,) = X(80)| > eI, = sil < o} + P{1S, - 51| = 5},

The first term can be made arbitrarily small simultaneously for all values of
s and t by changing §, because X is uniformly continuous in probability. As
for the second term, its limit as s — ¢ is always zero, because S is continuous
in probability. Hence, P{|X(Ss) — X(S;)| > ¢} — 0 as s — t.

The formula (4.6) is easily obtained by conditioning on F*:

E [emx(st)} _ E{E [emx(st) ]_—SH _ E{eSt‘I!(u)} — QW ()

For the detailed proof of the expression for the characteristic triplet of Y
we refer the reader to [345, Theorem 30.1]. Here we will instead explain what
is going on on a simple example. Suppose that S is a compound Poisson
subordinator with characteristic triplet (0, p,0). Then Y is again a compound
Poisson process with the same intensity, because it moves only by jumps
and its jumps occur at the same times as those of S. Therefore its drift
and Gaussian component are equal to zero. To compute its jump measure,
suppose that S has a jump at ¢. Conditionally on S; — S;— = s, the size of
jump in Y has the distribution pX. Integrating with respect to jump measure
of S, we obtain formula (4.7). Finally, rewriting the characteristic triplet of
Y with respect to the truncation function 1),<;, we obtain formula (4.8) for

VY. [

Example 4.2
A stable subordinator is an a-stable process with a € (0,1), Lévy measure
concentrated on the positive half-axis and a nonnegative drift (such a process
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is a subordinator because it satisfies the last condition of Proposition 3.10).
Let (S¢)i>0 be a stable subordinator with zero drift. Its Laplace exponent is

©eur _ ] al'(l -« o
l(u) = 61/0 de = —%(—u) (4.9)

for some constant ¢; > 0. Let (X;);>0 be a symmetric S-stable process on
R with characteristic exponent W(u) = —cp|ul? for some constant ¢y > 0.
Then the process (Y;);>0 subordinate to X by S has characteristic exponent
I(¥(u)) = —clu|?®, where ¢ = c1eoT'(1 — ) /a, that is, Y is a symmetric
stable process with index of stability Sa. In particular, when X is a Brownian
motion, the subordinate process is 2a-stable. I

4.2.3 Tilting and tempering the Lévy measure

As we noted before, one way to specify a Lévy process is by giving an admis-
sible Lévy triplet: in particular, the Lévy measure must verify the constraints:

/ |z|?v(dx) < oo / v(dz) < oo.
|lz|<1 || >1

Any transformation of the Lévy measure, respecting the integrability con-
straint above, will lead to a new Lévy process. Examples of such transforma-
tions are obtained by multiplying v(.) by an exponential function. If there

exists 6 € R? such that f‘x|>1 e’y (dz) < oo then the measure 7 defined by

v(dx) == e’ v(dr) (4.10)

is a Lévy measure. Then for any Lévy process (X;);>0 on R with charac-
teristic triplet (4, v, ), the process with characteristic triplet (A, 7,7) is also
a Lévy process, called the Esscher transform of X. The transform given by
(4.10) is called exponential tilting of the Lévy measure. Esscher transforms
will be discussed in more detail in Chapter 9.

When d = 1, we can consider asymmetric version of this transformation: if
v is a Lévy measure on R then

v(dx) = v(dx) (1%>067>‘+z + 1x<0€7>\_|x‘) ,

where A4 and A_ are positive parameters, is also a Lévy measure and defines
a Lévy process whose large jumps are “tempered,” i.e., the tails of the Lévy
measure are exponentially damped.
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4.3 Models of jump-diffusion type

A Lévy process of jump-diffusion type has the following form:

Ny
Xy=yt+oWi+ >, (4.11)

i=1

where (INV;);>¢ is the Poisson process counting the jumps of X and Y; are jump
sizes (i.i.d. variables). To define the parametric model completely, we must
now specify the distribution of jump sizes vo(z). It is especially important
to specify the tail behavior of vy correctly depending on one’s beliefs about
behavior of extremal events, because as we have seen in Chapter 3, the tail
behavior of the jump measure determines to a large extent the tail behavior
of probability density of the process (cf. Propositions 3.13 and 3.14).

In the Merton model [291], jumps in the log-price X; are assumed to have
a Gaussian distribution: Y; ~ N(u,§?). This allows to obtain the probability
density of X; as a quickly converging series. Indeed,

P{X; € A} =) P{X; € AN, = k}P{N; = k},
k=0

which entails that the probability density of X, satisfies

T 2(02t+ko2)

z)=e M
Pi() kZ:O K2 (0% + ko?)

In a similar way, prices of European options in the Merton model can be
obtained as a series where each term involves a Black-Scholes formula.

o ()\t)k exp{ (ﬂ?*’yt*k#)?'}

(4.12)

In the Kou model [238], the distribution of jump sizes is an asymmetric
exponential with a density of the form

vo(dz) = [pAre 100 4+ (1 — p)A_e 1211, o)dz (4.13)

with A; > 0, A_ > 0 governing the decay of the tails for the distribution of
positive and negative jump sizes and p € [0, 1] representing the probability
of an upward jump. The probability distribution of returns in this model
has semi-heavy (exponential) tails. The advantage of this model compared to
the previous one is that due to the memoryless property of exponential ran-
dom variables, analytical expressions for expectations involving first passage
times may be obtained [239]. Key properties of Merton and Kou models are
summarized in Table 4.3.
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TABLE 4.3:

Two jump-diffusion models: the Merton model and the Kou

model
Merton model Kou model
Model type Compound Poisson jumps + Brownian motion
Parameters 4 parameters: o — diffusion | 5 parameters: ¢ — diffusion

(excluding drift)

Lévy density

Characteristic
exponent

Probability
density
Cumulants:
B[X]

Var X,
c3
Cq

Tail behavior
of probability
density

volatility, A — jump intensity,
[ — mean jump size and § —
standard deviation of jump size

r— 2
) }

I/("E) = 5\?% exp{—( 2562

V() = -2
)\{6752u2/2+ip,u o 1}

series

+ ibu +

Admits a
(4.12)

expansion

t(b+ )

t(o? + X% + Ap?)

tA(36%u + 1)

tA{30% + 61252 + ut}

Tails are heavier than Gaus-

sian but all exponential mo-
ments are finite

volatility, A — jump inten-
sity, Ay, A_, p — parameters
of jump size distribution
v(z) = pMie MTlu0 +
(1 —p)AA_e 1211, g

2 2
\D(u) = - zu
w)\{ﬁr]im -

+ ibu +
1—p }

A Fiu

Not available in closed form

tb+Ap/Ay — A1 —p)/A-)
t(o? + Ap/ A2+ A1 —p)/A2)
tA(p/ A} — (1= p)/A%)
tA(p/N + (1 —p)/AL)
Semi-heavy  (exponential)
tails: p(x) ~ e % when
x — +o0 and p(x) ~ e -1l
when x — —o0
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4.4 Building Lévy processes by Brownian subordination
4.4.1 General results

Let (S;);>0 be a subordinator with Laplace exponent [(u) and let (W;);>0
be a Brownian motion independent from S. Subordinating Brownian mo-
tion with drift p by the process S, we obtain a new Lévy process X; =
oW (S¢) + uSi. This process is a Brownian motion if it is observed on a
new time scale, that is, the stochastic time scale given by S;. This time
scale has the financial interpretation of business time (see [161]), that is,
the integrated rate of information arrival. This interpretation makes mod-
els based on subordinated Brownian motion easier to understand than gen-
eral Lévy models. Formula (4.6) entails that X has characteristic exponent
U(u) = I(—u?02/2 +ipu). This allows in particular to compute cumulants of
X from those of S;. Consider the symmetric case = 0. Then X is sym-
metric, therefore has zero mean and skewness, and one can easily compute its
variance and excess kurtosis:

Var X; = 02 E[S,],
W(X,) = 3;ar5t.
[S¢]?

Therefore, X; is leptocurtic if the subordinator is not a deterministic process.
Although the representation via Brownian subordination is a nice prop-
erty, which makes the model easier to understand and adds tractability, it
imposes some important limitations on the form of the Lévy measure. The
following theorem characterizes Lévy measures of processes that can be repre-
sented as subordinated Brownian motion with drift. We recall that a function
f :]a,b] — R is called completely monotonic if all its derivatives exist and

(1P LI S 0 for all k > 1.

THEOREM 4.3

Let v be a Lévy measure on R and p € R. There exists a Lévy process (X;)1>0
with Lévy measure v such that X, = W(Z;) + uZ; for some subordinator
(Zi)t>0 and some Brownian motion (Wy)>o independent from Z if and only
if the following conditions are satisfied:

1. v is absolutely continuous with density v(x).
2. v(x)e M = v(—x)et* for all x.

3. v(v/uw)e "™V is a completely monotonic function on (0,00).

This theorem allows to describe the jump structure of a process, that can
be represented as time changed Brownian motion with drift. For example,
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the Lévy measure of such a process has an exponentially tilted version that is
symmetric on R. Since the exponential tilting mainly affects the big jumps,
this means that small jumps of such a process will always be symmetric.

Let v be a Lévy measure on R%. It can be the Lévy measure of a subor-
dinated Brownian motion (without drift) if and only if it is symmetric and
v(y/u) is a completely monotonic function on (0, 00). Furthermore, consider a
subordinator with zero drift and Lévy measure p. Formula (4.7) entails that
a Brownian motion with drift x4 time changed by this subordinator will have
Lévy density v(z) given by

_ [Tt pldt)
v(x) _/0 ot (4.14)

We can symbolically denote this operation by BS,(p) = v, where BS stands
for Brownian subordination. The inverse transform is denoted by BS;'(v) =
p. Then (4.14) allows to write

BS;l(u) = e“zt/ZBSal(z/e_“”). (4.15)

Hence, we can deduce the time changed Brownian motion representation for
an exponentially tilted Lévy measure from the representation for its symmetric
modification.

PROOF of Theorem 4.3  The only if part. The absolute continuity of v
is a direct consequence of (4.7), because the Gaussian probability distribution
is absolutely continuous. Omitting the constant factor, the formula (4.14) can
be rewritten as

00 2 2
v(z)e " = / 6_56_%t_1/2p(dt),
0

which shows that v(z)e™#* must be symmetric. Further, by making the vari-
able change u = 22/2 and s = 1/t we obtain (to simplify the notation we
suppose that p has a density):

oo u?
/ e e 3 g73/2 p(1/s)ds \/ﬁ) —u\/ﬁ, (4.16)
0

which shows that v(v/2u)e V2" is the Laplace transform of a positive mea-
sure and therefore, by Bernstein’s theorem (see [141, Volume 2, page 439]) it
is a completely monotonic function.

The if part. Using absolute continuity of v and since Bernstein’s theorem is
a necessary and sufficient result, we can conclude, using the same reasoning as
in the first part of the proof, that there exists a positive measure p on (0, c0)
such that (4.14) holds. Therefore it remains to prove that [~ (¢A1)p(dt) < co
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We suppose without loss of generality that p > 0. The subordinated Lévy
measure v satisfies [, (2? A 1)v(dz) < co. Using Fubini’s theorem we obtain

/ ,o(dt)t*l/Q/(ac2 Al)e™ -l :/ p(dt)g(t) < co.
0 R 0

To complete the proof of theorem we must show that g(t) > ¢(t A1) for some
constant ¢ > 0. After variable change we get:

(oo}
9= /((“‘/E +pt)? A)e " Pdu > / (/2 + put)> A L)e/2du
R 0
2/ (u?t A 1)6’“2/2du,
0
If ¢ <1 then

00 1 1
g(t) > / (u?t A 1)6_“2/2du > / (u?t A 1)6_“2/2du = / wte™ " 2 du = tey
0 0 0

with ¢; > 0. On the other hand, if ¢ > 1 then
o0 5 [e’s) ,
g(t) = / (Wt Al)e " Pdu > / (Wt A1) du
0 1

o 2
:/ e " 2du = ¢y > 0.
1

Therefore, there exists a constant ¢ > 0 such that g(¢) > ¢(¢A1) and the proof
is completed.

4.4.2 Subordinating processes

Let us consider the tempered stable subordinator, that is, an exponentially
tempered version of the stable subordinator, discussed in Example 4.2. It is
a three-parameter process with Lévy measure

Cef)\m

p(z) = —g Loso, (4.17)

where ¢ and \ are positive constants and 1 > « > 0. For greater generality we
include the case a = 0 (the gamma process) although it cannot be obtained
from a stable subordinator via exponential tilting. A tempered stable subor-
dinator is, of course, a tempered stable process in the sense of formula (4.26).
The parameter ¢ alters the intensity of jumps of all sizes simultaneously; in
other words, it changes the time scale of the process, A fixes the decay rate
of big jumps and « determines the relative importance of small jumps in the
path of the process. The Laplace exponent of tempered stable subordinator
in the general case (a # 0) is

l(u) = c(—a){(A —u)* = X} (4.18)
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TABLE 4.4:

Gamma subordinator and inverse Gaussian subordinator

Subordinator

Lévy density

Gamma process

Cefka:

p(l‘) = lz>0

Inverse Gaussian process

cesz 1
23/2 ~x>0

p(z) =

Laplace Ele®5] = (1 —u/A)~¢ | E[e"%] = e~ 2tV (VA=u=v/X)
transform
Probability pt(x) _ F/}Z&) pCt—lp—Az pt(l') _ Ig%e%tmef)\a:fﬂ-c?ﬁ/a:
density forz >0 forz >0

and l(u) = —clog(l — u/)\) if & = 0. The probability density of tempered

stable subordinator is only known in explicit form for « = 1/2 (inverse Gaus-
sian subordinator) and o = 0 (gamma subordinator). These two cases are
compared in Table 4.4.

The tempered stable subordinator possesses the following scaling property.
Let (Si(a, A, ¢))i>0 be a tempered stable subordinator with parameters o, A
and c¢. Then for every r > 0, rS¢(a, A, ¢) has the same law as Sypas(a, A\/7,¢).
Because of this scaling property and the scaling property of Brownian motion
(rW; has the same law as W,2;), in subordinated models it is sufficient to
consider only tempered stable subordinators with E[S;] = ¢, which in this case
form a two-parameter family. For all computations related to characteristic
function, moments and cumulants it is convenient to use the parameterization

1 1—a\' ™ e (-a)z/x
p(z)_l"(l—a)( K ) gltae 7

where « is the index of stability. In this new parameterization k is equal to the
variance of subordinator at time 1. Since the expectation of the subordinator
at time 1 is equal to 1, k actually determines how random the time change is,
and the case x = 0 corresponds to a deterministic function. In the variance
gamma case this formula simplifies to

(4.19)

1 efz/n
= = 4.20
pla) = - (420)
and in the inverse Gaussian case
1 —%r
c’ (4.21)

p(z) = ok 23/2

4.4.3 Models based on subordinated Brownian motion

By time changing an independent Brownian motion (with volatility o and
drift #) by a tempered stable subordinator, we obtain the so-called normal
tempered stable process (it is customary in the literature to name processes
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TABLE 4.5:

Two models based on Brownian subordination: variance gamma
process and normal inverse Gaussian process

Model name

Model type

Parameters
(excluding drift)
Lévy measure

Characteristic
exponent

Probability
density

Cumulants:
E[Xi]

Var X,
C3
C4q

Tail behavior

Variance gamma

Finite variation process with in-
finite but relatively low activity
of small jumps

v(z) = %eAI*BM with

K|z|

A:%zmdB:7”21:302/#C

u?o’k
2

U(u) = —+ log(1 + — i0ku)

pi(w) = Cla|s 2" K1 (Blz])
1_

2]
o2k (0°Kk4+202)1 7 25

with C' = b T(t/r)
ot

ot + 0%kt

3020kt + 203K%t

30kt + 60*Kk3t 4+ 120202 K3t

Normal inverse Gaussian

Infinite variation process with
stable-like (o = 1) behavior
of small jumps

3 parameters: o and 6 — volatility and drift of Brownian
motion and x — variance of the subordinator

v(z) = CeA* K (B|z|) with
B
O = NP

o n and denoting
0

A= % and B = 7”62;72/'{
U(u) =1
—%\/1 + 1202k — 2i0uk

- Az K1(By/224+t202 /K)
pe(z) = Ce =

with C' = %et/“\/% + %
ot

ot + 02kt

3020kt + 363 K%t

3okt + 150%K3t + 180202 K2

Both Lévy density and probability density have exponential
tails with decay rates Ay = B— A and A\_ = B+ A.

resulting from Brownian subordination by adding the word “normal” to the
name of subordinator). Its characteristic exponent is

U(u

in the general case and

- 1;aa {1 B (1+ ﬁ(u%l?/fa— wm)”‘} (4.22)
U(u) = —% log{1 + wolk i0ku} (4.23)

in the variance gamma case (a = 0).

The Lévy measure of a normal tempered stable process can be computed
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using Equation (4.7). It has a density v(x) given by

(I 9t) A\t dt

a\/ﬁ tat3/2
+1/2
2¢ (\/92—1—2)\02)@ /0 <|$|\/92+2)\U2>
= atle | T

v(x) =

N o2 || o?
2 ;2
Cla, 5, 0,0) g, /02 |z[4/0% + £o?(1 - a)
= WCQ / Ka+1/2 0_2 5 (424)
where C(a, k,0,0) = m (I_T“)ka 0>+ 202(1—a))*/**1/4 and K is

the modified Bessel function of the second kind (see Appendix A.1). In accor-
dance with Theorem 4.3, this measure is an exponential tilt of a symmetric

measure. Introducing tail decay rates Ay = ( 6% + 02(1 —a)— 9) and
A=2% (@ /62 + 262(1 — a) + 0), we can rewrite this measure in the follow-
ing form:
(@) = e O PR (el £ A/ (425)
v\xr) = |x|a+1/26 a+1/2 x — + . .

From the asymptotic behavior formulae for K, we deduce that

1
v(z) ~ s when z — 0,

1 _
y(gg) ~ |$|a+1e )\+:1:’

when z — oo,

1
v(x) ~ P! eIl when z — —oo,

that is, the Lévy measure has stable-like behavior near zero and exponential
decay with decay rates A\, and A_ at the tails.

Because the probability density of tempered stable subordinator is known in
closed form for « = 1/2 and « = 0, the corresponding subordinated processes
are also more mathematically tractable and easier to simulate and therefore
they have been widely used in the literature. Namely, the variance gamma
process has been used as a model for the logarithm of stock prices in [83, 271]
and the normal inverse Gaussian process (NIG) has been used for financial
modelling in [342, 32, 30]. Properties of these two important models are
summed up in Table 4.5.
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4.5 Tempered stable process

The tempered stable process is obtained by taking a one-dimensional stable
process and multiplying the Lévy measure with a decreasing exponential on
each half of the real axis. After this exponential softening, the small jumps
keep their initial stable-like behavior whereas the large jumps become much
less violent. A tempered stable process is thus a Lévy process on R with no
Gaussian component and a Lévy density of the form

C_ _ Ct _
W) = e P laco + Hme ™ s, (4.26)

where the parameters satisfy ¢ > 0, ¢, > 0, A >0, Ay > 0 and o < 2. This
model was introduced by Koponen in [237] and used in financial modelling in
[93, 67]. A version of this model is also used in [81].

REMARK 4.1 Generalized tempered stable processes  Unlike the
case of stable processes, which can only be defined for o > 0, in the tempered
stable case there is no natural lower bound on « and the expression (4.26)
yields a Lévy measure for all o < 2. In fact, taking negative values of «
we obtain compound Poisson models with rich structure. It may also be
interesting to allow for different values of & on the two sides of real axis. To
include these cases into our treatment, we use the name “tempered stable” for
the process with Lévy measure of the form (4.26) with o > 0 (because only in
this case do the small jumps have stable-like behavior), and we use the term
generalized tempered stable model for the process with Lévy measure

C— - C+ iz
V(x) B W@ ’ Ix‘1I<O T x1+a+e )\+T1x>0 (4'27)

with ap < 2 and a— < 2. All the formulae of this section will be given
for generalized tempered stable model, but they are of course valid in the
tempered stable case. I

The following proposition shows that the tempered stable model allows for
richer structures than the subordinated Brownian motion models that we have
treated in the preceding section.

PROPOSITION 4.1 Time changed Brownian motion representa-
tion for tempered stable process

A generalized tempered stable process (4.27) can be represented as a time
changed Brownian motion (with drift) if and only if c— = ¢y and a— = ay =
a > —1.
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REMARK 4.2 The subordinator in this representation can be expressed
via special functions: the representation is given by u = (A_ — Ay)/2 and

& 2 /5 132
p(t) = g™ PN ID o (W), (4.28)

where A = (A_ + A\)/2, ¢ is a constant and D_,(z) denotes the Whittaker’s
parabolic cylinder function (see [1, page 686]).

REMARK 4.3 The condition on the coefficients means that small jumps
must be symmetric whereas decay rates for big jumps may be different. In
other words the class of tempered stable processes which are representable as
time changed Brownian motion coincides with the models discussed by Carr
et al. [81] under the name “CGMY.” Hence, in the class of tempered stable
processes one has a greater modelling freedom than with models based on
Brownian subordination because tempered stable models allow for asymmetry
of small jumps. However, since the main impact on option prices is due to
large jumps, the CGMY subclass is probably as flexible as the whole class of
tempered stable processes.

PROOF In order for the first condition of Theorem 4.3 to be satisfied, we
must clearly have c. = ¢y = c and a_ = a. In this case the Lévy measure
has a symmetric exponentially tilted modification (with u = (A_—X\4)/2) that

is given by v(z) = c% To finish the proof we must therefore show that

zﬁ%ﬁz is completely monotonic on (0, 00) if and only if & > —1. If & < —1

this function cannot be completely monotonic (because it is not monotonic).
When a > —1, the function W is completely monotonic (this can be ver-
ified directly). Further, a product of two completely monotonic functions is
completely monotonic, therefore it remains to prove the complete monotonic-

ity of e=*V%. To see this, observe that (—1)”e>“/ad"z;—iﬁ is a polynomial in

ﬁ7 all coefficients of which are positive, because this is evident for n = 1 and

at each successive differentiation all the coefficients of ek‘/adnz;# change
sign. Hence, e *V* is completely monotonic on (0, 00), which completes the
proof of the first part.

The second part follows from (4.15) and the corresponding Laplace trans-
form inversion formula.

From Propositions 3.8, 3.9 and 3.10 we deduce that a generalized tempered
stable process

e is of compound Poisson type if ay < 0 and a— < 0,

e has trajectories of finite variation if oy <1 and a— < 1,
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e is a subordinator (positive Lévy process) if c. = 0, ay < 1 and the drift
parameter is positive.

The limiting case a— = a4 = 0 corresponds to an infinite activity process. If
in addition ¢y = ¢_, we recognize the variance gamma model of the previous
section.

Excluding the deterministic drift parameter we see that the generalized
tempered stable process is a parametric model with six parameters. We will
discuss the role of the parameters a little later, after computing the charac-
teristic function of the process.

Working with tempered stable process becomes more convenient if we use
the version of Lévy-Khinchin formula without truncation of big jumps, namely
we write

oo

Ele"Xt] = exp t{iuy, + / (™" =1 —iuz)v(z)dz}. (4.29)

—00

This form can be used because of exponential decay of the tails of Lévy mea-
sure. In this case F[X;] = ~.t. To compute the characteristic function, we
first consider the positive half of the Lévy measure and suppose that a4 # 1
and a4+ # 0.

oo e—)\a:
(e =1 —iuz)———dxr
0 zite

_ Z (Zu)n AOO phlmap AT g Z M}\a—nr(n — a)

n!

n=2

—rerea fy () 4250 () S () )

The expression in braces resembles to the well-known power series

2
x
(1—|—x)“:1+,ux+u(u—l)§+...

Comparing the two series we conclude that

> T . 67)\1 a An ¢ U

0

The interchange of sum and integral and the convergence of power series that
we used to obtain this expression can be formally justified if |u| < A but the
resulting formula can be extended via analytic continuation to other values of
u such that Su > —\. To compute the power in (4.30) we choose a branch of
z® that is continuous in the upper half plane and maps positive half-line into
positive half-line.
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A similar computation in the case o = 1, that is left to the reader as an
exercise, yields that

/Oo(ei” — 1 —iux) e de = (A —iu)log (1 — fu +iu (4.31)
0 1»'2 n 8 A ’
and if a = 0,
R e T u i\
wr—1—4 de = — +1 . 4.32
/0 (e )= —dw =55+ log U2 (4.82)

Assembling together both parts of the Lévy measure, we obtain the charac-
teristic function of the generalized tempered stable process.

PROPOSITION 4.2
Let (Xi)i>0 be a generalized tempered stable process. In the general case
(ax # 1 and ax #0) its characteristic exponent W(u) =t~ log E[e™X] is

. oy .
\Ij(u) = ZU’YC + F(—OZ+))\?_+C+ { (1 — ;\—u> —1 + ot }
+

Ifa_;’_ = Q_ = 1’
U(u) = iu(ve + 4 —c-) + e (Ay — iu) log (1 - u)

+e (A +iu)log (1 + ;—“> . (4.34)

and if oy = a_ =0,

U(u) = tuye — ¢4 {% + log (1 - %)}

e (1)) s

The other cases (when only one of the a-s is equal to 0 or 1) can be obtained
in a similar fashion.

Proposition 3.13 allows to compute the first cumulants of the tempered
stable process. Taking derivatives of the characteristic exponent, we find in
the general case:

K1 = E[Xy] = tve,

Ky =VarX; = t0(2 — oy )e AT 2 +4T(2 —a_)e A* 2,
Ky =1T(3 — oy )ey A9 2 — 03— a_)e A" %,

Ky =1tI'(4— a+)c+)\3‘_+_4 + T4 —a_)e N\~ -
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These expressions do not completely clarify the role of different parameters.
For example, suppose that the process is symmetric. Then the excess kurtosis
of the distribution of X; is

K, (2—a)(3—a)

(Var X;)2 A '

which shows that we can decrease the excess kurtosis by either increasing A
(the jumps become smaller and the process becomes closer to a continuous
one) or increasing ¢ (the jumps become more frequent and therefore the central
limit theorem works better). However, this expression does not allow us to
distinguish the effect of ¢ and A. To fully understand the role of different
parameters we must pass to the dynamical viewpoint and look at the Lévy
measure rather than at the moments of the distribution. Then it becomes
clear that A_ and A4 determine the tail behavior of the Lévy measure, they
tell us how far the process may jump, and from the point of view of a risk
manager this corresponds to the amount of money that we can lose (or earn)
during a short period of time. ¢y and c¢_ determine the overall and relative
frequency of upward and downward jumps; of course, the total frequency of
jumps is infinite, but if we are interested only in jumps larger than a given
value, then these two parameters tell us, how often we should expect such
events. Finally, oy and a_ determine the local behavior of the process (how
the price evolves between big jumps). When a; and «_ are close to 2, the
process behaves much like a Brownian motion, with many small oscillations
between big jumps. On the other hand, if o and a_ is small, most of price
changes are due to big jumps with periods of relative tranquillity between
them.

Key properties of the tempered stable model are summed up in Table 4.6.

4.6 Generalized hyperbolic model

This last example of this chapter illustrates the modelling approach by
specifying the probability density directly. Let us first come back to the
inverse Gaussian subordinator with probability density at some fixed time

p(a) = e(x, Qa2 208/, (4.36)
where we used a different parameterization than in Table 4.4. Introducing an
additional parameter into this distribution, we obtain the so-called generalized

inverse Gaussian law (GIG):

p(x) = (A, X, Q)atlem 2=/, (4.37)
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TABLE 4.6:

Tempered stable process

Model name

Model type

Parameters

Lévy measure

Characteristic
exponent

Probability
density

Cumulants:
EB[X:]

Var X, t
3
Cq

Tail behavior

Tempered stable process

Infinite activity but finite variation if oy < 1, ag <
1 and at least one of them is non-negative; infinite
variation if at least one of them is greater or equal to
1. Small jumps have stable-like behavior if o and a4
are positive.

6: three for each side of the Lévy measure. A_ and A
are tail decay rates, a_ and a are describe the Lévy
measure at 0 negative and positive jumps, and c_ and
¢4 determine the arrival rate of jumps of given size.

— C— —A_|x 4 —Ajx
v(z) = [z[ita- ¢ 1 4c0 + ez € La>o

[} i @+ U
() = T(—a2Frey {(1-2)" — 14 ) 4
. a_ .
Peaxe {(1+42)  —1-%=} ifax # 1
and ag # 0. Expressions for these particular cases are
given in Proposition 4.2.

Not available in closed form.

0 because we use the representation (4.29)
tr'(2 — a+)c+/\i+_2 F0(2 — a_)e A7
tr'(3 — a+)c+/\i+_3 — (3 —a_)e > °
tr(4— a+)c+)\i+_4 FT(4—a_)e A1

Both Lévy density and probability density have expo-
nential tails with decay rates Ay and A_.
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This distribution was proven to be infinitely divisible [183] and can generate a
Lévy process (a subordinator). However, GIG laws do not form a convolution
closed class, which means that distributions of this process at other times
will not be GIG. Let S be a GIG random variable and W be an independent
standard normal random variable. Then the law of /SW + 1S, where yu is
a constant, is called normal variance-mean mixture with mixing distribution
GIG. This can be seen as a static analog of Brownian subordination (indeed,
the distribution of the subordinated process at time ¢ is a variance-mean
mixture with the mixing distribution being that of the subordinator at time ¢).
Normal variance-mean mixtures of GIG laws are called generalized hyperbolic
distributions (GH) and they are also infinitely divisible. GH laws have been
used for financial modelling by a number of authors (see [123, 128, 125]). The
one-dimensional GH law is a five-parameter family that is usually defined via
its Lebesgue density:

A
2

(/T G )

(4.38)

pla: Ao, B.6.0) = C(8° + (x — ") A K,

(az _ ﬁQ),\/Q
V2maA 1267 K\ (6 /a2 — 52)’

where K is the modified Bessel function of the second kind. The characteristic
function of this law has the following form:

N G et S N SN CIVA SR CRTOR)
(u) = (a2 - B+ zu)Q) Kx(0\/a? = 32) (4.39)

The main disadvantage of GH laws is that they are not closed under convolu-
tion: the sum of two independent GH random variables is not a GH random
variable. This fact makes GH laws inconvenient for working with data on
different time scales. For example, it is difficult to calibrate a GH model to a
price sheet with options of several maturities. In this case one has to choose
one maturity at which the stock price distribution is supposed to be general-
ized hyperbolic, and distributions at other maturities must be computed as
convolution powers of this one. On the contrary, it is relatively easy to sample
from a GH distribution and to estimate its parameters when all data are on
the same time scale (e.g., when one disposes of an equally spaced price series).

Because the GH law is infinitely divisible, one can construct a generalized
hyperbolic Lévy process whose distributions at fixed times have characteristic
functions ®(u)?. The Lévy measure of this process is difficult to compute and
work with but some of its properties can be read directly from the character-
istic function, using the following lemma.

1
2

C:

LEMMA 4.1
Let (X;) be a Lévy process with characteristic exponent W(u) = +log E[e™ "]

and let U(u) = w be the symmetrized characteristic exponent.
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1. If X is a compound Poisson process then ¥ (u) is bounded.

2. If X is a finite variation process then — 0 as u — 0.

\Il(u)

8. If X has no Gaussian part then — 0 as u — oo.

PROOF From the Lévy-Khinchin formula we have:

oo
W(u) = —102u2 —/ (1 = cos(ux))v(dx).
2 — 00

Suppose that X is a compound Poisson process. Then by Proposition 3.8,
A =0 and v is a finite measure on R. Since |¥(u)| < 2 1= , it follows
that U(u) is bounded.

Suppose now that X is a finite variation process. Then by Proposition
3.9, A =0 and f_ll |z|v(dz) < co. The latter property and the inequality
|1 —cos(z)] <|z], z € R allow to use the dominated convergence theorem to
compute the limit:

lim L= cos(uz) gy — / lim L2 00T) Ly o,

— —
u—oo | u o U700 U

Finally suppose that X has no Gaussian part, that is A = 0. Then using the
fact that |1 — cos(z)| < 22, 2z € R and once again the dominated convergence
theorem, we conclude that

lim \Il(;;) = — lim /OC wl/(dm) =0.

2
u—oo U u—oo | U

[

For the GH distribution we find, using the asymptotic properties of Bessel
functions (see Appendix A.1), that ¥(u) ~ —&|u| when u — co. This relation
is valid in the general case but it does not hold in some particular cases (e.g.,
when § = 0). This means that except in some particular cases generalized
hyperbolic Lévy process is an infinite variation process without Gaussian part.

The principal advantage of the GH law is its rich structure and great vari-
ety of shapes. Indeed, many of the well-known probability distributions are
subclasses of GH family. For example,

e The normal distribution is the limiting case of GH distribution when

§ — oo and §/a — o?.

e The case A = 1 corresponds to the hyperbolic distribution with density

p(z;a, 5,0, 1) = ala, B,8) exp(—an/02 + (x — )2 + B(x — p

This distribution (and the GH distribution itself) owes its name to the
fact that the logarithm of its density is a hyperbola.
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TABLE 4.7:

Generalized hyperbolic model

Model name

Model type
Parameters

Lévy measure

Characteristic
function

Probability
density

Cumulants:
E[Xy]

Var X;

Tail behavior

Generalized hyperbolic model

Infinite variation process without Gaussian part (in the general
case).

5: 0 is the scale parameter,  is the shift parameter, A\, a and
B determine the shape of the distribution.

The Lévy measure is known, but the expression is rather com-
plicated as it involves integrals of special functions.

(B+iu)?)

Kz (6y/a2—p32)

. 2_ 42 A2 g (54 /32=
D(u) = etrt (azf(ﬁfm)z) A

pl@) = O + (x — W23 1Ky 1 (ay/02 + (x — p)?)e’e
where C' = (o2 =32)2/2

Qﬂaxfuz(;)\KA((;\/azfﬁzy
W+

\/WKIX(IC()O where ( = §y/a? — (32
52 (KA+1(C) B Exi2(0) (K/\-FI(C))Q

G+ | R K (Q)
In the general case both Lévy density and probability density
have exponential tails with decay rates Ay = a — (§ and A_ =

o+ 3.

e The case A = —1/2 corresponds to the normal inverse Gaussian law that
we have already discussed.

e The case § = 0 and p = 0 corresponds to variance gamma process.

e Student t distributions are obtained for A < 0 and o = g = pu = 0.

A summary of analytical facts about generalized hyperbolic distribution and
examples of their application in finance can be found in [128]. Key properties
of this model are summed up in Table 4.7.

Further reading

More details on the Merton jump-diffusion model, including pricing for-

mulae for European options, are given in [291].

Kou’s double exponential

jump-diffusion model is described in [238], this paper also derives formulae
for pricing European and barrier options. Bates [41] discusses a model with
compound Poisson jumps and stochastic volatility.
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The variance gamma model was introduced in the symmetric case by Madan
and Seneta in [273]. The general case is discussed in [271]. Normal inverse
Gaussian process was introduced by Barndorff-Nielsen (see [32, 30]) and ex-
tensively studied by Rydberg [342].

Tempered stable laws have appeared in the literature under many different
names (see remarks below). First introduced by Koponen [237] under the
name truncated Lévy flights, they have been applied in financial modelling in
[93, 67, 71, 80]. Boyarchenko and Levendorskii [71] study it under the name of
KoBoL process. Carr et al. [80] discuss a four-parameter subclass of tempered
stable models under the name CGMY process.

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen
[31]. They were proven to be infinitely divisible by Halgreen [183], which
made it possible to construct generalized hyperbolic Lévy processes. Financial
applications of this process were studied by Eberlein [123] and by Raible in
his PhD thesis [329].

REMARK 4.4 Tempered stable processes and truncated Lévy flights
The tempered stable process was defined in Section 4.5 as a Lévy process
whose Lévy measure has a density of the form:

C_

_ —A_|z| C+
v(z) = e e loco + e 1 >0
In the case a— = a4 = « this process is obtained by multiplying the Lévy

density of an a-stable process by a (two-sided) exponential factor which can
be asymmetric. This exponentially decreasing factor has the effect of temper-
ing the large jumps of a Lévy process and giving rise to finite moments, while
retaining the same behavior for the small jumps hence the name of tempered
stable process. Incidentally, this exponential tempering also destroys the self-
similarity and scaling properties of the a-stable process, but one can argue
that these scaling properties hold approximately for short times [93, 285].

First proposed in this form by Koponen [237] under the name of “truncated
Lévy flight!” (and not truncated Lévy process), tempered stable processes
were used in financial modelling in [93, 288, 67]. Variants with Ay # A_
have been studied by Boyarchenko and Levendorskii [71] under the name of
“KoBoL” processes and in [81] under the name of “CGMY” processes. We
have used here the more explanatory denomination of “tempered stable”.

In [71], Boyarchenko & Levendorskil study a generalization of tempered
stable processes, called regular Lévy processes of exponential type (RLPE),
where the Lévy density does not exactly have the form above, but behaves
similarly both when 2 — oo and  — 0: a Lévy process is said be a RLPE?
of type [-A_, A\;] and order « €]0, 2[ if the Lévy measure has exponentially
decaying tails with rates \i:

-1 —o0
/ My (dy) < oo, / eMYu(dy) < 0o
1

— 00
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y|~ (1) there exists o/ < a such that

and behaves near zero as

‘/ V(dy)—% S%.
ly|>e |€| ‘€|

The class of RLPEs includes hyperbolic, normal inverse Gaussian and tem-
pered stable processes but does not include the variance gamma process. Since
these processes are essentially the only analytical examples of RLPE, this class
should be seen more as a unified framework for studying properties of such
processes rather than a new class of models.

IThe term “Truncated Lévy flight” was actually coined by Mantegna and Stanley in [284]
but for a discrete time random walk which does not have an infinitely divisible distribution
and therefore does not correspond to a Lévy process. Note that these authors do not speak
of a Lévy processes but of “Lévy flight” which is a discrete time process.

2Note that these authors give several different definitions of RLPE in their different papers.
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Chapter 5

Multidimensional models with jumps

Apart from the pricing and hedging of options on a single asset, practically all
financial applications require a multivariate model with dependence between
components: examples are basket option pricing, portfolio optimization, sim-
ulation of risk scenarios for portfolios. In most of these applications, jumps
in the price process must be taken into account. However, multidimensional
models with jumps are more difficult to construct than one-dimensional ones.
This has led to an important imbalance between the range of possible ap-
plications and the number of available models in the multidimensional and
one-dimensional cases: a wide variety of one-dimensional models have been
developed for relatively few applications, while multidimensional applications
continue to be dominated by Brownian motion.

One reason for the omnipresence of Gaussian models is that dependence
in the Gaussian world can be parameterized in a simple manner, in terms of
correlation matrices. In particular, in this case marginal properties — given
by volatilities — are easy to separate from dependence properties — described
by correlations. A second reason is that it is easy to simulate Gaussian time
series with arbitrary correlation matrices.

In this chapter, we will provide tools for building multivariate models with
jumps and propose a framework for parameterizing these models that allows
the same flexibility as the Gaussian multivariate case: separating dependence
from marginal properties and easy simulation.

A simple method to introduce jumps into a multidimensional model is to
take a multivariate Brownian motion and time change it with a univariate
subordinator (see [123, 319]). This approach, that we summarize in Section
5.1, allows to construct multidimensional versions of the models we discussed
in the preceding chapter, including variance gamma, normal inverse Gaussian
and generalized hyperbolic processes. The principal advantage of this method
is its simplicity and analytic tractability; in particular, processes of this type
are easy to simulate. However, this approach to dependence modelling lacks
flexibility; the range of possible dependence patterns is quite limited (for
instance, independence is not included), only components of the same type
can be used (e.g., either all of the components are variance gamma or all of
the components are normal inverse Gaussian) and no quantitative measure of
dependence is available.

In finite activity models, a more accurate modelling of dependence may be
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achieved by specifying directly the dependence of individual jumps in one-
dimensional compound Poisson processes (see [263]). This approach is dis-
cussed in Section 5.2. If the jumps are Gaussian, their dependence can be de-
scribed via correlation coefficients. If they are not Gaussian (e.g., if they have
double exponential distribution like in Kou’s model) then one has to model
their dependence with copulas (described in Section 5.3). This approach is
useful in presence of few sources of jump risk (e.g., when all components jump
at the same time) because in this case it allows to achieve a precise descrip-
tion of dependence within a simple model. On the other hand, when there are
several sources of jump risk, that is, the compound Poisson processes do not
all jump at the same time, one has to introduce a separate copula for each
jump risk source and the model quickly becomes very complicated. Another
inconvenience of this modelling approach is that it does not allow to couple
components of different types (all of them must be compound Poisson).

Comparison of advantages and drawbacks of these two methods leads to
an understanding of the required properties of a multidimensional modelling
approach for Lévy processes. In general, such an approach must satisfy the
following conditions:

e The method should allow to specify any one-dimensional model for each
of the components.

e The range of possible dependence structures should include complete
dependence and independence with a “smooth” transition between these
two extremes.

e The dependence should be modelled in a parametric fashion and the
number of parameters must be small.

This program can be implemented if the dependence is separated from the
marginal behavior of the components. In a more restrictive setting of random
vectors this idea has long existed in the statistical literature: the dependence
structure of a random vector can be disentangled from its margins via the
notion of copula.! We discuss this notion in Section 5.3 and show how it
can be carried over from the static setting of random variables to the dy-
namic framework of Lévy processes. The dependence among components of
a multidimensional Lévy processes can be completely characterized with a
Lévy copula — a function that has the same properties as ordinary copula
but is defined on a different domain. This allows us to give a systematic
method to construct multidimensional Lévy processes with specified depen-
dence. We suggest several parametric families of Lévy copulas, which can
be used to construct an n-dimensional Lévy processes by taking any set of n
one-dimensional Lévy processes and coupling them with a Lévy copula from

LFor an introduction to copulas see [305] — this monograph treats mostly bivariate case —
and [223] for multivariate case.
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a parametric family. This method is described in Section 5.5 in the setting of
Lévy processes with positive jumps and generalized in Section 5.6 to all Lévy
processes. The models constructed using the Lévy copula approach may be
less mathematically tractable and somewhat harder to implement than the
simple models of Sections 5.1 and 5.2 but their main advantage is the ability
to describe every possible dependence pattern for a multidimensional Lévy
process with arbitrary components.

In the following sections, for ease of presentation, examples are given in
the two-dimensional case. A summary of important definitions and results in
higher dimensions is provided at the end of sections.

5.1 Multivariate modelling via Brownian subordination

A possible generalization of the Black-Scholes model is to suppose that the
stock prices do follow a multidimensional Brownian motion but that they
do it on a different (stochastic) time scale. In other words, the clock of the
market is not the one that we are used to: sometimes it may run faster
and sometimes slower than ours. Suppose that this market time scale is
modelled by a subordinator (Z;) with Laplace exponent {(u) and let (B(t))i>0
be a d-dimensional Brownian motion with covariance matrix ¥ and p € R?
Time changing the Brownian motion with drift x4 with (Z;), we obtain a new
d-dimensional Lévy process X; = B(Z;) + uZ;. This process can be used to
model d dependent stocks: S} = exp(X}) for i = 1...d. The characteristic
function of X, can be computed using Theorem 4.2: for every u € R?

E{eiu.Xt } _ etl(—%u.Eu—i—iu.u)

Formulae (4.7) and (4.8) also allow to compute the characteristic triplet of
(X:). The conditionally Gaussian nature of this model makes it easy to simu-
late the increments of X;. This can be done by first simulating the increment
of the subordinator and then the increment of d-dimensional Brownian motion
at the time scale given by the increment of subordinator.

Let us take a closer look at some properties of this model. To ease the

notation, we switch to the two-dimensional case. Two stock price processes
(S}) and (S?) are modelled as follows:

St =exp(X]), X{ =BYZ)+mZ,
S? =exp(X?), X} =B*(Zi)+ uaZy,

where B! and B? are two components of a planar Brownian motion, with
variances o2 and o3 and correlation coefficient p. The correlation of returns,
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p(X}, X?), can be computed by conditioning on Z;:

0102pE[Zt] + pu1 pi2 Var Z;

X1 x2) — .
p(Xi, X7) (02E[Z] + p2 Var Z,)V/2(03 E[Z;] + u3 Var Z;)1/2

In the completely symmetric case (u3 = po = 0) and in this case only
p(X}, X?) = p: the correlation of returns equals the correlation of Brown-
ian motions that are being subordinated. However, the distributions of real
stocks are skewed and in the skewed case the correlation of returns will be dif-
ferent from the correlation of Brownian motions that we put into the model.
Even if the Brownian motions are independent, the covariance of returns is
equal to uqus Var Z; and if the distributions of stocks are not symmetric, they
are correlated.

In the symmetric case, if Brownian motions are independent, the two stocks
are decorrelated but not independent. Since the components of the Brownian
motion are time changed with the same subordinator, large jumps in the two
stocks (that correspond to large jumps of the subordinator) will tend to arrive
together, which means that absolute values of returns will be correlated. If
1 = p2 = 0 and p = 0 then the covariance of squares of returns is

Cov((X})2, (XH)?) = 0109 Cov(WE(Zy), WE(Z;)) = o109 Var Zy,

therefore squares of returns are correlated if the subordinator Z; is not deter-
ministic. This phenomenon can lead to mispricing and errors in evaluation of
risk measures. The following example illustrates this point.

Example 5.1

Let (X;) and (Y;) be two symmetric identically distributed variance gamma
Lévy processes and suppose that we are interested in the distribution of X; +
Y; for a horizon of 10 business days, which corresponds roughly to ¢t = 1/25.
The parameters of the distribution of X; and Y; have been chosen to have
an annualized volatility of 30% and an excess kurtosis at time ¢ equal to
3. In the first test the two processes, X; and Y;, were assumed completely
independent, whereas in the second test they result from the subordination
of independent Brownian motions by the same gamma subordinator. Various
statistics of the distributions of X; + Y; in the two cases were computed
using the Monte Carlo method with 50,000 trials and are summed up in
Table 5.1. They show that in the case when X; and Y; are obtained by
subordination with the same subordinator, the distribution of X; 4+ Y} is more
leptokurtic than in the completely independent case, and its small quantiles
are higher in absolute value. This means in particular that the use for risk
management of an incorrect model with dependence between assets when they
are really independent will result in higher requirements in regulatory capital
and therefore in unjustified extra costs for the bank.
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TABLE 5.1: Decorrelation vs. independence: independent processes
cannot be modelled via independent Brownian motions time changed with
the same subordinator

Statistics of | X; and Y; independent | X; and Y; decorrelated
X +Y;

Volatility 41.9% 41.8%

Excess kurtosis 1.54 2.64

5% quantile —0.136 —0.133

1% quantile —0.213 —0.221

0.1% quantile —0.341 —0.359

Thus, subordination of a multidimensional Brownian motion allows to con-
struct simple and tractable multivariate parametric models based on Lévy
processes. However, this construction has two important drawbacks: first,
one cannot specify arbitrary one-dimensional models for the components and
second, the range of available dependence structures is too narrow, in partic-
ular, it does not include complete independence — the components obtained
are always partially dependent.

5.2 Building multivariate models from common Poisson

shocks

Suppose that we want to improve a d-dimensional Black-Scholes model by
allowing for “market crashes.” The dates of market crashes can be modelled
as arrival times of a standard Poisson process (N:). This leads us to the
following model for the log-price processes of d assets:

N,
XZ:MtJrBZJrZYj, i=1...d,

j=1

where (B;) is a d-dimensional Brownian motion with covariance matrix ¥, and
{Y;}32, are ii.d. d-dimensional random vectors which determine the sizes of
jumps in individual assets during a market crash. This model contains only
one driving Poisson shock (IV;) because we only account for jump risk of
one type (global market crash affecting all assets). To construct a parametric
model, we need to specify the distribution of jumps in individual assets during
a crash (distribution of Y for all i) and the dependence between jumps in
assets. If we make a simplifying assumption that Y; are Gaussian random
vectors, then we need to specify their covariance matrix ¥’ and the mean
vector m. We thus obtain a multivariate version of Merton’s model (see

© 2004 by CRC Press LLC



Chapter 4 and the numerical example at the end of Chapter 11). If the jumps
are not Gaussian, we must specify the distribution of jumps in each component
and the copula function describing their dependence.

In the case of only one driving Poisson shock, everything is relatively easy
and simple, but sometimes it is necessary to have several independent shocks
to account for events that affect individual companies or individual sectors
rather than the entire market. In this case we need to introduce several
driving Poisson processes into the model, which now takes the following form:

M Nf
X{=pt+Bi+Y Y Y i=1...d
k=1j=1
where N}, ..., NM are Poisson processes driving M independent shocks and

Y}, is the size of jump in i-th component after j-th shock of type k. The vec-

tors {YJ’ w JL, for different j and/or k are independent. To define a parametric
model completely, one must specify a one-dimensional distribution for each
component for each shock type — because different shocks influence the same
stock in different ways — and one d-dimensional copula for each shock type.
This adds up to M x d one-dimensional distributions and M one-dimensional
copulas. How many different shocks do we need to describe sufficiently rich
dependence structures? The answer depends on the particular problem, but
to describe all possible dependence structures, such that the d-dimensional
process remains a Lévy process of compound Poisson type, one needs a total
of 2™ — 1 shocks (M shocks that affect only one stock, % shocks that
affect two stocks etc., adding up to 2M — 1). Tt is clear that as the dimen-
sion of the problem grows, this kind of modelling quickly becomes infeasible.
Not only the number of parameters grows exponentially, but also, when the
number of shocks is greater than one, one cannot specify directly the laws
of components because the laws of jumps must be given separately for each
shock.

Building multivariate models from compound Poisson shock is therefore
a feasible approach in low-dimensional problems and/or when few sources
of jump risk need to be taken into account. For a detailed discussion of
this modelling approach including examples from insurance and credit risk
modelling, the reader is referred to [263].

5.3 Copulas for random variables

The law of a two-dimensional random vector (X,Y) is typically described
via its cumulative distribution function

F(z,y) = PIX <2,V <y. (5.1)
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We call marginal laws or margins of (X,Y") the laws of X and Y taken sepa-
rately. These marginal laws can be described via their respective distribution
functions Fj(z) = P[X < z] and Fy(y) = P[Y < y] which can, of course, be
obtained from the two-dimensional distribution function:

Fi(z) = Fz,00),  Fa(y) = F(o0,y).

To know the distribution of a two-dimensional random vector, it is not enough
to know its marginal distributions; in addition to the margins the distribu-
tion function F(z,y) contains the information about dependence. Two vec-
tors with the same margins but different dependence structures have different
distribution functions. For example, for a random vector with marginal dis-
tributions Fy(z) and F5(y), F(x,y) = Fi(x)F5(y) if the components are in-
dependent and F'(z,y) = min(F;(x), F2(y)) if they are completely dependent,
that is, one of the components is a strictly increasing deterministic function
of the other.

The copula of a two-dimensional random vector (or, more precisely, of its
distribution) is a two-place function that characterizes its dependence struc-
ture and does not depend on the margins. The pair copula + margins
gives an alternative description of the law of a random vector. The distri-
bution function can be computed from the copula C(z,y) and the margins:
F(z,y) = C(Fi(z), F>(y)). If Fy(z) and Fy(y) are continuous then the cop-
ula is unique and can be computed from the distribution function and the
margins: C(z,y) = F(F; (), F5 *(y)).

Saying that the copula of a distribution does not depend on the margins
means that it is invariant under strictly increasing transformations of the
components of the random vector. That is, for every two strictly increasing
functions f and g the copula of X and Y is the same as the copula of f(X)
and g(Y). The term “dependence structure” refers to all characteristics of a
distribution that do not depend on the margins and that, together with the
margins, allow to reconstruct the entire distribution.

To proceed, we must add some mathematics to these intuitive explanations.
Let us come back to the distribution function F(x,y) of a random vector. This
function has the following properties:

1. For any rectangle B = [x1,x2] X [y1, y2],

F(22,y2) — F(x2,y1) — F(21,y2) + F(21,y1) = P[(X,Y) € B] > 0.

2. For every z, F(—o0,z) = F(x,—00) = 0.

The first property can be seen as a generalization of the notion of increasing
function to multiple dimensions, leading to the following definitions:

DEFINITION 5.1 Let Sy and Ss be two possible infinite closgd intervals
of R=RU {o0}U{—00} and consider a function F : S; x So — R.
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e F-volume of a rectangle B = [x1, 3] X [y1,y2] C S1 X So is defined by
Vie(B) = F(v2,y2) — F(w2,y1) — F(z1,y2) + F(x1, 1)

e F is 2-increasing if for every rectangle B in its domain, Vi (B) > 0.

e ' is grounded if for every x € Sy, F(x,minS3) = 0 and for every
y € Sy, F(minSy,y) =0.

REMARK 5.1 If a two-place function is increasing in each of its argu-
ments, it is not in general 2-increasing (the example of such function that is not
2-increasing is F(x,y) = —ﬁ for x,y > 0). If a function is 2-increasing, it is
not necessarily increasing in each of its arguments (for example, F'(z,y) = zy
is 2-increasing but not increasing in its arguments if z,y < 0). However,
if a function is increasing and grounded, then it is increasing in each of its
arguments.

In the sequel, we will need the following two properties of increasing func-
tions (both of which the reader can easily prove).

LEMMA 5.1
Let F be a 2-increasing function.

1. Increasing variable changes: if the functions fi and fo are increasing
then F(f1(x), fa(y)) is 2-increasing.

2. Transformation by a function with positive derivatives: if F' is grounded
and f is increasing, convezx and satisfies f(0) = 0 then the superposition
foF is a 2-increasing grounded function.

In the theory of copulas the definition of a distribution function is slightly
non-standard.

DEFINITION 5.2 An abstract distribution function is a function from
R? to [0,1] that is grounded, 2-increasing and satisfies F(oo,00) = 1.

In addition to the above properties, a probability distribution function, de-
fined by Equation (5.1) must possess some continuity properties: for every
Zo,Yo € Ra

lim F(x,y) = F(xo,y0)-
z|zo,ylyo
However, it can be shown, that for every abstract distribution function F' there
exists a unique probability distribution function F such that Vi (B) = Vz(B)
for every continuity rectangle B of F; where a continuity rectangle is defined

© 2004 by CRC Press LLC



as a rectangle B such that for every sequence of rectangles whose vertices
converge to B, the sequence of F-volumes of these rectangles converges to
Vr(B). Having said that, we are not going to use the word “abstract” in the
sequel, the meaning of the term “distribution function” being clear from the
context.

Generalizing the notion of margins of a distribution function, for any func-
tion F : Sy x S5 — R the one-place functions Fj(z) = F(z,maxS) and
F5(y) = F(max Sy,y) are called margins of F.

DEFINITION 5.3 (Copula) A two-dimensional copula is a function
C with domain [0,1]? such that

1. C s grounded and 2-increasing.

2. C has margins Cy, k = 1,2, which satisfy Ci.(u) = u for all u in [0, 1].

From the probabilistic point of view this definition means that a two-
dimensional copula is a distribution function on [0, 1]? with uniform margins.
The next theorem is fundamental for the theory of copulas.

THEOREM 5.1 (Sklar)
Let F' be a two-dimensional distribution function with margins F1, Fa. Then
there exists a two-dimensional copula C such that for all x € R?,

F(Il,l'g) :C(Fl(l'l),FQ(’Ig)). (52)

if F1, Fy are continuous then C' is unique, otherwise C' is uniquely determined
on Ran Fy} x Ran Fs. Conwversely, if C' is a copula and Fy, Fs are distribu-
tion functions, then the function F defined by (5.2) is an two-dimensional
distribution function with margins Fy and F5.

PROOF We suppose that Fy and F, are continuous (a complete proof for
the general case can be found in [365]).

The direct statement. Since Fj is continuous, one can find an increasing
function Fy *(u) satisfying F; ' (0) = —oo, Fy *(1) = 400 and Fy(F~'(u)) =
u for all u € R. The inverse function of Fy can be chosen in the same way.
Let C(u,v) = F(F;'(u),Fy; '(v)). Then by property 1 of Lemma 5.1, C
is increasing. Moreover, C(0,v) = F(F;1(0), Fy '(v)) = F(—o0, Fy '(v)) =
0 and C(1,v) = F(F7'(1),Fy'(v)) = F(oo,Fy ' (v)) = Fa(Fy '(v)) = v.

Hence, C' is a copula. To show the uniqueness, suppose that there exists
another copula C' that corresponds to the same distribution. Then for every

z € Randy € R, C(Fi(x), Faly)) = C(Fi(z), F2(y)). Therefore, from the
continuity 9f Fy and Fy, we conclude that for every u € [0,1] and v € [0, 1],

C(u,v) = C(u,v).
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The converse statement. By property 1 of Lemma 5.1, the function defined
in (5.2) is 2-increasing. One can then check by direct substitution that it is
grounded, has margins F; and F and that F'(1,1) = 1. Therefore, it is a
distribution function.

Examples of copulas

e If X and Y are independent, the copula of (X,Y) is C' (u,v) = wv. If
the distributions of X and/or Y are not continuous, the copula is not
unique, so C'; is only one of the possible copulas. This remark also
applies to the next two examples.

o If X = f(Y) for some strictly increasing deterministic function f, then
Cy(u,v) = min(u,v). This copula is called the complete dependence
copula or the upper Fréchet bound, because for every copula C' one has

C(u,v) < Cy(u,v), Yu,v.

o If X = f(Y) with f strictly decreasing then C'(u,v) = max(z+y—1,0).
This is the complete negative dependence copula or the lower Fréchet
bound.

e The Clayton family of copulas is a one-parameter family given by
Colz,y) = (7 +y 9 —1)7 9>0. (5.3)

The Clayton family includes the complete dependence copula and the
independence copula as limiting cases:

Cyp — () as — oo,
09—>OL as § — 0.

e The Gaussian copula family corresponds to the dependence structure of
a Gaussian random vector:

Cpl(x,y) = Nap(N7H(z), N~} (y))

where N, is the distribution function of a bivariate standard normal
distribution with correlation p and N is the univariate standard normal
distribution function. Here the case p = 1 corresponds to complete
dependence and p = 0 corresponds to independence.

Figure 5.1 illustrates the difference between the Gaussian copula and the
Clayton copula. Both graphs depict 1000 realizations of a two-dimensional
random vector with standard normal margins and a correlation of 80%. How-
ever, the dependence of the left graph is given by the Gaussian copula and
the dependence of the right graph is parameterized by the Clayton copula.
The Clayton copula is asymmetric: the structure of the lower tail is different
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FIGURE 5.1: 1000 realizations of a random vector with standard normal
margins and correlation p = 0.8. Left: Gaussian copula. Right: Clayton
copula.

from the upper one. There is more tail dependence in the lower tail: there is a
relatively high probability of having a large negative jump in one component
given that there is a large negative jump in the other. This is not the case for
the Gaussian copula on the left.

The Clayton copula is a representative of the class of Archimedean copulas
defined by the following proposition.

PROPOSITION 5.1
Let ¢ : [0,1] — [0,00] be a continuous strictly decreasing function. Then

C(u,v) = ¢~ (d(u) + ¢(v))

18 a copula if and only if ¢ is convew.

A proof of this proposition and multivariate generalizations can be found
in [305]. The function ¢ is called the generator of an Archimedean copula.
#(t) = (t7% — 1) /0 produces the Clayton family and ¢(t) = —log(t) produces
the independence copula C'; .

Summary of definitions and results for multivariate case

DEFINITION 5.4 F-volume Let Sy,---, S, be nonempty subsets of R,
let F' be a real function of n variables such that Dom F = 51 x --- x S, and
fora<b (ay < by for all k) let B = [a,b] be an n-box whose vertices are in
Dom F. Then the F-volume of B is defined by

Ve(B) = _sgn(c)F(c),
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where the sum is taken over all vertices ¢ of B, and sgn(c) is

(© 1, if ¢, = ag for an even number of vertices,
sen(c) =
& —1, if cx = ax for an odd number of vertices.

DEFINITION 5.5 n-increasing function, grounded function, mar-
gins

o A real function F of n variables is called n-increasing if Ve (B) > 0 for
all n-bozes B whose vertices lie in Dom F'.

e Suppose that the domain of F is Sy X --- x S, where each Sy has a
smallest element ay. F is said to be grounded if F(t) = 0 for all t in
Dom F' such that ty, = ay for at least one k.

o If each Sy is nonempty and has a greatest element by, then (one-dimen-
sional) margins of F are functions Fy, with Dom F}, = Sy defined by
Fip(x) = F(by, - ybr—1,2,bp41, - ,by) for all x in Sk.

DEFINITION 5.6 Copula  An n-dimensional copula is a function C
with domain [0,1]™ such that

1. C is grounded and n-increasing.

2. C has margins Cy, k = 1,2,--+ ,n, which satisfy Cy(u) = u for all u in
[0,1].

An n-dimensional distribution function F' is an n-increasing grounded func-
tion with domain R™ such that F(oco,---,00) = 1. Copulas can be seen as
distribution functions with uniform margins.

THEOREM 5.2 Sklar

Let F' be an n-dimensional distribution function with margins Fy,-- -, F,.
Then there exists an n-dimensional copula C such that for all x € R",

F(xla-r% o 71'71) = C(Fl(xl)vFQ('rQ)’ o 7Fn(xn)) (54)
If Fy,--- | F, are all continuous then C is unique; otherwise, C is uniquely
determined on Ran F} x --- x Ran F,,. Conversely, if C' is an n-copula and

Fy, - F, are distribution functions, then the function F defined by (5.4) is
a n-dimensional distribution function with margins Fy,--- | F,.
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5.4 Dependence concepts for Lévy processes

In Chapter 3, we saw that the law of a Lévy process (X;) is completely
determined by the law of X; for some ¢ > 0. Therefore, the dependence
structure of a two-dimensional Lévy process (X4, Y};) can be parameterized by
the copula C; of X; and Y; for some ¢t > 0. However, this approach has a
number of drawbacks.

e FExcept in the case of stable processes, the copula Cy; may depend on ¢
(an explicit example of a Lévy process with nonconstant copula is given
in [373]). Cs for some s # t cannot in general be computed from C;
because it also depends on the margins.

e For given infinitely divisible distributions of X; and Y;, it is unclear,
which copulas C; will yield a two-dimensional infinitely divisible distri-
bution.

e The laws of components of a multidimensional Lévy process are usually
specified via their Lévy measures (see Chapter 4). In this case it would
be inconvenient to model dependence using the copula of probability
distribution.

The traditional concept of dependence for random variables, meaning all
characteristics of a distribution that are invariant under strictly increasing
transformations of the margins, is not suitable in the framework of Lévy pro-
cesses. The property of infinite divisibility of a random variable is destroyed
under strictly increasing transformations. We need therefore to redefine the
notion of dependence with respect to some other type of margin transfor-
mation, the one that preserves the Lévy property and reflects the dynamic
structure of Lévy processes. The following example clarifies this point.

Example 5.2 Dynamic complete dependence for Lévy processes

Let (X¢) be a pure jump Lévy process and (Y;) be a Lévy process, constructed
from the jumps of (X¢): Y; = > .., AX3. From the dynamic point of view
(X¢) and (Y%) are completely dependent, because the trajectory of one of them
can be reconstructed from the trajectory of the other. However, the copula of
X; and Y; is not that of complete dependence because Y; is not a deterministic
function of Xj.

This example shows that the important dependence concept for Lévy pro-
cesses is the dependence of jumps, that should be studied using the Lévy
measure. Knowledge of jump dependence gives a “microscopic” vision of a
Lévy process and allows to characterize its dynamic structure, which is very
important for risk management and other financial applications.
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Here we will not dwell on the dependence structure of the continuous Gaus-
sian part of Lévy processes, because on one hand it is very simple and well
studied (it is completely characterized by the covariance matrix) and on the
other hand it can be treated separately from jump dependence because the
Gaussian part of every Lévy process is independent from its jump part. In
the rest of this chapter, all Lévy processes are supposed to have no Gaussian
part.

Before introducing the equivalent of copulas to describe dependence of Lévy
processes, we show how independence of Lévy processes and their marginal
laws are expressed in terms of the Lévy measure.

PROPOSITION 5.2 Margins of Lévy measure
Let (X, Y;) be a Lévy process with characteristic triplet (A,v,~y). Then (X;)
has characteristic triplet (Ax,vx,vx) where

Ax = An,

VX(B) = V(BX] - 00700[)a VB € B(R)v

VX =M1 —|—/ {E(lx2§1 — 1m2+y2§1)V(d$ X dy) (55)
R2

The most important fact in this proposition is that the margins of a Lévy
measure can be computed in exactly the same way as the margins of a prob-
ability measure.

PROOF  This result follows directly from Theorem 4.1. 0

PROPOSITION 5.3 Independence of Lévy processes
Let (X;,Y:) be a Lévy process with Lévy measure v and without Gaussian part.
Its components are independent if and only if the support of v is contained in
the set {(x,y) : xy = 0}, that is, if and only if they never jump together. In
this case

v(A) =vx(Ax) + vy (Ay), (5.6)

where Ax = {x: (x,0) € A} and Ay = {y: (0,y) € A}, and vx and vy are
Lévy measures of (X¢) and (Yz).

PROOF  The only if part. Suppose that (X;) and (Y;) are independent
and have characteristic triplets (0,vx,7vx) and (0,vy,~y). Then, using the
Lévy-Khinchin formula for X; and Y;, we obtain

EletXetivYe] — BleivXe| B[] = exp t{ivxu + ivyv

+ /R(elmC —-1- iux1|$|gl)yx(d.r) + /]R(eivy -1 Z'Uyl‘mgl)l/y(dy)}. (57)
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One-dimensional integrals in this expression can be rewritten in two-dimen-
sional form:

/(ei“m — 1 —durly<;)vx (dr)
R
= /z(ei“m””y — 1 — (iuz + ivy) L2 p,2<1)Ux (dz % dy), (5.8)
i

where Ux (A) = vx(Ax) VA € B(R). The equality in (5.8) holds because vx
is supported by the set {(z,0),z € R} which means that in the integrand y
is in reality always zero. Rewriting the second integral in (5.7) in the same
manner, we complete the proof of the first part.

The if part. Since the Lévy measure is supported by the set {(x,y) : zy =
0}, it can be represented in the form (5.6) for some positive measures vx
and vy . Proposition (5.2) entails that these measures coincide with the Lévy
measures of (X;) and (Y;). To conclude it remains to apply the Lévy-Khinchin
formula for process (X¢, Yz).

5.5 Copulas for Lévy processes with positive jumps

The key idea of our approach is that for parametrizing the dependence be-
tween jumps of Lévy processes, the Lévy measure plays the same role as the
probability measure for random variables. Hence, to model the dependence,
we must construct copulas for Lévy measures. The principal difference from
the random variable case and the main difficulty is that Lévy measures are
not necessarily finite: they may have a nonintegrable singularity at zero. Due
to this fact, Lévy copulas that we are about to introduce are defined on infi-
nite intervals rather than on [0,1]2. Lévy copulas for processes with positive
jumps are functions from [0, 00]? to [0, 0o] and Lévy copulas for general Lévy
processes are functions from [—oo, 0]? to [—oc0, o0].

In this section, we discuss the conceptually simpler case of Lévy processes
with positive jumps, that is, processes with Lévy measure concentrated on
]0,00[2. The next section shows how to generalize this approach to other
types of Lévy processes.

The role of distribution function is now played by the tail integral. At this
stage we do not impose any integrability or continuity conditions.

DEFINITION 5.7 A d-dimensional tail integral is a function U : [0, c0] —
[0, 00] such that

1. (=1)4U is a d-increasing function.

2. U 1is equal to zero if one of its arguments is equal to co.
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3. U is finite everywhere except at zero and U(0,...,0) = oco.

Later, U will be interpreted as the tail integral of a Lévy measure:
Ulxy,...,xq) = v([z1,00[x ... X [£4,00]), z1,...,24 € [0,00["\{0}, (5.9)

but at this stage we only need this abstract tail integral, analogous to ab-
stract distribution function (Definition 5.2). The margins of a tail integral
are defined similarly to the margins of a distribution function:

U(07...7071‘k,0,...,0) ZUk(l‘k).

DEFINITION 5.8 Lévy copula for processes with positive jumps
A two-dimensional Lévy copula for Lévy processes with positive jumps, or,
for short, a positive Lévy copula, is a 2-increasing grounded function F :
[0, 0] — [0, 00] with uniform margins, that is, F(z,00) = F(c0,x) = .

REMARK 5.2 Copulas for general Lévy processes that we will define in
the next section, are functions from [—o0, o0]? to [—o0, cc]. However, positive
Lévy copulas can be extended to copulas for general Lévy processes, by setting
F(z,y)=0ifz <0ory<0.

The next theorem is a reformulation of Sklar’s theorem for tail integrals and
Lévy copulas. It shows that Lévy copulas link multidimensional tail integrals
to their margins in the same way as the copulas link the distribution functions
to their margins.

THEOREM 5.3
Let U be a two-dimensional tail integral with margins Uy and Us. There
exists a positive Lévy copula F such that

U((El,.’ﬂz) :F(Ul(l'l),UQ(ZL'Q)). (510)

If Uy and Uy are continuous, this Lévy copula is unique. Otherwise it is unique
on RanU; x RanUs,, the product of ranges of one-dimensional tail integrals.

Conversely, if F is a positive Lévy copula and Uy, Us are one-dimensional
tail integrals then (5.10) defines a two-dimensional tail integral.

PROOF  We suppose for simplicity that U; and Us are continuous. The
proof in the general case can be carried out along the lines of the proof of
Sklar’s theorem [365] but it is rather lengthy.

The direct statement. Choose the inverses U; ' and U, ! such that U; 1 (0) =
Uy (0) = 0o and U; *(00) = Uy ' (00) = 0 and let

F(yy,y2) = UWUT (1), U (32))- (5.11)
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It is now easy to check directly that F is a Lévy copula and that it satisfies
(5.10). Suppose that there exists another such Lévy copula F. Then for
every z; € [0,00] and x2 € [0,00], F(U1(21),Uz(x2)) = F(Ui(z1), Us(2)).
Therefore, from the continuity of U; and Us, we conclude that for every y; €

[0,00] and y5 € [0,00], F(y1,y2) = F(y1, ).
The converse statement is a matter of straightforward verification. I

Tail integrals and Lévy measures

For every Lévy measure v on [0,00[?, one can define its tail integral as
follows:
U(z1,22) =0 if 21 = 00 or 29 = o0
Uy, 22) = v([w1,00[x[22,00[) for (21,22) € [0, 00[*\{0};
U(0,0) =

On the other hand, modulo a discussion of continuity properties, identical
to the one following Definition 5.2, every two-dimensional tail integral defines
a positive measure v on [0, co[?\{0}. However, to be a Lévy measure, v must
satisfy the integrability condition of Theorem 3.7:

/ x|?v(dx) = / [x|?dU < oo, (5.12)
[0,1]2 [0,1)2

where the second integral is a Stieltjes integral which exists because U is an in-
creasing function. The following simple lemma shows, when this integrability
condition is satisfied.

LEMMA 5.2

Let U be a two-dimensional tail integral with margins Uy and Us. U defines
a Lévy measure on [0,00[*\{0}, that is, the integrability condition (5.12) is
satisfied if and only if the margins of U correspond to Lévy measures on [0, 00|,
that is, for k=1,2,

1
/ 22dUy(z) < oo.
0

PROOF The stated equivalence follows from the estimation:

x|°dU (x / deU
/M |2 - Z
2 1
= Z/ 22dU(x) = Z/ 2?U;(z;) — Cp — Cs,
i—1 [0,1]2 0

i=1
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where the constants

o =/ 21dU( )g/ dU (x
[0,1]x [1,00] [0,1]x[1,00]

Cy = / r2dU(x) < / dU (x)
[1,00] % [0,1] [1,00] % [0,1]

are clearly finite. ]

) and

Now all the tools are ready to characterize dependence structures of Lévy
processes (for the moment, only the ones with positive jumps).

THEOREM 5.4

Let (X4,Y:) be a two-dimensional Lévy process with positive jumps having
tail integral U and marginal tail integrals Uy and Us. There exists a two-
dimensional positive Lévy copula F' which characterizes the dependence struc-
ture of (Xt,Y:), that is, for all x1,25 € [0, 0],

U(.Z‘l,xg) :F(Ul(l‘l),UQ(l‘g)). (513)

If Uy and Uy are continuous, this Lévy copula is unique. Otherwise it is unique
on RanU; x RanUs,.

Conversely, let (X:) and (Y:) be two one-dimensional Lévy processes with
positive jumps having tail integrals Uy and Us and let F be a two-dimensional
positive Lévy copula. Then there exists a two-dimensional Lévy process with
Lévy copula F and marginal tail integrals Uy and Us. Its tail integral is given
by Equation (5.13).

This result is a direct consequence of Theorem 5.3 and Lemma 5.2. The
first part of this theorem states that all types of dependence of Lévy pro-
cesses, including complete dependence and independence, can be represented
with Lévy copulas and the second part shows that one can construct multivari-
ate Lévy process models by specifying separately jump dependence structure
and one-dimensional laws for the components. The laws of components can
have very different structure, in particular, it is possible to couple compound
Poisson components with infinite-activity ones.

When the dependence is specified via a Lévy copula and both the copula
and the one-dimensional tail integrals are sufficiently smooth, the Lévy density
can be computed by differentiation:

azF(yla y2)

M \xy )Va2\ T
0y10y2  ly1=Ui(21),y2=Us(z2) 1( 1) 2( 2)

Z/(J,‘l, .1‘2) =

Examples of positive Lévy copulas

Now we will compute the Lévy copulas that correspond to various basic
dependence structures.
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Example 5.3 Independence

Let (X¢,Y;) be a Lévy process with independent components. By Proposition
5.3, its Lévy measure is v(A) = v1(Ax) + v2(Ay). The tail integral of this
Lévy measure is U(x1,22) = Uy (21)1z,—0 + Uz(22)1,,—¢ and Formula (5.11)
allows to compute the Lévy copula of independent processes:

FJ_(.’L‘l,.Z’Q) = T1lgy=co + T2lp —cc- (514)

If Uy and/or Uy are not continuous, Equation (5.14) gives one of the possible
Lévy copulas of (X¢,Y;). I

To discuss complete jump dependence or comonotonicity of components of
a Lévy process with positive jumps, we need the notion of an increasing set.

DEFINITION 5.9 A subset S of R? is called increasing if for every two
vectors (v1,v2) € S and (u1,us) € S either vy < ug Yk or v > uy Vk.

Clearly, an element of an increasing set is completely determined by one
coordinate only. This motivates the following definition of jump dependence.

DEFINITION 5.10 Let X = (X}, X?) be a Lévy process with positive
jumps. Its jumps are said to be completely dependent or comonotonic if there
exists an increasing subset S of ]0,00[? such that every jump AX of X is in

S.

Clearly, if the jumps of two pure-jump Lévy processes are completely depen-
dent, the trajectory of one of them can be reconstructed from the trajectory
of the other.

PROPOSITION 5.4 Complete dependence

Let X = (X}, X?) be a Lévy process with positive jumps. If its jumps
are completely dependent, then (a possible) Lévy copula of X is the complete
dependence Lévy copula defined by

Fj(z1,22) = min(zy, 72).
Conversely, if the Lévy copula of X is given by F| and the tail integrals of

components of X are continuous, then the jumps of X are completely depen-
dent.

PROOF The direct statement. The jumps of X are completely dependent
if and only if there exists an increasing subset S of |0, 0o[? such that the Lévy
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measure v of X is concentrated on S. Therefore, for every x = (x1,x2),

U(x) :/ v(dy);
{y=>x}ns
Unlan) = | v(dy) k=12
{yr>xK}NS

Comparing the above equalities and using the properties of an increasing
subset we find:

U(x) = min(Uy(z1), Us(x2)), (5.15)

which proves the first part of the theorem.

The converse statement. In this case the tail integral of X has the form
(5.15) which means that the Lévy measure of X is concentrated on the set
{(z1,22) : Ur(z1) = Ua(x2)}. If the tail integrals U; and U, are continuous,
this set is increasing.

Example 5.4 Dependence of stable processes
Lévy copulas of stable processes are homogeneous functions of order one,
that is,

Ve >0, F(cxy,cre) = cF(x1,x9).
Indeed, by formula (3.32) the Lévy measure of an a-stable process satisfies
v(B) = ¢®v(cB) Ve > 0 VB € B(R?).
This means in particular that the tail integral satisfies
Ulexy, cxs) = ¢ *Ul(xy, x2).

Substituting a-stable margins into this formula, we conclude that the Lévy
copula is homogeneous of order 1.

The dependence structure of two stable processes can alternatively be spec-
ified via the spherical part of the Lévy measure of the two-dimensional process
(see Proposition 3.15). In this case the two-dimensional process will also be
stable. Lévy copulas allow a greater variety of possible dependence struc-
tures, because using Lévy copulas one can construct a Lévy process that has
a-stable margins but is not a-stable itself. To do this, it suffices to take a
Lévy copula that is not homogeneous, for example,

Fu,v) = log { o™ } :

e"U4e v —2e U

This example is an Archimedean Lévy copula with generator ¢(z) =

(see Proposition 5.6 below). I
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Dependence of compound Poisson processes

Dependence of a compound Poisson process can be described using ordinary
copulas (compare with Section 5.2). Indeed, a two-dimensional compound
Poisson process (X¢, Y;) can always be split onto dependent and independent
parts (this is a consequence of the Lévy-It6 decomposition).

X; =X} +X]

where (X;+) and (Y,}) are independent from each other and the two other
components (independent part of the process) whereas (XtH) and (Y;“) are
dependent, have the same intensity and jump at the same time (dependent
part of the process). Lévy measures of components in this decomposition are
related to the Lévy measure v of (X3, Y}):

ve(A) =v(Ax{0}) VAeBR,)
vE(A) = v({0} x A) VA e B(Ry)
viI(A) = v(A) — v(Ax x {0}) —v({0} x Ay) VA€ B(R2)

The sets Ax and Ay were defined in Proposition 5.3.
To fix the model completely, one must specify

e the intensity and jump size distribution of (X;"),

e the intensity and jump size distribution of (Y1),

the intensity of common shocks,
e jump size distributions of (Xf”) and (Yt”),
e the copula of the last two distributions.

Hence, this approach requires a lot of different quantities, some of which are
difficult to observe. It also does not allow to separate the dependence from
the margins completely, because the intensities and the distributions of the
components are determined both by the dependence structure and by the
margins. It is therefore more convenient to use the Lévy copula approach. In
this case one must specify two things:

e the margins via the intensity and jump size distribution of (X;) and (Y})
(which are easy to observe),

e the dependence structure via the Lévy copula of the process.

All other quantities can be computed from these ones (for the computation we
suppose that the copula is continuous and that Lévy measures of components
have no atoms, except the one at zero).
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Let F be the Lévy copula and let Ux and Uy be the tail integrals of (X;)
and (Y;). Then the intensities of (X;) and (Y;) are

Ax =limUx(xz) and My =limUy(y).
z|0 y10

We cannot simply write Ax = Ux(0) because, according to our definition of
tail integral (see Page 147), Ux (0) = oo for all processes, including compound
Poisson. The tail integral of the two-dimensional process (X, Y;) is U(z,y) =
F(Ux(z),Uy(y)). Its intensity is equal to the Lévy measure of R2 \ {0},
which means that

A= Jin{lO(UX(x) +Uy(y) = U(z,y)) = Ax + Ay — F(Ax, Ay).

Since for every positive Lévy copula 0 < F(x,y) < min(x,y), this intensity
is always contained between max(Ax,\y) (strongest possible dependence)
and Ax + Ay (independence). The intensity of the common Poisson shock

(intensity of XtH and YtH) is equal to F'(Ax, Ay). Tail integrals of independent
components are

U (@) = vl 00[x{0}) = U(@,0) = iU (z,9) = Ux (a) = F(Ux (). Av)

and Uy (y) = Uy (y) = F(\x, Uy (y))
for x,y €]0, 0. Finally, the tail integral of (Xt”,Y;H) is

U” (J}, y) = w/llérzr}'ly U(Z‘/, y/) = F(mln(UX (JZ‘), AX)7 min(UY (y)7 AY))

for (x,y) € [0, 00[?\{0}, and the survival function? of its jump size distribution

has the form

F(mln(UX (l‘), )‘X)7 min(UY (y)7 )‘Y))
F(Ax,A\y)

H(.T,y) =

Construction of positive Lévy copulas

Lévy copulas can be computed from multidimensional Lévy processes using
formula (5.11). However, this method is not very useful because there are not
many multivariate Lévy models available. In this subsection, we give several
other methods to construct Lévy copulas.

PROPOSITION 5.5
Let C be an (ordinary) 2-copula and f(x) an increasing convex function from
[0,1] to [0,00]. Then

F(z,y) = f(C(f (), f () (5.16)

2The survival function H(z) of a random variable X is defined by H(z) = P(X > x) and the
joint survival function H (z,y) of random variables X and Y is H(z,y) = P(X > z,Y > y).
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defines a two-dimensional positive Lévy copula.

PROOF The fact that F'is an 2-increasing function follows from properties
1 and 2 of Lemma 5.1. Groundedness and marginal properties can be checked
directly.

There are many functions from [0, 1] to [0, co] with positive derivatives of

T

all orders that can be used in this proposition, one example is f(z) = 7%.

By analogy to Archimedean copulas, one can also construct Archimedean
Lévy copulas.

PROPOSITION 5.6
Let ¢ be a strictly decreasing convex function from [0,00] to [0, 00] such that
¢(0) = 00 and ¢(o0) =0. Then

F(z,y) = ¢ (d() + ¢(y)) (5.17)

defines a two-dimensional positive Lévy copula.

PROOF This is again a consequence of properties 1 and 2 of Lemma 5.1,
after observing that the function ¢~!(—u) is increasing and convex.

Example 5.5
For ¢(u) = u~% with # > 0, we obtain the following parametric family of Lévy
copulas:

Fy(u,v) = (u=0 + 0 9)=1/¢ (5.18)

which reminds us of the Clayton family of copulas (5.3). It includes as limiting
cases complete dependence (when § — oo) and independence (when 6 — 0).

Probabilistic interpretation of positive Lévy copulas

Unlike ordinary copulas, Lévy copulas are not distribution functions, but
their derivatives have an interesting probabilistic interpretation.

LEMMA 5.3
Let F' be a two-dimensional positive Lévy copula. Then for almost all x €
[0, 0], the function

Fu(y) = 5o Flay)
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exists and is continuous for ally € [0, 0o] outside a countable set. Moreover, it
1s a distribution function of a positive random variable, that is, it is increasing

and satisfies Fy(0) = 0 and Fy(o0) = 1.

PROOF  For every fixed non-negative y, F(y) exists for almost all non-
negative x because F(x,y) is increasing in x. It follows that for almost all
x, F,(y) exists for all y € Q4, where Q4 denotes the set of all non-negative
rational numbers. Let us fix one such x for the rest of the proof.

F.(y) is increasing on Q4 because F(x,y) is 2-increasing. In addition,
because F' has uniform margins, F,(y) satisfies 0 < F,(y) <1 for all y € Q.
Therefore, for every point y € Ry and for every two sequences of rational
numbers {y,;"} and {y,, } such that y;” | y and y,, T y, the limits lim F,(y;")
and lim F,(y,,) exist. Moreover, for all y outside a countable set C, these
limits are equal. In this case we denote

lim F,(y,) = lim F,.(y,,) = ]*:;(y)
For every nonnegative y € C,, every n and every A € R we can write:

F(z+A7y)7F(‘r7y)
A

F(I’+A,yi{)*F(I,y:{)

A 7Fac(y)

since F'(x,y) is 2-increasing. Now we would like to show that for every & > 0
there exist 6 > 0 such that for all A verifying |A] < §, the left-hand side of
the above inequality is smaller than €. First observe that for every ¢ > 0 it
is possible to choose n such that |F,(y;") — Fi(y)| < £/2 because F,.(y) was
definied as the limit of F.(y;"). Moreover, for this fixed n one can choose &
such that for all A verifying |A| < 0,

X — Fu(yt)| <e/2. (5.19)

because y, is rational and F,(y) exists for rational y.
Therefore, for every A verifying |A| <6,

Fle+Ay) = F(z,y)
A

—F(y)<e (5.20)

The second sequence, {y,, }, can be used to bound this expression from below,
which allows to conclude that for every nonnegative y € C,, F(x,y) is differ-
entiable and F(y) = %F(x, y) is continuous. The fact that F, is increasing
was also established in the proof and the other claims of the lemma can be
verified directly.

The following theorem shows that F' determines the law of the (transformed)
jump in the second component of a Lévy process conditionally on the size
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of jump in the first one. It will be useful in Chapter 6 for simulation of
multivariate dependent Lévy processes. Its proof can be found in [373].

THEOREM 5.5

Let (X, Y;) be a two-dimensional Lévy process with positive jumps, having
marginal tail integrals Uy, Us and Lévy copula F. Let AX; and AY; be the
sizes of jumps of the two components at time t. Then, if Uy has a non-zero
density at x, Fy, () is the distribution function of Uy(AYy) conditionally on
AXt =X

Fu, () (y) = P{U2(AY;) < y|AX; =z} (5.21)

Summary of definitions and results for multivariate case

All results of this section can be easily generalized to more than two dimen-
sions (see [373]). Some of the generalizations are given below; others are left
to the reader as exercise.

DEFINITION 5.11 Positive Lévy copula A n-dimensional positive
Lévy copula is a n-increasing grounded function F : [0,00]" — [0,00] with
margins F, k=1...n, which satisfy Fj(u) =u for all u in [0, 0].

THEOREM 5.6
Let U be the tail integral of an n-dimensional Lévy process with positive jumps

and let Uy,--- Uy, be the tail integrals of its components. Then there exists
an n-dimensional positive Lévy copula F such that for all vectors (x1,-- ,xy)
in R,
Uz, xn) = F(U(21), -, Up(zy)).
If Uy,--- ,U, are continuous then F is unique, otherwise it is unique on
RanU; x --- x RanU,,.
Conversely, if F' is a n-dimensional positive Lévy copula and Uy, --- , U, are

tail integrals of Lévy measures on [0,00[, then the function U defined above
1s the tail integral of a n-dimensional Lévy process with positive jumps having
marginal tail integrals Uy, --- ,U,.

The independence Lévy copula in the multivariate case has the form:
Fi(z1,. %) = 1laymco,.. my=co + -+ + Tnloy=oo,... on 1=c0
and the complete dependence Lévy copula is
Fy(z1,...,z,) = min(zy,...,z,)

Finally, we give a multidimensional equivalent of Proposition 5.6.
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PROPOSITION 5.7
Let ¢ be a strictly decreasing function from [0, 00] to [0, 00] such that ¢(0) =
00, ¢(00) = 0 and ¢~ has derivatives up to the order n on |0, colwith alter-

ko —
nating signs, that is, (—1)k%}j(t) > 0. Then

F(l‘l, T 7$n) = ¢—1(¢(m1) +eeet ¢($n))

defines a n-dimensional positive Lévy copula.

5.6 Copulas for general Lévy processes

DEFINITION 5.12  F(z,y) : [~00,00]? — [~00,00] is a Lévy copula®
if it has the following three properties:

o F is 2-increasing
o F(0,z) =F(z,0) =0 Vx
e F(z,00) — F(x,—00) = F(o0,2) — F(—o0,z) = x

From this definition it is clear that a positive Lévy copula can be extended
to a Lévy copula by putting F(z,y) =0if 2 <0 or y < 0.

Constructing models with Lévy copulas is simple when both the Lévy copula
and the marginal tail integrals are sufficiently smooth to allow using Lévy
density.

Case of Lévy measures with densities

We start by defining the notion of tail integral for Lévy measures on R.
Note that this definition, used in the setting of Lévy measures with densities,
is slightly different from the one that we will use in the general case (Definition
5.14).

DEFINITION 5.13  Let v be a Lévy measure on R. The tail integral of
v is a function U : R\ {0} — oo defined by

U(z) = v([z, ]) for x €]0, 00,
Ux) = —v(] — o0, —z])  for x €] —o0,0],
U(oo) = U(—o0) = 0.

3We thank Jan Kallsen for suggesting this method of extending positive Lévy copulas to
copulas for general Lévy processes.
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The signs are chosen in such way that the tail integral is a decreasing
function both on |0, co] and on [—oo, 0].

The following result allows to construct two-dimensional Lévy densities
from one dimensional ones using Lévy copulas that are sufficiently smooth.

PROPOSITION 5.8
Let F be a two-dimensional Lévy copula, continuous on [—oo,00|?, such that
% exists on]—o0,00[? and let Uy and Uy be one-dimensional tail integrals

with densities vy and vy. Then

OF (u,v) y
AUV lu=U, (z) v=Us(y)

1(2)v2(y)

1s the Lévy density of a Lévy measure with marginal Lévy densities vy and vso.

General case

If the Lévy copula and the marginal tail integrals are not sufficiently smooth,
multidimensional tail integrals must be used instead of Lévy densities. Be-
cause the singularity (zero) is now in the center of the domain of interest,
each corner of the Lévy measure must be treated separately, that is, in the
one-dimensional case we need two tail integrals: U' and U~ and in the two-
dimensional case we need four tail integrals: U+, UT—, U~ and U™~

DEFINITION 5.14  Letv be a Lévy measure on R. This measure has two
tail integrals, U : [0,00] — [0, 00] for the positive part and U~ : [—00,0] —
[—00,0] for the negative part, defined as follows:

Ut (x) = vz, o0[) for x €]0, 00|, UT(0) =00, UT(c0)=0;

U () =—v(] —o0,—x]) forze€]—o00,0[, U (0)=-00, U (—o0)=0.
Let v be a Lévy measure on R? with marginal tail integrals Uy, U, Uy and

Us . This measure has four tail integrals: U, UY~, U~" and U™, where

each tail integral is defined on its respective quadrant, including the coordinate
azes, as follows:

Ut (z,y) = v([z, oo[x[y, ), if x €]0,00[ and y €]0, 00|

Ut (z,y) = —v([x,00) x (—00,9]), ifx €]0,00[ and y €] — o0,0]

U T (x,y) = —v((—00,2] X [y,0)), ifx €] —o0,0[ and y €]0, 0]
U™ (z,y) = v((—o0,z] x (—00,y]), ifx€]—00,0] and y €] — 0,0

If © ory is equal to +00 or —oo, the corresponding tail integral is zero and
if x or y is equal to zero, the tail integrals satisfy the following “marginal”
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conditions:

UtH(z,0) — U (2,0) = U (z)
U t(z,0) = U™ (x,0) = U; (v)
Ur(0,y) = U~(0,y) = Uy (y)
Ur=(0,9) —U~(0,y) = U; (y)

When a two-dimensional Lévy measure charges the coordinate axes, its tail
integrals are not determined uniquely because it is unclear, which of the tail
integrals should contain the mass on the axes. Hence, different sets of tail
integrals can sometimes correspond to the same Lévy measure.

The relationship between Lévy measures and Lévy copulas is introduced
via a representation theorem, analogous to Theorems 5.1 and 5.3.

THEOREM 5.7

Let v be a Lévy measure on R? with marginal tail integrals U1+, u-, U2+ and
Uy . There exists a Lévy copula F such that UTT, Ut~ U~ and U™~ are
tail integrals of v where

(z,y) = F(U{ (2), U5 (y)) if x>0 andy >0
Ut (z,y) = F(U{ (2),U; (y)) ife>0andy <0
U™t (z,y) = F(U;y (2),U5 (y)) ifx<0andy>0
U (z,y) = F(U; (2),Uy (y)) ifr<0andy<0 (5.23)

If the marginal tail integrals are absolutely continuous and v does not charge
the coordinate axes, the Lévy copula is unique.

Conversely, if ' is a Lévy copula and U, U, U and Uy are tail integrals
of one-dimensional Lévy measures then the above formulae define a set of tail
integrals of a Lévy measure.

PROOF The Lévy copula can be constructed in each of the four quad-
rants along the lines of the proof of Theorem 5.3 and Lemma 5.2. With this
construction we obtain a function that is 2-increasing on each quadrant but
not on the whole R2. However, the fact that each of the four parts is con-
tinuous on its domain including the coordinate axes and equal to zero on the
axes entails that F is 2-increasing on R2.

Example 5.6 Independence of Lévy processes

Since the Lévy measure of a two-dimensional Lévy process with independent
components is supported by the coordinate axes, the corresponding Lévy cop-
ula is not unique. In this case, Proposition 5.3 entails that for every = and y
such that xy # 0 the corresponding tail integral is zero. Hence, F(z,y) = 0
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if 2 and y are finite. Formulae (5.23) show that every Lévy copula that sat-
isfies this property is a Lévy copula of independence. Examples of possible
independence Lévy copulas are 1y—oc + ylo—oo, —T1ly=_oo — yla=—_o0, etc. (0

Example 5.7 Complete dependence

In the setting of Lévy processes with jumps of arbitrary sign, one must
distinguish two types of complete dependence. In the first case (complete
positive dependence) there exists an increasing subset S of R? such that every
jump AX of the two-dimensional process is in S. In this situation, using the
same method as in Proposition 5.4, we find

Ut (z,y) = min{U;" (z), U5 (y)}
U™ (z,y) = min{-U; (v), -Uy (v)}
Ur-=U"1T=0

Hence, Fpj(z,y) = min(|z|,|y|)1lsy>0 is a possible copula for this process.
In the second case (complete negative dependence) every jump of the two-
dimensional process must belong to a decreasing subset of R?, that is, a set
S such that for every two vectors (v1,v2) € S and (uy,us) € S either v; < uy
and vy > ug or v1 > uq and v9 < uo. In this case

U (z,y) = —min{U; (z), -Uy (y)}
U™t (z,y) = —min{-U; (2),U5 (y)}
Utt=U"=0

and Fy (z,y) = —min(|z], |y|)lzy<o- I

Example 5.8

Starting from the positive Lévy copula (5.18) one can define a one-parameter
family of Lévy copulas which includes independence and complete positive
and negative dependence.

(Ju|=0 + Jv]79)71/01,,50 if 0 >0

FG(“a”) = { _(|u‘0 + ‘U|a)1/911y§0 ifH <0 (5'24)

Computing the limits we find that

Fy — Fyy when § — —oo
Fy — F) when 6 — 0
Fy — Fy when 0 — oo

© 2004 by CRC Press LLC



Construction of Lévy copulas

Construction of general Lévy copulas is more difficult than that of positive
ones because Propositions 5.5 and 5.6 cannot be directly extended to this
setting. A possible solution that we will now discuss is to construct general
Lévy copulas from positive ones by gluing them together: this amounts to
specifying the dependence of jumps of different signs separately. Let F*++,
F~=, F~% and F*~ be positive Lévy copulas and consider the following
expression:

F(z,y) = F™ (c1lzl, c2lyD1azo0.y>0 + F~ (esla], calyl) la<oy<o

— F™ (es)z], coly) Lazo0,y<0 — F~ T (er]z|, es|y]) lo<o,y>0

F is a 2-increasing function if the constants ci,...,cg are positive. The
marginal conditions impose four additional constraints. For example, for
x > 0 one has F(x,00) — F(x,—00) = c1z + ¢sx = x, therefore ¢; + ¢5 = 1.
The other constraints are ¢y +c3 = 1, co +¢cg = 1 and ¢g + ¢4 = 1. Finally we
obtain that

F(z,y) = F™t(c1]z], caly)) Lazo0y>0 + F~ (es]z|, caly]) Lu<o,y<o

—F ((1=e)|z], (1=ca) [y laz0y<o— F~H ((1—es)|z|, (1—c2)|yl) la<o,y>0
(5.25)

defines a Lévy copula if ¢y, ..., c4 are constants between 0 and 1.

To understand the meaning of this construction, let us fix marginal Lévy
measures v; and v and look at the two-dimensional Lévy measure that we
obtain with copula (5.25). Its upper right-hand tail integral is

Utt(z,y) = FT T (a1 Uy (z), c2U5 ()

This means that the upper right-hand quadrant of the Lévy measure corre-
sponds to a Lévy process with positive jumps, Lévy copula F*+ and marginal
Lévy measures c1v1(dz)1l,~0 and cove(dy)lyso.

Treating the other quadrants in the same manner, we conclude that a Lévy
process with Lévy copula of the form (5.25) is a sum of four independent parts,
that correspond to four quadrants of the Lévy measure. The components of
the first part that corresponds to the upper right-hand quadrant, jump only
upwards, have Lévy measures civ1(dz)1,50 and cava(dz)l,~o and are linked
with each other via the positive Lévy copula 7. The second independent
part of the process corresponds to the lower right-hand quadrant. Its first
component jumps only upwards and has Lévy measure (1 — ¢1)vq(dx)l,0
whereas its second component jumps downwards and has Lévy measure (1 —
¢4)V2(dx)1z<0. The two components are linked with each other via positive
Lévy copula F'T~. The other two independent parts of the Lévy process can
be characterized in the same way.
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Because the proportion of jumps in the first component that is linked to
the positive jumps of the second component does not depend on the size of
jumps (it only depends on their sign), we call the Lévy copula defined by
(5.25) constant proportion Lévy copula.

The class of all Lévy copulas is much larger than the class of constant pro-
portion ones, but the latter one is already sufficiently large for most practical
applications. Moreover, Lévy copulas of stable processes can always be rep-
resented in the form (5.25). Indeed, following Example 5.4, one can show
that Lévy copulas of stable processes are homogeneous functions of order 1.
Let F(z,y) be one such Lévy copula. It satisfies F(z,00) = zF(1,00). This
means that

. - y
= > >
F(z,y) F(F(l,oo)’F(oo,l))’ forx>0andy >0

is a positive Lévy copula. Treating the other three corners of F' in the same
manner, we obtain the representation (5.25).

Summary of definitions and results for the multivariate case

DEFINITION 5.15 Lévy copula A n-dimensional Lévy copula is a
function F : [—00,00]™ — [—00, 00] with the following three properties:

e F'is n-increasing
e F is equal to zero if at least one of its arguments is zero

e [ has “uniform” margins.

To construct multidimensional Lévy measures from Lévy copulas, we intro-
duce a special type of interval:

_ Jlz,o0f, x>0
L(z) = {]oo,x], ifx<0

Using this notation we can now compute tail integrals of the Lévy measure
everywhere except on the axes as follows:

V(T(21) % ... x T(wy)) = (—1)%En 00 SE0T0 P(USERT1 () | [SERTn(g,.))

where U;",U;,..., U, U, are one-dimensional marginal tail integrals. The
nonuniqueness problems on the axes can be solved as it was done in the two-
dimensional case in the beginning of this section.

Constructing Lévy copulas in high dimensions using the constant proportion
method is not very practical, because in the general case, one needs to specify
2" positive Lévy copulas plus many additional constants to construct one
n-dimensional Lévy copula. A better solution is to use simplified constructions
similar to Example 5.8.
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5.7 Building multivariate models using Lévy copulas

In previous sections we saw that the multivariate dependence of Lévy pro-
cesses can be described using the notion of the Lévy copula, which plays
for Lévy processes a role analogous to copulas for random variables. In this
section we will show using concrete examples that, as in the case of ordi-
nary copulas, the appropriate choice of Lévy copula allows to distinguish the
usual concept of linear correlation between returns from the concept of tail
dependence and to prescribe different dependence patterns for upward and
downward price moves. This distinction is relevant for applications in risk
measurement where large comovements in asset prices are of a primary con-
cern. As a result, copulas have been used in applications such as credit risk
modelling and quantitative models of operational risk. The framework of the
Lévy copulas allows to extend such approaches to truly dynamical settings.

Multivariate variance gamma modelling

Suppose that one wants to model the prices of two stocks, or stock indices,
S} and S?, by exponentials of variance gamma Lévy processes (see Table 4.5).
How to describe dependence between them? A simple method, discussed in
Section 5.1, consists in representing log S} and log S? as two components of
a bivariate correlated Brownian motion, time changed by the same gamma
subordinator. In this method the dependence structure is described by a single
parameter p — correlation coefficient of the Brownian motion. The two stocks
always have the same jump structure parameter (i.e., k), are dependent even
if the Brownian motions are decorrelated and have the same dependence of
upward and downward jumps.

An alternative model can be constructed using Lévy copulas. We have:

log S} = X;,  logS? =Y,

where X; and Y; are two arbitrary variance gamma processes with dependence
specified via a Lévy copula F. It can be taken of the form (5.25) (constant
proportion copula). In this case, to specify the dependence structure com-
pletely one has to choose four positive Lévy copulas F™F (dependence of
positive jumps of X and positive jumps of Y), F*~ (dependence of positive
jumps of X and negative jumps of Y), F~ and F~~ and four parameters cy,
ca, c3 and ¢4, which are real numbers between zero and one. If every positive
Lévy copula is in some one-parameter family, then in order to specify the
dependence in this model completely, one needs eight parameters. In most
cases this is too many and some simplifying assumptions can be made.

Example 5.9 Stock price model
Here we assume that positive jumps of X; are independent from negative
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jumps of Y; and vice versa. This assumption is reasonable for stocks but it does
not necessarily hold for exchange rates. In addition, dependence structure of
positive jumps is described by a Clayton Lévy copula with parameter % and
the dependence structure of negative jumps is given by a Clayton Lévy copula
with parameter 6. In this case our model takes the form

logS! = X, = X;” — X,
log S} =Y, =Y, -V~

where X;" and Y;" denote the positive jump parts of the corresponding pro-
cesses and X, and Y,  are the negative jump parts; the couples (X, Y1)
and (X~,Y ) are independent, X and Y ' are dependent with copula Fy+
and X~ and Y~ are dependent with copula Fjy-. The dependence structure
of (X;,Y;) is thus described by two parameters: 0% describes positive jumps
and A~ describes negative jumps. This allows to prescribe different depen-
dence structures for positive and negative jumps, which was impossible within
the simple model based on correlated Brownian motions. In addition, in this
model (X;) and (Y;) can follow arbitrary variance gamma models and can be
completely independent (this is the limiting case when % and 6~ approach
zero).

If (X;) is a variance gamma process with parameters o, 6 and k then
(X;7) will be a gamma subordinator with parameters ¢, = 1/k and A\, =
(v/0% +202/k — 0)/0* and X; will be a gamma subordinator with param-
eters c. = 1/k and A_ = (1/02 +202/k + 0)/0?. The Lévy measure of the
process (Xy, Y;) is always supported by the set {(z,y) : xy > 0}, that is by the
upper right-hand and lower left-hand quadrants. This means, in particular,
that this model does not include negative dependence between jumps (but
there may be some negative dependence between returns).

The left graph in Figure 5.2 depicts typical trajectories of two variance
gamma processes with dependence structure described by this model with
dependence parameters 6~ = 5 (strong dependence of downward jumps) and
0~ =1 (moderate dependence of upward jumps).

To further compare this model to the model using subordinated Brownian
motion, Figure 5.3 presents scatter plots of 50-day returns in the two models.
The marginal processes are the same for the two graphs, both are variance
gamma with parameters ¢ = 0.3, § = —0.1 and k = 0.5. In the left graph, the
dependence is specified via a Lévy copula model with parameters 67 = 0.5 and
6~ = 10. This corresponds to a linear correlation of approximately 80%. In
the right graph, the two variance gamma processes result from subordinating
a correlated Brownian motion with the same gamma subordinator. The pa-
rameters were again chosen to have a correlation of 80%. From the left graph
it is clear that in models based on Lévy copulas, the dependence structures of
positive and negative jumps can be radically different, which is an important
issue in risk measurement. In addition to the strong asymmetry of positive
and negative jumps, the left graph is characterized by a much stronger tail
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FIGURE 5.2: Left: Trajectories of two variance gamma processes with
different dependence of upward and downward jumps. Right: Trajectories of
two variance gamma processes with negative dependence.

dependence in the lower tail, than the right one. In particular, for the left
graph, the expected jump size in the second component given that the jump
in the first component is smaller than —0.4, is equal to —0.55, whereas for the
right graph this expectation is only —0.43.

These two graph may remind the reader of the two graphs in Figure 5.1,
obtained with ordinary copulas. However, there is a fundamental difference:
Lévy copulas allow to construct dynamic models, that is, in a Lévy copula
model the dependence is known at all time scales, whereas with ordinary
copulas the dependence can only be prescribed for one chosen time scale, and
it is hard to say anything about the others.

For comparison, Figure 5.4 provides a scatter plot of weakly returns of
two major European stock market indices, DAX and AEX, for the period
from January 1, 1990 to November 4, 2002. This graph clearly exhibits tail
asymmetry and dependence in the left tail, but both phenomena are not as
strong as in the left graph of Figure 5.3. I

Example 5.10 Exchange rate model

In major foreign exchange markets upward and downward movements are
more or less symmetric but modelling negative dependence can be an impor-
tant issue. One can build multivariate jump models with such properties by
taking a Lévy copula of the form (5.24). Here one only needs one parameter
to specify the dependence structure and the model includes independence and
both positive and negative dependence. For positive values of 6 the two un-
derlying assets always move in the same direction, and for negative values of
0 they always move in opposite directions. The latter situation is represented
on the right graph of Figure 5.2. Here both processes are variance gamma
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FIGURE 5.3: Scatter plots of 50-day returns of two exp-Lévy models
driven by dependent variance gamma processes. Left: the dependence is
described with a Lévy copula model. Right: The dependence is modelled by
subordinating two correlated Brownian motions with the same gamma sub-
ordinator.

with the same parameters and § = —3. I

5.8 Summary

Many problems in quantitative finance involve the specification of joint
models for several assets in a portfolio. In multivariate Gaussian models, de-
pendence among returns of various assets is represented via the corresponding
correlation coefficients. Once jump processes are introduced to account for
large returns, tools are needed to parameterize the dependence between the
jumps: as indicated by empirical studies, jumps often represent systemic risk
and cannot be assumed to be independent across assets.

Two solutions proposed in the literature are to represent asset prices by
multivariate subordinated Brownian motions or as a factor model driven by
Poisson processes. Modelling by Brownian subordination allows to build
analytically tractable multivariate Lévy processesbut does not allow a flex-
ible specification of the dependence structure involved. Also, it restricts the
choices for the dynamics of individual assets. Modelling dependence by com-
mon Poisson shocks is feasible for low-dimensional problems but requires the
simultaneity of jumps in all assets involved.

A systematic way to describe the dependence structure of two random vari-
ables is to use copula functions, described in Section 5.3. Extending this
notion to the case of Lévy processes, we have described in Section 5.6 the
notion of Lévy copula which provides a systematic way to build multivariate
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FIGURE 5.4: Scatter plot of weakly returns of DAX and AEX, for the
period from January 1, 1990 to November 4, 2002.

Lévy processes from one-dimensional Lévy processes. Model building by Lévy
copulas is a general approach which enables a flexible specification of depen-
dence between returns while allowing for an arbitrary marginal distribution
of returns for each asset.

Lévy copulas can also be useful outside the realm of financial modelling.
Other contexts where modelling dependence in jumps is required are portfolios
of insurance claims and models of operational risk.

Consider an insurance company with two subsidiaries, in France and in
Germany. The aggregate loss process of the French subsidiary is modelled
by the subordinator X; and the loss process of the German one is Y;. The
nature of processes X; and Y; may be different because the subsidiaries may
not be working in the same sector and many risks that cause losses are local.
However, there will be some dependence between the claims, because there
are common risks involved. In this setting it is convenient to model the
dependence between X; and Y; using a positive Lévy copula. In this case,
the two-dimensional Lévy measure of (Xy,Y;) is known and the overall loss
distribution and ruin probability can be computed.

Another example where jump processes naturally appear is given by models
of operational risk. The 2001 Basel agreement defines the operational risk
as “the risk of direct and indirect loss resulting from inadequate or failed
internal processes, people and systems or from external events” and allows
banks to use internal loss data to compute regulatory capital requirements.
Consequently, reliable measures of risk taking into account the dependence
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between different business lines are required.* Aggregate loss processes from
different business lines can be dynamically modelled by subordinators and the
dependence between them can be accounted for using a positive Lévy copula.

4The internal management approach proposed by the Basel Committee on Banking Super-
vision does not take into account dependence between different business lines at present,
because current industry practice does not permit reliable empirical measurement of such
dependence. However, the possibility of accounting for it is likely to appear as banks and
supervisors gain more experience.
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Chapter 6

Simulating Lévy processes

Anyone attempting to generate random numbers by deterministic means
is, of course, living in a state of sin.

John von Neumann

Lévy processes allow to build more realistic models of price dynamics and
offer a more accurate vision of risk than traditional diffusion-based models.
However, the price to pay for this is an increased complexity of computations.
Although Lévy processes are quite tractable compared to nonlinear diffusion
models, analytical pricing methods are only available for European options.
For all other applications, such as pricing of exotic options, scenario simulation
for risk management, etc., numerical methods are unavoidable. Two possible
choices are Monte Carlo methods and the numerical solution of partial integro-
differential equations (see Chapter 12). However, as the dimension of the
problem grows, PIDE methods become less feasible because computational
complexity for fixed precision grows exponentially with dimension. On the
contrary, the complexity of Monte Carlo methods for fixed precision grows
only linearly with the dimension of the problem. Hence, in higher dimensions
there is no alternative to simulation methods and it is very important to
develop efficient algorithms for simulating Lévy processes.

For most Lévy processes the law of increments is not known explicitly.
This makes it more difficult to simulate a path of a general Lévy process
than for example of a Brownian motion. Depending on the type of Lévy
process (compound Poisson, stable, etc.) and on the type of problem that
must be solved (computing a functional of the entire trajectory, simulating
the trajectory at a finite set of dates), the problem of simulating a Lévy process
may be split into the following subproblems, which determine the structure
of this chapter.

In Section 6.1, we discuss the simulation of compound Poisson processes.
Sample paths of compound Poisson processes are piecewise linear and there is
a finite number of jumps in every bounded interval. Hence, we can simulate a
sample path exactly (without any discretization error) using a finite number
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of computer operations. To compute every functional of the trajectory it is
sufficient to simulate a finite number of jump times and jump sizes.

In Section 6.2, we give examples of classes of Lévy processes that allow
exact simulation of increments. Some option pricing problems (European
or Bermudan options) and some portfolio management problems (discrete
trading) only require the knowledge of the trajectory in a finite number of
points. In this case, when one knows how to sample from the law of increments
of a Lévy process, he or she can simulate the trajectory at discrete times
without approximation. That is, for given times ¢1,...,t, one can simulate
an n-dimensional random vector (X (¢1),..., X (tn))-

When the law of increments of a Lévy process is not known explicitly or
when the problem requires an accurate knowledge of the trajectory, the Lévy
process must be approximated by a compound Poisson process. A simple
approximation consists in truncating the jumps smaller than some level ¢.
We treat this approximation in Section 6.3.

Such an approximation converges quite slowly when the jumps of the Lévy
process are highly concentrated around zero. However, the small jumps of
such processes, when properly renormalized, behave like a Brownian motion.
In other words, when the precision of the Poisson approximation is low, one
can improve it because an explicit expression of the renormalized limiting
process is available. This improved approximation is discussed in Section 6.4.

Section 6.5 covers series representations for Lévy processes. Such represen-
tations can be seen as a more intelligent way to approximate Lévy processes
by compound Poisson ones.

Finally, in Section 6.6, we discuss the simulation of multivariate Lévy pro-
cesses, using the tools that were introduced in Chapter 5.

Except in a few important cases we do not discuss the methods of simulating
random variables with known law. In general, whenever an explicit expression
for the density is available, one can construct an appropriate rejection method.
Many simulation algorithms for almost all known distributions can be found
in the book by Devroye [113].

Table 6.1 lists available simulation methods for various Lévy processes, used
in financial modelling. In the rest of this chapter we discuss these methods in
detail.

6.1 Simulation of compound Poisson processes

Let (X;)¢>0 be a compound Poisson process with Lévy measure v. For
greater generality we also add drift b. Its characteristic function is

oi(u) = exp tfiub + / (e™® — Dv(dz))

R
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TABLE 6.1: Available simulation methods for different Lévy processes

Compound Poisson

Jump diffusion

Stable

Variance gamma

Normal inverse
Gaussian

Generalized hyper-
bolic

Tempered stable

See Algorithms 6.1 and 6.2. CP processes can be sim-
ulated exactly (Section 6.1); the computational time
grows linearly with intensity

See Algorithms 6.3 and 6.4. One can simulate a dis-
cretized trajectory using the fact that diffusion part is
independent from the jump part.

See Algorithms 6.6 and 6.15. There exist explicit
methods for simulating the increments of a stable pro-
cess (Example 6.3). Series representations are also
available (Example 6.15). Their convergence rates may

be improved using normal approximation (Example
6.10).

See Algorithm 6.11. Variance gamma process can be
represented either as the difference of two gamma pro-
cesses or as a Brownian motion subordinated by a
gamma process. Since efficient methods for simulat-
ing the gamma process are available (see Examples 6.4
and 6.16), the variance gamma process is also easy to
simulate.

See Algorithm 6.12. This process can be obtained
by subordinating a Brownian motion with an inverse
Gaussian subordinator, which is easy to simulate (Ex-
ample 6.5). Because the Lévy measure of the IG pro-
cess is explicit, one can construct series representations
for both IG and NIG processes. The normal approxi-
mation of small jumps is valid.

More difficult to simulate than the others because the
Lévy measure is not known in explicit form while the
probability density is only known for one time scale
and even for this time scale the expression involves
special functions. One can simulate a discretized tra-
jectory (Example 6.6) using the fact that GH can be
obtained by subordinating Brownian motion with a
generalized inverse Gaussian subordinator and GIG
random variables are easier to simulate (see [113]) be-
cause their probability density is analytic.

See Example 6.9. May be simulated using compound
Poisson approximation or series representations (the
Lévy measure is explicit). Normal approximation is
valid for small jumps.
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and the jump intensity is A\ = v(R). A trajectory of this process can be
simulated exactly on the interval [0, 7] using the following simple algorithm
(which uses the fact that waiting times between the jumps are independent
exponentially distributed random variables with parameter \):

ALGORITHM 6.1 Simulation of compound Poisson process

Initialize k := 0
k
REPEAT while Y. T; <T
i=1
Setk:=k+1

Simulate Ty, ~ exp(A)
Simulate Yy, from the distribution p = v/

The trajectory is given by
N() k
X(t)=~b+ Z Y, where N(t) =sup{k: ZTi <t}
i=1 1=1
We will now improve this algorithm using two following observations

e The number of jumps N(T) of a compound Poisson process on the
interval [0,T7] is a Poisson random variable with parameter AT

e Conditionally on N(T), the exact moments of jumps on this interval
have the same distribution as N(7") independent random numbers, uni-
formly distributed on this interval, rearranged in increasing order (see
Proposition 2.9).

ALGORITHM 6.2 Improved algorithm for compound Poisson pro-
cess

e Simulate a random variable N from Poisson distribution with parameter
AT. N gives the total number of jumps on the interval [0,T)].

e Simulate N independent r.v., U;, uniformly distributed on the interval
[0,T]. These variables correspond to the jump times.

e Simulate jump sizes: N independent r.v. Y; with law @.

The trajectory is given by

N
X(t) =0bt + Z ly,<tYi.
i=1
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Figure 6.1 depicts a typical trajectory of compound Poisson process, simulated
using Algorithm 6.2.

10

-2 L L L L L L L L L
[ 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

FIGURE 6.1: Typical trajectory of a compound Poisson process. Here
jump size distribution is standard normal, the jump intensity is equal to 10
and the drift parameter is equal to 3.

When the Lévy process has a Gaussian component and a jump component
of compound Poisson type (in this book, such a process is called a jump-
diffusion), one can simulate the two independent components separately. The
following algorithm gives a discretized trajectory for a process of this type
with characteristic triplet (02, v,b).

ALGORITHM 6.3 Simulating jump-diffusions on a fixed time grid

Simulation of (X1,...,X,) for n fived times tq, ..., ty.

e Simulate n independent centered Gaussian random variables G; with
variances Var(G;) = (t; —t;_1)0? where tg = 0. A simple algorithm for
simulating Gaussian random variables is described in Example 6.2.

e Simulate the compound Poisson part as described in the Algorithm 6.2.

The discretized trajectory is given by
i N
X(t)=bti+> Gr+ > lu,<Y;.
k=1 j=1

A typical trajectory of process simulated by Algorithm 6.3 is shown in Fig-
ure 6.2. In Section 6.4, we will see that many infinite activity Lévy processes
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can be well approximated by a process of such type: the small jumps are
truncated and replaced with a properly renormalized Brownian motion.

0.5F

o

-15 L L L L L L L L L
[ 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

FIGURE 6.2: Typical trajectory of a Lévy process with a Gaussian com-
ponent and a jump component of compound Poisson type. Here jump size
distribution is normal with zero mean and standard deviation 0.5, the jump
intensity is 10, the diffusion volatility is 5 and there is no drift.

Note that in the above algorithm the law of increments X (¢;) — X (t;—1)
is rather complicated because the number of jumps on the interval [t;_1, ;]
is unknown. This makes it difficult to compute functionals like sup,.p X,
which depend on the entire trajectory and not only on its values at discrete
times. To overcome this problem, one can exploit the independence of the
continuous part and the jump part in the following way.

First, simulate the jump times of the compound Poisson part 71, ..., 7n, the
values of the compound Poisson part N(7;) and the values of the continuous
part at these times W (7;). Conditionally on this information, the trajectory of
the process (X;) between each two adjacent jump times is continuous. In fact,
between two such times 7; and 7,41, (X;) is a Brownian motion, conditioned
by its values in 7; and 7;41. Now we will be able to compute the required
functionals between the jumping times because joint laws of many functionals
of the Brownian motion and its final value are well known (see, e.g., [66]).
This method is very useful in financial applications like pricing exotic options
by Monte Carlo and we illustrate it in the following example.

Example 6.1 Monte Carlo method for jump-diffusion models

In this example, we discuss the pricing of an up-and-out call option in a
jump-diffusion model (see Chapter 11 for a description of barrier options and
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exp-Lévy models). The pricing problem reduces to computing the following
expectation (we suppose zero interest rates):

C = E{(e* — K)"1yp<}, (6.1)

where (X¢)¢>0 is a jump-diffusion process: X; = yt+oW;+ Ny, such that (e**)
is a martingale and M; = maxp<s<+ X is the maximum process associated
to X. We will show how to compute this expectation using the Monte Carlo
method.

The key idea of the method is as follows. First, simulate the jump times
7; of compound Poisson part, the jump sizes X, — X,,_ and the values of X
at the jump times 7; and at 7. If any of these values is beyond the barrier,
the payoff for this trajectory is zero. Otherwise, we can analytically compute
the probability that this trajectory has gone over the barrier and come back
between two consecutive jump times (because between the jump times the
trajectory is simply a Brownian bridge). The payoff of this trajectory will
then be (eX7 — K)* multiplied by this probability. Now we can repeat the
simulation a sufficient number of times to obtain the desired precision.

Put F7* = o{N;,0 <t <T;W(7;),0 <i< N} where 74,0 <i < N —1 are
the jump times of the compound Poisson part and 7y = T'. We can rewrite
the expectation (6.1) as follows:

C =E{(e* — K)"E[lyp,<p|F*]} (6.2)

because X7 is F*-measurable. In other words, we condition the inner expec-
tation on the trajectory of the compound Poisson part and on the values of
the Brownian part at the jump times of the compound Poisson process and
at T. The outer expectation in (6.2) will be computed by the Monte Carlo
method, and the inner conditional expectation will be computed analytically.
To do this we write, using the Markov property of Brownian motion:

N N
Elta<o|F*) = E[[ [ Lan<ol 7] = [ PIM: < 01X (i0), X (7)),

i=1
where M; = max,, ,<t<s, X¢+. We can further write, using the fact that X
does not jump on the interval (7;,_1,7;):
P[Ml S le(Tl;l), X(Ti—)]

= PX(Ti—l)[ - sup UWt +9t < b|UWTi*Ti—1 + ’V(Ti - Tifl) = X(Ti_>]’
0<t<Ti—Ti—1

where VT/A is a new Brownian motion and P, denotes the probability under
which ¢Wy = 2. This expression can be computed analytically [66]:

mzm@w>.

P,[ sup chtJr’ytgbUVquLvlz]lexp( =

0<t<l

© 2004 by CRC Press LLC



Substituting it expression into (6.2), we find the final result:

o
E (eXT—m*ﬁlxm@{l—exp (—Q(X”“b“x”l‘b))}] (63)

i1 (’Ti — ’7'2'71)02

This outer expectation will be evaluated using the Monte Carlo method with
Algorithm 6.4.

ALGORITHM 6.4 Monte Carlo method for jump-diffusions

o Simulate jump times {m;} and values {N;,} of the compound Poisson
part.

e Simulate the values {W;,} of the Brownian part at the points {7;}.
e FEuvaluate the functional under the expectation in (6.53).

e Repeat the first three steps a sufficient number of times to compute the
average value of the functional with the desired precision.

Algorithms 6.3 and 6.4 can be generalized to jump-diffusion processes, when
the continuous component is not a Brownian motion but an arbitrary Marko-
vian diffusion. In this case increments of the diffusion may be approximated
with an Euler scheme and law of the diffusion on some sufficiently small inter-
val conditionally on the values at its ends may still be quite well approximated
by a Brownian bridge for the purposes of pricing exotic options.

Algorithm 6.2 allows to simulate the trajectories exactly and to compute
all functionals of the path. However, the computational complexity is roughly
proportional to the number of jumps on the interval, hence, this algorithm
cannot be directly generalized to infinite activity Lévy processes. The alterna-
tive is to simulate increments of the process between arbitrary times. This is
only possible in some particular cases which are the topic of the next section.

6.2 Exact simulation of increments

To simulate a discretized trajectory of a Lévy process, one must be able
to simulate the increments of the process at any time scale. Since the law of
increments at a given time scale can be obtained as the convolution power of
the law at time 1, simulation is typically possible when the laws of increments
lay in the same convolution closed class. There are many distributions with
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explicit density, that are known to be infinitely divisible but do not lay in
a convolution-closed class making the corresponding Lévy processes hard to
simulate. This is, e.g., the case for Student distribution and the log-normal
distribution. If (X;) is a Lévy process and X; is log-normal, then X5 is not
log-normal. For completeness, we start with the Brownian motion.

Example 6.2 Simulation of Gaussian random variables

There exist many methods to simulate standard normal variables. One of
the oldest and the simplest ones (though not the fastest) is the Box-Muller
method, which allows to simulate two standard normal variables at the same
time. Let U and V be independent random variables, uniformly distributed on
[0,1]. Then y/—2log(U) cos(2nV') and \/—21log(U) sin(27V') are independent
standard normal. To simulate a normally distributed random variable with
arbitrary mean and variance observe that if N is standard normal then o N 46
has mean # and variance 0. To simulate a d-dimensional Gaussian random
vector with covariance matrix ¥ and mean vector u, take a vector X of d
independent standard normal random variables. Then Y = '/2X + 11, where
/2 is an arbitrary matrix square root of X, has covariance matrix ¥ and
mean vector p. I

ALGORITHM 6.5 Discretized trajectory of Brownian motion
Simulation of (X (t1),...,X(t,)) for n fized times ti,. .., t,, where (X;) is a
Brownian motion with volatility o and drift b.

e Simulate n independent standard normal variables Ny ... N,.
Set AX; = oN;j\/t; —t;_1 + b(tZ — tifl) where tg = 0.

i
The discretized trajectory is given by X (t;) = > AXj.
k=1

Example 6.3 «-stable Lévy process
Stable processes were defined in Section 3.7. a-stable Lévy processes with «
strictly between 0 and 2 have infinite variance, which makes them somewhat
inconvenient for financial modelling (though a recent paper by Carr and Wu
[84] uses a log-stable process for option pricing; see also [327]), but they are
important in other domains including physics, biology, meteorology, etc. Here
we use the parameterization (3.34), writing X ~ S, (o, 5, ) when X is an a-
stable random variable with skewness parameter [, scale parameter o and
shift parameter .

The class of a-stable random variables is convolution closed: if X; and X5
are independent random variables with X; ~ S, (0, 8;, ;) then X1 + Xo ~
Sa(o, B, ) with

Brof + Baod

o= (of +08)"/% ==t
1 2

and p = p1 + pe
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(for the proof see [344, Property 1.2.1]). If X is an a-stable Lévy process
with X1 ~ Su(0, 8, 1) then X; ~ Sy (o(t)'/*, 3, ut). The only parameters
that are different for different time scales are thus the scale parameter o and
the shift parameter p. However, a stable variable with arbitrary shift and
scale parameters can be obtained from a variable X ~ S, (1, 3,0) as follows:

oX +p~Su(o,B,p), ifa#l
2

ocX + =folno+pu~ Sy(o,6,pn), ifa=1.
T

Thus, to simulate a discrete skeleton of an a-stable Lévy process with skewness
parameter (3, one only needs to simulate stable variables of type S, (1,03,0).
Chambers, Mallows and Stuck [87] describe a method for generating a-stable
random variates with any admissible values of a and ( and give a listing of
a Fortran program rstab which implements this method. This program is
now a part of S-PLUS statistical language. We will give an algorithm for
simulating symmetric stable processes (with 8 = 0 and no drift). Its proof
can be found in [344]. This reference also contains a modified version of rstab
program.

ALGORITHM 6.6 Discretized trajectory for symmetric a-stable
process
Simulation of (X (t1),...,X(tn)) for n fived times ty,...,t,.

e Simulate n independent random variables v;, uniformly distributed on
(=m/2,7/2) and n independent standard exponential random variables
Wi.

o Compute AX; fori=1...n using

sin avy; cos((1 — a)y) (1=a)/a
(cos ;) /e W;

AX; = (t; —ti_1)'/® (6.4)

with the convention to = 0.

i
The discretized trajectory is given by X (t;) = > AXy.
k=1

Figure 6.3 presents typical trajectories of symmetric stable processes with
various stability indices. When « is small (left graph), the process has very
fat tails, and the trajectory is dominated by big jumps. Note how this graph
resembles the trajectory of a compound Poisson process (Figure 6.1). When
a is large (bottom graph), the behavior is determined by small jumps and
the trajectory resembles that of a Brownian motion, although occasionally
we see some jumps. The right graph corresponds to the Cauchy process
(o = 1) which is between the two cases. Here both big and small jumps
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FIGURE 6.3: Simulated trajectories of a-stable processes with o = 0.5
(left), « =1 (right) and a = 1.9 (bottom).

have a significant effect. Comparing the three graphs with Figure 6.2 makes
one think that stable processes may be approximated by a combination of
compound Poisson process and Brownian motion. We will see shortly that
this is indeed the case for stable processes and many other Lévy processes.

Example 6.4 Gamma process
The gamma subordinator was defined in Table 4.4. At a fixed time t this
process has the well-studied gamma distribution with density

)‘Ct ct—1 _—Az
[(ct)

pi(z) =

Gamma process has the following scaling property: if S; is a gamma process
with parameters ¢ and A then AS; is a gamma process with parameters ¢ and
1. Therefore it is sufficient to be able to simulate gamma random variables
with density of the form
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There exist many algorithms for generating such random variables. A survey
of available methods can be found in [113]. Below we reproduce two algorithms
from this book. The first one should be used if a < 1 (which is most often
the case in applications) and the second one if a > 1. Typical trajectories of
gamma process with different values of ¢ are shown in Figure 6.4.

ALGORITHM 6.7 Johnk’s generator of gamma variables, a < 1

REPEAT
Generate i.i.d. uniform [0,1] random variables U, V
Set X =UY/e, Yy =yt/(0-a)

UNTIL X +Y <1

Generate an exponential random variable E

RETURN £E,

ALGORITHM 6.8 Best’s generator of gamma variables, a > 1

Setb=a—1, c:3a7%

REPEAT
Generate i.i.d. umform [0,1] mndom variables U, V
Set W=UQ1-U),Y =/{z(U—-3), X=b+Y
If X <0 go to REPEAT
Set Z = 64W3V3

UNTIL log(Z) < 2(blog(5) = Y)

RETURN X

Example 6.5 Inverse Gaussian process

The inverse Gaussian Lévy process gives another example of a subordinator
for which both Lévy measure and probability density are known in explicit
form (see Table 4.4). The inverse Gaussian density has the form

A _A(m;uﬂ
p(r) = 7236 " 1z>0- (6.5)

Below we reproduce the algorithm of Michael, Schucany and Haas for simu-
lating inverse Gaussian variables (see [113]).

ALGORITHM 6.9 Generating inverse Gaussian variables

Generate a normal random variable N
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FIGURE 6.4: Two trajectories of gamma process with ¢ = 3 (left), ¢ = 30
(right) and A = 1 for both graphs. These trajectories were simulated using
series representation (6.16).

Set Y = N?
Set Xy = p+ X — 2 JLDY + 2V
Generate a uniform [0,1] random variable U

L 1‘2
IFU < X1/+p RETURN X, ELSE RETURN é(—l

Example 6.6 Subordinated Brownian motion

A popular class of processes for stock price modelling is obtained by subordi-
nating the standard Brownian motion or a Brownian motion with drift with
an independent positive Lévy process. If the subordinator is denoted by V;
then the resulting process will be

Xy =Wy, + 0V, (6.6)

where W is standard Brownian motion. When V; is the gamma process or the
inverse Gaussian process, we obtain, respectively, the variance gamma process
and the normal inverse Gaussian process. Processes of type (6.6) possess
a number of useful properties because they are conditionally Gaussian. In
particular, if one knows how to simulate the increments of the subordinator,
the increments of X; can be simulated using the following algorithm.

ALGORITHM 6.10 Generating the subordinated Brownian motion
on a fixed time grid

Simulation of (X(t1),...,X(tn)) for n fixed times ty,...,t, where X(t) =
B(S(t)) is Brownian motion with volatility o and drift b, time changed with
subordinator (Sy).

o Simulate increments of the subordinator: AS; = Sy, — Sy, , where Sy =
0.
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e Simulate n independent standard normal random variables Ny, ..., Ny.

i
The discretized trajectory is giwen by X (t;) = > AXy.
k=1

The following two algorithms show how the above method can be used to
simulate variance gamma processes and normal inverse Gaussian processes on
a fixed time grid:

ALGORITHM 6.11 Simulating a variance gamma process on a
fixed time grid

Simulation of (X (t1),...,X(tn)) for fized times t1, ..., t,: a discretized tra-
jectory of the variance gamma process with parameters o, 6, k.

e Simulate, using Algorithms 6.7 and 6.8, n independent gamma variables
ASy, ..., AS,, with parameters %, t2;t1 e t”_li”’l .
Set AS; = kAS; for all i.

o Simulate n i.i.d. N(0,1) random variables Ny,..., N,.
Set AX; = o N;v/AS; +0AS; for all i.

The discretized trajectory is X (t;) = 22:1 AX;.

ALGORITHM 6.12 Simulating normal inverse Gaussian process
on a fixed time grid

Simulation of (X (t1),...,X(tn)) for fixed times t1,...,tn: a discretized tra-
jectory of the normal inverse Gaussian process with parameters o, 0, k.

e Simulate, using Algorithm 6.9 n independent inverse Gaussian variables
2
ASy, ..., AS, with parameters \; = % and p; = t; —t;—1 where
we take tg = 0.
e Simulate n i.i.d. N(0,1) random variables Ny,...,N,.
Set AX; = o N;v/AS; +0AS; for all i.
The discretized trajectory is X (t;) = Sr_; AXi.

6.3 Approximation of an infinite activity Lévy process
by a compound Poisson process

Let (X;)¢>0 be an infinite activity Lévy process with characteristic triplet
(0,v,7). The goal of this and the following section is to find a process (X7 ):>0
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which is of compound Poisson type (but possibly with a nontrivial Gaussian
component) and which approximates the initial process X in some sense to
be specified. We will also give some precision estimates and convergence rates
for the approximations that we derive.

From the Lévy-Itd6 decomposition we know that X can be represented as a
sum of a compound Poisson process and an almost sure limit of compensated
compound Poisson processes:

Xt = ’yt+ZAX51‘AXs|Zl + lalg)thE’
s<t

where  N; = ZAXslaSIAXsKl — t/ av(dr).

s<t e<|z|<1

Therefore a natural idea is to approximate X; by
Xif=7t+> AX.djax,>1+ Ni. (6.7)
s<t

The residual term (incorporating compensated jumps smaller than ¢) is given
by

RS = —Nf +lim NY.

510

It is a Lévy process with characteristic triplet (0,1, <.v(dx),0) satisfying
E[R5] = 0.

In the finite variation case small jumps need not be compensated and one
can use zero truncation function in the Lévy-Khinchin representation. The
process X can therefore be written as a sum of its jumps plus drift (different
from ~ because the truncation function is not the same).

Xy =bt+ Y AX,

s<t
and Xf:bt+ZAX815§|AXS|+E[ZAX51|AXS|<5}-
s<t s<t

Therefore, in the finite variation case the approximation (6.7) is constructed
by replacing small jumps with their expectation.

The process X¢ is of compound Poisson type and may be simulated using
Algorithm 6.2. Let us analyze the quality of this approximation. The er-
ror process R° is an infinite activity Lévy process with bounded jumps and,
therefore, finite variance. By Proposition 3.13,

Var R; = t/ ?v(z)dr = to?(e).
|z|<e

Hence, the quality of the approximation depends on the speed at which o2(¢)
converges to zero as € — 0. Suppose that the approximation (6.7) is used to
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compute functionals of the terminal value of the process using the Monte Carlo
method. The following proposition gives a convergence rate for this problem.
We only estimate the precision of approximation (6.7) without taking into
account the intrinsic error of the Monte Carlo method, that is due to finite
number of trajectories.

PROPOSITION 6.1
Let f(x) be a real-valued differentiable function such that |f'(x)] < C for
some constant C'. Then

|E[f(X% + R7)] — E[f(X7)]] < Co(e)VT. (6.8)
PROOF The difference in question can be estimated as follows:
1
|E[f(XF + RT)] — B[f(X7)]| = |E[RET/O f'(X% +uR%)du]| < CE|R%|.

For any random variable Z, Jensen’s inequality yields:
E[|Z|* < E[|Z") = B[Z%.

Applying this to R%., we conclude that E}Rﬂ < o(e)VT. I

REMARK 6.1 The function f in Proposition 6.1 can correspond to
the payoff function of a European put option. Suppose that under the risk
neutral probability logarithm of the stock price is a Lévy process. In this
case, for a put option f(x) = (K — Sge®)T where K is the strike of the
option and Sy denotes the initial price of the underlying. For this function
f(x) = =Soe"ly<iog(i/s,) and |f'(z)| < K. If the price of this option is
approximated by E[f(X%)] then the worst case pricing error is given by (6.8).

REMARK 6.2 Note that the variance of R in approximation (6.7) grows
linearly with time, and therefore the error of the Monte Carlo method is
proportional to the square root of time. I

In Proposition 6.1, we have found that the worst case error of the Monte
Carlo method is proportional to the dispersion of the residual process. As ¢
goes to zero, the pricing error decreases, but the intensity of X; grows causing
a proportional increase in the computer time required to simulate every tra-
jectory. In the examples that follow, we will compute the convergence rates
for various processes and see how the pricing error depends on the number of
basic computer operations required.
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Example 6.7 Convergence rates: symmetric stable process

For symmetric a-stable processes o(¢) ~ e'~%/2. This means that for stable
processes with a large index of stability that have many small jumps in the
neighborhood of zero, convergence rate of the Monte Carlo method may be
very low and some kind of improvement is necessary. A simple computation
shows that for symmetric stable processes the intensity N of the approximat-
ing compound Poisson process, truncated at the level €, is proportional to
e~ for fixed . We denote the intensity by N because it corresponds ap-
proximately to the number of operations required to simulate one trajectory.
Substituting this expression into the formula for o(e), we find that

o() ~ N2~% for symmetric stable process.

Thus, for stable processes convergence rates range from extremely bad (when
there are many jumps in the neighborhood of zero) to very good.

Example 6.8 Convergence rates: gamma process

For the gamma process, o(e) ~ €, so the quality of the approximation by
a compound Poisson process is very good. The intensity of approximating
process is N ~ —log(e). Substituting this into the expression for o(g), we
find that:

o(e) ~e ™ for gamma process.

This means that for the gamma process the convergence is exponential, that
is, by adding ten more jumps we gain a factor of e'® in the precision!

Example 6.9 Simulation of tempered stable processes by compound Poisson
approximation

For simplicity we treat the case of tempered stable subordinator, but the
method can be easily generalized to processes with jumps of different signs.
The method consists of simulating the big jumps and replacing the small ones
with their expectation:

Xy~ X;=bt+ Y AX.ax,>c+ES Y AXlax, <

s<t s<t

ce

The Lévy density of a tempered stable subordinator is given by v(z) = G
—Ax
with 0 < o < 1. Therefore, the process (X7) has drift b = b+ ¢ [ ¢ xa‘“
(note that this expression can be easily computed via incomplete gamma
function) and finite Lévy measure with density v°(z) = C;a;:flng. It is a

compound Poisson process with intensity U(e) = ¢ f:o e;:iﬁim and jump size

distribution p°(x) = v*(x)/U(e) and it can be simulated using Algorithm 6.2
if one knows how to simulate random variables with distribution p®(z).
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Observe that for all z we have

po(x) < f(x)

70467)\5

aUl(e) ’

where f¢(z) = ii—:jlng is a probability density. Note that f(x) has survival
function F¢(x) = i—zlwzg and inverse survival function F!(u) = eu~'/e.
Random variables with distribution p®(z) may be simulated using the rejection
method as follows (see [113] for a general description of the rejection method).

REPEAT
Generate W, V: independent and uniformly distributed on [0, 1].
Set X = eW =1/ (X has distribution f¢).
Set T = {700 “e ™
pe(X)aU(e)
UNTIL VT <1
RETURN X

The variable X produced by this algorithm has distribution p® and the average
number of loops needed to generate one random variable is equal to

E—ae—)\e
T(g) ~ 1 + F(l — O{)()\E)a When E — 07
which is good because in applications, € will typically be close to 0. I

The compound Poisson approximation has very good accuracy if there are
not “too many small jumps,” i.e., if the growth of the Lévy measure near zero
is not too fast, as in the case of the Gamma process. In the next section, we
present a method (due to Asmussen and Rosinski [12]) that allows to increase
the accuracy of the above approximation by replacing the small jumps by a
Brownian motion: this correction will be efficient precisely when there are
many small jumps, i.e., exactly when compound Poisson approximations are
poor, so the two methods are complementary.

6.4 Approximation of small jumps by Brownian motion

In this section, we show that in many cases, the normalized error process
o(g)"1R* converges in distribution to Brownian motion. First, we will pro-
vide an intuitive explanation of this fact and derive a sufficient condition for
convergence. Then we will give the exact criterion of convergence, due to
Asmussen and Rosinski [12]. Finally, we will prove that this convergence may
indeed be used to improve the approximation (6.7), that is, we will show that
the approximation

X = X{ +o(e)W; (6.9)
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FIGURE 6.5: Convergence of renormalized small jumps of the Cauchy
process to Brownian motion. Left graph: Residual process for € = 0.5. Right
graph: Residual process for ¢ = 0.0001. These trajectories were approximated
using a series representation.

has better convergence rates than (6.7) in the same problem of pricing a
European option by the Monte Carlo method.
Put Y7 = o(e) "' R°. Suppose that the following condition is satisfied

a(e)

. T as e — 0. (6.10)

Because the jumps of R® are bounded by ¢, condition (6.10) means that the
jumps of Y¢ are bounded by some number that converges to zero. This means
that the limiting process has no jumps. Since Y¢ for every ¢ is a Lévy process
with zero mean and the variance of Y is equal to one, the limiting process
will be a continuous Lévy process with mean zero and variance at time 1 equal
to one, hence, a standard Brownian motion.

Figure 6.5 illustrates this convergence: the left graph shows the renormal-
ized residual process for Cauchy process with ¢ = 0.5 and the right graph
shows the residual process for € = 0.0001.

It turns out that the condition (6.10) is not always necessary; although,
as Remark 6.3 shows, it is necessary in most cases of interest. The following
theorem gives a necessary and sufficient condition for convergence.

THEOREM 6.1 Asmussen and Rosinski [12]
o(e)"tR® — W in distribution as ¢ — 0 if and only if for all k > 0

% —1, as e—0. (6.11)

REMARK 6.3 Condition (6.11) is clearly implied by Condition (6.10),
which is much easier to check. Moreover, Asmussen and Rosinski[12] prove
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that the two conditions are equivalent if v has no atoms in some neighborhood
of zero. This is the case for all examples in Table 6.1 and more generally, for
all examples considered in this chapter. Hence, for all these examples it is
sufficient to check the condition (6.10).

Example 6.10 Validity of normal approximation for different processes

For symmetric stable processes, o(¢) ~ e'~%/2 the condition (6.10) is satis-
fied and the normal approximation holds. It is easy to check that it also holds
for general stable processes and for all Lévy processes with stable-like (power
law of type mﬁ with « > 0) behavior near the origin, for example, normal
inverse Gaussian, truncated stable, etc. The normal approximation does not

hold for compound Poisson processes (o(¢) = o(g)) nor for the gamma process

(o(e) ~e).

In the following proposition we analyze the effect of using normal approx-
imation of small jumps (6.9) on the worst case error of the Monte Carlo
approximation to option price.

PROPOSITION 6.2

Let f be a real-valued differentiable function such that |f'(z)| < C for some
constant C'. Then

|E[f (X% + R%)] — BIf(X§ + a(e)Wr)]| < Ap(e)Co(e), (6.12)
_ Jo 2Py (de) . L
where p(e) = = and A is a constant satisfying A < 16.5.

REMARK 6.4 Notice that at least under the stronger condition (6.10)
this is a better convergence rate compared to Proposition 6.1 because p(e) <
e [
o(e)”

REMARK 6.5 Contrary to Proposition 6.1, here the error does not grow
with T since as T grows, due to a “central limit theorem” effect, the quality
of normal approximation also improves because BT becomes closer to a

\/ Var RZ,

standard normal variable. (0

PROOF

|E[f(X7 + R7)] — E[f (X7 + o(e)Wr)]|

< / p(d) | Elf (z + R3] — E[f(z + o(e)Wr)]],
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where p(dz) denotes the law of X5. We can further write:

|Elf(z + R7)] — Elf (z + o(e)Wr)]| = |/f(a? +y){pr(y) — pw(y)}dy|
.y / F(& + 9){Fa(y) - Fw(y)}dy| < C / |Fr(y) — Fi(y)|dy,

where pr(y) and pw (y) are probability density functions of, respectively, R,
and o(e)Wr and Fr(y) and Fyy (y) are their distribution functions. We now
need to find an estimate for [ |Fr(y) — Fw (y)|dy.

R7 can be seen as the sum of n i.i.d. random variables with the same law
as R7.,,. These variables have zero mean and variance To?(g)/n. Now using
a nonuniform Berry-Esseen type theorem [315, Theorem V.16] we find that
for all n,

/|FR(y) — Fw(y)|dy < AU(E)\/T%7

7L3/2E|R§—~/n‘3

o3 (e)T3/2
Rosinski show [12, Lemma 3.2] that if the Lévy measure v of a Lévy process
(Z1)i1>0 has finite absolute moment of order p > 2, one has

where A is a constant with A < 16.5 and p,, = . Asmussen and

oo

lim nE|Z; [P :/ |z|Pv(d).

— 00

Hence, we find that

J2 P (da)

J1Fat) = Py < Ao(e) =55

and finally

Jo, lePu(de)

L (X + RE)] — BU(XG + 0(@Wr)l| < ACo () = 5

Example 6.11 Improved convergence rates: symmetric stable process

For symmetric stable processes, p(¢) ~ €*/2. Since o(¢) ~ e'~%/2, the im-
proved convergence rate is independent of the stability index and is always
proportional to . For processes with small «, the improvement of conver-
gence rate due to normal approximation is small, however, the compound
Poisson approximation converges sufficiently fast even without the improve-
ment. When « is large, the direct compound Poisson approximation does
not converge fast enough but there are many small jumps which are well
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approximated by a Brownian motion. In terms of the number of computer
operations required to simulate a given trajectory, the convergence rate is
N~/ Hence, this scheme always converges faster than N /2, which is the
typical convergence rate of the Monte Carlo method

Example 6.12 No improvement for the gamma process

For gamma process p(g) ~ const and there is no improvement (this fact is easy
to understand since the renormalized residual process does not converge to
Brownian motion). However, for this process the compound Poisson approx-
imation converges exponentially fast, therefore the correction is not needed.

6.5 Series representations of Lévy processes (*)

In this section, we first introduce series representations of Lévy processes
through an important example and then give a general result due to Rosinski
[338], that allows to construct such series representations and prove their
convergence. The example concerns series representations for subordinators
(positive Lévy processes).

PROPOSITION 6.3 Series representation of a subordinator
Let (Zt >0 be a subordinator whose Lévy measure v(dx) has tail integral
f , let {T;} be a sequence of jumping times of a standard
Pozsson process and {Vi} be an independent sequence of independent random
variables, uniformly distributed on [0,1]. Z is representable in law, on the
time interval [0,1], as

(Z,0<s<1}£{Z,0<s<1}
with

Z, —ZU( D)1y, <s, (6.13)

where the generalized inverse U™V is defined by
U (y) =inf{z >0:U(z) < y}

The series in (6.13) converges almost surely and uniformly on s € [0,1].

For practical simulations, the series (6.13) must be truncated. The right
way to truncate it is not to keep a fixed number of terms for each simulated
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trajectory, but to fix some 7 and keep a random number N (7) of terms where
N(7) = inf{i : T'; > 7}. In this case, as will become clear from the proof,
the truncated series is also a Lévy process (compound Poisson) and this ap-
proximation turns out to be equivalent to the one discussed in Section 6.3.
One can also use the normal approximation of small jumps to improve the
convergence rates of series representations like (6.13), but we do not discuss
this issue here since there is no fundamental difference from the case already
discussed in Section 6.4.

Proposition 6.3 leads to the following algorithm for approximate simulation
of subordinators using series representation. To implement it one needs a
closed form expression for the inverse tail integral U= (x) or at least some
reasonably fast method to compute it.

ALGORITHM 6.13 Simulation of subordinator on [0,1] by series
representation

Fiz a number T depending on the required precision and computational capac-
ity. This number is equal to the average number of terms in the series and it
determines the truncation level: jumps smaller than UV (1) are truncated.

Initialize k := 0

k
REPEAT WHILE Y T, <T
i=1

Set k =k +1
Simulate Ty, : standard exponential.
Simulate Vi,: uniform on [0,1]

The trajectory is given by

k B
X(t) =Y 1y,aUTN(T), where T; =) "T;.
=1

j=1

PROOF of Proposition 6.3  Let N(7) = inf{i : I'; > 7}. We start by
analyzing the truncated series

N(r)
Z7 =Y U@y (6.14)

i=1

First, we will prove that (Z7) is a compound Poisson process in s with Lévy
measure

vr(A) = (AN UV (1), 00).
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Let h > s > 0. Then for all u and v, inserting first the conditional expectation
on I';,;i > 1 and then on N(7), we find:

E{exp (zuZST + w(Z,TL — ZST))}
N(7)
exp Z UC(Ty) (uly, <o + ivlecv,<n)

=F i (se"“U(fl)(F") + (h— s)ei“U(fl)(Fi) +1-— h)
i=1
TAU(0) N(7)
—E 1 +l / (Sez‘um—l)(z) 4 (h— S)eiUU(*l)(z) _ h) d
’ 0
(6.15)

The next step is to show that the image measure of the Lebesgue measure
on |0, U(0)[, induced by the mapping U1, coincides with v, in other words,
for all B € B(]0,0[), v(B) = AM{y : UV (y) € B}), where A denotes the
Lebesgue measure. It is sufficient to show this fact for sets B of the form
[z, 00], that is, we must show that

inf{z >0:U(x) <y} >z (6.16)
if and only if y < U(z). (6.17

)
Suppose (6.17). Then for all x such that U(xz) < y we have U(z) < U(z)
and therefore x > z and (6.16) is satisfied. Conversely, suppose that (6.16)
is satisfied and y > U(z). Then, because U is left-continuous, there exists an
€ > 0 such that y > U(z — ¢). Substituting x = z — € into (6.16) we find that
z — & > z which is a contradiction.

The integral in (6.15) can now be transformed using the change of variable

formula:
TAU(0) ) B ) B
l/ (se“‘U( R (h — 8)€WU( V) h) dz
T Jo
s [ ; h—s [~ v
_s / (e — Dy(dz) + / (e — 1)(dz),
T Ju=n(r) T Jut=n(r)
and finally

E {exp (zuZST + i (Z] — ZST))}

= exp {S/Um)(T)(emz = Dv(dz) + (h — s) /U(1>(T)(em — l)y(dz)} .
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This computation proves that (Z7) has independent increments (because we
could have taken any number of increments instead of just two), that it has
stationary increments and that the Lévy measure has correct form. This
means (see [228, Theorem 13.14]) that (Z7) converges in distribution to (Z;)
as 7 — 00.

Using the same type of computation and the independent increment prop-
erty of the Poisson process one can prove that (Z7) has independent incre-
ments with respect to index 7. To prove that series (6.13) converges almost
surely, we represent it as follows

ZU( (L) 10,4 (Vi sz with  Zj, = Z UCTD(T) 10,4 (Vi)

k=1 N(k—1)

From the independent increments property of (Z[ ) it follows that Zj are
independent. Since they are also positive, by the 0-1 law (see [228, Corollary
2.14]), their sum may either converge with probability one or tend to infinity
with probability one. On the other hand, the limit cannot be equal to infinity
almost surely, because in this case the distributional convergence would not
hold. Finally the uniform convergence follows from the fact that all terms are
positive and hence the series for all ¢ converge if Z converges.

Series representations for other types of Lévy processes may be constructed
in a similar way. We now give without proof a general result, due to Rosinski
[338], which allows to construct many such series representations and prove
their convergence.

THEOREM 6.2 Rosinski [338]

Let {Vi}i>1 be an i.i.d. sequence of random elements in o measurable space
S. Assume that {V;}i>1 is independent of the sequence {I';}i>1 of jumping
times of a standard Poisson process. Let {U;};>1 be a sequence of independent

random variables, uniformly distributed on [0, 1] and independent from {V;}i>1
and {Fi}izl- Let

H:(0,00) x S — R?
be a measurable function. We define measures on R% by
o(r,B)= P(H(r,V;) € B), r>0, BeB(R%, (6.18)
v(B) = /000 o(r, B)dr.

Put

A(s) = /Os /|x§1 zo(r,dz)dr, s> 0. (6.19)
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(i) If v is a Lévy measure on R?, that is,

/ (22 A D)(dz) < 0o
Rd

(o]
and the limit v = lim,_, o, A(s) exists in R? then the series Y H(Ty, Vi)ly, <t
i=1
converges almost surely and uniformly on t € [0,1] to a Lévy process with
characteristic triplet (0,+,v), that is, with characteristic function

o¢(u) = exp tliuy + /Rd(ei” — 1 —durl g <1 )v(de))].

(ii) If v is a Lévy measure on RY and for each v € S the function

r— |H(r,v)| is nonincreasing

o0
then Y (H(T';,V;)ly,<i — tc;) converges almost surely and uniformly ont €
i=1
[0,1] to a Lévy process with characteristic triplet (0,0,v). Here ¢; are deter-
ministic constants given by ¢; = A(i) — A(i — 1).

REMARK 6.6 It can be proven (see [338]) that the process Y defined
by

Y7 = Y (HT:LVi)ly,< — tA(T)) (6.20)

oI <7

is a compound Poisson process (in s) with characteristic triplet (0,0, ) where

fo r,A)dr. Hence, series representations of Lévy processes ob-
talned using Theorem 6.2 can be seen as compound Poisson approximations.
However, the transformation applied to the initial Lévy measure to obtain a
finite measure may be more complex than a simple removal of small jumps. I

Example 6.13 Series representation for a subordinator, as a corollary of
Theorem 6.2

In this example we obtain the series representation for a subordinator, derived
in Proposition 6.3 as a particular case of Theorem 6.2. We use the notation
of Proposition 6.3. Consider a family (indexed by r) of probability measures
on Ry, defined by o(r, A) = 1U<_1>(,.)6A for all r (each of these measures is a

Dirac measure) Then [;° o( )dr =v(A) and H(r,V;) = UV (r). Hence,
the series Z H(Ty, Vi)ly,<; = Z UD(T;) 1y, <¢ converges almost surely and

unlformly onte[0,1] toa subordmator with characteristic function

d(u) = expt[/ (ei“x — Dv(dz)].

Rd
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Example 6.14 Series representation for subordinated Brownian motion
Let (S:) be a subordinator without drift and with continuous Lévy mea-
sure v and let X; = W(S;), where W is a Brownian motion, be a subor-
dinated Lévy process The characteristic triplet of (X;) is (0,0,vyx) with
fo v(ds) where u® is the probability measure of a Gaussian
random varlable Wlth mean 0 and variance s. See Chapter 4 for details on
subordination. Putting U(z) = [° v(dt) we have

()= [ OB
0

Hence, we can put o(r, A) = uU<71)(7')(B) and use Theorem 6.2. Due to the
symmetry of the normal distribution, A(s) = 0. Taking (V;) to be a series
of independent standard normal variables and H(T';,V;) = \/UD(T;)V; we
conclude that

Z \/UT(Fi)VilU,igt £ Xy
i=1

Example 6.15 Series representation for symmetric stable processes

Now let us obtain a series representation for the symmetric a-stable process.
Representations for skewed stable processes may also be computed using The-
orem 6.2; see also [344]. Consider a symmetric random variable V' such that
E|V|* < oo. Denote the law of V' by p(x). Then we can write for any

measurable set B
r/p(r!/*B)dr = C / 7
[ reno 2+

where C' = 2 E|V|* and the set 71/ B contains all points x such that r—1/%z €
B. We can now apply Theorem 6.2 by taking o(r, B) = r/®u(r'/*B) for each
r. Because p is symmetric, A(s) =0 and we find that

o0
X =3 7 Vi, < (6.21)

i=1

is an a-stable process on the interval [0, 1], where V; are independent and
distributed with the same law as V' and U; are independent uniform on [0, 1].
For this series representation one can choose any symmetric variable V' with
finite moment of order . For example, a variable taking values 1 and —1 with
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probability 1/2 could be used. Suppose that this is the case and consider the
truncated series

F= Yy 0 Vil

oI <7

By Remark 6.6, for each 7, X[ is a compound Poisson process with Lévy
measure v, given by

VT(_B):‘/0 (7‘ B)dT_A 7‘/ 11€T1/QBdT /‘ |1+0‘1|t‘>7 1/c-

Hence, the jumps smaller in magnitude than 7=/ are truncated.

This series representation can be implemented using the following algo-
rithm. When one only needs to simulate the process at a finite number of
points, it is preferable to use Algorithm 6.6. However, when it is necessary to
control the size of all jumps, series representation is more convenient.

ALGORITHM 6.14 Simulation of a symmetric stable process by
series representation

Fiz a number T depending on the required precision and computational ca-
pacity. This number is proportional to the average number of terms in the
series and it determines the truncation level: jumps smaller in magnitude
than 7Y% are truncated.

Initialize k := 0
k
REPEAT WHILE Y T; <T

=1
Setk=k+1
Simulate Ty, : standard exponential.
Simulate Uy: uniform on [0, 1]
Simulate Vi, : takes values 1 or —1 with probability 1/2

The trajectory is then given by

k i
=Y 1y Vil VY where Ti= Ty

i=1 j=1

Example 6.16 Series representation for the gamma process

As our last example of this section, we give a convenient series representation
for the gamma process, which is both rapidly converging and easy to com-
pute. It is originally due to Bondesson [64] but can also be seen as a simple
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application of Theorem 6.2. Let (I';) and (U;) be as above and (V;) be an
independent sequence of standard exponential random variables. Then

X, = Z A e TV, <
i=1

is a gamma process with parameters ¢ and A\. Two trajectories of the gamma
process, simulated using this series representation, are shown in Figure 6.4. I

It can be seen from Remark 6.6 that simulation using series representation
is similar to direct compound Poisson approximation treated in Section 6.3.
However, series representations are much more general because, as Example
6.15 shows, many different series representations may correspond to the same
Lévy process because there are many different ways to truncate small jumps
of a Lévy process. Some of them, as in Example 6.16, may be a lot easier to
implement and to compute than the direct compound Poisson approximation.
Moreover, series representations are more convenient because one is working
with the same Lévy measure all the time instead of having to work with
different measures of compound Poisson type. Another advantage is that it
is easy to extend series representations to multidimensional dependent Lévy
processes, when the dependence structure is given by a Lévy copula.

6.6 Simulation of multidimensional Lévy processes

In the multidimensional setting, no closed formulae are available for sim-
ulation of increments of Lévy processes, with the exception of multivariate
Brownian motion. Thus, one should use approximate methods like compound
Poisson approximation and series representations. These methods can be
extended to multidimensional framework without significant changes, since
Theorem 6.2 is already stated in multivariate setting. As an application of
this theorem, we now give a method due to LePage [249] for constructing series
representations, which is especially useful for multivariate stable processes.

Example 6.17 LePage’s series representation for multivariate Lévy processes
Consider the following radial decomposition of a Lévy measure v:

= [ () ulde, )M (),

where ) is a probability measure on the unit sphere S~ of R? and p(*,v)
is a Lévy measure on (0,00) for each v € S?~1. Put U(z,v) = [ pu(d€,v).
Let I'; be a sequence of arrival times of a standard Poisson process, V; be an
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independent sequence of independent random variables, distributed on S¢~1
with distribution A and U; be an independent sequence of independent random
variables, uniformly distributed on the interval [0, 1]. Then

o0

Z(U(_l)(ri, Vi)Vily, <t — te;)

i=1
is a series representation for Lévy process with Lévy measure v, where
UV (z,0) = inf{z > 0: U([z,00[,v) < z}.

To prove this representation one can use Theorem 6.2 with measure o(r, *) in
(6.18) given by

o(r, B) = /S M@ o).

The deterministic constants ¢; = A(i) — A(i — 1) may be computed using
(6.19).
For stable processes the corresponding radial decomposition is

V(A) = /SH /OOO 1A(acv)%/\(dv).

A class of multivariate Lévy models, quite popular in financial applica-
tions, is constructed by subordinating a multivariate Brownian motion with
a univariate subordinator (see Section 5.1). Processes of this type are easy to
simulate because simulating multivariate Brownian motion is straightforward.

When the dependence of components of a multidimensional Lévy process is
specified via a Lévy copula (see Chapter 5), series representations can also be
constructed using Theorem 6.2 and the probabilistic interpretation of Lévy
copulas (Theorem 5.5). To make the method easier to understand we give
a series representation for two-dimensional processes with positive jumps of
finite variation. Generalization to other Lévy processes of finite variation is
straightforward by treating different corners of Lévy measure separately.

THEOREM 6.3

Let (Z) be an two-dimensional Lévy process with positive jumps with marginal
tail integrals Uy and Us and Lévy copula F(xz,y). If F is continuous on [0, 00]?
then the process Z is representable in law, on the time interval [0, 1], as

(Z,0<s<1}£{Z,0<s<1}
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with
— Z U104 (Vi)  and

Z U( 1) i2 [0 s] (K)) (622)

where (V;) are independent and uniformly distributed on [0, 1], (Fgl)) is an
independent sequence of jump times of a standard Poisson process and for
every i, FEQ) conditionally on Fgl) is independent from all other variables and

has distribution function %F(:C’y)|$:r‘7(;1) (viewed as a function of y).

All the series in (6.22) converge almost surely and uniformly on s € [0,1].

REMARK 6.7 Here we enumerate the jumps of the two-dimensional pro-
cess in such a way that the jump sizes of the first component are in descending
order, and we simulate the jumps in the other component conditionally on the
size of jump in the first one. This explains the special role of the first compo-
nent in the theorem.

REMARK 6.8 F satisfies the Lipschitz condition and is therefore con-
tinuous on [0, 00[? because it has uniform margins. Therefore the nontrivial
continuity condition imposed in this theorem is “continuity at infinity” which
means for example, that F(x,00) must be equal to lim, o F'(z,y). This
means that the Lévy copula of independence F| (z,y) = 2ly—oo + Ylo—co
cannot be used. However, this is not a very important restriction since Lévy
processes with independent components may be simulated directly.

PROOF Proof of Theorem 6.3 Let {W;};>1 be a sequence of in-
dependent random variables, uniformly distributed on [0,1]. Then for each
r € [0, 00][ there exists a function h,(v) : [0,1] — [0, c0[ such that for each i,
h,(W;) has distribution function & F(z,y)|,—, (see, e.g., [228, Lemma 2.22]).
We can now define the function H(r,v) : [0,00[x[0,1] — [0,00[*> component
by component as follows:

HO (r,0) = UV (r);

H®) (r,0) = U3~ (e (v)).
It remains to check that H(r,v), when integrated as in (6.18), yields the Lévy
measure of the process that we want to simulate. It is sufficient to consider the

sets A of the form A = [z, 0o[X [y, co[. Recall that in the proof of Proposition
6.3, we have shown that if U is a tail integral of a Lévy measure on |0, co[
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then U > 2 if and only if y > U(2).

PIH(r,Wi) € Al = 1y ) oo PAUs ™ (0 (W2) € [y, 00[}
= Licjo,vy @ P{hr (W3) €]0, U2(y)]}-

The second factor in this expression is nothing but the probability distribution
function of h,.(W;), which is known by construction, hence,

0
P[H(r,W;) € A] = 1TE]O,U1(3:)]EF(T3 Ua(y)).

We now conclude that because F' is absolutely continuous with respect to the
first variable in all finite points and continuous on [0, 00]?,

0o Ui(x)
[Pt wy e dyir= [ SP0Ua)dr = FO (), Ualy)
0 0

yields the tail integral of the Lévy measure of subordinator that we want to
simulate and we can apply Theorem 6.2.

This theorem justifies the following algorithm.

ALGORITHM 6.15 Simulation of two-dimensional subordinator
with dependent components by series representation

Fiz a number T depending on the required precision and computational ca-
pacity. This number is equal to the average number of terms in the series and
it determines the truncation level: jumps in the first component smaller than
UY(r) are truncated.

Initialize k =0, T{" =0
REPEAT WHILET\" < r
Setk=k+1
Simulate Ty, : standard exponential.
Set I‘g) = F,(:_)l + T}, (transformed jump in the first component)

OF (z,y)

Simulate Fff) from distribution function Fi(y) = =5 |$_F(1>
Tk

(transformed jump in the second component)
Simulate Vi,: uniform on [0,1] (jump time)

The trajectory is then given by
k
t) = Z Ly« UV (@);

Zlqu( 1) )
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Example 6.18 Simulation of a two-dimensional subordinator with depen-
dence given by Clayton Lévy copula

When the dependence Lévy copula is in Clayton family (5.18), the conditional
distribution function takes a particularly simple form

F(v|u) = W _ {1 N (E)e}—l—l/e

(%

and can be easily inverted:

—~1/6
Fl gl =y~ 1) (6.23)

which makes simulation of jumps very simple. The two-dimensional subordi-
nator has the following representation

X, ZU( L) 10,6 (Vi);

Y. = Zrﬂ D(E WAlT) 10, (V0),

where (W;) and (V;) are independent sequences of independent random vari-
ables, uniformly distributed on [0, 1] and (I';) is an independent sequence of
jump times of a standard Poisson process.

Figure 6.6 depicts the simulated trajectories of a subordinator with %—stable
margins and dependence given by Clayton Lévy copula with parameter 6
for different modes of dependence (different values of #). On the left graph
the dependence is very weak; the shocks in the two components are almost
completely independent. On the right graph the dependence is stronger; here
big shocks in the two components tend to arrive at the same time; however
their exact magnitude may be very different. Finally, on the bottom graph
we have almost complete dependence: the shocks arrive together and have
approximately the same magnitude. I

Further reading

Algorithms for simulating random variables with explicit density can be
found in Devroye [113]. Simulation methods for general a-stable random
variables were first published by Chambers, Mallows, and Stuck [87]. The
computer program which implements their method, can also be found in
Samorodnitsky and Taqqu [344]. For details on approximating small jumps
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FIGURE 6.6: Simulated trajectories of a two-dimensional subordinator
under weak (left), medium (right) and strong (bottom) dependence.

of Lévy processes by a Brownian motion, the interested reader should consult
the original article of Asmussen and Rosinski [12] as well as Wiktorsson [381].
Rosinski [338] gives a comprehensive survey of series representations for Lévy
processes. The case of stable processes is also treated in Samorodnitsky and
Taqqu [344]. Details on multivariate Lévy processes can be found in Chapter
5 of this book.

In this chapter we did not discuss Euler schemes for Lévy processes because
we do not use them in this book and the scope of their application in finance
is somewhat limited. Nevertheless it is a rapidly evolving field of research.
Interested readers are referred to Jacod [211, 212] for a survey of recent results
on Euler schemes for Lévy processes. Rubenthaler [340] also discusses Euler
schemes for Lévy processes, treating the more realistic case when increments
of the driving Lévy process cannot be simulated directly.
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Louis BACHELIER

Louis Bachelier has been called the founder of mathematical finance and
the “father of modern option pricing theory”. Born in Le Havre in 1870, Louis
Bachelier moved to Paris around 1892 and worked for some time in the Paris
Bourse, where he became familiar with the workings of financial markets.
Bachelier then undertook a doctoral thesis in mathematical physics at the
Sorbonne under the supervision of Poincaré. His thesis, published in 1900
under the title Théorie de la Spéculation [18], dealed with the probabilistic
modelling of financial markets and marked the beginning of two scientific
theories: the theory of Brownian motion and the mathematical modelling of
financial markets.

Five years before Einstein’s famous 1905 paper on Brownian Motion, Bache-
lier worked out in his doctoral thesis the distribution function for what is now
known as the Wiener process (the stochastic process that underlies Brownian
Motion), the integral equation verified by the distribution (later called the
Chapman Kolmogorov equation) and linked it mathematically to Fourier’s
heat equation. Bachelier’s work was initially underestimated by the academic
community. It appears that Einstein in 1905 ignored the work of Bachelier,
but Kolmogorov knew of it and brought it to the knowledge of Paul Lévy many
years later. In 1931, Lévy wrote a letter of apology to Bachelier recognizing
his work. Bachelier’s treatment and understanding of the theory of Brownian
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Motion is more mathematical than in Einstein’s 1905 paper, which was more
focused on Brownian motion of physical particles. In his thesis, Bachelier also
derived the distribution of the maximum of Brownian motion on an interval
and uses it to study barrier options. Later, Paul Lévy and William Feller
called the Brownian motion process the Bachelier-Wiener Process.

Bachelier, whose name is frequently quoted today in works of probability
and mathematical finance, was rejected by the mathematical community of
his time. Bachelier’s works are formulated in the language of a physicist and
his mathematics was not rigorous (since many of the mathematical techniques
necessary to formulate it had not been developed at the time) but the results
he obtained were original and basically correct. William Feller writes ([141], p
323):“Credit for discovering the connection between random walks and diffu-
sion is due principally to Louis Bachelier. His work is frequently of a heuristic
nature but he derived many new results. Kolmogorov’s theory of stochastic
processes of the Markov type is based largely on Bachelier’s ideas.”

Bachelier’s work on stochastic modelling of financial markets was unearthed
in the 1950s by L.J. Savage and P. Samuelson in the United States and an
English translation of his thesis subsequently appeared in [100]. Inspired
by his work, Samuelson formulated the log-normal model for stock prices
which formed the basis for the Black-Scholes option pricing model. However,
Bachelier died in 1946 and did not live to see the development of modern
mathematical finance.

Bachelier’s intuitions were ahead of his time and his work was not appre-
ciated in his lifetime. His contribution has by now been amply recognized:
the centenary of his thesis was celebrated in 2000 by a international congress
held in Paris. Interesting material on Bachelier’s life and scientific work may
be found in [375, 101].
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Chapter 7

Modelling financial time series with
Lévy processes

Si[...] jai comparé les résultats de lobservation & ceux de la théorie,
ce n’était pas pour vérifier des formulaes établies par des méthodes
mathématiques mais pour montrer que le marché, a son insu, obéit a
une loi qui le domine: la loi de la probabilité.

Louis Bachelier Théorie de la spéculation (1900)

The purpose of models is not to fit the data but to sharpen the questions

Samuel Karlin
11th R. A. Fisher Memorial Lecture, Royal Society, April 1983

As mentioned in the introduction, one of the principal motivations for de-
parting from Gaussian models in finance has been to take into account some of
the observed empirical properties of asset returns which disagree with these
models. Lévy processes entered financial econometrics in 1963 when Man-
delbrot [278] proposed a-stable Lévy processes as models for cotton prices.
Since then a variety of models based on Lévy processes have been proposed as
models for asset prices and tested on empirical data. In this chapter we dis-
cuss some of these models and examine how they fare in reproducing stylized
properties of asset prices.

Market prices are observed in the form of time series of prices, trading vol-
umes and other quantities observed at a discrete set of dates. What is then the
motivation for using continuous time model to represent such data? As long
as one considers prices sampled at a single — say daily — frequency, the usual
approach is to represent the time series as a discrete-time stochastic process
where the time step corresponds to the interval between observations: there
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is a long tradition of time series modelling using this approach in financial
econometrics [76, 361, 63]. However applications involve different time hori-
zons, ranging from intraday (minutes) to weekly or longer and, as we shall
see below, the statistical properties of asset returns corresponding to different
time intervals can be quite different! Therefore, a model may perform well
based on returns on a given time horizon, say A but fail to do so for another
horizon A’. Also, most time series models in popular use are not stable un-
der time aggregation: for example, if returns computed at interval A follow
a GARCH(1,1) process, returns computed at interval 2A do not in general
follow a GARCH process [117]. Defining a different time series model for
every sampling frequency is definitely a cumbersome approach. By contrast,
when price dynamics are specified by a continuous time process, the distribu-
tion and properties of log-returns at all sampling intervals are embedded in
the definition of the model. Moreover, all discrete-time quantities will have a
well-defined limit as the sampling interval becomes small.

In this chapter we will review some of the statistical properties of asset
returns and compare them with class of exponential-Lévy models in which the
asset price Sy is represented as

St = SO exp(Xt)7

where X is a Lévy process, i.e., a process with stationary independent incre-
ments (see Chapters 3 and 4). These models are simple to study and we will
examine to what extent they can accommodate observed features of financial
data.

Section 7.1 presents some commonly observed statistical properties of as-
set returns, known as stylized empirical facts in the financial econometrics
literature. In order to examine the adequacy of a statistical model, first one
estimates model parameters from time series of asset returns and then com-
pares the properties of the estimated model with the statistical properties
observed in the returns. While it is possible to define a variety of models
which can potentially reproduce these empirical properties, estimating these
models from empirical data is not always an obvious task. We will present an
overview of estimation methods and some of their pitfalls in Section 7.2. Dis-
tributional properties of asset returns at a given time horizon are discussed
in Section 7.3. We shall observe that Lévy processes enable flexible mod-
elling of the distribution of returns at a given time horizon, especially when
it comes to modelling the tails of the distribution. Less obvious is to model
the time-aggregation properties of returns: the dependence of their statistical
properties with respect to the time horizon. This issue is discussed in Sec-
tion 7.4: we define in particular the notion of self-similarity and discuss its
relevance to the study of asset returns.

A lot of recent studies have been devoted to the study of realized volatility
of financial assets and its empirical properties. In Section 7.5 we define this
notion and examine what exponential Lévy models have to say about realized
volatility.
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Empirical observations consist of a single trajectory of the price process
and the profit/loss of an investor is actually determined by the behavior of this
single sample path, rather than by properties averaged over paths. Pathwise
properties such as measure of smoothness of sample paths are discussed in
Section 7.6.

In the following, S; will denote the price of a financial asset — a stock, an
exchange rate or a market index — and X; = In.S; its logarithm. Given a
time scale A, the log return at scale A is defined as:

’I"t(A) = Xt+A - Xt- (71)

A may vary between a minute (or even seconds) for tick data to several
days. We will conserve the variable A to stress the fact that the statistical
properties of the returns depend on A in a nontrivial way. Observations are
sampled at discrete times t,, = nA. Time lags will be denoted by the Greek
letter 7; typically, 7 will be a multiple of A in estimations. For example,
if A =1 day, corr[riy,(A),r:(A)] denotes the correlation between the daily
return at period s and the daily return 7 periods later. When A is small —
for example of the order of minutes — one speaks of “fine” scales whereas if
A is large we will speak of “coarse-grained” returns. Given a sample of N
observations (r;, (A),n = 1...N), the sample average of a function f(.) of
returns is defined as:

N
< I > = 5 3 (i, (4). (72)
n=1

Sample averages are, of course, not to be confused with expectations, which
are denoted in the usual way by E[f(r(A))].

7.1 Empirical properties of asset returns

The viewpoint of most market analysts in “explaining” market fluctuations,
conveyed by most financial newspapers and journals, has been and remains
an event-based approach in which one attempts to rationalize a given market
movement by relating it to an economic or political event or announcement.
From this point of view, one could easily imagine that, since different assets are
not necessarily influenced by the same events or information sets, price series
obtained from different assets and — a fortiori — from different markets will
exhibit different properties. After all, why should properties of corn futures be
similar to those of IBM shares or the Dollar/Yen exchange rate? Nevertheless,
the result of more than half a century of empirical studies on financial time
series indicates that this is the case if one examines their properties from a
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FIGURE 7.1: BMW daily log-returns.

statistical point of view. The seemingly random variations of asset prices do
share some quite nontrivial statistical properties. Such properties, common
across a wide range of instruments, markets and time periods are called stylized
empirical facts [92].

Stylized facts are thus obtained by taking a common denominator among
the properties observed in studies of different markets and instruments. Ob-
viously by doing so one gains in generality but tends to lose in precision
of the statements one can make about asset returns. Indeed, stylized facts
are usually formulated in terms of qualitative properties of asset returns and
may not be precise enough to distinguish among different parametric models.
Nevertheless, we will see that, albeit qualitative, these stylized facts are so
constraining that it is not even easy to exhibit an ( ad hoc) stochastic process
which possesses the same set of properties and stochastic models have gone
to great lengths to reproduce these stylized facts.

We enumerate here some of these empirical facts; for further details readers
are referred to (92, 76, 313

1. Heavy tails: the (unconditional) distribution of returns seems to dis-
play a heavy tail with positive excess kurtosis with a tail index which is
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finite, higher than two and less than five for most data sets studied. In
particular this excludes stable laws with infinite variance and the nor-
mal distribution. Power-law or Pareto tails reproduce such behavior,
but the precise form of the tails is difficult to determine and some au-
thors have suggested models with exponential tails (“semiheavy tails”)
as an alternative.

2. Absence of autocorrelations: (linear) autocorrelations of asset re-
turns are often insignificant, except for very small intraday time scales
(~ 20 minutes) for which microstructure effects come into play. Figure
7.3 illustrates this fact for a stock and an exchange rate.

3. Gain/loss asymmetry: one observes large drawdowns in stock prices
and stock index values but not equally large upward movements.*

4. Aggregational normality: as one increases the time scale A over
which returns are calculated, their distribution looks more and more
like a normal distribution. In particular, the shape of the distribution is
not the same at different time scales: the heavy-tailed feature becomes
less pronounced as the time horizon is increased.

5. Volatility clustering: “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small
changes” [278]. A quantitative manifestation of this fact is that, while
returns themselves are uncorrelated, absolute returns |r;(A)| or their
squares display a positive, significant and slowly decaying autocorrela-
tion function.

6. Conditional heavy tails: even after correcting returns for volatility
clustering (e.g., via GARCH-type models), the residual time series still
exhibit heavy tails. However, the tails are less heavy than in the uncon-
ditional distribution of returns.

7. Slow decay of autocorrelation in absolute returns: the auto-
correlation function of absolute (or squared) returns decays slowly as
a function of the time lag, roughly as a power law with an exponent
0 € [0.2,0.4]. An example is shown in Figure 7.3. This is sometimes
interpreted as a sign of long-range dependence in volatility.

8. “Leverage” effect: most measures of volatility of an asset are nega-
tively correlated with the returns of that asset.

9. Volume/volatility correlation: trading volume is positively corre-
lated with all measures of volatility. The same holds for other measures
of market activity such as the number of trades.

IThis property is not true for exchange rates where there is a higher symmetry in up/down
moves.
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10. Asymmetry in time scales: coarse-grained measures of volatility
predict fine-scale volatility better than the other way round [181].

Density of 30 min. price changes Density of 5-minuteincrements
S& P 500 index futures USD/DEM exchangerate futures

—— Gaussian —— Gaussian
151 —— S&P 500 | ~—— USD/DE!

0.20

10

0.10 [
05 -

0.0
-5.0

0.00 T L h
50 -30.0 -200 -100 0.0 100 20.0 30.0

FIGURE 7.2: Probability density of log-returns compared with the Gaus-
sian distribution. Left: 30 minute returns for S&P500 index. Right: 5 minute
log-returns for Deutschemark-US Dollar exchange rates.

7.2 Statistical estimation methods and their pitfalls

All estimation approaches are based on choosing model parameters in order
to optimize a certain criterion computed using the observed returns (ry,t =
1...N). In the maximum likelihood method, this criterion is the likelihood
function (see 7.2.1). In the (generalized) method of moments, the criterion
is based on the difference of some moments of the distribution and the cor-
responding empirical moments. In most cases of interest, the resulting opti-
mization problem cannot be solved analytically and numerical methods must
be used.

7.2.1 Maximum likelihood estimation

The most common method for estimating a parametric model for the distri-
bution of returns is the mazimum likelthood method: given a functional form
f(x;0) for the density of log-returns and observations (r4, ¢ = 1...N), we
choose the model parameter # to maximize the likelihood that the observed
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Autocorrelation function of price changes Autocorrelation of square of price changes
USD/Yen exchange rate tick data 1992-94 S&P 500 I ndex futures, 1991-95
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FIGURE 7.3: Left: Autocorrelation function of log-returns, USD/Yen ex-
change rate, A = 5 minutes. Right: Autocorrelation function of squared
log-returns: S&P500 futures, A = 30 minutes.

data have been generated from the model:

N
m;xxH f(ry; 0). (7.3)
t=1

This is of course equivalent to maximizing the log-likelihood function

N
10) => In f(rs;0). (7.4)

If the functional form of f(.|f) is known, one can derive an equation for the
maximizers of [(#) by differentiating [ and try to solve it numerically. Un-
fortunately, for many of the Lévy processes seen in Chapter 4, the likelihood
function (which is here simply the density of the process at time A) is not
known in closed form but involves special functions which have to be com-
puted numerically. Therefore even the computation of the likelihood function
must be done numerically. If the log-likelihood function is a concave function
of the parameters, then (7.4) has a unique maximizer which can be com-
puted by a gradient descent algorithm such as Newton-type methods or the
BFGS method. But if the log-likelihood is not concave, then (7.3) may or
may not have a unique maximum: typically, it may have several local max-
ima. Let us stress that numerical optimization of non-convex functions in
several dimensions is far from trivial and is a topic of ongoing research. This
point is often disregarded in many empirical studies, where some black-box
optimization software (often gradient based) is used to compute maximum
likelihood estimators. Even if the likelihood does have a unique global max-
imum, such algorithms may not converge to it: indeed, depending on how it
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is initialized, a gradient-based optimization algorithm will typically converge
to a local maximum.

In many of the models described in Chapter 4, while the density or likeli-
hood function of the process is not known in closed form, the Lévy measure
of the process has a simple parametric form. Using the relation between the
probability density and the Lévy density given in Chapter 3, one can approxi-
mate the likelihood function of increments on a small time interval A. Denote
by p:(.) the density of X;. The following result is shown in [341, Theorem 1]:

PROPOSITION 7.1 Small time expansion of densities [341]
Assume that the Lévy process X; has a C* density pi(x), the density v(x)
of the Lévy measure is C* and verifies:

/ 2
Ve > 0, / Mdm < oo and
|z|>e l/(if)
JheC™ with h(z) <cxl*> and h(z) >0 if v(z)>0
d > dr
such that / —h(x)v(x)| — < o0. 7.5
e |4 (x)v(x) ) (7.5)

Denote by ve(v) = v(x)1|3>c the truncated Lévy density. Then for any N > 1
and any xg > 0 there exist eg > 0 and ty > 0 such that for 0 < ¢ < €y and
any t < tp:

N-—-1 ,;
tt L
@l > 20> 00 pyz) = et N @) + oM. (7.6
i=1

A condition which ensures that a Lévy process has a C* density was given
in Proposition 3.12: this is the case for example if ¢ > 0 or if 0 = 0 and X is
a tempered stable process with a > 0. v, is explicitly known in most cases,
but its higher convolution powers I/:i are not easy to compute so in practice
one uses a first order expansion to approximate the density p;. In the case of
finite intensity, one does not need the truncation and € = 0.

When the log-price is a compound Poisson process [320] with intensity A
and jump size density v the first order expansion above leads to the following
approximation for the likelihood/density of increments:

pa(z) = Mg (z) + (1 — AA)do. (7.7)

In this case the “likelihood function” is actually singular (it is a distribution)
so the above equation must be interpreted in the following way: X; 1 A—X; =0
with probability ~ 1 —AA and, conditionally on X;; A — X; # 0, the distribu-
tion of (nonzero) returns is the jump size distribution vy whose parameters can
be estimated by a maximum likelihood procedure. The maximum likelihood
estimate of A using the approximation (7.7) is then simply the proportion of
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zeroes in the log-returns: if Ny is the number of zeroes observed in the series

(r+(A)) then

1— Mo
N

A
However this approximation is valid only if AA << 1 which means that a large
fraction of the returns are zero! This is not the case in empirical data, even
at very high frequencies, pointing to an inadequacy of the compound Poisson
model. In fact, since the proportion of zero returns remains finite even at the
tick level, A is typically of order 1 /A and tends to increase without bound
as A — 0 (see for examples the empirical study in [199]), indicating that
either the continuous time limit has an infinite number of jumps per unit
time (infinite activity, in the sense defined in Chapter 3) or that a diffusion
component has been left out.?

The jump intensity A can also be estimated from the time between trades:
in the compound Poisson model the interval between price changes should
follow an exponential distribution. Figure 7.4 compares the distribution of
time intervals between trades for KLM tick data (NYSE:KLM) from 1993
to 1998 with an exponential distribution estimated by a maximum likelihood
method. In the case of the exponential distribution the maximum likelihood
estimate A of the parameter corresponds to the sample mean: \ is simply
the average time between two trades, in this case 859 seconds. Therefore the
estimated exponential model and the empirical distribution have the same
mean. However the sample has a kurtosis of 24.6, much higher than the
kurtosis of an exponential distribution which is equal to 9.

The log-log plot clearly illustrates that the distribution of time intervals
between trades does not resemble an exponential; this is further confirmed by
the quantile-quantile plot in Figure 7.4 which shows that their tails behave
very differently. All these remarks point to the fact that a compound Poisson
process with drift is not a good representation of price dynamics: either a
diffusion component must be added or the process should be allowed to have
infinite activity.

In jump-diffusion models, the diffusion components are supposed to repre-
sent “normal” market returns and the jump component serves to capture rare
events, i.e., abnormally large returns of either sign. In the case of a jump-
diffusion model X; = cW; + Z;V:tl Y;, Y; ~ vy with finite jump intensity A
the small time approximation becomes:

X:

pala;A,0) = AAfi(x;0) + (1 — AA) fo (3 0), (7.8)
where fj is the normal N(uA, 02A) density and f; = fj * 14 is the transition

density given that one jump has occurred during [t, ¢+ A], that is, the density
of Wa + Y7, given by the convolution of fy with the jump size distribution vy.

2Note that this problem can go unnoticed if one estimates the model at a single sampling
interval.
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FIGURE 7.4: Left: The distribution of time intervals between trades, com-
pared with an exponential distribution estimated by maximum likelihood.
KLM tick data, NYSE, 1993-1998. Right: Quantiles of the exponential dis-
tribution plotted against the quantiles of the empirical distribution of trading
intervals (durations). KLM tick data, NYSE, 1993-1998.

In order for this approximation to be useful one needs to know in closed form
the density fo*1p. This is the case of course if the jump size is Gaussian (the
Merton model) or constant (Brownian motion with Poisson jumps) but there
are not many other cases where f; is known. Here 6 denotes the vector of
parameters in fy, f1; these do not depend on the intensity A. The likelihood
function therefore takes the form

N N

1A 0) = [ lpala; A, 0)] = [ [[fo(xs; 0) + AA(fi(2i50) — fo(ai;0))]. (7.9)

i=1 i=1

We notice that the dependence in )\ is a polynomial of degree N whose coef-
ficients depend on the sample data. Since the above approximation is valid
for A\A << 1, A is obtained by minimizing (7.9) over A €]0,1/A[. In a finite
sample this frequently leads to a “overestimated” jump rate A which increase
as A becomes smaller [224, 199]. The interpretation of jumps as rare events
is then not clear: to maintain a coherent vision as A varies one is naturally
led to formulate a model allowing infinite jump rates.

In the case of infinite activity Lévy processes we must rely either on the
knowledge of the analytical expression of the density as a function of the pa-
rameters or use expansions such as (7.6). If the derivatives of the likelihood
function with respect to parameters are known, a gradient based algorithm
can be used to numerically compute the maximum likelihood estimator. This
is the case for the five parameter class of generalized hyperbolic models intro-
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duced in Section 4.6, for which the log-likelihood function is given by:

I\ a,3,8) =InC(\ o, 3,0) 4+ (5 — = Zlné + (re — p)?)

N
+ ) Ky (/6% + (re — p)?) + B(re — )], (7.10)

where C'(\, a, 3,0) is given in (4.38). Computing (7.10) involves N numerical
evaluations of the modified Bessel function K_;/,. For this model Prause
[319] gives analytical expressions (again involving special functions) of the
derivatives of | with respect to the parameters ([319], p. 10-11). Unfortu-
nately the corresponding first order conditions cannot be solved analytically
and a numerical optimization procedure must be used. Let us emphasize
again that log-likelihood functions are not necessarily concave functions of
parameters in these models, leading to multiple maxima which are not easy
to locate by gradient-based numerical methods, a point overlooked in most
empirical studies. Barndorff-Nielsen and Blaesild [34] point out the flatness
of the likelihood function for the case of the hyperbolic distribution. Blaesild
and Sgrensen [61] provide a gradient-based algorithm for maximum likelihood
estimation of hyperbolic distributions but due to this lack of concavity their
algorithm often fails to converge or gives a 0 very close to zero [319, 329].

Given the possibility of nesting various models in larger and larger para-
metric families, it is tempting to nest everything into a huge family (such as
generalized hyperbolic) and estimate parameters for this hyper-family. The
point is that by increasing the dimension of parameter space the maximization
problem becomes less and less easy. For example, [319] points out that the
likelihood landscape of the generalized hyperbolic distribution is even flatter
than the subfamily of hyperbolic distributions. Consequently, using the full
generalized hyperbolic family leads to imprecise parameter estimates, unless
some ad hoc parametric restrictions are made [319, 329]) which amounts to
choosing a subfamily of models.

7.2.2 Generalized method of moments

While there are few Lévy processes for which the likelihood functions are
available in closed form, expression for moments and cumulants are almost
always available in closed form as a function of model parameters: they are
easily obtained by differentiating the characteristic function (see Equation
2.21). This enables to construct method of moments estimators by matching
empirical moments with theoretical moments and solving for the parameters.

The generalized method of moments (GMM) [187] consists in choosing the
parameter 6 to match — in a least squares sense — a given set of sample
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averages:

)
*
|

= argnbintV(H)WV(G), (7.11)
V(0) = (< fi(re) > =E[f;(r)10] )j=1...m> (7.12)

where the f;(.) are a set of quantities chosen to generate the moment condi-
tions and W is a symmetric positive definite weighting matrix.

The “generalized moments” < f;(r;) > can represent the sample average of
any quantity. This includes the usual moments and cumulants — sample mo-
ments of any order for returns, sample autocovariances of returns, absolute
returns — but also empirical probabilities (f; = 1j4,) and quantiles, rep-
resented by the empirical distribution (histogram) of returns. Thus, “curve
fitting” methods where model parameters are estimated by performing least
squares fit on a histogram or empirical autocorrelation function are particular
cases of the GMM method and therefore the asymptotic theory developed for
GMM applies to them.

Since sample moments are not independent from each other, we should
expect that the errors on the various moments are correlated so it might not
be desirable to used a diagonal weighting matrix W: ideally, W should be
a data dependent matrix. An “optimal” choice of the weighting matrix is
discussed in [187], see also [175].

The choice of moment conditions for a GMM estimator can have very pro-
nounced effects upon the efficiency of the estimator. A poor choice of moment
conditions may lead to very inefficient estimators and can even cause iden-
tification problems. The uniqueness of the minimizer in (7.11) is also an
issue: choosing moment conditions f;(.) that ensure identification may be a
nontrivial problem.

In the case of a model specified by a Lévy process for the log-prices, the
simplest moment conditions could be the first four moments of the returns
r¢+(A) (in order for mean, variance, skewness and kurtosis to be correctly re-
produced), but these may not be enough to identify the model. In particular,
if the moment conditions are specified only in terms of returns at a given fre-
quency A — say, daily — then this may result in overfitting of the distribution
of daily returns while the model gives a poor representation of distributions
at other time scales. It is thus better to use moment conditions involving
returns from several time horizons, in order to ensure the coherence of the
model across different time resolutions.

An issue important for applications is capturing the behavior of the tails.
Including tail-sensitive quantities such as probabilities to exceed a certain
value (f; = 1pp00[) Prevents from overfitting the center of the distribution
while poorly fitting the tails. Most four parameter families of Lévy processes
such as the ones presented in Chapter 4 allow flexible tail behavior. Of course
the number of parameters (four or more) is not the right criterion here: the
parameterization should allow different types of tail decay as well as asym-
metry in the left and right tail. The generalized hyperbolic family, presented
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in Section 4.6 allows such freedom. Another flexible parametric family is that
of tempered stable processes, presented in Section 4.5.

Since Lévy processes have independent increments, there is no point in
including autocovariances of returns, absolute returns or their squares as mo-
ment conditions: if they are not zero, the corresponding moment conditions
cannot be satisfied. This is of course a limitation of Lévy processes and not
of GMM.

7.2.3 Discussion

In some cases the density of returns is completely characterized by (all of)
its moments (m,,n > 1). One may then interpret this by saying that the
maximum likelihood estimate is a GMM estimator which uses as moment
condition all moments of the distribution, weighted in a particular way. The
question is then: why do we use moment conditions instead of maximizing the
likelihood? The answer is that there are several advantages to using GMM:

e Robustness: GMM is based upon a limited set of moment conditions.
For consistency, only these moment conditions need to be correctly spec-
ified, whereas MLE in effect requires correct specification of every con-
ceivable moment condition. In this sense, GMM is robust with respect
to distributional misspecification. The price for robustness is loss of ef-
ficiency with respect to the MLE estimator. Keep in mind that the
true distribution is not known so if we erroneously specify a distribution
and estimate by MLE, the estimator will be inconsistent in general (not
always).

e Feasibility: in many models based on Lévy processes the MLE estimator
is not available, because we are not able to compute the likelihood func-
tion while GMM estimation is still feasible since characteristic functions
(therefore moments) are often known in closed form.

A large part of the econometrics literature is concerned with convergence
properties of the estimators such as the ones described above when the sample
size N is large. Two kinds of properties of estimators are of interest here:
consistency — whether the estimators 6y converge to their true value 6
when the sample becomes large — and the distribution of the error 65 — 6.
Consistency is usually obtained by applying a law of large numbers and in
some cases, the estimation error 6y — 6y can be shown to be asymptotically
normal, i.e., verify a central limit theorem when N — oo which then enables
to derive confidence intervals by approximating its distribution by a normal
distribution.

Convergence of maximum likelihood estimators is a classical topic and Lévy
processes do not introduce any new issue here. Large sample properties of
GMM estimators have been studied in [187]. Contrarily to maximum likeli-
hood methods that require the data to be generated from i.i.d. noise, GMM
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is only based on the convergence of the (generalized) sample moments which
is valid under weaker conditions. While for Lévy processes increments are in-
deed i.i.d., as mentioned in Section 7.1 there is ample evidence for non-linear
dependence in asset returns so robustness to departure from the i.i.d. case
is clearly an advantage with GMM. However the consistency and asymptotic
normality of the GMM estimator clearly require the chosen moments to be
finite. In the presence of heavy tails, this is far from being obvious: as we
will see in the next section, empirical studies indicate that even the fourth
moment of returns is not finite for most data sets which have been studied so
even the second sample moment may not give an asymptotically normal esti-
mator of the second moment of the distribution of returns [267, 268]. In this
case higher order sample moments n > 4 are not even consistent estimators:
they diverge when N — oo.

7.3 The distribution of returns: a tale of heavy tails

Empirical research in financial econometrics in the 1970s mainly concen-
trated on modelling the unconditional distribution of returns, defined as:

Fa(u) = P(ri(A) < ). (7.13)

The probability density function (PDF) is then defined as its derivative fa =
F). As early as the 1960s, Mandelbrot [278] pointed out the insufficiency
of the normal distribution for modelling the marginal distribution of asset
returns and their heavy tails. Since then, the non-Gaussian character of the
distribution of price changes has been repeatedly observed in various market
data. One way to quantify the deviation from the normal distribution is by
using the kurtosis of the distribution Fa defined as

(A) = ((re(A) = (AN 3, (7.14)
o(A)

where 6(A)? is the sample variance of the log-returns 7, (A) = X (t+A)—X (t).
The kurtosis is defined such that x = 0 for a Gaussian distribution, a positive
value of k indicating a “fat tail,” that is, a slow asymptotic decay of the PDF.
The kurtosis of the increments of asset prices is far from its Gaussian value:
typical values for T' = 5 minutes are [76, 92, 93, 313]: k ~ 74 (USD/DM
exchange rate futures), x ~ 60 (US$/Swiss Franc exchange rate futures),
Kk~ 16 (S&P500 index futures) . One can summarize the empirical results by
saying that the distribution fa tends to be non-Gaussian, sharp peaked and
heavy tailed, these properties being more pronounced for intraday time scales
(A < 1 day). This feature is consistent with a description of the log-price as a
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Lévy process: all Lévy processes generate distributions with positive kurtosis
and the Lévy measure can be chosen to generate heavy tails such as to fit
the tails of return for any given horizon A. Once the kurtosis is fixed for a
given A, the kurtosis for other maturities decays as 1/A (see remarks after
Proposition 3.13). However in empirical data the kurtosis x(A) decays much
more slowly [93], indicating an inconsistency of the Lévy model across time
scales.

These features are not sufficient for identifying the distribution of returns
and leave a considerable margin for the choice of the distribution. Fitting
various functional forms to the distribution of stock returns and stock price
changes has become a popular pastime. Dozens of parametric models have
been proposed in the literature: a-stable distributions [278], the Student t
distribution [62], hyperbolic distributions [125], normal inverse Gaussian dis-
tributions [30], exponentially tempered stable distributions [67, 93, 80] are
some of them. All of these distributions are infinitely divisible and are there-
fore compatible with a Lévy process for the log-price X. In coherence with the
empirical facts mentioned above, these studies show that in order for a para-
metric model to successfully reproduce all the above properties of the marginal
distributions it must have at least four degrees of freedom governed by differ-
ent model parameters: a location parameter, a scale (volatility) parameter,
a parameter describing the decay of the tails and eventually an asymmetry
parameter allowing the left and right tails to have different behavior. Nor-
mal inverse Gaussian distributions [30], generalized hyperbolic distributions
[125] and tempered stable distributions [67, 93, 80] meet these requirements.
The choice among these classes is then a matter of analytical and numeri-
cal tractability. However a quantitative assessment of the adequacy of these
models requires a closer examination of the tails of returns.

7.3.1 How heavy tailed is the distribution of returns?

One of the important characteristics of financial time series is their high
variability, as revealed by the heavy tailed distributions of their increments
and the non-negligible probability of occurrence of violent market movements.
These large market movements, far from being discardable as simple outliers,
focus the attention of market participants since their magnitude may be such
that they account for an important fraction of the total return over a long
period. Not only are such studies relevant for risk measurement but they are
rendered necessary for the calculation of the quantiles of the profit-and-loss
distribution, baptized Value-at-Risk, which is required to determine regula-
tory capital. Value-at-Risk (VaR) is defined as a high quantile of the loss
distribution of a portfolio over a certain time horizon A:

PWy(rs(A) — 1) < VaR(p,t,A)) = p, (7.15)

where Wy is the present market value of the portfolio, r(A) its (random)
return between ¢t and ¢t + A. A is typically taken to be one day or ten days
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and p = 1% or 5%. VaR can be computed by estimating a stochastic model
for the returns and then computing or simulating the VaR of a portfolio within
the model. Calculating VaR implies a knowledge of the tail behavior of the
distribution of returns.

The non-Gaussian character of the distribution makes it necessary to use
other measures of dispersion than the standard deviation in order to cap-
ture the variability of returns. One can consider, for example, higher order
moments or cumulants as measures of dispersion and variability. However,
given the heavy tailed nature of the distribution, one has to know beforehand
whether such moments are well defined otherwise the corresponding sample
moments may be meaningless. The tail index k of a distribution may be
defined as the order of the highest absolute moment which is finite. The
higher the tail index, the thinner is the tail; for a Gaussian or exponential
tail, kK = 400 (all moments are finite) while for a power-law distribution with
density

C

~
|z]— 00 |.’E‘1+a

f(z) (7.16)
the tail index is equal to a. However a distribution may have a finite tail
index a without having a power-law tail as in (7.16): in fact any function f
verifying

L(|z])

|ZE|1+O‘

L(ux) z2—o0
¢

L(z)
has tail index a. Such functions are said to be regularly varying with index «.
A function L such as the one in (7.17) is said to be slowly varying: examples
are L(z) = In(z) or any function with a finite limit at co. Knowing the tail
index of a distribution gives an idea of how heavy the tail is but specifies tail
behavior only up to a “slowly varying” function L. This may be good enough
to get an idea of the qualitative behavior but L(z) definitely does influence
finite sample behavior and thus makes estimation of tail behavior very tricky.

A simple method is to represent the sample moments (or cumulants) as
a function of the sample size n. If the theoretical moment is finite then
the sample moment will eventually settle down to a region defined around
its theoretical limit and fluctuate around that value. In the case where the
true value is infinite, the sample moment will either diverge as a function of
sample size or exhibit erratic behavior and large fluctuations. Applying this
method to time series of cotton prices, Mandelbrot [278] conjectured that the
theoretical variance of returns may be infinite since the sample variance did
not converge to a particular value as the sample size increased and continued
to fluctuate incessantly.

Figure 7.5 indicates an example of the behavior of the sample variance as
a function of sample size. The behavior of sample variance suggests that the
variance of the distribution is indeed finite: the sample variance settles down
to a limit value after a transitory phase of wild oscillations.

f(@)

|z|—o0

where Yu > 0, 1 (7.17)
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FIGURE 7.5: Empirical second moment of log-returns as a function of
sample size: S&P500.

One way to go beyond the graphical analysis described above, is to use the
tools of extreme value theory, a branch of probability theory dealing precisely
with the probabilities of extreme events. Given a time series of n nonoverlap-
ping returns 7 (A), ¢t = 0, A, 2A, ..., nA, the extremal (minimal and maximal)
returns are defined as:

m,(A) = min{r, xa(A),k € [1...0n]}, (7.18)
M, (A) = max{ri1xa(A),k € [1...n]}. (7.19)

In economic terms, m,, (A) represents the worst relative loss over a time hori-
zon A of an investor holding the portfolio P(¢). A relevant question is to
know the properties of these extremal returns, for example the distribution of
mp(A) and M, (A). In this approach, one looks for a distributional limit of
mp(A) and M, (A) as the sample size n increases. If such a limit exists, then
it is described by the Fisher—Tippett theorem in the case where the returns
are i.i.d:

THEOREM 7.1 Extreme value theorem for i.i.d. sequences [142]
Assume the log-returns (r¢(A))i=o0,at,2a¢,.. form an i.i.d. sequence with distri-
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bution Fa. If there exist normalizing constants (A, oy) and a non-degenerate
limit distribution H for the normalized mazximum return:

P (M < g;) = H) (7.20)

o T—00

then the limit distribution H is either a Gumbel distribution

r— A

G(z) = exp[exp(—T)], x €R, (7.21)
a Weibull distribution
Wa(z) = exp[—(%)a], 2<0, a>0, (7.22)
or a Fréchet distribution:
H(z) = exp[—(%)_a], 2>0, a>0. (7.23)

The three distributional forms can be parameterized in the following unified
form, called the Cramer—von Mises parameterization:

He(x) = exp[—(1 + &x) 7%, (7.24)

where the sign of the shape parameter £ determines the extremal type: & > 0
for Fréchet, £ < 0 for Weibull and ¢ = 0 for Gumbel. Obviously if one
knew the stochastic process generating the returns, one could also evaluate
the distribution of the extremes, but the extreme value theorem implies that
one need not know the exact parametric form of the marginal distribution
of returns Fa to evaluate the distribution of extremal returns. The value of
& only depends on the tail behavior of the distribution Fa of the returns: a
distribution Fa with finite support gives £ < 0 (Weibull) while a distribution
Fa with a power-law tail with exponent « falls in the Fréchet class with
& = 1/a > 0. The Fréchet class therefore contains all regularly varying
distributions, which correspond to heavy tails. All other distributions fall in
the Gumbel class £ = 0 which plays a role for extreme values analogous to
that of the normal distribution for sums of random variables: it is the typical
limit for the distribution of i.i.d. extremes. For example, the normal, log-
normal and exponential distribution fall in the Gumbel class, as well as most
distributions with an infinite tail index (see Table 7.1).

This theorem also provides a theoretical justification for using a simple
parametric family of distributions for estimating the extremal behavior of
asset returns. The estimation may be done as follows: one interprets the
asymptotic result above as

uU— Ap

On

P(M,, <wu)=Hg ( ) = He \, 0, (2). (7.25)
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TABLE 7.1: Tail properties of some Lévy processes

Lévy process Tail index | Tail decay

a-stable a €]0,2] ~ ||~ O+

Variance gamma o0 Exponential

NIG 00 ~ |z|73/% exp(—alz| + pz)
Hyperbolic 00 ~ exp(—alx]|)

Student t (see Equation (7.44)) | 3 > 0 ~ Alz|71F

The estimation of the distribution of maximal returns then is reduced to a
parameter estimation problem for the three-parameter family He ) ,. One
can estimate these parameters by the so-called block method [331, 265]: one
divides the data into N subperiods of length n and takes the extremal re-
turns in each subperiod, obtaining a series of N extremal returns (z;);=1,..n,
which is then assumed to be an i.i.d. sequence with distribution He y ,. A
maximum likelihood estimator of (£, A, o) can be obtained by maximizing the
log-likelihood function:

N

LX) =Y I\ o,& ), (7.26)

i=1

where [ is the log density obtained by differentiating Equation (7.24) and
taking logarithms:

I\ o,6,2;) = —Ino — <1—|—%>ln [1+§<$ia)\>]
_ {1+£ <xi;A)]l/£~ (7.27)

If £ > —1 (which covers the Gumbel and Fréchet cases), the maximum likeli-
hood estimator is consistent and asymptotically normal [131].

To our knowledge, the first application of extreme value theory to financial
time series was given by Jansen and de Vries [221], followed by Longin [265],
Dacorogna et al [301], Lux [268] and others. Applying the techniques above
to daily returns of stocks, market indices and exchange rates these empirical
studies yield a positive value of £ between 0.2 and 0.4, which means a tail
index 2 < «(T) < 5. In all cases, £ is bounded away from zero, indicating
heavy tails belonging to the Fréchet domain of attraction but the tail index
is often found to be larger than two [221, 265, 92] — which means that the
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variance is finite and the tails lighter than those of stable Lévy distributions
[139], but compatible with a power-law (Pareto) tail with (the same) exponent
a(T) = 1/¢. These studies seem to validate the power-law nature of the
distribution of returns, with an exponent around three. Similar results are
obtained using a direct log-log regression on the histogram of returns [174] or
using semi-parametric methods [232]. Note however that these studies do not
allow us to pinpoint the tail index with more than a single significant digit.
Also, a positive value of ¢ does not imply power-law tails but is compatible
with any regularly varying tail with exponent o = 1/¢ :

L(x)

’
r—o0 %

Fa(x) (7.28)
where L(.) is a slowly-varying function as in Equation(7.17). Any choice
of L will give a different distribution Fa of returns but the same extremal
type & = 1/, meaning that, in the Fréchet class, the extremal behavior
only identifies the tail behavior up to a (unknown!) slowly-varying function
which may in turn considerably influence the results of log-log fits on the
histogram! A more detailed study on high-frequency data using different
methods [301, 105] indicates that the tail index slightly increases when the
time resolution moves from intraday (30 minutes) to a daily scale. However,
the i.i.d. hypothesis underlying these estimation procedures has to be treated
with caution given the dependence present in asset returns [92]: dependence
in returns can cause large biases in estimates of the tail index [275].

7.4 Time aggregation and scaling

Although most empirical studies on the distribution of asset returns have
been done on daily returns, applications in trading and risk management
involve various time scales from a few minutes for intraday traders to several
months for portfolio managers. It is therefore of interest to see how the
statistical properties of returns r;(A) vary as A varies. Moving from small
time scales (say, intraday) to larger time scales (say, daily or weekly) — an
operation known as time aggregation — corresponds to adding up returns
at high frequency to obtain those at a lower frequency: the series r:(kA) is
obtained by taking partial sums of blocks of k consecutive elements in the
series r4(A). We describe in this section how time aggregation affects the
statistical properties of returns.

7.4.1 Self-similarity

The ideas of self-similarity and scaling correspond to the quest for statistical
quantities which remain unchanged under time aggregation. Since the pio-
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TABLE 7.2: A comparison of stylized empirical properties of asset
returns with statistical properties of Lévy processes

Log-prices Lévy processes

Absence of autocorrelation in | True for all Lévy processes.

increments

Heavy/semiheavy tails Possible by choosing Lévy measure
with heavy/semiheavy tails.

Finite variance True for any Lévy process with finite
second moment.

Aggregational normality True for any Lévy process with finite
second moment.

Jumps in price trajectories Always true.

Asymmetric  distribution of | Possible by choosing asymmetric Lévy
increments measure/distribution.

Volatility clustering: clustering | Not true: large events occur at inde-
of large increments pendent random intervals.

Positive  autocorrelation in | Not true: increments are independent.
absolute returns

“Leverage” effect: Not true: increments are independent.
Cov(rZriya) <0
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neering work of Mandelbrot on cotton prices [278], a large body of literature
has emerged on self-similarity and fractal properties of market prices. The
1990s witnessed a regain of interest in this topic with the availability of high-
frequency data and a large number of empirical studies on asset prices have
investigated self-similarity properties of asset returns and various generaliza-
tions of them, under the names of scale invariance, fractality and multiscaling.
We attempt here to define some of the concepts involved and summarize the
evidence found in empirical studies.

Given a random process (X¢):>0, the fundamental idea behind the notion
of scaling is that an observer looking at the process at various time resolutions
will observe the same statistical properties, up to a rescaling of units. This is
formalized in the concept of self-similarity:

DEFINITION 7.1 Self-similarity A stochastic process is said to be
self-similar if there exists H > 0 such that for any scaling factor ¢ > 0, the
processes (X )i>0 and (¢ X;);>0 have the same law:

(Xet)tz0 2(c X )i30. (7.29)

H is called the self-similarity exponent of the process X.
X is said to be self-affine if there exists H > 0 such that for any ¢ > 0 the
processes (Xt )i>0 and (¢ X;)>0 have the same law up to centering:

T [0,00[= R, (Xer)imo Z(be(t) + 7 X, )is0. (7.30)

In particular X; must be defined for ¢ € [0,00[ in order for the definition
to make sense. It is easy to see that a self-similar process cannot be station-
ary. Note that we require that the two processes (Xet)i>0 and (¢ X;);>0 are
identical in distribution: their sample paths are not equal but their statistical
properties (not just their marginal distributions!) are the same. Brownian mo-
tion (without drift!) is an example of a self-similar process with self-similarity
exponent H = 1/2. Brownian motion with drift is self-affine but not self-
similar. In the sequel we will focus on self-similar processes since self-affine
processes are obtained from self-similar ones by centering.

A consequence of Definition 7.1 is that for any ¢, > 0, X.; and ¢ X, have
the same distribution. Choosing ¢ = 1/t yields

V>0, X, Zt7X, (7.31)

so the distribution of X3, for any ¢, is completely determined by the distribu-
tion of X7:

Fy(z) =Pt X, <) = Fl(t%). (7.32)
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In particular if the tail of I} decays as a power of x, then the tail of F; decays
in the same way:

aH
PG >2) ~ C oo >0, B(X,>2) ~ O = %1. (7.33)

- T—00 I T—00 T

If F} has a density p; we obtain, by differentiating (7.32), the following relation
for the densities:

o) = o () (7.34)

Substituting = 0 in (7.34) yields the following scaling relation:

p1(0)

vVt > 0, Pt(()): P

(7.35)

Let us now consider the moments of X;. From (7.31) it is obvious that
E[|X¢|*] < oo if and only if E[|X;|*] < oo in which case

B[X:]) =t"E[X1], Var(X;) = t* Var(X,), (7.36)
E[|X|*] = t*" E[| X1 |¥]. (7.37)

Can a Lévy process be self-similar? First note that for a Lévy process with
finite second moment, independence and stationarity of increments implies
Var(X;) = ¢ Var(Xy), which contradicts (7.36) unless H = 1/2, which is the
case of Brownian motion. So a self-similar Lévy process is either a Brownian
motion (H = 1/2) or must have infinite variance. As observed in Chapter
3, if X is a Lévy process the characteristic function of X is expressed as:
D, (z) = exp[—t(z)] where 9(.) is the characteristic exponent of the Lévy
process. The self-similarity of X then implies following scaling relation for ¢:

VE>0, X 2tHX, <= Vt>0,Vze R y(tHz) =th(z). (7.38)

The only solutions of (7.38) are of the form 1(z) = C|z|"/# where C is a
constant; in turn, this defines a characteristic function iff H > 1/2. For
H = 1/2 we recover Brownian motion and for H > 1/2 we recover a symmetric
a-stable Lévy process with o = 1/H:

By(2) = expl—o®|2*], = % €10,2[.

Therefore the only self-similar Lévy processes are the symmetric a-stable
Lévy processes (also called Lévy flights): an a-stable Lévy process has self-
similarity exponent H = 1/« € [0.5, +00[. Note that we have assumed station-
ary of increments here: there are other self-similar processes with independent
but not stationary increments, see [346]. However stationarity of returns is a
crucial working hypothesis in statistical estimation.
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Let us emphasize that self-similarity has nothing to do with independent
increments. An important class of self-similar processes are fractional Brow-
nian motions [283, 344]: a fractional Brownian motion with self-similarity
exponent H €]0,1[ is a real centered Gaussian process with stationary incre-
ments (Bf!);>0 with covariance function:

cov(Bf{,Bf) = (|t\2H + |.s|2H —|t+ 5|2H). (7.39)

1
2
For H = 1/2 we recover Brownian motion. For H # 1/2, the covariance of
the increments decays very slowly, as a power of the lag; for H > 1/2 this
leads to long-range dependence in the increments [283, 344].

Comparing fractional Brownian motions and a-stable Lévy processes shows
that self-similarity can have very different origins: it can arise from high vari-
ability, in situations where increments are independent and heavy-tailed (sta-
ble Lévy processes) or it can arise from strong dependence between increments
even in absence of high variability, as illustrated by the example of fractional
Brownian motion. These two mechanisms for self-similarity have been called
the “Noah effect” and the “Joseph effect” by Mandelbrot [279]. By mixing
these effects, one can construct self-similar processes where both long range
dependence and heavy tails are present: fractional stable processes [344] offer
such examples. The relation between self-similar processes, Lévy processes
and Gaussian processes is summarized in Figure 7.4.1: the only self-similar
Lévy processes are the (symmetric) a-stable Lévy processes (also called Lévy
flights, see Chapter 3) for which H = 1/« € [0.5,00[. In particular Brownian
motion is self-similar with exponent H = 1/2.

7.4.2 Are financial returns self-similar?

Let us now briefly explain how the properties above can be tested empir-
ically in the case of asset prices. Omne should distinguish general tests for
self-similarity from tests of particular parametric models (such as a-stable
Lévy processes).

Assume that the log-price X; = InS; is a process with stationary incre-
ments. Since Xy A — X; has the same law as X, the density and moments
of XA can be estimated from a sample of increments.

The relation (7.35) has been used by several authors to test for self-similarity
and estimate H from the behavior of the density of returns at zero: first one
estimates p;(0) using the empirical histogram or a kernel estimator and then
obtains an estimate of H as the regression coefficient of In p;(0) on Int:

t

Inp =Hl
n p:(0) n—+

+1Inpa(0) +e. (7.40)

Applying this method to S&P 500 returns, Mantegna and Stanley [285] ob-
tained H ~ 0.55 and concluded towards evidence for an a-stable model with
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FIGURE 7.6: Self-similar processes and their relation to Lévy processes
and Gaussian processes.

a = 1/H ~ 1.75. However, the scaling relation (7.35) holds for any self-similar
process with exponent H and does not imply in any way that the process is a
(stable) Lévy process. For example, (7.35) also holds for a fractional Brownian
motion with exponent H — a Gaussian process with correlated increments
having long range dependence! Scaling behavior of p;(0) is simply a necessary
but not a sufficient condition for self-similarity: even if (7.35) is verified, one
cannot conclude that the data generating process is self-similar and even less
that it is an a-stable process.

Another method which has often been used in the empirical literature to test
self-similarity is the “curve collapsing” method: one compares the aggregation
properties of empirical densities with (7.34). Using asset prices sampled at
interval A, one computes returns at various time horizons nA,n = 1... M
and estimates the marginal density of these returns (via a histogram or a
smooth kernel estimator). The scaling relation (7.34) then implies that the
densities pna(x) and —i7pa (5% ) should coincide, a hypothesis which can be
tested graphically and also more formally using a Kolmogorov—Smirnov test.

Although self-similarity is not limited to a-stable Lévy processes, rejecting
self-similarity also leads to reject the a-stable Lévy process as a model for
log-returns. If the log-price follows an a-stable Lévy process, daily, weekly
and monthly returns should also be a-stable (with the same «). Empirical
estimates [3, 62] show a value of « which increases with the time horizon.
Finally, as noted in Section 7.3.1, various estimates of tail indices for most
stocks and exchange rates [3, 105, 221, 267, 198, 265, 268] are often found to
be larger than 2, which rules out infinite variance and stable distributions.
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McCulloch ([289], page 417) argues against this point, claiming that such
estimators are highly biased in samples of realistic size generated from a-
stable distributions with « close to 2, see also [387].

7.5 Realized variance and “stochastic volatility”

One of the objectives of econometric models is to quantify the notion of
“market volatility.” It should be understood from the outset that “volatility”
is not a model-free notion: in a parametric model, various measures of risk and
variability of prices can be computed from model parameters. However given
the vast choice of models and the availability of large databases of returns,
many authors have recently turned to using the model-free notion of quadratic
variation — known in the financial literature as “realized volatility” — as a
measure of market volatility [63, 38, 10, 9].

Given a sample of N returns (r4(A),t =0,A,..., NA) observed at intervals
A over the period [0,7 = NA], the realized variance on [0, 7] is defined as

N N

va(T) =Y [r(A)P = [ Xipa — X% (7.41)

t=1 t=1

Note that the realized volatility is different from the sample variance of the
returns, defined by:

1 N

N
P2(8) = 3 (A ~ [ ()] (7.2
t=1

t=1

Since returns are serially uncorrelated the sample variance scales linearly with
time: 6%(A) = 62(1)A and does not display a particularly interesting behav-
ior. This is of course also the case for the (theoretical) variance of log-returns
in exponential-Lévy models: 0%(A) = var[r;(A)] = 02(1)A because of the in-
dependence of log-returns. On the other hand, the realized variance va(T) is
not an average but a cumulative measure of volatility and does contain inter-
esting information when computed at fine scales (A — 0), even when returns
are independent: we will see in Chapter 8 that the process (va(t)):eo,r] con-
verges in probability to a (nontrivial) stochastic process ([X, X];);e[o,r] called
the quadratic variation® of X. In a model where X is a Lévy process with
characteristic triplet (02, v,~) the quadratic variation process is given by

(X]e =0’t+ > |AX,] (7.43)
0<s<t

3This notion is studied in more detail in Section 8.2.
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where the sum runs over the jumps of X between 0 and ¢t. Note that [X]; is a
random variable: it is deterministic only if there are no jumps, i.e., in the case
where the log-price is a Brownian motion with drift. Thus, in a model where
log-prices follow a (non-Gaussian) Lévy process, realized volatility is always
stochastic: one does not need to insert an additional source of randomness
in the form of a volatility variable in order to obtain such effects. In fact,

—20F

. . . . I I I . . 10° n .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 -15 -1 -05

FIGURE 7.7: Left: Daily returns simulated from the Student t random
walk model described in Section 7.5. Right: Distribution of daily returns:
parameters have been chosen such that this distribution has heavy tails with
finite variance and a tail index a = 3.8.

even when the (conditional / unconditional) variance of returns is constant,
the realized variance can display very high variability when returns have rea-
sonably heavy tails, as illustrated by the example below. Consider a random
walk model where the daily returns are i.i.d. random variables with a Student
t distribution with parameter 3, whose density is given by:

TRV (31T TR

VBrL(B/2)

The Student t distribution has heavy tails with tail index equal to 5 and has
been advocated as a model for daily returns [62]. In the discussion below we
will take 8 = 3.8, which is coherent with the estimation results presented in
Section 7.3, but our arguments will apply for any 2 < g < 4. Thus, the daily
increments have finite variance but infinite fourth moments. In fact as noted
in Section 4.6, the Student t distribution is infinitely divisible [177] so there
exists an exponential-Lévy model (belonging to the generalized hyperbolic
class) whose daily increments follow the Student t distribution: the Student t
random walk can also be seen as an exponential-Lévy model for the log-price.
Since the Student t law has a known density, this model is easy to simulate.
A simulation of daily returns from this model is shown in Figure 7.7. From

Tt
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these returns we compute “realized variance” using a moving average over
N = 1000 days and annualizing (normalizing) to obtain numbers comparable
to annual volatilities:

N N
W2 s @)

~2
Oy =

The evolution of the estimated “realized volatility” &, is shown in Figure 7.8

Annulized exponentially weighted moving average volatiity.
T T T T T

| I”wl‘ llu

20 bh
L L L L L L L L
[ 1000 2000 3000 4000 5000 6000 7000 8000 9000 15 20 25 30 35 40 45

FIGURE 7.8: Left: Realized (1000-day moving average) volatility as a
function of time in the Student random walk model. The true standard de-
viation of returns is indicated by a horizontal line. Notice the high degree of
variability. Right: Histogram of realized 1000-day volatility. Notice the high
dispersion around the theoretical value of 32%.

(left). Since B > 2, the squared returns are i.i.d. variables with E[|r¢|?] < oo
and the law of large numbers applies to 62 :

vt, P2°5%6%) = 1.

Thus the realized volatility ¢ is a consistent estimator of the “true volatility”
o. However, due to the heavy tails of the returns, the estimation error 6% — o
has infinite variance: the quadratic estimation error involves the fourth power
of the returns. Therefore, instead of verifying a central limit theorem leading
to asymptotic normality, the estimator 2 — o2 verifies the infinite variance

version of the central limit theorem:

PROPOSITION 7.2 Stable central limit theorem [252, 344]

Let (Yy,)n>1 be an i.i.d. sequence of centered random variables with a regularly
varying distribution of index o €]0,2[. In particular E[Y,?] = co. Then the
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partial sum, normalized by NV, converged in distribution to an o-stable
random variable with infinite variance:

1 N
> V=S,  a=p-2. (7.45)

N1/a—1 —

In this case, the squared returns have a distribution which is regularly
varying (with power law tails) with exponent aw = 8 — 2, which implies that
for large sample size N, 62 — o2 behaves like N/*S,, where S, is a standard
a-stable random variable. In particular, even though the returns have finite
variance and well-defined “volatility,” the volatility estimation error has heavy
tails and infinite variance. Figure 7.9 illustrates a quantile-quantile plot of the
realized volatility 6 computed over 1000 days (4 years); the quantiles of this
estimator are compared to those of a normal distribution with same mean
and variance using a Monte Carlo simulation. While the sample median is
32.5, the 95% confidence interval obtained with 10 000 Monte Carlo trials is
[27.9%, 41.0%]; the 99% confidence interval is [26.3%,51.4%)]. In simple terms,
it means that even though the returns have a true standard deviation of o =
32%, if we try to estimate this value by using realized variance we have a 5%
chance of getting something either lower than 28% (not bad) or higher than
41% (serious overestimation).

This heavy tailed asymptotic distribution has drastic consequences for the
interpretation of “realized variance”: large or highly fluctuating values of
realized volatility do not imply that the variance of returns in the underlying
process is large or time varying, nor does it constitute evidence for “stochastic
volatility.” It simply indicates that when faced with heavy tails in returns,
one should not be using “realized volatility” as a measure of volatility. Figure
7.8 (right) shows the sample distribution of the “realized volatility” & which
is shown to display a considerable dispersion (“volatility of volatility”), as
expected from the results above. In fact the histogram of realized volatility
is quite similar to the one observed in exchange rate data [10]! Observing
these figures, it is tempting to model these observations with a “stochastic
volatility model,” introducing the “volatility of volatility” to reproduce the
observations in Figure 7.8. In fact, the realized volatility in Figure 7.8 (left)
even displays a “mean reverting” behavior: 4, oscillates around the true value
o!

Figure 7.9 compares the quantiles of “realized volatility” & to those of a
normal distribution: the heavy tails in the distribution of & indicate that
the “realized volatility” ¢ in a given sample can be very different from o
and will be itself quite variable, but the strong variation in realized volatility
does not reflect any information on the actual volatility of the returns process
but arises for purely statistical reasons, because of the heavy tails in the
returns. In particular Figure 7.9 shows that “confidence intervals” derived
using asymptotic normality of o2 and often used in testing for the presence
of stochastic volatility can be meaningless.
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FIGURE 7.9: Quantile of 1000-day realized volatility compared to quan-
tiles of the normal distribution.

This simple example shows that in the presence of heavy tails in the re-
turns (and we know that they are present!), common estimators for volatility
can lead to erroneous conclusions on the nature of market volatility. These
conclusions hold when the tail index is less than 4, which has been suggested
by many empirical studies [174, 221, 268, 265]. In particular, one can easily
attribute to heteroscedasticity, nonstationarity or “stochastic volatility” what
is in fact due to heavy tails in returns. These issues will be discussed in the
framework of stochastic volatility models in Chapter 15.

7.6 Pathwise properties of price trajectories (*)

Although Lévy processes can easily accommodate the heavy tails, skewness
and in fact any other distributional feature of asset returns, distributional
properties alone are not sufficient to distinguish them from (nonlinear) dif-
fusion models. In fact, (Brownian) diffusion processes with nonlinear depen-
dence of the local volatility can also generate heavy tails and skewness [54]. In
fact any infinitely divisible distribution satisfying a weak regularity condition
can be obtained as the marginal distribution of a stationary diffusion process
with linear drift and the diffusion coefficients corresponding to many common
probability distributions are found explicitly in [367].
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The most important feature which distinguishes jump processes from dif-
fusion processes and more generally, processes with continuous sample paths
is, of course, the presence of discontinuities in price behavior. No matter
what ingredient one puts into a diffusion model — time and state dependent
local volatility, stochastic volatility — it will generate, with probability 1,
prices which are continuous functions of time. This argument alone should be
sufficient to rule out diffusion models as realistic models for price dynamics.
Indeed, even after correcting for intraday effects, formal tests on intraday data
reject the diffusion hypothesis.

But the importance of the issue of (dis)continuity also suggests that statis-
tical averages such as the variance of returns or even quantiles of returns are
not the only relevant quantities for representing risk: after all, an investor will
only be exposed to a single sample path of the price and even if her portfolio
minimizes some the variance averaged across sample paths it may have a high
variability in practice. The risky character of a financial asset is therefore di-
rectly related to the lack of smoothness of its sample path ¢ — S; and this is
one crucial aspect of empirical data that one would like a mathematical model
to reproduce. But how can we quantify the smoothness of sample paths?

7.6.1 Holder regularity and singularity spectra

The usual definitions of smoothness for functions are based on the number
of times a function can be differentiated: if f : [0,7] — R admits k continuous
derivatives at a point ¢, it is said to be C*. A more refined notion is that of
Holder regularity: the local regularity of a function may be characterized by
its local Holder exponents. A function f is h-Holder continuous at point tq iff
there exists a polynomial of degree < h such that

[f(t) = P(t —to)| < Ky, |t — tol" (7.46)

in a neighborhood of ¢y, where Ky, is a constant. Let C"(ty) be the space
of (real-valued) functions which verify the above property at to. A function
f is said to have local Hélder exponent « if for h < a, f € C"(ty) and for
h > a, f ¢ C"(ty). Let hy(t) denote the local Hélder exponent of f at point
t. If hy(tp) > 1 then f is differentiable at point ¢, whereas a discontinuity of
f at to implies hy(tg) = 0. More generally, the higher the value of h (%), the
greater is the local regularity of f at tg.

In the case of a sample path X;(w) of a stochastic process Xy, hx(,)(t) =
h,(t) depends on the particular sample path considered, i.e., on w. There
are however some famous exceptions: for example for fractional Brownian
motion with self-similarity parameter H, hg(t) = 1/H almost everywhere
with probability one, i.e., for almost all sample paths. Note however that
no such results hold for sample paths of Lévy processes or even stable Lévy
motion.

Given that the local Holder exponent may vary from sample path to sample
path in the case of a stochastic process, it is not a robust statistical tool for

© 2004 by CRC Press LLC



characterizing the roughness of a function: the notion of singularity spectrum
of a function was introduced to give a less detailed but more stable charac-
terization of the local smoothness of a function in a “statistical” sense.

DEFINITION 7.2 Singularity spectrum  Let f : R — R be a real-
valued function and for each o > 0 define the set of points at which f has
local Hélder exponent h:

Q(a) = {t,hs(t) = a}. (7.47)

The singularity spectrum of f is the function D : R™ — R which associates
to each a > 0 the Hausdorff-Besicovich dimension* of Q(a):

D¢ (o) = dimppQ(a). (7.48)

Using the above definition, one may associate to each sample path X;(w)
of a stochastic process X; its singularity spectrum d,(«). If d,, depends on
w then the empirical estimation of the singularity spectrum is not likely to
give much information about the properties of the process X;. Fortunately,
this turns out not to be the case: it has been shown that, for large classes of
stochastic processes, the singularity spectrum is the same for almost all sample
paths. A result due to Jaffard [218] shows that a large class of Lévy processes
verify this property: their singularity spectrum is the same for almost all
sample paths and depends only on the behavior of the Lévy measure near the
origin, as measured by the Blumenthal-Getoor index:

B =inf{y >0, / 2Vv(dzr) < oo} (7.49)

lz[<1

PROPOSITION 7.3 Singularity spectrum of Lévy processes[218]
Let X be a Lévy process with Lévy triplet (o2,v,b) and Blumenthal-Getoor

index (3.
e [f2> (>0 and o = 0 then for almost every sample path
1
dim Q(a) = fa for a < 3 (7.50)

and Q) =0 for o> 1/0.
e [f2> (>0 and o # 0 then for almost every sample path

dim Q(a) = fa for a < %
dim © <%) = (7.51)

4The Hausdorff-Besicovich dimension is one of the numerous mathematical notions corre-
sponding to the general concept of “fractal” dimension, see [138, 277].
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and Qo) =0 for a > 1/2.
e If 3 =0 then for each o > 0 with probability 1, dim Q(«) = 0.

Notice that since v a Lévy measure 2 > § > 0 so Jaffard’s result covers all
cases of interest, the other cases being already known. This result shows in
particular that the smoothness/roughness of paths is measured by the behav-
ior of the Lévy measure near 0, i.e., the small jumps: is is not influenced by
the tails. In particular, a-stable Lévy processes and tempered stable processes
have the same singularity spectra.

7.6.2 Estimating singularity spectra

As defined above, the singularity spectrum of a function does not appear
to be of any practical use since its definition involves first the continuous time
(A — 0) limit for determining the local Hélder exponents and second the de-
termination of the Hausdorff dimension of the sets Q(«) which, as remarked
already by Halsey et al. [185], may be intertwined fractal sets with complex
structures and impossible to separate on a point by point basis. The interest
of physicists and empirical researchers in singularity spectra was ignited by
the work of Parisi and Frisch [152] who, in the context or fluid turbulence,
proposed a formalism for empirically computing the singularity spectrum from
sample paths of the process. This formalism, called the multi-fractal formal-
ism [152, 185, 216, 217, 279], enables the singularity spectrum to be computed
from sample moments (called “structure functions” in the turbulence litera-
ture) of the increments: if the sample moments of the returns verify a scaling
property

< |ri(A))T >= K, A (7.52)

then the singularity spectrum D(«) is given by the Legendre transform of the
scaling exponent ((q):

C(g) =1+ inf(qa — D(a)). (7.53)

¢(g) may be obtained by regressing log < |r4(T)|? > against logT. When
the scaling in Equation (7.52) holds exactly, the Legendre transform (7.53)
may be inverted to obtain D(«) from ((¢). This technique was subsequently
refined using the wavelet transform leading to an algorithm (WTMM method)
for determining the singularity spectrum from the modulus of its wavelet
transform [20, 11].

These methods provide a framework to investigate pathwise regularity of
price trajectories. Figure 7.10 shows the singularity spectrum estimated us-
ing the wavelet (WTMM) method [20] from S&P500 futures tick data. Re-
markable points are the intercept — the lowest Holder exponent — and the
maximum at « =~ 0.57, which represents the almost everywhere Holder ex-
ponent. Global estimators (as opposed to wavelet estimators which are local
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FIGURE 7.10: Singularity spectrum estimated for S&P500 tick data using
the wavelet transform (WTMM) method (circles) compared to the singularity
spectrum of a Lévy process with same (almost-everywhere) Holder regularity
a ~ 0.57.

in time) are only sensitive to the almost-everywhere Holder exponent which
explains the often reported values of the “Hurst exponent” in the range 0.55
- 0.6. Various empirical studies on time series of market indices and exchange
rates [282, 302] report a similar inverted parabola shape for other data sets.
It should be noted that this non-trivial spectrum is very different from what
one would expect from diffusion processes, Lévy processes or jump-diffusion
processes used in continuous-time finance, for which the singularity spectrum
is theoretically known (see, e.g., Proposition 7.3). In particular, the empir-
ical spectrum in Figure 7.10 indicates a less smooth behavior than diffusion
processes but no discontinuous (“jump”) component in the signal since the
Holder exponent does not extend down to zero. The rare examples of stochas-
tic processes for which the singularity spectrum resembles the one observed
in financial data are stochastic cascades [279, 282] or their causal versions,
the multi-fractal random walks [302, 19]. One drawback of these estima-
tion methods is that their finite sample properties are not well known. The
only currently feasible approach is, as in [282], to supplement such studies by
Monte Carlo simulations of various stochastic models used in finance in order
to check whether the peculiar shape of the spectra obtained are not artifacts
due either to small sample size or discretization.
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7.7 Summary: advantages and shortcomings of Lévy pro-
cesses

Let us now summarize the advantages and shortcomings of representing log-
prices as Lévy processes: how far can they go in capturing empirical features
of asset returns?

The first category of properties we examined were related to the distribution
of returns at a given horizon (Section 7.3). Given that in building a Lévy
process we have the freedom of choosing the distribution of the process at
a given time resolution, the distributional properties of returns for a given
time horizon can always be perfectly matched by a Lévy process. Closer
examination of the shape of the distribution and its tail properties enables to
choose a suitable class of Lévy processes for this purpose using the methods
described in Section 7.2.

The second category of properties concerned the time-aggregation proper-
ties of returns, namely how the distribution of returns varies with the horizon
on which returns are computed. As observed in Section 7.4, the marginal
distribution of a Lévy process has a shape which does vary with time in a
qualitatively similar way to the log-price, reproducing the main features of
the flow of marginal distributions in empirical data. However the stationarity
of increments leads to rigid scaling properties for cumulants of Lévy processes
which are not observed in log-prices. These discrepancies can be overcome by
considering processes with independent but time-inhomogeneous increments,
discussed in Chapter 14.

We also observed that, unlike the Brownian model where “realized volatil-
ity” has a deterministic continuous-time limit, models based on Lévy processes
lead to a realized volatility which remains stochastic when computed on fine
time grids. In particular, Lévy processes with heavy tailed increments —
with a finite tail index — can lead to high variability of realized volatility: we
get “stochastic volatility” effects for free, even in absence of any additional
random factors.

However when it comes to dependence properties of returns across time —
especially “volatility clustering” effects — exponential-Lévy models have noth-
ing to say: having independent increments, they are not capable of mimicking
volatility clustering and similar phenomena linked to nonlinear dependence in
(absolute) returns. In particular, since the time aggregation properties of as-
set returns are related to their (nonlinear dependence) structure, models with
independent increments, even if they do reproduce some time series properties
of returns in a certain range of time scales, cannot give a “structural” expla-
nation for the time aggregation properties of returns. A summary of these
points is given in Table 7.2.

The shortcomings pointed out here have prompted the development of more
sophisticated models, incorporating time inhomogeneity and/or extra sources
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of randomness to represent the volatility clustering effect. Some of these
models will be discussed in Chapters 14 and 15.

Further reading

A vast literature dealing with the statistical properties of financial time se-
ries has developed during the last fifty years. Surveys of stylized facts of finan-
cial time series are given in [180] for foreign exchange rates, [140, 313, 76, 92]
for stocks and indices. Lévy processes were first introduced in financial econo-
metrics by Mandelbrot [278, 139, 100] and regained popularity in the 1990s
with the advent of high frequency data and computer tools for data processing
[93, 285, 36, 123, 123, 125]. The a-stable Lévy process was introduced as a
model for cotton prices by Mandelbrot in [278]. Empirical tests on a-stable
models include [3, 62], a review is given in [289]; see also [39, 236]. While
empirical evidence has consistently rejected this model for most data sets of
indices, exchange rates and major stocks, some applications may be found in
commodity markets and volatile emerging markets [387]. A parallel literature
on a-stable models in finance continues to flourish, see [328, 327]. Jorion
[224] performs a maximum likelihood estimation of jump-diffusion models on
the US/DEM exchange rate and a US equity index, see also [222]. Ait Sa-
halia [2] develops a nonasymptotic test for the presence of jumps based on the
knowledge of transition densities of a Markov process at discrete time inter-
vals; applying this test to option-implied densities he concludes towards the
presence of jumps. The empirical performance of hyperbolic and generalized
hyperbolic models are discussed in [123, 125, 319]; normal inverse Gaussian
processes are discussed in [30, 342]. Empirical performance of tempered stable
models is studied in [93, 67, 80].

Scaling and time aggregation properties for high frequency data were stud-
ied in [180, 301, 181] for foreign exchange rates. Numerous empirical studies
on scaling properties of returns can also be found in the physics literature, see
[67] for a review on this literature. An alternative view is given in [35] where
scaling is claimed to be a spurious effect due to heavy tails.

A good reference on self-similarity is [374] (see also Chapter 7 in [344]). The
hypothesis of self-similarity of market prices was first proposed by Mandelbrot
[278] (see also [279]). The a-stable model for the distribution of returns was
subsequently investigated for many data sets [139, 62, 184, 285, 268, 93, 328].
Empirical studies on self-similarity of prices include [278, 280, 281, 279, 285,
93, 388].

The statistical estimation methods discussed in Section 7.2 are reviewed
in [175]. The generalized method of moments is discussed in detail in [187];
see also Chapter 14 in [186]. An interesting discussion on the way to specify
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moment conditions is given in [155]. A more advanced discussion of estimation
methods for financial time series can be found in [361], [274] and [186]. These
references deal with parametric approaches: with the availability of computers
and large data sets, the recent tendency in financial econometrics has been to
shift to nonparametric methods [188, 189)].
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Chapter 8

Stochastic calculus for jump
processes

If one disqualifies the Pythagorean Theorem from contention, it is hard
to think of a mathematical result which is better known and more widely
applied in the world today than “Ito’s Lemma.” This result holds the
same position in stochastic analysis that Newton’s fundamental theorem
holds in classical analysis. That is, it is the sine qua non of the subject.

Description of Kiyosi Ito’s scientific work by the US National Academy of Sciences.

Given a financial asset whose price is represented by a stochastic process
S = (St)tefo, 1], there are two types of objects related to S that naturally arise
in a financial modelling context: trading strategies involving S and derivatives
written on the underlying asset S.

To describe trading strategies, one needs to consider dynamic portfolios
resulting from buying and selling the assets. If an investor trades at times
To=0<Ty < - <T, <Tyhy1 =T, detaining a quantity ¢; of the asset
during the period |7}, T;11] then the capital gain resulting from fluctuations
in the market price is given by

Z ¢i(STi+1 - STz)
=0

This quantity, which represents the capital gain of the investor following the
strategy ¢, is called the stochastic integral of ¢ with respect to S and denoted
by fOT ¢1dS;. Stochastic integrals with respect to processes with jumps are
discussed in Section 8.1. We have followed the approach proposed in [324];
other references are given at the end of the chapter.

If S; is built from a Lévy process, the positions and the amplitudes of its
jumps are described by a Poisson random measure and various quantities
involving the jump times and jump sizes can be expressed as integrals with
respect to this measure. Stochastic integrals with respect to Poisson random
measures are discussed in Section 8.1.4.
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The second fundamental problem is to describe the time evolution of a
derivative instrument whose value V; = f(¢,S;) depends on S;. The key tool
here is the change of variable formula — the It6 formula — which relates the
local behavior of V; to the behavior of S;. This formula forms the basis of the
stochastic calculus for processes with jumps and we will give several forms of
it which are useful in various applications.

In the preceding chapters we have worked with Lévy processes, which pro-
vide analytically tractable examples of jump processes. However, as we will
see below, if X is a Lévy process or a diffusion process, quantities such as
fot @dX or f(t,X;) are, in general, not Lévy processes or diffusions any more:
the class of Lévy processes is not stable under stochastic integration or non-
linear transformations. Similarly, starting from a Markov process X these
transformations will not give us Markov processes anymore. Therefore, even
if we are only interested in Markovian models or models based on Lévy pro-
cesses, we are naturally led to consider a larger class of stochastic processes,
which contains our objects of interest and is stable under the operations con-
sidered above. The class of semimartingales provides such a framework: not
only this class is stable under stochastic integration and (smooth) nonlinear
transformations, it is also stable under other operations such as change of
measure, change of filtration and “time change,” which we will encounter in
the following chapters. Although we will not present the results in their most
general form, most of them hold in a general semimartingale setting.

The main goal of this chapter is to present some useful results on stochastic
integration and stochastic calculus, using an elementary approach accessible
to the nonspecialist. Stochastic calculus for processes with jumps is usually
presented in the general framework of semimartingales, which can be quite
difficult for the beginner. Instead of following this path we propose a pedes-
trian approach, starting from the simple case of the Poisson process in Section
8.3.1 and progressively increasing the complexity of the processes involved. In
fact, we will try to convince the reader that stochastic calculus for (pure) jump
processes is more intuitive and easy to understand than for diffusion processes!

This chapter could have been entitled “A beginner’s guide to stochastic
calculus for processes with jumps.” We refer to [215, 324, 323] for complements
and to [194] or [110] for more detailed material concerning stochastic integrals
and their properties. If Dellacherie and Meyer [110] is your favorite bedtime
reading, you might as well skip this chapter and go quickly to the next one!

8.1 Trading strategies and stochastic integrals

Consider a market with d assets whose prices are modelled by a (vector)
stochastic process S; = (S},...,S%), which is supposed to be cadlag. A
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portfolio is a vector describing the amount of each asset held by the investor:
¢ = (¢',...,9%. The value of a such a portfolio at time ¢ is then given by

d
Vi(¢) =D ¢FSF = ¢.S,. (8.1)

k=1

A trading strategy consists of maintaining a dynamic portfolio ¢; by buying
and selling assets at different dates. Let us denote the transaction dates by
To=0<Ty1 <Ty <---<T, <T,y1 =T. Between two transaction dates T;
and T4 the portfolio remains unchanged and we will denote its composition
by ¢;. The portfolio ¢; held at date ¢ may then be expressed as:

¢t = ¢oli=o + Z iy, 1,401 (1) (8.2)

i=0

The transaction dates (7;) can be fixed but, more realistically, they are not
known in advance and an investor will decide to buy or sell at T; depending on
the information revealed before T;. For example, in the case of a limit order
T; is the first time when S; crosses a certain value (the limit price). Therefore,
the transaction times (7;) should be defined as nonanticipating random times
(also called stopping times, see Section 2.4.3): they are said to form a random
partition of [0,7]. Since the new portfolio ¢; is chosen based on information
available at T;, ¢; is Fr,-measurable. When the broker decides to transact at
t = T;, the portfolio is still described by ¢;_1; it takes its new value ¢; right
after the transaction, i.e., for ¢ > T;. Therefore, the indicator function in
(8.2) is of the form 1j7, 7., (left-continuous) as opposed to 1j7, 7,,,[ (right-
continuous): ¢; = ¢;. Being left-continuous (caglad, in fact), (¢¢):efo, 1) is
therefore a predictable process.! Stochastic processes of the form (8.2) are
called simple predictable processes:

DEFINITION 8.1 Simple predictable process A stochastic process
(ét)iefo, 1) s called a simple predictable process if it can be represented as

¢ = doli=o + Y dili, 1) (1),

i=0

where To =0< Ty < Ty < --- < T, <Tyhy1 =T are nonanticipating random
times and each @; is bounded random variable whose value is revealed at T;
(it is Fr,-measurable).

The set of simple predictable processes on [0, T'] will be denoted by S([0, T7).
Any realistic and implementable strategy should be given by a simple pre-

dictable process or, at least, one should be able to approximate it by strategies

1See Section 2.4.5 for a definition.

© 2004 by CRC Press LLC



of the form (8.2). One of the reasons of this is that in a market with jumps
strategies that are not predictable can generate arbitrage opportunities, as
emphasized by the following example.

Example 8.1 Trading strategies have to be predictable.

Let S; = At — N, where N; denotes a Poisson process with intensity A\. —S
is a compensated Poisson process thus S is a martingale (see Section 2.5.4).
Denote by T3 the time of its first jump: Sz, = S, — 1. T3 is an exponential
random variable with parameter A. Consider now the strategy which consists
in buying one unit of the asset S at t = 0 (at zero price!) and selling it right
before the price falls down (“selling right before the crash”): ¢; = 1y .
Contrarily to the strategies defined in (8.2), t — ¢; is not left-continuous but
right-continuous (cadlag). The capital gain associated to this strategy is then
given by

t

Gt(¢) = / qSudSu =X fort< Ty,
0

= )\Tl for t Z Tl.

Therefore this strategy requires zero initial investment and has an almost
surely nonnegative gain, which is strictly positive with nonzero probability.
Hence, it is an arbitrage opportunity. Such strategies should therefore should
be ruled out in an arbitrage-free model. I

Obviously, the “strategy” ¢ proposed in this example is impossible to im-
plement unless one knows beforehand that the price is going to fall: ¢,
is not a predictable process. This example motivates us to restrict inte-
grands/strategies to predictable processes. Note also that in this example
we have used in an essential way the fact that the process S is discontinuous:
if S is continuous then changing the strategy at one point does not have any
effect on the resulting gain of the investor, so one could allow in that case for
right-continuous strategies.

Between T; and T;11, the quantity of asset in the portfolio is ¢; and the
asset moves by (St,., — St,) so the capital gain of the portfolio is given by
¢i-(St,., — St,). Hence an investor starting with a portfolio ¢y and following
the strategy ¢ will have accumulated at time ¢ > 0 a capital equal to:

Jj—1

Gi(¢) = ¢0-S0 + Y _ ¢i-(S1p,, — S1,) + 05.(Se — Sy) for Ty <t < Ty,
=0

The stochastic process (G¢(¢))ejo,r] thus defined is called the gain process of
the strategy ¢. Using the stopping time notation defined in (2.50), the gain
process can be rewritten as:

Gi(¢) = ¢0-So + Z ®i-(STi int — STint)- (8.3)

=0
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For the stochastic integral to be interpreted as the gain process of the strategy
¢, the portfolio ¢; should be constituted at the beginning of the period, T;
(therefore ¢; is revealed at T; while the variation of the assets Sz, , — S, is
only revealed at the end of the period, T;;1). The stochastic process defined
by (8.3) is called the stochastic integral? of the predictable process ¢ with
respect to .S and denoted by:

t n
/ GudSy = ¢9.50 + Z ¢i-(STi+1At — STZ'/\t)~ (84)
0 i=0

Thus, the stochastic integral fot ¢dS represents the capital accumulated be-
tween 0 and t by following the strategy ¢. On the other hand, the portfolio
is worth V;(¢) = ¢.S; at time ¢. The difference between these two quantities
represents the cost of the strategy up to time ¢:

Co(d) = Vi) — Go(d) = 0.5, — /0 GudSe. (8.5)

Ci(¢) is called the cost process associated to the strategy ¢. A strategy
(¢t)iefo, 1) 1s said to be self-financing if the cost is (almost surely) equal to
zero: the value V;(¢) of the portfolio is then equal to the initial value plus the
capital gain between 0 and t:

Vi(9) = /0 6udS. = oS0 + /0 GudSi (.6)

Equation (8.6) simply means that the only source of variation of the portfolio’s
value is the variation of the asset values: all trading operations are financed
by capital gains, all capital gains are reinvested into the portfolio and no cash
is added to or withdrawn from the account.

The gain process/stochastic integral associated to a strategy has the fol-
lowing fundamental property: if S; is a martingale then the gain process
associated to any strategy is also a martingale:

PROPOSITION 8.1 Martingale-preserving property
If (St)iejo,r) s a martingale then for any simple predictable process ¢ the

stochastic integral Gy = fot odS is also a martingale.

PROOF Consider a simple predictable process ¢ as in 8.2. By construction
its stochastic integral G is a cadlag nonanticipating process. Since the ¢; are

2Since the stochastic integral of a vector process is defined as the sum of integrals of its com-
ponents, in the sequel we will mostly discuss the one-dimensional case. Multidimensional
extensions are, in most cases, straightforward.
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bounded and E|St,| < oo, it is easy to show that E|G:| < oco. We will
now prove that E[Gr|Fs] = G It is sufficient to show that for each i,

E[¢i(STi+l - STm) }—t] = ¢i(STi+1/\t - STi/\t)'

E[(bi(STHl - STz)|ft] = E[1t>Ti+1 ¢i(STi+1 - STZ)U:t]
+ Ellyr, 1,00 (8)9i(S104, — ST3)
+ Eli<r, ¢i(S1:y, — ST.)|F2]-

Fi]

Since Tj, T 41 are stopping times, 1y~7,,,, li<7, and Ljp, 7, ,1(t) are F-measu-
rable and can be taken out of the conditional expectation. The first two terms
are simple to compute:

E[1t>Ti+1¢i(STi+l - STi)"Ft] = 1t>Ti+1¢i(STi+1 - STi)
E[I]Ti7Ti+1](t)¢i(STi+l B STz) ft] = 1]T17Ti+1](t)¢iE[STi+1 - STi
- 1]Ti7Ti+1](t)¢i(St — ST,)

Fi]

For the last term we use the law of iterated expectations and the fact that ¢;
is Fr,-measurable:

E[ltSTi ¢i(STi+1 - STz)

ft} = 1t§Tz‘E[E[¢i(STi+1 - STz) ',FTl] ft]

the last equality resulting from the sampling theorem (Theorem 2.7) applied
to S. So:

E[¢i(STi+l - ST1)

ft] = 1t>Ti+1 ¢i(STi+1 - STl) + 1]T17Ti+1]<t)¢i(st - STi)
= ¢’i(STi+1At - STi/\t)'

I

Since for a self-financing strategy Vi(¢) = G¢(¢), we conclude that if the
underlying asset follows a martingale (S;);cjo,7) then the value of any self-
financing strategy is a martingale.

Apart from computing the gain associated to a strategy, stochastic inte-
grals can also be used as a means of building new stochastic processes (in
particular, new martingales) from old ones: given a nonanticipating cadlag
process (X¢)¢e[o,7] one can build new processes fg 0,dX,, by choosing various
(simple) predictable processes (0¢)se[o, 7). Here X is interpreted as a “source
of randomness” and o; as a “volatility coefficient.” Starting with a simple
stochastic process X such as a Lévy process, this procedure can be used to
build stochastic models with desired properties. The following result shows
that if the asset price is modelled as a stochastic integral S; = fg odX with
respect to a “source of randomness” then the gain process of any strategy
involving S can also be expressed as a stochastic integral with respect to X.
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PROPOSITION 8.2 Associativity
Let (Xt)iepo,r) be a real-valued nonanticipating cadlag process and (0¢)i>0

and (¢¢)i>0 be real-valued simple predictable processes. Then Sy = fot odX is
a nonanticipating cadlag process and

t t
0 0

The relation S; = fot 0:d X, is often abbreviated to a “differential” notation
dS; = 04d X, which should be understood as a shorthand for the integral nota-

tion. The associativity property then leads to a composition rule for “stochas-
tic differentials”: if dS; = 0:dX; and dG; = ¢1dS; then dGy = ¢rordX;.

8.1.1 Semimartingales

For the moment we have not required any specific property for the process
S in order to define gain processes/stochastic integrals for simple predictable
processes: in fact, (8.3) makes sense for any cadlag process S. A reasonable
requirement is a stability property: a small change in the portfolio should
lead to a small change in the gain process. A mathematical formulation of
this idea is to require that, if @™ — ¢ in S([0,7]) (for example, in the sense
of uniform convergence) then fg ondS — fot ¢dS in some appropriate sense
(for example, convergence in probability). Unfortunately, this (reasonable)
stability property does not hold for any stochastic process (S;) and those who
verify it deserve a special name.

DEFINITION 8.2 Semimartingale A nonanticipating cadlag process
S is called a semimartingale® if the stochastic integral of simple predictable
processes with respect to S':

n T n
i=0 0 i=0

verifies the following continuity property: for every ¢™, ¢ € S([0,T]) if

T T
sup — [¢f (w) = ¢¢(w)| — 0 then /0 ¢"dS = [ ¢dS. (8.7)

(t,w)€[0,T]x n—oo /g

If the continuity property above does not hold, it means that, if an asset
is modelled by (S;), a very small error in the composition of a strategy can

3While mathematicians have no lack of imagination when it comes to proving theorems,
finding names for new concepts seems to be a problem: martingales, supermartingales,
submartingales, semimartingales, quasimartingales, local martingales, sigma-martingales,
etc., are neither exciting nor very explanatory!
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bring about a large change in the portfolio value! It is therefore preferable,
in models of continuous time trading, to use stochastic processes which are
semimartingales, otherwise our model may produce results which are difficult
to use or interpret.

The continuity property (8.7) involves the convergence of the random vari-

ables fOT ¢"dS (for T fixed). The following technical result [324, Theorem
11] shows that a stability property also holds for the process defined by the
stochastic integral:

PROPOSITION 8.3

If (St)iepo, 1) s a semimartingale then for every ¢™, ¢ € S([0,T1)

if sup ¢ (w) = ¢r(w)| — 0 (8.8)
(t,w)€[0,T]xQ2 n—00

then sup /(b"dS /qde 5o (8.9)
te[0,T] n—00

The convergence in (8.8) is uniform convergence on [0,7] x €; the con-
vergence in (8.9) is uniform convergence in probability on [0,7] (sometimes
called ucp convergence, meaning “uniformly on compacts in probability”).

Definition 8.2 may appear very difficult to apply in practice — indeed, how
do we know that a given process satisfies the stability property mentioned
above? However, we will give two simple examples which will allow us to see
that almost all processes that we encounter in this book are semimartingales.

Example 8.2 Every finite variation process is a semimartingale

For a finite variation process S, denoting by TV (S) its total variation on
[0, T7], we always have:

sup / ¢dS < TV(S) sup |pe(w)], (8.10)
te[0,T] (t,w)€e[0,T1xQ2
from which the property (8.8)—(8.9) can be deduced. I
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Example 8.3 Every square integrable martingale is a semimartingale
For a square integrable martingale M we can write:

(o)

n 2
E =FE (%Mo + ) ¢i( M, ne — Mnm))

=0

=F

P MG + Z @7 (Mr,, ne — MTi,/\t)2‘|
i=0

< sup |¢s(w)|E
S, i=0

Mg + Z(MTi+1/\t - MTiAt)Q]

< sup |¢s(w)|E

Mg + Z(M%i+1/\t - M%l/\t)‘|
=0
< sup ()] sup E[M,

S,w

where we have used Doob’s sampling theorem (Theorem 2.7) several times.
The above inequality implies that when the strategies converge uniformly, the
stochastic integrals converge in L?, uniformly in ¢. But the L? convergence
implies convergence in probability hence the result.

In addition, it is clear from Definition 8.2 that the semimartingales form a
vector space: any linear combination of a finite number of semimartingales is
a semimartingale. This remark and the two simple but important examples
above allow to conclude that the following familiar processes are semimartin-
gales:

e The Wiener process (because it is a square integrable martingale).
e The Poisson process (because it is a finite variation process).

e All Lévy processes are semimartingales because a Lévy process can be
split into a sum of a square integrable martingale and a finite variation
process : this is the Lévy-Itd6 decomposition (Proposition 3.7).

Tt is also possible (but by no means straightforward) to show that every (local)
martingale is a semimartingale in the sense of Definition 8.2 (see [324]). On
the other hand, a deterministic process is a semimartingale if and only if it
is of finite variation (see [215]) so all infinite variation deterministic processes
are examples of processes that are not semimartingales. More interesting
examples of processes that are not semimartingales are provided by fractional
Brownian motions (“1/f noise”) discussed in Section 7.4.1.

More generally any semimartingale can be represented as a (local) martin-
gale plus a finite variation process but this is a difficult result, see [55, 110] or
[324, Chapter 4].
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The associativity property (Proposition 8.2) allows to show that a stochas-
tic integral (with respect to a semimartingale) is again a semimartingale.
Therefore all new processes constructed from semimartingales using stochas-
tic integration will again be semimartingales. The class of semimartingales is
quite large and convenient to work with, because it is stable with respect to
many operations (stochastic integration is not the only example).

8.1.2 Stochastic integrals for caglad processes

Realistic trading strategies are always of the form (8.2) so it might seem that
defining stochastic integrals for simple predictable processes is sufficient for
our purpose. But as we will see later, hedging strategies for options cannot in
general be expressed in the form (8.2) but can only be approximated in some
sense by simple predictable processes. Also, if X is interpreted not as an asset
price but as a source of randomness, one can be interested in defining asset
price processes Sy = fot 0,dX,, where the instantaneous volatility o; does not
necessarily move in a stepwise manner as in (8.2). These remarks motivate
the extension of stochastic integrals beyond the setting of simple predictable
processes.

Example 8.1 showed that when S has jumps we cannot hope to define
stochastic integrals with respect to S for right-continuous integrands while
still conserving the martingale property (as in Proposition 8.1). We therefore
have to content ourselves with left-continuous (caglad) integrands.

It turns out that any caglad process ¢ € L(|0,T]) can be uniformly approx-
imated by a sequence (¢™) € S([0,7]) of simple predictable process ([324],
Theorem 10) in the sense of (8.9). Using the continuity property (8.8)—(8.9)
of the stochastic integral then allows to define the stochastic integral [ ¢dS
as the limit — in the sense of (8.9) — of [¢™dS. In particular, one may
choose the usual “Riemann sums” as discrete approximations, as shown by
the following result [324, Theorem 21].

PROPOSITION 8.4 Stochastic integrals via Riemann sums

Let S be a semimartingale, ¢ be a caglad process and m" = (T = 0 <
TP < - <TI0y =T) a sequence of random partitions of [0,T] such that
|7"| = supy, [T} — T 4| — 0 a.s. when n — oco. Then

n t
P
G0+ 3 01, (Stnt = Srene) 5 [ 6o, (8.11)
k=0 0
uniformly in t on [0,T)].
While this looks very much like the definition of a Riemann integral, one

important difference should be noted: in the sum (8.11) the variation of S is
multiplied by the value of ¢; at the left endpoint of the interval, otherwise
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the sum (and the limit) is not a nonanticipating process anymore and, even
if it does converge, will define a process with different properties. This phe-
nomenon has no equivalent in the case of ordinary (Riemann) integrals: one
can compute ¢ at any point in the interval [T}, T;1] including both endpoints
or the midpoint, without changing the limit. The key idea, due to K. Ito, is
thus to use nonanticipating Riemann sums.

Proposition 8.4 shows that using trading strategies given by a caglad process
makes sense since the gain process of such a strategy may be approximated
by a simple predictable (therefore realistic) strategy. No such result holds
for more general (not caglad) processes so their interpretation as “trading
strategies” is not necessarily meaningful.

By approximating a caglad process by a sequence of simple predictable pro-
cesses, one can show that the properties described above for simple predictable
integrands continue to hold for caglad integrands. If S is a semimartingale
then for any nonanticipating caglad process (o)icjo,7) on (0, F, (Ft),P) the
following properties hold:

e Semimartingale property: Sy := fot odX is also a semimartingale.

e Associativity: if ¢ is another nonanticipating caglad process then

/O t ¢dS = /0 t(m)dx.

e Martingale preservation property: if (X¢)¢cjo,7] is @ square integrable

martingale and ¢ is bounded then the stochastic integral M; = fg Ppd X
is a square integrable martingale.

These properties were shown in Section 8.1 for simple predictable integrands;
their proof for caglad integrands is based on limit arguments.*

8.1.3 Stochastic integrals with respect to Brownian motion

Since the Wiener process is a semimartingale, stochastic integrals with re-
spect to the Wiener process may be defined as above: given a simple pre-
dictable process ¢:

¢t - ¢01t:0 + Z ¢i1]Ti,T1+1](t)7

=0

the Brownian stochastic integral f odW is defined as
T n
/ ¢t dw, = Z ¢l (WTi+1*WTi)'
0 i=0

4See [324, Chapter 2].
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Since W, is a martingale, fot ¢dW is also a martingale and E|[ fOT GrdWy] = 0.
Due to the independent increments property of W, we can also compute the
second moment:

e

—ZE (Wr, = Wr,,)’]

= Var

Zdn (Wr, = Wr,..,)
=0

+2 Z COV(¢1’(WT1‘+1 - WTi)? ¢j(WTj+l - WTJ'))

i>j
_ZE _WTi)Q‘fTi]]
+ > ElEpid;(Wr,,, — Wr,) Wy, — W)\ Fr,] |
i>]

= 3 B BIWr, ~ W71 +0

t
—ZEQSZ Tiv1 — z-):E/O pidt.

This relation is very useful in computations and is called the isometry formula.

PROPOSITION 8.5 Isometry formula: simple integrands
Let (¢1)o<i<T be a simple predictable process and (Wy)o<i<r be a Wiener

process. Then
T
E l/ oy th] =0, (8.12)
0

T 2 T
/czst dw, E / |¢t|2dt1. (8.13)
0 0

Using this isometry, one can construct stochastic integrals with respect to
the Wiener process for predictable processes (¢¢);c(o,7] verifying

E

T
/ |¢t|2dt1 < o0 (8.14)
0

by approximating ¢ with a sequence of simple predictable processes (¢™) in

the L2 sense:
T
E / |pr — ¢t|2dt] "0,
0
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Using the isometry relation (8.13) one can then show that fOT @R dWy converges

in L?(P) towards a limit denoted as fOT ¢dWy. The martingale and isometry
properties are conserved in this procedure [205].

PROPOSITION 8.6 Isometry formula for Brownian integrals
Let ¢ be a predictable process verifying

E

T
/ |¢t|2dt] < o0 (8.15)
0

Then fot ¢ dW is a square integrable martingale and

T
E /0 b th] =0, (8.16)

T 2 T
/ ¢r AW, / ¢t|2dt]. (8.17)
0 0

Note that, although this construction gives a well-defined random variable
fOT odW | ¢ cannot be interpreted as a “trading strategy”: it is not necessarily
caglad and its integral cannot necessarily be represented as a limit of Riemann
sums.

=F

8.1.4 Stochastic integrals with respect to Poisson random
measures

Poisson random measures were defined in Section 2.6.1 and we have already
encountered integrals of deterministic functions with respect to a Poisson ran-
dom measure: this notion was used to study path properties of Lévy processes
in Chapter 3. We now define the notion of stochastic integral of a random
predictable function with respect to a Poisson random measure, following
[242, 205].

Let M be a Poisson random measure on [0, 7] x R? with intensity u(dt dx).
The compensated random measure M is defined as the centered version of M:
M(A) = M(A)—pu(A) = M(A)— E[M(A)]. Recall from Section 2.6.1 that for
each measurable set A C R? with p([0,T] x A) < oo, My(A) = M([0,¢] x A)
defines a counting process, M;(A) = M ([0,]x A)— ([0, ] x A) is a martingale
and if AN B = () then M;(A) and M;(B) are independent.

By analogy with simple predictable processes defined in (8.2), we consider
simple predictable functions ¢ : Q x [0,7] x R — R:

t y) - ZZ Ul]Tz,Terl )1Aj (y)ﬂ (818)
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where Ty < T, < --- < T, are nonanticipating random times, (¢;;);=1...m are
bounded Fr, measurable random variables and (A;);=1... are disjoint subsets
of RY with u([0, T]x A;) < co. The stochastic integral f[o,T]de o(t,y) M (dt dy)
is then defined as the random variable

n,m

/ Rd ¢ t y) (dt dy Z (bw T17Tz+1] X A; )

1]1

=SS M (A) - M (4], (819)

=1 j=1

Similarly, one can define the process t fg Ja @(t,y)M(dt dy) by

/ y ¢(s,y)M(ds dy) = Z Gij (M, n(Aj) — Mz ni(Az)]. (8.20)

i,j=1

The stochastic integral ¢ — fg Ja (s, y)M(ds dy) is a cadlag, nonanticipat-
ing process. Similarly, the compensated integral f[o T)xRd o(t,y)M(dt dy) is
defined as the random variable:

n,m

[ ] otsitas an) = 3 6T Tl x 4 (5:21)

i,j=1
= D ¢y IM(T0, Tiva] x 45) = p(T3, Tena] x Aj))-
ij=1

By restricting to terms with T; < ¢ (i.e., stopping at t), we obtain a stochastic
process:

n

[ ot ) = 3 08 ) = V() (522

i=1

The notion of compensated integral is justified by the following result:

PROPOSITION 8.7 Martingale preserving property
For any simple predictable function ¢ : Q x [0,T] x R — R the process
(Xt)iepo,r) defined by the compensated integral

X, = /quﬁsy) (ds dy)

s a square integrable martingale and verifies the isometry formula:

slpall =& [ [ [ iots.utes d). (823
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PROOF For j = 1...m define Y/ = M(]0,#] x A;) = M(A;). From
Proposition 2.16, (Y/ )te[o 7] 18 a martingale with independent increments.
Since the A; are disjoint, the procebbes Y7 are mutually independent.

Writing M (|T; At, Ty 1 At x Aj) = T+1/\t YT s the compensated integral
Xy can be expressed as a sum of stochastic integrals:

Xy

E'ﬁs
NE

<
Il
—
.
Il
S

¢)1] (Y%i+1At - Y%iAt)

.
—

n
QZ)dej where ¢j = Z ¢ij1]Ti7Ti+l]'
0 .

~
Il
-

Since ¢/ are simple predictable processes, by Proposition 8.1, fot ¢dY7 are
martingales, which entails that X is a martingale. By conditioning each term
on Fr, and applying the sampling theorem to Y7, we obtain that all terms
in the sum have expectation zero, hence EX; = 0. Finally, since Y7 are
independent, their variance adds up:

/ Rd i ’y) (ds dy ] ZE [|¢U T+1/\t lei/\t)z]
— ZE { {I% (Y4, =Y | Fr, H ZE [I%IQ (v, - Yqzi)z‘fTi]}

— ZE |0ij [P T;, Tia] x Aj)]

i,J

E|X7|* = Var

which yields (8.23). Since E|X;|* < E|Xr|? < oo, X is a square integrable
martingale.

The isometry formula (8.23) can be used to extend the compensated in-
tegral to square integrable predictable functions [48, Section 5.4]. Given a
predictable random function verifying

B[ [ ottt dy) < o0

there exists a sequence (¢™) of simple predictable functions of the form (8.18)
such that

T
n _ 2 ”1)00 )
([ [ 10— ol an| "=

Using the isometry relation (8.23), one can then show that fOT Jga ¢"dM con-

verges in L?(P) towards a limit denoted as fOT Jga ®dM. The martingale and
isometry properties are conserved in this procedure [205].
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PROPOSITION 8.8 Compensated Poisson integrals
For any predictable random function ¢ : Q x [0,T] x R? — R werifying

E /OT /Rd |6, y) P u(dt dy)

the following properties hold:

t— / o(s,y) (ds dy) is a square integrable martingale,
Rd

=l t [ 16650 Putas a)] (520

An important case for our purpose is the case where the Poisson random
measure M describes the jump times and jump sizes of a stochastic process
(Si)1>0, that is, M is the jump measure defined by Equation (2.97):

¢(s,y)M(ds dy)

AS:#0
M = Js(w 2: O(t,AS,)-

te[0,T)

An example is given by Lévy processes: if S is a Lévy process with Lévy
measure v then the jump measure Jg is a Poisson random measure with
intensity p(dt dx) = dtv(dx). Then for a predictable random function ¢ the
integral in (8.19) is a sum of terms involving jumps times and jump sizes of

StZ

AS,#0

/ S(s,y)M(ds dy) = Y ¢(t, AS,). (8.25)
]Rd

te[0,T]

REMARK 8.1 Integration with respect to the jump measure of a
jump process In the special case where S is a pure jump process with
jump times Ty < Th < ... and ¢(w, 8,y) = s(w)y where ¥ = > iy, 7, 18
constant between two jumps, the integral with respect to Jg is just a stochastic
integral with respect to S:

AS,#£0

S S = / Sy

te[0,7

T T
/ o(s,y)M(ds dy) = / M (ds dy) =
0 R4 0

and can then be interpreted as the capital gain resulting from a strategy
with transactions taking place at the jump times (7;) of S, the investor holding

© 2004 by CRC Press LLC



a portfolio 1; between the jump times 7; and T;4;. But this is a special case:
for a general integrand ¢, the Poisson integral (8.19) with respect to the jump
measure Jg cannot be expressed as a stochastic integral® with respect to S.
This example shows that, when X is a jump process whose jump measure Jx
is a Poisson random measure, integration with respect to Jx and integration
with respect to X are two different concepts. This remark will play a role in
Chapter 10 during the discussion of hedging strategies in markets with jumps.

8.2 Quadratic variation
8.2.1 Realized volatility and quadratic variation

The concept of realized volatility was defined in Section 7.5 in the context
of volatility measurement. Given a process observed on a time grid 7 = {tg =
0<t; <-- <tpy1 =T}, the “realized variance” was defined as:

Vx(m) =Y (Xi, — Xi,)% (8.26)

t,em
Rewriting each term in the sum as

(Xtpy — X0)* = X7

P — X7 —2X, (Xe,,, — Xuy),

i+1 i+1

the realized volatility can be rewritten as a Riemann sum:

X7 = X3 -2 X4 (X, — Xy,). (8.27)

t,em

Consider now the case where X is a semimartingale with Xy = 0. By defini-
tion it is a nonanticipating right-continuous process with left limits (cadlag)
and one may define the process X = (X;_);e[o,r] Which is caglad. Proposi-
tion (8.4) then shows that the Riemann sums in (8.27) uniformly converge in
probability to the random variable:

T
(X, X, = | X7]? — 2/ Xy dX,, (8.28)
0

called the quadratic variation of X on [0, T]. Note that the quadratic variation
is a random variable, not a number. Repeating the same procedure over [0, ¢],
one can define the quadratic variation process:

51t can, however, be expressed as a sum of integrals with respect to the martingales ]\;[t]
defined above.
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DEFINITION 8.3 Quadratic variation The quadratic variation pro-
cess of a semimartingale X is the nonanticipating cadlag process defined by:

t
(X, X = | X4]? — 2/ Xy dX,. (8.29)
0

If 7" = (tg =0 <t} <--- <ty =T)is asequence of partitions of [0, 7]
such that 7" = supy, [t} —t}_,| — 0 as n — oo then

0<t; <t
P
Z (Xti+1 - Xti)z njoo[X’ X]ty
t,emm

where the convergence is uniform in ¢. Since [X, X] is defined as a limit of
positive sums, [X, X]; > 0, and for ¢ > s, since [X, X|; — [X, X] is again a
limit of positive sums, [X, X]; > [X, X]s, and we conclude that [X, X] is an
increasing process. This allows to define integrals fot P d[X, X].
If X is continuous and has paths of finite variation then, denoting by TV (X)
the total variation of X on [0, 7], we obtain:
Z |Xti+1 - Xti

Z (XtH»l - Xti)Q < Sup |Xti+1 - Xti
t,emm v t;eEm

S Sup|Xt1i+1 — Xt,| TV(X) — O7
7

|| —0

therefore, [X, X] = 0. In particular, for a smooth (C!) function, [f, f] = 0.
This result is no longer true for processes with discontinuous sample paths
since in this case | Xy, , — X, | will not go to zero when |t;4; —t;| — 0. The
following proposition summarizes important properties of quadratic variation.

PROPOSITION 8.9 Properties of quadratic variation

([X, X]t)tcpo, 1) is an increasing process.

The jumps of [X,X] are related to the jumps of X by: A[X,X]|: =
|AX,|?. In particular, [ X, X] has continuous sample paths if and only
if X does.

If X is continuous and has paths of finite variation then [X, X]| = 0.

If X is a martingale and [ X, X] =0 then X = X, almost surely.

For a proof of the last point see, e.g., Propositions 4.13 and 4.50 in [215] or
Chapter II in [324].

REMARK 8.2 Martingales vs. drifts The last point of the preceding
proposition has an important consequence: if X is a continuous martingale
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with paths of finite variation then [X,X] = 0, so X = X almost surely.
Thus a continuous square-integrable martingale with paths of finite variation
18 constant with probability 1. This remark draws a distinction between two
classes of processes: martingales (such as Brownian motion or the compen-
sated Poisson process), which are typical examples of “noise processes” and
continuous processes of finite variation, which may be interpreted as “drifts.”
There is no nontrivial process which belongs to both classes:

Martingales (| Continuous processes of finite variation = constants.

This point will be very useful in the sequel: it allows to assert that if a process
is decomposed into as the sum of a square-integrable martingale term and a
continuous process with finite variation

t
Xt = Mt +/ Cl(t)dt,
0

then this decomposition is unique (up to a constant). In fact, this remark can
be generalized to the case where M is a local martingale [215, Proposition
14.50].

Note that the quadratic variation, contrarily to the variance, is not defined
by taking expectations: it is a “sample path” property. The quadratic vari-
ation is a well-defined quantity for all semimartingales, including those with
infinite variance. We now turn to some fundamental examples of processes
for which the quadratic variation can be explicitly computed.

PROPOSITION 8.10 Quadratic variation of Brownian motion
If By = oW, where W is a standard Wiener process then [B, B]; = o*t.

PROOF Let 7" = (t = 0 <t} < --- <ty = T) be a sequence of
partitions of [0,T] such that |7"| = supy, [t} —t}_,| — 0. First observe that
Ve(n™) — o?T =Y. (B, — Bi,)?> — 02(tiz1 — ;) is a sum of independent
terms with mean zero. Therefore

EVs(r") —o?T|* =Y E (B, — Br,)? — o2(tis1 — 1))

4 2 (Bti+1 - Bti)2 2
= tiv1 —GI*E |[(————— —1
S ot 6B (L )

=o' Z tiy1 — t|°E [(Z° — 1)*] where Z ~ N(0,1)

< E[(Z*-1)?] o*T|7"| — 0.

T

Thus E|Vg(n") — 02T|?> — 0 which implies convergence in probability of
Vi(m™) to o?T.
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Therefore, when X is a Brownian motion, [X, X]; is indeed equal to the
variance of Xy, which explains the origin of the term “realized volatility.”
However, the Brownian case is very special. In general [X, X]; is a random
process, as is shown by the following examples:

Example 8.4 Quadratic variation of a Poisson process

If N is a Poisson process then it is easy to see by definition that [V, N]; = Ny.
More generally, if N, is a counting process with jump times 7; and Z; are
random variables revealed at T;, denoting the jump sizes:

Ny Ny
Xt = ;Zi = [X, X]; = ; Zi = ) IAX*

0<s<t

Even more generally, it is easy to show that the same formula holds for every
finite variation process X:

X, XJ: = > JAX (8.30)
0<s<t

Example 8.5 Quadratic variation of a Lévy process
If X is a Lévy process with characteristic triplet (o2,v,7), its quadratic
variation process is given by

X Xl=otts 3 AXP=ott [

s€[0,t] [O1t
AX 20

]/RyQJX(dS dy). (8.31)

In particular, if X is a symmetric a-stable Lévy process, which has infinite
variance, the quadratic variation is a well-defined process, even though the
variance is not defined. The quadratic variation of a Lévy process again a
Lévy process: it is a subordinator (see Proposition 3.11).

Example 8.6 Quadratic variation of Brownian stochastic integrals
Consider the process defined by X; = fot o:dWy, where (0¢)¢cjo,] is a caglad
process. Then

(X, X, = /Ot o2ds. (8.32)

In particular if a Brownian stochastic integral has zero quadratic variation, it
is almost surely equal to zero: [X,X] =0 a.s.= X =0 a.s. This implication
is a special case of the last point in Proposition 8.9.
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Example 8.7 Quadratic variation of a Poisson integral

Consider a Poisson random measure M on [0, 7] x R? with intensity u(ds dy)
and a simple predictable random function ¢ : [0,T] x R? +— R. Define the
process X as the integral of ¢ with respect to M as in (8.20):

t
X, = / (s, y)M(ds dy).
0 R4

The quadratic variation of X is then given by:

XX = [ [ 1t Paras ). (39

8.2.2 Quadratic covariation

The concept of “realized volatility” has a multidimensional counterpart
which one can define as follows: given two processes X,Y and a time grid
T={to=0<t < - <tpy1 =T} we can define the “realized covariance”
by:

Z (th‘+1 - Xti)(mi-#l - thz) (834)
t,em
Rewriting each term above as
Xti+1Y;5 - Xti}/;i - thi (Xt

i1 i1 Xti) - Xti (Y;fwrl - }/;51)7

the sum in (8.34) can be rewritten as a Riemann sum:

XrYr — XoYo — Z{)/tl (Xti+1 - Xti) + Xti (}/tH»l - }/tl>}

t;em

When X,Y are semimartingales, by Proposition 8.4, the expression above
converges in probability to the random variable:

T T
XTYT—XOYO—/ Xt,dYt—/ Yi_dXa,
0 0

called the quadratic covariation of X and Y on [0, T].

DEFINITION 8.4 Quadratic covariation  Given two semimartingales
X,Y, the quadratic covariation process [X,Y] is the semimartingale defined
by

t t
(X, Y], = X,Y, — XoYo — / X, dY, — / Y,_dX,. (8.35)
0 0

The quadratic covariation has the following important properties [324]:
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[X,Y] is a nonanticipating cadlag process with paths of finite variation.

e Polarization identity:
1
[X,Y]:Z([X—&-KX—FY]—[X—Y,X—Y]). (8.36)

e The discrete approximations (8.34) converge in probability to [X,Y]
uniformly on [0, T:

t; <t
Z (Xt71+1 - Xti)(}/ti-u - Yf1) | ‘B)O[Xa Y]t (837)
t;em

e The covariation [X,Y] is not modified if we add to X or Y continuous
processes with finite variation (“random drift terms”): it is only sensitive
to the martingale parts (“noise terms”) or jumps in X and Y. It is
thus more relevant in a financial modelling context than measures of
correlation between increments.

e If X|Y are semimartingales and ¢, integrable predictable processes
then

{ / pdX, / de]t = Ot o d[X,Y]. (8.38)

The following result is simply a restatement of the definition of [X,Y].

PROPOSITION 8.11 Product differentiation rule
If XY are semimartingales then

t t
X,Y; = XoYo +/ X,_dY, +/ Yo dX, + [X,Y],. (8.39)
0 0

In the following example the quadratic covariation may be computed using
the polarization identity (8.36).

Example 8.8 Quadratic covariation of correlated Brownian motions
If B} = o'W} and B? = 0?W? where W', W? are standard Wiener processes
with correlation p then [B!, B}, = pojoat.

The next example uses Property (8.38) of quadratic covariation.

Example 8.9 Brownian stochastic integrals
Let X; = jg oldW! and Y, = fot o2dW? where (0}).ej0,r) are predictable
processes and W1, W? are correlated Wiener processes with Cov(W}, W2) =
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pt. Then
t
[X,Y]t:/ oralpds. (8.40)
0

I

The above examples show that, for Brownian stochastic integrals, quadratic
covariation is a kind of “integrated instantaneous covariance”: however, it is
a more general concept. Here is another case where quadratic covariation can
be computed:

Example 8.10
Let M be a Poisson random measure on [0, 7] x R and (W})¢ejo,7] @ Wiener
process, independent from M. If

t t
Xi = X5 +/ PLAWs +/ V(s y)M(ds dy) i=1,2,
0 0 R4

then the quadratic covariation [X*1, X?] is equal to

1 21, — ! 1 2d ! 1 2 ds du). .
) = [Colotast [ ot eptenaas dy. a0

8.3 The Ito formula

If f:R—R, g:[0,T] — R are smooth (say, C!) functions then from the
change of variables formula for smooth functions we know that

Fa(t) — F(9(0)) = / F(g(s))g' (s)ds = / Flg(s)da(s).  (3.42)

2

Applying this to f(z) = z* we get:

a(t)? — g(0)> =2 / 9(s)dg(s).

However, when X is a semimartingale we observed in Section 8.2 that

t
XE—XS:Z/O X,_dX, + [X, X],,
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where, in general, [X, X] # 0. Therefore, stochastic integrals with respect to
semimartingales do not seem to obey the usual change of variable formulae
for smooth functions. The goal of this section is to give formulae analogous
to (8.42) for f(t,X;) when f is a smooth function and X a semimartingale
with jumps.

The reader is probably familiar with the It6 formula for Brownian integrals,
which states that if f is a C? function and X; = fg osdWy then

F(X3) = f£(0) + /0 F(X,)osdW,s + /0 %ag "(X,)ds. (8.43)

We will discuss such representations when the Wiener process is replaced by
a process with jumps.

8.3.1 Pathwise calculus for finite activity jump processes

Let us begin with some simple remarks which have nothing to do with
probability or stochastic processes. Consider a function z : [0,7] — R which
has (a finite number of) discontinuities at Ty < Tp < --- < T, < Tppq =T,
but is smooth on each interval |T;, T;11[. We can choose = to be cadlag at
the discontinuity points by defining x(7;) := x(T;+). Such a function may be
represented as:

x(t) = /0 b(s)ds + Z Axz; where Ax; = x(T;) — x(T;—), (8.44)

{3, T: <t}

where the sum takes into account the discontinuities occurring between 0 and
t. For instance, if b is continuous then z is piecewise C'. Consider now a C'*
function f : R — R. Since on each interval |T;, T;11[, = is smooth, f(z(t))
is also smooth. Therefore we can apply the change of variable formula for
smooth functions and write for ¢ = 0...n with the convention Ty = 0:

Tiv1—

F(@(t)a (t)dt = / F(()b()dt.

T;

f@(Tip1-)) — f(z(Th)) = /

T;

At each discontinuity point, f(z(t)) has a jump equal to

f@(T) = f(2(Ti-)) = f(&(Tim) + Awi) — f(2(Ti-)).
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Adding these two contributions together, the overall variation of f between 0
and t can be written as:

Fa(T)) - Z{f Ti1)) — f(z(T)}

fZ{f Tit1)) = f(@(Tip1-)) + f(@(Tisa—) — f(2(T0))}
n+1 7+1—

_Z{f )+ AX)) }+Z/ z(t))dt.

The integrals in the last sum can be grouped together provided that we replace
f(z(t)) by f(z(t—)), so we finally obtain:

PROPOSITION 8.12 Change of variable formula for piecewise
smooth functions
If x is a piecewise C' function given by:

z(t) = /0 b(s)ds + Z Az; where Ax; = z(T;) — x(T;—),

{i=1..n+1,T; <t}

then for every C' function f: R — R:

T
f(@(T)) = f(x(0)) :/o b(t) f' (x(t=))dt
n+1

n Z f@(Ti=) + Az;) — f(2(Ti-)).

Note also that, if b = 0 (i.e., x is piecewise constant) then the integral term
is equal to zero and the formula becomes valid for a continuous (or even a
measurable) function with no further smoothness requirement.

Of course, this formula has nothing to do with stochastic processes. But
consider a stochastic process (X¢):e[o,77 whose sample paths ¢ — X;(w) are
(almost surely) of the form (8.44):

NT(UJ)

Xi(w) = Xo + /0 bs(w)ds + Y AX;(w), (8.45)

i=1

where AX; = X(T;) — X(T;—) are the jump sizes and Ny(w) is the (random)
number of jumps that can be represented as the value at ¢ of a counting
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process. We have included w to emphasize that we are looking at a given
sample path. Then by Proposition 8.12, the following change of variable
formula holds almost surely:

T
F(Xr) — F(Xo) = /0 bOF (X)dt+ S F(Xr + Aw) — f(Xn, )
{i,T; <t}
T AX#0
= [ bt Y f0+ AXD - F(Xe). (5.46)

0<t<T

where the sum now runs over the (random) jump times (7;) of X. This change
of variable formula is valid independently of the probabilistic structure of the
process X: the jump times and jump sizes may have dependence between
them and with respect to the past, possess or not possess finite moments,
etc. It is a pathwise formula. However, if we are interested in computing
expectations, then we should introduce some structure in the process. In the
special case where T; 1 — T; are i.i.d. exponential random variables (which
means that the counting process Ny is a Poisson process) and AX; are i.i.d.
random variables with distribution F', the jumps are described by a compound
Poisson process. In this case, of course, the above formula is still valid but
now we can decompose f(X;) into a “martingale” part and a “drift” part as
follows. First, we introduce the random measure on [0, 7] x R which describes
the locations and sizes of jumps of X:

Ix = Z O(T,,AX1,)-

n>1

Jx is a Poisson random measure with intensity w(dtdy) = AdtF(dy). The
jump term in (8.46) may now be rewritten as:

/ / F(Xee +y) — F(Xas)] Tx(ds dy).
0 R

Using the compensated jump measure Jx (dt dy) = Jx (dt dy) — \dtF(dy), the
jump term above can be rewritten as:

/ / (X ) — F(Xas)] Tx(ds dy)
0 R

+/O )\ds/RF(dy)[f(Xs_ +y) - F(X,-)].

The first term above can be interpreted as the martingale or “noise” compo-
nent and the second one, which is an ordinary Lebesgue integral, represents
the “signal” or drift part. These results are summarized in the following
proposition:
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PROPOSITION 8.13 It6 formula for finite activity jump processes

Let X be a jump process with values in R defined by:

t Ny
th/ beds + Y Z;,
0 i=1

where by is a nonanticipating cadlag process, (N;) is a counting process rep-
resenting the number of jumps between 0 and t and Z; is the size of the i-th
jump. Denote by (T),)n>1 the jump times of X; and Jx the random measure
on [0,T] x R associated to the jumps of X :

Jx = Z 8(1,.2,)-

{n>1,T,<T}

Then for any measurable function f:[0,T] x R — R:

to 0
f(tvxt)_f(ovxo):/o [a_‘z(saXs—)+bsa_£

+ D [f(s Xem + AX) — (5, X,0))]

(s, Xs—)]ds

{n>1,T,<t}
tof af
~ [ G b5 (s X s

/ / (5, Xy +y) — f(s, Xy )] Ix (ds dy).

Furthermore, if Ny is a Poisson process with ENy = \t, Z; ~ F are i.i.d. and
f is bounded then Y; = f(t,Y:) = Vi + My where M is the martingale part:

M, = /0 /Z [f(s: Xo— +y) = [ s, Xo-)]x (ds dy), (8.47)

where Jx denotes the compensated Poisson random measure:
Jx (dt dy) = Jx (dt dy) — \F(dy)dt,

and V' is a continuous finite variation drift:

V= [ e xo b e x s
/ds/ (dy)[f(s, Xs— +y) — f(s,Xs-)]. (8.48)
Rd
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8.3.2 1It6 formula for diffusions with jumps

Consider now a jump-diffusion process
Xt = O'Wt + Mt + Jt = Xc(t) + Jt, (849)

where J is a compound Poisson process and X¢ is the continuous part of X:
t
=> AX;, X{ = pt+ oW,.

Define Y; = f(X;) where f € C?(R) and denote by T;,i = 1... Nt the jump
times of X. On |T;,T;11], X evolves according to

dX, = dX{ = ocdW, + pdt,

so by applying the It6 formula in the Brownian case we obtain

T7‘,+1— 0_2 Ti+1_
Yr,,,— —Yr, =/ 7f”(Xt)dt+/ f(Xt)dX;

T; T

Tipr= o? " /
- [ S e ponaxe)

T;

since dX; = dX¢(t) on this interval. If a jump of size AX,; occurs then the
resulting change in Y; is given by f(X;— + AX;) — f(X;—). The total change
in Y; can therefore be written as the sum of these two contributions:

f(Xe) = f(Xo) = /f $)dXS + /tG;f”(Xs)ds

> [f(Xem +AX) - f(X)] (850)

0<s<t, AX,#0

REMARK 8.3 Replacing dX¢ by dXs; — AX; one obtains an equivalent

expression:

t 2
F(X)) — f(Xo) = /f )dX, +/ %f”(Xs)ds

+ [F(Xom +AX,) = f(X,o) = AXf' (X, )] (8.51)
0<s<t, AX £0

When the number of jumps is finite, this form is equivalent to (8.50). How-
ever, as we will see below, the form (8.51) is more general: both the stochastic
integral and the sum over the jumps in (8.51) are well-defined for any semi-
martingale, even if the number of jumps is infinite, while the sum in Equation
(8.50) may not converge if jumps have infinite variation.
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Here we have only used the It6 formula for diffusions, which is of course still
valid if o is replaced by a nonanticipating square-integrable process (¢ ):co,77-

PROPOSITION 8.14 It6 formula for jump-diffusion processes
Let X be a diffusion process with jumps, defined as the sum of a drift term,
a Brownian stochastic integral and a compound Poisson process:

X, = X0+/ bds+/ o dW, +ZAX“
0

i=1

where by and o are continuous nonanticipating processes with

T
E[/ ofdt] < oo
0

Then, for any CY2 function. f:[0,T] xR — R, the process Y; = f(t, X;) can
be represented as:

¢
ft, Xy) — f(0,Xo) = /0 [%(S,XS) + %(&Xs)bs} ds

t 2
0

Sa 2
+ Z [f (Xz,— + AXD) = f(X,-)].
{(i>1,T;<t}
In differential notation:
0 o 2 92
dYy = af (t, X¢)dt + by af(t Xy)dt + 2 5 B J;(t Xy)dt
0
+ aii(taXt)gtth + [f(Xt— + AXt) — f(Xt—)]

8.3.3 1It6 formula for Lévy processes

Let us now turn to the case of a general Lévy process X. The difficulty
which prevents us from applying the above results directly is that, in the
infinite activity case, an infinite number of jumps may occur in each interval.
In this case, the number of jump terms in the sum

Z [f(XS, +AX5) _f(Xsf) _AXsf/(Xsf)]

0<s<t, AX,#0

becomes infinite and one should investigate the conditions, under which the
series converges. Furthermore, the jump times form a dense subset of [0, 7]
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and one cannot separate the evolution due to jumps from the one that is due
to the Brownian component so the reasoning used in Section 8.3.2 does not
apply anymore. However, albeit with more sophisticated methods, the same
result as before can be shown for general Lévy processes and even, as we will
see later, for general semimartingales.

PROPOSITION 8.15 It6 formula for scalar Lévy processes
Let (X;)i>0 be a Lévy process with Lévy triplet (6%, v,7) and f : R — R a
C? function. Then

f(Xt>=f<o>+/ #( ds+/f
+ 3 [f(Xem +AX) - f(XeD) — AX /(X)) (8.52)

0<s<t
AX#0

PROOF  The proof of the Itd formula for a general semimartingale X (see
Proposition 8.19) consists in rewriting the difference f(X;) — f(Xo) as a sum
of small increments of f:

n

f(Xt) - f(XO) = Z(f(th+1) - f(th))a

i=1

then expanding each small increment using a Taylor formula and proving the
convergence of resulting Riemann sums to (8.52). For Lévy processes however,
a simpler approach can be used. Suppose that f and its two derivatives are
bounded by a constant C'. Then

|f(Xoe + AX) — f(Xeo) = AXf'(X,0)| < CAXE.

This means that the sum in (8.52) is finite (see Proposition 3.11). Now recall
that every Lévy process may be represented as X; = X7 + R} such that X7 is
a jump-diffusion process and R§ is a mean-zero square integrable martingale
and Var R — 0 as ¢ — 0 (see the proof of Proposition 3.7). Since the first
derivative of f is bounded,

2
|F(Xe) = F(X7)|” < C*(RP)™
This estimate implies that f(X;) = lim._o f(X;) in L?*(P). But X is a

jump-diffusion process, so we can use the formula (8.51) and taking the limits
in this formula we obtain exactly the expression (8.52).
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When computing expectations, it is useful to decompose the semimartingale
Y:; = f(X;) into a martingale part and a drift term. This can be done by
plugging the Lévy-Itd decomposition for X into the stochastic integral part
of (8.52) and rearranging the terms.

PROPOSITION 8.16 Martingale-drift decomposition of functions
of a Lévy process

Let (Xt)i>0 be a Lévy process with Lévy triplet (0?,v,7) and f :R - R a
C? function such that f and its two derivatives are bounded by a constant
C. Then'Y; = f(Xy) = My + Vi where M is the martingale part given by

M, = f(Xo) + / F (X )odW, + / Jx(ds dy)[f(Xee + 1) — F(Xo ),

[0,¢] xR

and Vi a continuous finite variation process:

t 2 t
V= [ i [y s

+ / ds V(dy)[f (X + 1) — F(Xo) —yf (Xe )L yica)- (8.53)
[0,t] xR

In differential form, Formula (8.52) can be expressed as follows:

2
df (X¢) = %f”(Xt)dt + (X )dXe + f(Xe) — f(Xpm) — AX f/(Xpo).

In applications it is often useful to generalize formula (8.52) to the case where
[ explicitly depends on time. Suppose once again that (X;);co0,7) is a Lévy
process with Lévy triplet (02,v,v) and that f € C12([0,T] x R,R). Then

t
00 = £0.%0) = [ Fhsxax,

tof o2 0%f
—|—/0 [%(S,Xs)—F?W(S,XS)}dS
+ > [f(s,Xs,+AXS)_f(s,Xs,)_Axsg—f(s,Xs,)]. (8.54)

X
0<s<t
AX#0

The reader can easily derive the generalization of martingale-drift represen-
tation in this case.

If the Lévy process is of finite variation, there is no need to subtract
AX,f'(Xs—) from each term of the sum in (8.52). In this case the Itd formula
can be simplified and is valid under weaker regularity assumptions on f.
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PROPOSITION 8.17 It6 formula for Lévy processes: finite varia-
tion jumps

Let X be a finite variation Lévy process with characteristic exponent

o0

W (1) = ibu + / (€™ — 1)u(dy), (8.55)

(oo}

where the Lévy measure v verifies [ |ylv(dy) < oo. Then for any C*' function
F:00,T] xR — R,

X0 = 10.X0) = [ 15005, X0) b5 5. X, s
AX,#£0

+ 3 [F(X + AX) — f(X)].
0<s<t

If [ and its first derivative in x are bounded, then Yy = f(t,Y};) is the sum of
a martingale part given by

I/ T Xae ty) — F(s, Xa ) T (ds dy) (8.56)

and a “drift” part given by:

‘ro 9
/O {a—i(s,xs_) + ba—f(s,Xs_)} ds

+ / ds / v(dy)[f (s, X +5) — F(5, Xas)]. (857)

The next step in generalizing the It6 formula is to allow f to depend on a
multidimensional Lévy process.
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PROPOSITION 8.18 It6 formula for multidimensional Lévy pro-
cesses

Let X; = (X}, ..., X®) be a multidimensional Lévy process with character-
istic triplet (A,v,~). Then for any C*? function f :[0,T] x R® — R,

f(t, X;) — £(0,0) /ZaxlSX )dXx: /a 5, X5)
/Z ”8 8 sXS)ds

AX#0 d f
+ Y [f(s,Xs_ +AX,) — f(s, X)) =Y AX{ (5 Xo-)

0<s<t i=1

8.3.4 It6 formula for semimartingales

If X is a Lévy process then Y; = f(t, X;) is not a Lévy process anymore;
however, it can be expressed in terms of stochastic integrals so it is still a
semimartingale. Therefore, if (Y;) is a random process driven by the Lévy
process (X;), in order to consider quantities like f(¢,Y;), we need to have a
change of variable formula for discontinuous semimartingales such as (Y3).

On the other hand, as already mentioned, the formulae presented above
are pathwise in nature: they do not exploit the probabilistic properties of
the processes involved but only the local structure of their sample paths. In
particular, the formulae for functions of Lévy processes have nothing to do
with the independence and stationarity of their increments! This implies that
these results remain valid for functions of more general semimartingales, with
time inhomogeneities and complex dependence structures in their increments.

Let X be a semimartingale with quadratic variation process [X, X]. Since
the quadratic variation is an increasing process, it can be decomposed into
jump part and continuous part. The continuous part will be denoted by
[X, X]e.
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PROPOSITION 8.19 Ité6 formula for semimartingales
Let (X¢)i>0 be a semimartingale. For any CY2 function f:[0,T] x R — R,

t a ¢ 8
f(t,Xt)—f(o,Xo)z/O a—ﬁ(s,xs)dﬁ/o 5—£(5’Xs—)dXs
1 [t
2, 6_33]26(8»X57)d[X,X]§
)
+ Oggt [f(S7XS) B f(syxs_) o AXSa—i(S;XS—)}.
AX#0

PROOF  For simplicity, we will give a proof in the case where f has no
time dependence. Our proof follows the one given in [323]. Consider a random
partition Tp = 0 < T} < --- < Tp,11 = t. The idea is to write f(X;) as the
sum of its increments, then use a second order Taylor expansion:

fly) = fl@) + @)y —a) + f'(@)(y —2)*/2 + r(z,y)
and let sup |T; — T;-1] go to zero almost surely.

n n

f(Xt) - f(XO) = Z{f(XTL+1> - f(XT1>} = Z f/(XTi>(XTL'+1 - XTi)

1
+ 5 Z f/,(XTi)(XTi+1 - XTi)2 +

n
i=0 =0

T(XT1‘+1 ’ XTi)

The difficulty is to control the influence of jumps in each term. The key obser-
vation is that X has a well defined quadratic variation so Y AX? converges
almost surely. For e > 0, let A C [0,7] x Q such that > . .., AXZ <eon A
and B = {(s,w) ¢ A,AX; # 0}. The sum above can be rewritten as:

f(Xt) - f(XO) = Z f/<XTi)(XTi+1 - XTl) + % Z flI(XTi)(XTi+1 - XTi)2
i=0 =0

+ > {F&n) - f(Xn) - (X)) (X, - Xa)

BN]T;, Tiq1]#0

1
- Ef//(XTi)(XTH—l - Xqu)z} + Z T(XTi’ Xth+1)'
BN|T;,Tiy1]=0

When sup |T;11 — T;| — 0 a.s. the first two terms are Riemann sums which,
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by Proposition 8.4, converge to the following expressions:

The third term converges to:

Z {f(Xs) - f(Xsf) - AXsf/(Xsf) - f//(Xsf)|AXs‘2} . (858)
B

The remainder term verifies: r(z,y) < (y — z)?a(|z — y|) with a(u) — 0 as
u — 0. Since the fourth sum only contains terms with BN|T;, T;41] = 0,
| X7, |T;+1 — T;| small enough, so when sup |T;41 — T;| — 0,
each term is smaller than a(2e):

Z | (XT 7XTL+1)| < a<2€> Z(XTL+1 - XTL)2

BN|T;,Ti1]=0 p
a(26)[X, X]; — 0 as sup |T;41 — T;| — 0.

Let us now show that (8.58) converges absolutely when ¢ — 0. Assume first
that X is a bounded process: |X| < K. Since f” is continuous on [—K, K|,
there exists a constant ¢ such that |f”(x)| < ¢ for |z| < K. Therefore,

DX = f(Xe) = AX (X ) < e Y JAX < ofX, X] < o0
2553 ggsit

Z |f//(Xsf)AX§| < C[X, X]t < 0.

0<s<t
AX s H#0

If X is not bounded, we can replace X by X1y 7, where Ty = inf{t >
0,|X¢| > K} and repeat the same analysis for any K > 0. Therefore, (8.58)
converges to

Z {f(Xs) - f(Xsf> - AXsfl(Xsf) - f//(Xsf)‘AXsP} .

0<s<t

Summing up all the terms we get:

F(X)) — F(Xo) /f )dXs 4 = /f” X1,
+ ) {f(X, o) = AXLf'(Xeo) — f7(Xoo)|AX P}

0<s<t
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Since

[ e, = [ £ Y FOIAXP,

0<s<t

we obtain (8.58). (]

Martingale — drift decompositions similar to Proposition 8.16 can also be
obtained for general semimartingales, but these results involve some new no-
tions (predictable characteristics of semimartingales) that we do not discuss
here; curious readers are referred to [215]. In Chapter 14, we discuss such
decompositions for additive processes, which are generalizations of Lévy pro-
cesses allowing for time dependent (but deterministic) characteristics.

REMARK 8.4 The It6 formula can be extended to convex functions
which are continuous but not differentiable, a typical example being the call
option payoff function f(z) = (z — K)*. Such a convex function always has
a left derivative which we denote by f’ but its second derivative f” is given
by a Radon measure p, not necessarily a function (in the example above it
is a Dirac measure dx ). The extended change of variable formula, called the
Tanaka-Meyer formula, then reads:

F(X0) — F(Xo) = / F1(X)dX, + 2 /O L plda)
+ Z {f S - sf)_AXSfl(Xsf)}»

0<s<t

(8.59)

where Ly is a continuous, nonanticipating, increasing process called the local
time of X at x [194, Theorem 9.46].

8.4 Stochastic exponentials vs. ordinary exponentials

In the Black-Scholes model, the evolution of an asset price was described
by the exponential of a Brownian motion with drift:

S, = Sy exp(BY), (8.60)

where BY = ut + oW, is a Brownian motion with drift. Applying the It6
formula we obtain:

d § t
% — (N’ + %)dt + odW,; = dBtl or S; =50+ / Sudelu (861)
f 0
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where B} = (u+0?/2)t+0W, is another Brownian motion with drift. We will
now study these two ways of constructing “exponential processes” in the case
where the Brownian motions B®, B! are replaced by a Lévy process. Replacing
BY by a Lévy process in (8.60) we obtain the class of exponential-Lévy models:
S; = Spexp X; where X is Lévy process. Replacing B} by a Lévy process
in (8.61) we obtain the stochastic exponential, introduced by Doléans-Dade
[115]. This process satisfies a stochastic differential equation of the same form
as the classical ordinary differential equation for the exponential function:

t
St = S() +/ Su,qu.
0

8.4.1 Exponential of a Lévy process

Let (X:)i>0 be a Lévy process with jump measure Jx. Applying the It
formula to Y; = exp X; yields:

t 2 t
Yt:1+/ YS_dXSJrU—/ Y,_ds
0 2 0

+ g (eXS*JFAXS — e — AX %)
0<s<t;AX#0

t 2 gt
=1 —|—/ Y,_dX, + U—/ Y,_ds —|—/ Yi—(e® =1 —2)Jx(ds dz)
0 2 Jo [0,4] xR

or, in differential notation:

2
% _ dXy + Zodt + (2% — 1 — AX,). (8.62)
Y- 2

Making an additional assumption that E[|Y;|]] = Elexp(X;)] < oo, which is
by Proposition 3.14 equivalent to saying that f‘y‘>1 eYv(dy) < oo, we can
decompose Y; into a martingale part and a drift part, where the martingale
part is the sum of an integral with respect to the Brownian component of X
and a compensated sum of jump terms:

t
M, =1+ / Yo odW, + / Yo (e% — 1)Jx(ds dz),  (8.63)
0 [0,t]xR

while the drift term is given by:

t 0_2 o ;
/0 Y, {’}/ t5 +[ (* =1 —zl;<1)v(dz)| ds. (8.64)
Therefore, Y; = exp(X;) is a martingale if and only if the drift term vanishes,
that is,
0.2 00
v+ - +/ (e =1 =zl <1)v(dz) = 0. (8.65)
—o0
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This result can of course be retrieved in a simpler way: by Proposition 3.17,
Y is a martingale if and only if Elexp X;] = E[Y;] = 1. But Elexp X;] =
exp[tx (—1i)], where ¢ x is the characteristic exponent of X. Therefore, we
obtain once again:

2 o0
Wx(—1) Z’}/-‘r%—F/ (62—1—21|z|§1)1/(dz) =0.

These properties are summarized in the following proposition:

PROPOSITION 8.20 Exponential of a Lévy process
Let (X)i>0 be a Lévy process with Lévy triplet (o2, v,~) verifying

/ ev(dy) < .
ly[>1

Then Yy = exp X, is a semimartingale with decomposition Y; = My + A
where the martingale part is given by

t
M, =1 —|—/ Yi_odWy —|—/ Yi_(e* — 1)Jx(ds dz), (8.66)
0 [0,t]xR
and the continuous finite variation drift part is given by

t 2 [e'e)
0 —o0

(Yz) is a martingale if and only if

2 )
L % +/ (€® =1zl <1)v(dz) = 0. (8.68)

8.4.2 The stochastic (Doléans-Dade) exponential

PROPOSITION 8.21 Doléans-Dade exponential
Let (X)i>0 be a Lévy process with Lévy triplet (o%,v,7). There exists a
unique cadlag process (Z)¢>o such that

dZ, = Z,_dX,  Zy=1. (8.69)

© 2004 by CRC Press LLC



Z is given by:

Zy =X [ (14 AX e 25, (8.70)

0<s<t

If fil |z|v(dx) < oo then the jumps of X have finite variation and the stochas-
tic exponential of X can be expressed as

1
o2t
Z, = e?Wetnot—23t H (1+ AX,) where v =7 f/ av(dz) (8.71)
0<s<t -1

PROOF  Our proof partly follows [215]. Let

Vv, = [I +axg)esX.
0<s<t;AX#0

The first step is to show that this process exists and is of finite variation. We
decompose V into a product of two terms: V;, = V/V}/, where

V= JI Q+axge % and V= [ (1+AX)e 2%
0<s<t 0<s<t

[AXs|<1/2 [AXs|>1/2

V" for every t is a product of finite number of factors, so it is clearly of finite
variation and there are no existence problems. V' is positive and we can
consider its logarithm.

InV, = > (In(1+ AX,) — AX,).
0<s<t|AX[<1/2

Note that each term of this sum satisfies
0>1In(l+AX,) - AX, > -AX2

Therefore, the series is decreasing and bounded from below by — Y~ .., AX?Z,
which is finite for every Lévy process (see Proposition 3.11). Hence, (InV})
exists and is a decreasing process. This entails that (V;) exists and has tra-
jectories of finite variation.

The second step is to apply the It6 formula for semimartingales to the
function Z; = f(¢, X4, Vi) = eXe=’t/2y,  This yields (in differential form)

o2 X o2t X a2t X o2t
dZ; :f?(i =2 Vi_dt +ett" 2 Vi_dXy et 2 dV,
+ %ext**TtV;_dtheXt*TtV; — eth*TtV;_

o2t o
— XV, AX, — X7 AV
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Now observe that since V; is a pure jump process,
dV, = AV, = Vi_ (2% (1 4+ AX,) — 1).

Substituting this into the above equality and making all the cancellations
yields the Equation (8.69).

To understand why the solution is unique, observe that if (Zt(l)) and (Zt(2))
satisfy the Equation (8.69), then their difference Zy = Zt(l) — Zt(Q) satisfies the
same equation with initial condition Zy = 0. From the form of this equation,

it is clear that if the solution is equal to zero at some point, it will remain
Z€ro.

7 is called the stochastic exponential or the Doléans-Dade exponential of
X and is denoted by Z = £(X). Notice that we could have defined it for an
arbitrary semimartingale and not only for a Lévy process: the proof does not
use the independence or stationarity of increments.

8.4.3 Relation between ordinary and stochastic exponential

It is clear from the above results that the ordinary exponential and the
stochastic exponential of a Lévy process are two different notions: they do not
correspond to the same stochastic process. In fact, contrarily to the ordinary
exponential exp(X;), which is obviously a positive process, the stochastic
exponential Z = £(X) is not necessarily positive. It is easy to see from the
explicit solution (8.70) that the stochastic exponential is always nonnegative
if all jumps of X are greater than —1, or, equivalently, v((—oo, —1]) = 0.

It is therefore natural to ask, which of the two processes is more suitable
for building models for price dynamics. However the following result, due
to Goll and Kallsen [170], shows that the two approaches are equivalent: if
Z > 0 is the stochastic exponential of a Lévy process then it is also the
ordinary exponential of another Lévy process and vice versa. Therefore, the
two operations, although they produce different objects when applied to the
same Lévy process, end up by giving us the same class of positive processes. In
the continuous case this result is very simple to understand: if X; = cW; is a
Wiener process then the ordinary and stochastic exponential are respectively
given by

a2t
Y, =Wt and 7, = "Wt (8.72)

therefore the stochastic exponential of a Brownian motion is also the ordinary
exponential of another Lévy process L, that is in this case a Brownian motion
with drift: L, = oW, — ‘%t

The following result generalizes this remark to Lévy processes with jumps.
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PROPOSITION 8.22 Relation between ordinary and stochastic
exponentials

1. Let (X¢)t>0 be a real valued Lévy process with Lévy triplet (o2, v,v) and
7Z = E(X) its stochastic exponential. If Z > 0 a.s. then there exists
another Lévy process (Ly)i>o triplet (02, ,vp, L) such that Z; = el

where
Li=WnZ = Xt——+ > {m(1+AX,) - AX,}. (8.73)
S 0<s<t

V() = v({z  n(1 + 2) € A}) = /IA(ln(l + 2))w(dz), (8.74)

0.2
=y - o+ /V(dff) {In(1 + 2)1_y 1y (In(1 + 2)) — 21—y 9(2)} .

2. Let (Lt)i>o0 be a real valued Lévy process with Lévy triplet (o3, vr, L)

and S; = exp L; its exponential. Then there exists a Lévy process
(X1)i>0 such that Sy is the stochastic exponential of X: S = E(X)
where
X, =L; + —+ Z {eAts —1 - AL,}. (8.75)
0<s<t

The Lévy triplet (0%, v,7) of X is given by:

0 =0L,

v(A)=vi({z:e"—1€ A}) = /1,4(6‘” — Vv (do), (8.76)
o2

v =L+ ?L + / vy (dx) {(ez =Dl g(e” = 1) —al_q (z)} .

PROOF 1. The condition Z > 0 a.s. is equivalent to AXg > —1 for all s
a.s., so taking the logarithm is justified here. In the proof of Proposition 8.21
we have seen that the sum Y ., {In(1 + AX,) — AX,} converges and is
a finite variation process. Then it is clear that L is a Lévy process and that
oy, = 0. Moreover, AL, = In(1 + AXj) for all s. This entails that

T0([0,4] x A) = / 1a(In(1 4+ 2))Jx (ds dz)

[0,¢t] xR

and also vy (A) = [14(In(1 + 2))v(dz). It remains to compute . Substi-
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tuting the Lévy-1t6 decomposition for (L;) and (X;) into (8.73), we obtain

Qt ~
th—vt—i—a— +/ xJp(ds dx)—i—/ zJp(ds dz)
2 s€[0,t],]z|<1 s€[0,t],|z[>1

- / xJx(ds dx) — / xJx(ds dx)

s€[0,t],]z|<1 s€[0,t],]z|>1
- Y {n(1+AX,) - AX,} =0.
0<s<t

Observing that

/ x(Jr(ds dx) — Jx(ds dx))
s€[0,t],|x|<1

= 3 (AX. 1 1(AX,) — In(1+ AX )1y y(In(l + AX)))

0<s<t

converges, we can split the above expression into jump part and drift part,
both of which must be equal to zero. For the drift part we obtain:

yL — 7+ % - /_l{qu(dm) —zv(dx)} =0,

which yields the correct formula for ~;, after a change of variable.

2. The jumps of S; are given by AS; = S;_ exp(AL;) —1). If X is a Lévy
process such that S = £(X) then since dS; = S;_dX; then AS; = S; AX;
so AX; = exp(AL¢) — 1 so v is given by (8.76). In particular AX; > —1
a.s. and it is easily verified that In £(X) is a Lévy process with characteristics
matching those of L only if X has characteristics given by (8.76). Conversely
if X is a Lévy process with characteristics given by (8.76), using (8.70) we
can verify as above that £(X) = exp L.

As a corollary of this result, we will now derive an important property of
stochastic exponentials, shown here in the case of Lévy processes:

PROPOSITION 8.23 Martingale preserving property
If (X)i>0 is a Lévy process and a martingale, then its stochastic exponential
7Z = E(X) is also a martingale.

PROOF  Let (X;);>0 be a Lévy process with characteristic triplet (o2, v, )
such that v + fl$|>1 azv(dx) = 0 (this is the martingale condition). First,

suppose that |[AX,| < e < 1 a.s. Then by Proposition 8.22 there exists a
Lévy process L; such that e®* = Z,. Moreover, this process has bounded
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jumps and therefore admits all exponential moments. Again, by Proposition
8.22, we can write:

2

o0 1
et e [ 1 stela) =0+ [ ) - )

+ /Oo (€* =1 =2zl <1)vi(dz) = /_OO {(e = vp(dz) — zv(dz)} =0

—00

because AX, = eLs — 1 for all s. Therefore, by Proposition 8.20, Z, = et
is a martingale.

The second step is to prove the proposition when X is a compensated
compound Poisson process. In this case, the stochastic exponential has a very
simple form:

Zy =" ] (1+AX,),

0<s<t

where b = — [*°_zv(dz). Denoting the intensity of X by A, we obtain

E[Z;] = e M0t i %(1 + E[AX])" = 1.

n=0

Together with the independent increments property of X this proves that Z
is a martingale.

Now let X be an arbitrary martingale Lévy process. It can be decomposed
into a sum of a compensated compound Poisson process X’ and an indepen-
dent martingale Lévy process with jumps smaller than e, denoted by X”.
Since these two processes never jump together, £(X’ + X") = £(X")E(X").
Moreover, each of the factors is a martingale and they are independent, there-
fore we conclude that £(X’ + X”) is a martingale.

E(X) is an example of an “exponential martingale” associated to X. One
can use this correspondence to define the notion of stochastic logarithm of a
Lévy process [229], i.e., a process L(X) such that £(L(X)) = X.

Further reading

The relation between the theory of stochastic integrals and continuous time
trading strategies was pointed out by Harrison and Pliska in [191] and [192],
which remain one of the most readable accounts on this topic. These papers
also contain examples of market models driven by Poisson processes.
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Most introductory (and less introductory) texts on stochastic calculus al-
most exclusively deal with Brownian motion and continuous semimartingales,
see, e.g., [335]. Stochastic integration for discontinuous processes is presented
in [55, 110, 210, 215, 324, 194, 205]. In the “classical” approach to stochas-
tic integration, semimartingales are defined as processes which can be ex-
pressed as the sum of a (local) martingale and a process with finite variation
and the integration theory is subsequently developed. While Dellacherie and
Meyer[110] remains the classical reference on this approach, a detailed ac-
count can be found in [194] and the main results are summarized in [215].
This approach is less intuitive for our purpose since there is no a priori rea-
son to model an asset price as the sum of a martingale and a finite variation
process.

The approach we have adopted here is due to Protter [324, 323]: semi-
martingales are first defined as processes with good integration properties
(Definition 8.2) and then one proceeds to show that usual stochastic pro-
cesses are semimartingales. A very readable account of this approach is given
in [323].

Stroock [370] discusses in detail the construction of stochastic integrals in
the framework of Markov processes using Ito’s original approach. The dif-
ference between componentwise and vector stochastic integration is carefully
discussed in [89] and [90]. Stochastic integration with respect to Poisson ran-
dom measures is discussed in [205], see also [242, 306]. Stochastic integration
with respect to more general random measures is discussed in [215].

Stochastic integrals can be extended to integrands which are more general
than caglad, but as pointed out before, in order to interpret the stochastic
integral of a trading strategy as the gain process, we need to be able to
approximate the stochastic integral pathwise by Riemann sums, hence we
have limited integrands to caglad processes. This point is further discussed
in [382].

There exist alternative approaches to stochastic integration, some of them
having pathwise interpretations, the most well known being the Stratonovich
integral, so one may wonder whether alternative models for continuous trading
could be built from these constructions. But these approaches do not neces-
sarily yield nonanticipating gain processes when applied to a trading strategy,
which makes it difficult to give them a financial interpretation. The relation
between It6 and Stratonovich integrals is discussed in [207].

Stochastic exponentials were introduced in [115] and are linked to “Wick”
exponentials used in theoretical physics. They are important for constructing
various exponential martingales and studying transformations of probability
measures on path space, as will be pointed out in the next chapter. A discus-
sion of stochastic exponentials can be found in [215, Chapter II].
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Chapter 9

Measure transformations for Lévy
processes

It might be possible to prove certain theorems [about probability], but
they might not be of any interest since, in practice, it would be impossible
to verify whether the assumptions are fulfilled.

Emile Borel

As noted in Chapter 3, a Lévy process (X;);c[o,7] can be considered as a
random variable on the space = D([0,7]) of discontinuous (cadlag) paths,
equipped with its o-algebra F telling us which events are measurable or, in
other words, which statements can be made about these paths. The probabil-
ity distribution of X then defines a probability measure PX on this space of
paths. Now consider another Lévy process (Y;)¢cjo,7) and PY its distribution
on the path space 2. We will discuss in this chapter conditions under which
PX and PY are equivalent probability measures, in the sense that they define
the same set of possible scenarios:

PX(A) =1 < PY(4)=1.

If PX and PY are equivalent, then the stochastic models X and Y define the
same set of possible evolutions. The construction of a new process on the
same set of paths by assigning new probabilities to events (i.e., reweighting
the probabilities) is called a change of measure. To emphasize the fact that
we are working under a specified measure, in this chapter we will often write
(X,P) to denote the process X and the corresponding distribution it defines
over scenarios.

Given a probability measure P on the path space Q = D([0,T]), equiva-
lent measures may be generated in many ways: given any (path-dependent)
random variable Z > 0 on Q with E¥[Z] = 1, the new probability measure
defined by adjusting the probability each path w € Q by Z(w):

dQ

Vit Z, ie., VAeF, Q(A)=EF[Z1,],
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is equivalent to P. If we restrict our attention to events occurring between 0
and t then each path between 0 and ¢ is reweighted by Z;(w) = E[Z|F]):

d
Qr, _ Zy  VYAEF, Q(A)=E"[Z1a) (9.1)
P,
By construction, (Z;) is a strictly positive martingale verifying F[Z;] = 1.

Conversely, any strictly positive martingale (Z;):eo,7) with E[Z;] = 1 defines
a new measure on path space given by (9.1). Though the processes defined
by P and Q share the same paths, they can have quite different analytical and
statistical properties. For example, if P defines a Lévy process X, the process
Y defined by Q is not necessarily a Lévy process: it may have increments which
are neither independent nor stationary. Given a class of processes, such as
Lévy processes, it is investigate to investigate structure-preserving changes of
measure which leave a given process within the class after a change of measure.

When X and Y are both Lévy processes, the equivalence of their measures
gives relations between their parameters. As an example, take a Poisson
process X with jump size equal to 1 and intensity A. Then, with probability
1, the paths of X are piecewise constant with jumps equal to 1. Let Y be
another Poisson process on the same path space, with intensity A and jump
size equal to 2. The measures corresponding to X and Y are clearly not
equivalent since all the trajectories of Y that have jumps have zero probability
of being trajectories of X and vice versa. However, if Y has the same jump
size as X but a different intensity A then every trajectory of X on [0,7T] can
also be a possible trajectory of Y and vice versa, so the two measures have a
chance of being equivalent (we will see later that this is indeed the case).

This example also shows that two stochastic processes can define equivalent
measures on scenarios while having different statistical properties. We will
distinguish properties that are invariant under equivalent change of measure
from those that are not. This will allow us to differentiate between “pathwise”
or “almost sure” properties — properties of the process that can be deduced
from the observation of a typical sample path — and the “statistical” prop-
erties, which are not preserved by an equivalent change of measure. This
distinction is particularly important in financial modelling since when dealing
with empirical data we observe a single trajectory of the price; considering the
price history to be a typical sample path of a stochastic model we can infer
its pathwise properties but its statistical properties may be harder to detect
unless stronger hypotheses are made. In the above example, a Poisson process
X is transformed into another Poisson process with a different intensity. This
is an example of a structure-preserving transformation. Structure preserv-
ing changes of measure are interesting since they enable us to stay within an
analytically tractable family of models. We will see more examples of such
structure-preserving changes of measure for various types of Lévy processes
in this chapter.

Equivalent changes of measure play an important role in arbitrage pricing
theory. Two important concepts in the mathematical theory of contingent
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claim pricing are the absence of arbitrage, which imposes constraints on the
way instruments are priced in a market and the notion of risk-neutral pricing,
which represents the price of any instrument in an arbitrage-free market as its
discounted expected payoff under an appropriate probability measure called
the “risk-neutral” measure. Both of these notions are expressed in mathemat-
ical terms using the notion of equivalent change of measure: we will see that
in a market model defined by a probability measure P on market scenarios
there is one-to-one correspondence between arbitrage-free valuation rules and
risk-neutral probability measures Q equivalent to P verifying a martingale
property.

In this chapter, we will discuss equivalent changes of measure, their relation
to arbitrage pricing and market completeness and give examples in the case
of Lévy processes. Section 9.1 discusses the notions of risk-neutral pricing,
absence of arbitrage and equivalent martingale measures in a general setting.
In the following sections, these notions are examined in the context of models
where randomness is generated by a Lévy process: Section 9.3 considers the
simple cases of Poisson processes, compound Poisson processes and Brownian
motion with drift and Section 9.4 gives the results for general Lévy processes.
Section 9.5 gives an example of structure-preserving change of measure for
Lévy processes, the Esscher transform.

Equivalent probability measures are defined on the same set of scenarios
and are comparable. The notion of relative entropy, discussed in Section 9.6,
defines a “distance” between two equivalent probability measures. It turns
out that relative entropy can in fact be explicitly computed in the case of
Lévy processes; this fact will be used in Chapter 13 when we will discuss
model calibration.

9.1 Pricing rules and martingale measures

In this section we will attempt to explain the fundamental concepts behind
risk-neutral pricing, absence of arbitrage and equivalent martingale measures
using a minimum of jargon and technicality. Readers thirsty for more technical
expositions are referred to [190, 191, 226, 109].

Consider a market whose possible evolutions between 0 and T" are described
by a scenario space (€2, F): F contains all statements which can be made about
behavior of prices between 0 and 7. Underlying assets may then be described
by a nonanticipating (cadlag) process:

S:[0,T] x Q s R
(t,w) = (SP (W), SF (W), .., SP(W)), (9.2)

where S}(w) represents the value of asset i at time ¢ in the market scenario

© 2004 by CRC Press LLC



w and S} is a numeraire. A typical example of numeraire is a cash account
with interest rate r: SY = exp(rt). Discounting is done using the numeraire
SY: for any portfolio with value V;, the discounted value is defined by

.
Vi=—=
t S?

and B(t,T) = S?/S% is called the discount factor. In the case where the
numeraire is S{ = exp(rt), the discount factor is simply given by B(¢,T) =
exp[—r(T —t)]. We denote by (F)seo,r) the information generated by the
history of assets up to t. Fy contains no information and Fpr = F is the
history of all assets up to T'. One could include other sources of information
than just price histories but this is the framework assumed in the majority of
pricing models. A contingent claim with maturity 7" may be represented by
specifying its terminal payoff H(w) in each scenario: since H is revealed at
T it is a Fr-measurable map H : £ — R. In practice, one does not consider
all such contingent claims but a subclass of payoffs with some properties and
various choices are possible. We will denote the set of contingent claims of
interest by H. Of course, the underlying assets themselves can be viewed as
particular contingent claims whose payoff is given by the terminal value S&.: it
is therefore natural to assume Si € H. Other examples are European calls and
puts: H = (K —S5)*, H = (K —S%)" and path dependent options, where H
can depend on the whole path of the underlying H(w) = h(S;(w),t € [0,T]).

A central problem in this context is the valuation problem: how can we
attribute a notion of “value” to each contingent claim H € H? A pricing
rule (also called a valuation operator) is a procedure which attributes to each
contingent claim H € H a wvalue II;(H) at each point in time. There are
some minimal requirements that IT;(H) should verify to qualify as a pricing
rule. First, if the pricing rule is to be of any use, one should be able to
compute the value II;(H) using the information given at t: II;(H) should be
a nonanticipating process. A second requirement is positiveness: a claim with
a positive payoff should naturally have a positive value:

Vw e Q H(w) > 0=Vt [0,T],I,(H) > 0. (9.3)

Another requirement is linearity: the value of a portfolio is given by the sum
of the values of its components:

J
(> Hj) = ZHt(Hj). (9.4)

j=1

Linearity may actually fail to hold for large portfolios: large block trades
may be given discount prices on the market. We will encounter below some
examples of pricing rules which are in fact nonlinear. But let us focus for the
moment on linear pricing rules.
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For any event A € F, the random variable 14 represents the payoff of a
contingent claim which pays 1 at T" if A occurs and zero otherwise: it is a bet
on A (also called a lottery). We will assume that 14 € H: such contingent
claims are priced on the market. In particular 1o = 1 is just a zero-coupon
bond paying 1 at T'. Its value II;(1) represents the present value of 1 unit of
currency paid at 7T, i.e., the discount factor:

(1) = e "1,
Define now Q : 7 — R by

- IIp(14)

Q(A) = (1) =" TTy(14). (9.5)

Q(A) is thus the value of a bet of nominal exp(rT") on the event A. Then, the
linearity and positiveness of II entail the following properties for Q:

e 1>Q(A)>0,since 1 > 14 <0.

e If A, B are disjoint events 1 4up = 14+1p5 so by linearity of the valuation
operator: Q(AU B) = Q(A) + Q(B).

If one extends the linearity (9.4) to infinite sums, then Q defined by (9.5) is
nothing else but a probability measure over the scenario space (,F)! So,
starting from a valuation rule II, we have constructed a probability measure
Q over scenarios. Conversely, II can be retrieved from Q in the following way:
for random payoffs of the form H = > ¢;14, which means, in financial terms,
portfolios of cash-or-nothing options, by linearity of II we have IIg(H) =
EQ[H]. Now if II verifies an additional continuity property (i.e., if a dominated
convergence theorem holds on H) then we can conclude that for any random
payoff H € H,

o(H) = e " EY[H]. (9.6)

Therefore there is a one-to-one correspondence between linear valuation rules
IT verifying the properties above and probability measures @Q on scenarios:
they are related by

oy(H) = e " TVEQH] and Q(A) = " T V1Iy(1,4). (9.7)

The relation (9.6) is sometimes called a risk-neutral pricing formula: the value
of a random payoff is given by its discounted expectation under Q. We have
shown above that any linear valuation rule 11 verifying the properties above is
given by a “risk-neutral” pricing rule: there are no others! It is important to
understand that Q has nothing to do with the actual/objective probability of
occurrence of scenarios: in fact, we have not defined any objective probability
measure on the scenarios yet! Q is called a risk-neutral measure or a pricing
measure. Although it is, mathematically speaking, a probability measure on
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the set of scenarios, Q(A) should not be interpreted as the probability that
A happens in the real world but as the value of a bet on A. A risk-neutral
measure is just a convenient representation of the pricing rule IT: it is not
obtained by an econometric analysis of time series or anything of the sort,
but by looking at prices of contingent claims at ¢ = 0.

Similarly for each ¢, A+ A = e"1I;(1,4) defines a probability measure over
scenarios between 0 and ¢, i.e., a probability measure Q; on (2, F;). If we
require that the pricing rule II is time consistent, i.e., the value at 0 of the
payoff H at T is the same as the value at 0 of the payoff II,(H) at ¢ then Q
should be given by the restriction of Q, defined above, to F; and II;(H) is
given by the discounted conditional expectation with respect to Q:

IL,(H) = e " T EQH|F,. (9.8)

Therefore we have argued that any time consistent linear pricing rule I1 verify-
ing some continuity property is given by a discounted conditional expectation
with respect to some probability measure Q. We will now consider such a
pricing rule given by a probability measure Q and examine what restrictions
are imposed on Q by the requirement of absence of arbitrage.

9.1.1 Arbitrage-free pricing rules and martingale measures

Assume now that, in addition to the market scenarios (2, F) and the in-
formation flow F;, we know something about the probability of occurrence
of these scenarios, represented by a probability measure P. P represents here
either the “objective” probability of future scenarios or the subjective view
of an investor. What additional constraints should a pricing rule given by
(9.8) verify in order to be compatible with this statistical view of the future
evolution of the market?

A fundamental requirement for a pricing rule is that it does not generate
arbitrage opportunities. An arbitrage opportunity is a self-financing strat-
egy ¢ which can lead to a positive terminal gain, without any probability of
intermediate loss:

P(Vt € [0,T],Vi(¢) >0) =1,  P(Vir(¢) > Vo(e)) # 0.

Of course such strategies have to be realistic, i.e., of the form (8.2) to be of
any use. Note that the definition of an arbitrage opportunity involves P but
P is only used to specify whether the profit is possible or impossible, not to
compute its probability of occurring: only events with probability 0 or 1 are
involved in this definition. Thus the reasoning in the sequel will not require
a precise knowledge of probabilities of scenarios. The self-financing property
is important: it is trivial to exhibit strategies which are not self-financing
verifying the property above, by injecting cash into the portfolio right before
maturity. A consequence of absence of arbitrage is the law of one price: two
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self-financing strategies with the same terminal payoff must have the same
value at all times, otherwise the difference would generate an arbitrage.

Consider now a market where prices are given by a pricing rule as in (9.8)
represented by some probability measure Q. Consider an event A such that
P(A) = 0 and an option which pays the holder 1 (unit of currency) if the
event A occurs. Since the event A is considered to be impossible, this option
is worthless to the investor. But the pricing rule defined by Q attributes to
this option a value at ¢ = 0 equal to

o(14) = e "TEC[14] = e " TQ(A).

So the pricing rule Q is coherent with the views of the investor only if Q(A) =
0. Conversely if Q(A) = 0 then the option with payoff 14 > 0 is deemed
worthless; if P(A) # 0 then purchasing this option (for free) would lead to
an arbitrage. So the compatibility of the pricing rule Q with the stochastic
model P means that Q and P are equivalent probability measures: they define
the same set of (im)possible events

P~Q:VAEF Q(A)=0 < P(A)=0. (9.9)

Consider now an asset S* traded at price S;. This asset can be held until T,
generating a terminal payoff S, or be sold for S;: the resulting sum invested
at the interest rate  will then generate a terminal wealth of e"(7=*)S?. These
two buy-and-hold strategies are self-financing and have the same terminal
payoff so they should have the same value at ¢:

EQSL|F] = EQerT-98!HF] = " T g1 (9.10)
Dividing by S% = "7 we obtain:

S;

o b EQ[SL|F) = S (9.11)
t

Si
EQ[S*Q}H -

Therefore absence of arbitrage implies that discounted values S = e~"ti
of all traded assets are martingales with respect to the probability measure
Q. A probability measure verifying (9.9) and (9.11) is called an equivalent
martingale measure. We have thus shown that any arbitrage-free pricing rule
is given by an equivalent martingale measure.

Conversely, it is easy to see that any equivalent martingale measure Q
defines an arbitrage-free pricing rule via (9.8). Consider a self-financing strat-
egy (¢t)ieo,r)- Of course a realistic strategy must be represented by a simple
(piecewise constant) predictable process as in (8.2). Since Q is a martin-
gale measure S, is a martingale under Q so, as observed in Chapter 8, the
value of the portfolio V;(¢) = Vo + fot ¢dS is a martingale so in particular

EQ fot ¢»dS] = 0. The random variable fg ¢dS must therefore take both pos-
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itive and negative values: Q(Vr(¢) — Vo = [ ¢¢dS; > 0) # 1. Since P ~ Q
this entails P( fOT ¢¢dS; > 0) # 1: ¢ cannot be an arbitrage strategy?!.

There is hence a one-to-one correspondence between arbitrage-free pricing
rules and equivalent martingale measures:

Specifying an arbitrage-free pricing rule on (Q, F, (%), P)
i)
Specifying a probability measure Q ~ P on market scenarios such that the
prices of traded assets are martingales.

Let us now sumimarize these results:

PROPOSITION 9.1 Risk-neutral pricing
In a market described by a probability measure P on scenarios, any arbitrage-
free linear pricing rule I1 can be represented as

I, (H) = e "7 EQH|F, (9.12)

where Q is an equivalent martingale measure: a probability measure on the
market scenarios such that

P~Q: VAeF QA) =0 <= P(A)=0
and  Vi=1...d, EQ[SL|F) = S

Up to now we have assumed that such an arbitrage-free pricing rule/equi-
valent martingale measures does indeed exist, which is not obvious in a given
model. The above arguments show that if an equivalent martingale measure
exists, then the market is arbitrage-free. The converse result [190, 191, 109],
more difficult to show, is sometimes called the Fundamental theorem of asset
pricing:

PROPOSITION 9.2 Fundamental theorem of asset pricing

The market model defined by (Q,F,(F;),P)and asset prices (S¢)iecjor) is
arbitrage-free if and only if there exists a probability measure Q ~ P such that
the discounted assets (St)te[oﬂ are martingales with respect to Q.

1This argument can be extended to strategies which are not piecewise constant but more
complex, as long as the corresponding value process fot ¢dS is a martingale, e.g., by requiring
boundedness, square-integrability, etc.
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A proper mathematical statement requires a careful specification of the set
of admissible strategies and in fact it is quite hard to give a precise version
of this theorem: in fact for a general, unbounded semimartingale (such as
an exponential-Lévy models with unbounded jumps) “martingale measure”
should be replaced by the notion of “o-martingale measure,” the definition
of arbitrage opportunity should be slightly modified to “no free lunch with
vanishing risk,” etc. We refer the reader to the academic literature on this
topic [109, 90, 191, 190, 349]. This theorem establishes an equivalence between
the financial concept of absence of arbitrage and the mathematical notion of
equivalent martingale measure.

9.2 Market completeness

Besides the idea of absence of arbitrage, another important concept originat-
ing in the Black-Scholes model is the concept of perfect hedge: a self-financing
strategy (¢?, ¢;) is said to be a perfect hedge (or a replication strategy) for a
contingent claim H if

T T
H =Y, +/ $¢dS; +/ #dsS? P —a.s. (9.13)
0 0

By absence of arbitrage, if a replicating strategy exists, then V[ is unique
since two replicating strategies with different initial capital could lead to an
arbitrage.

A market is said to be complete if any contingent claim admits a replicating
portfolio: for any H € H there exists a self-financing strategy (47, ¢;) such
that (9.13) holds with probability 1 under P. As usual, ¢; should either be a
simple predictable strategy as in (8.2) or be approximated by such strategies.

If (9.13) holds with probability 1, it also holds with probability 1 under any
equivalent martingale measure Q ~ P. The discounted values then verify

T
H=Y, +/ $:dS; Q- a.s. (9.14)
0

Taking expectations with respect to Q and assuming that the strategy (¢¢) ver-
ifies conditions such that f(f ¢dS is a martingale (for example, it is bounded)
we obtain EQ[EI ] = Vi: the value attributed by the pricing rule Q is given by
the initial capital of the hedging strategy. Since this is true for any equivalent
martingale measure Q we conclude (up to the boundedness assumptions we
have made on the replicating strategies) that in a complete market there is
only one way to define the value of a contingent claim: the value of any con-
tingent claim is given by the initial capital needed to set up a perfect hedge
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for H. In particular, all equivalent martingale measures give the same pric-
ing rules: they are the same! Therefore market completeness seems to imply
the uniqueness of pricing rules/equivalent martingale measures. In fact, the
converse result also holds but it much more difficult to show:

PROPOSITION 9.3 Second Fundamental Theorem of Asset Pricing

A market defined by the assets (S?,S}, ..., Sd)te[oj], described as stochastic
processes on (U, F, (F;),P)is complete if and only if there is a unique martin-
gale measure Q equivalent to P.

This theorem establishes the equivalence between the financial notion of
market completeness — the possibility to perfectly hedge any contingent claim
— and the uniqueness of equivalent martingale measure, which is a mathe-
matical property of the underlying stochastic model. The theorem holds as
stated above in discrete time models. In continuous time models one has
to carefully define the set of admissible strategies, contingent claims and the
notion of “martingale measure.” Unfortunately in the case where S has un-
bounded jumps, which is the case of most exponential-Lévy models, a rigorous
formulation is quite difficult and requires to use the notion of “o-martingale”
[109]. Cherny and Shiryaev [90, Example 5.3.] present an example (albeit not
a very realistic one) of a complete model for which an equivalent martingale
measure (or local martingale measure) does not exist. We will not make use
of these subtleties in the sequel; the curious reader is referred to [226] or [90]
for a review. This suggests the following “equivalence,” to be understood in
a loose sense:

Market completeness:
any contingent claim H € H can be represented as the final
value of a self-financing strategy: H = E[H| + fOT ¢¢dS,

Uniqueness of equivalent martingale measure:
There exists a unique probability measure Q ~ P
such that discounted assets are Q-martingales.

While most stochastic models used in option pricing are arbitrage-free, only
a few of these models are complete: stochastic volatility models and as we
will see shortly, exponential-Lévy models, jump-diffusion models fall into the
category of incomplete models. By contrast, one dimensional diffusion models
(in particular, the Black-Scholes model) define complete markets.

REMARK 9.1 Martingale representation property In mathematical
terms, (9.14) means that for any random variable H € H depending on the
history of S; between 0 and 7', H can be represented as the sum of a constant
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and a stochastic integral of a predictable process with respect to S. If this
property holds for all terminal payoffs with finite variance, i.e., any H €
L?(Fr,Q) can be represented as

T
H=E[H]+ [ ¢,dS, (9.15)
0

for some predictable process ¢, the martingale (St)te[o,T] is said to have the
predictable representation property. Thus market completeness is often identi-
fied with the predictable representation property, which has been studied for
many classical martingales. The predictable representation property can be
shown to hold when S is (geometric) Brownian motion or a Brownian stochas-
tic integral [335], but it fails to hold for most discontinuous models used in
finance. For example, it is known to fail for all non-Gaussian Lévy processes
except the (compensated) Poisson process: Chou and Meyer [91] show that if
the jump size of a process with independent increments can take more than
a single value then the predictable representation property fails. Yor and de
Lazaro [385] generalize this result by showing that a martingale S with sta-
tionary increments has the predictable representation property (with respect
to its own history) if and only if X is either a Brownian motion or a com-
pensated Poisson process. We will show in Chapter 10 that this property also
fails in exponential-Lévy models by a direct computation. Nevertheless one
can construct price models with jumps where the predictable representation
property holds: an example is the Azéma martingale, see [326].

Even if the predictable representation property holds it does not automati-
cally lead to “market completeness”: as argued in Chapter 8, any predictable
process ¢; cannot be interpreted as a trading strategy. For this interpretation
to hold we must be able, in some way, to approximate its value process using
an implementable (piecewise constant in time) portfolio of the form (8.2) so
predictable processes which can be reasonably interpreted as “trading strate-
gies” are simple predictable processes as in (8.2) or caglad processes. Ma et al.
[269] give conditions on the random variable H under which the representation
involves a process with regular (caglad) paths.

Finally let us note that we are looking for a representation of H in terms
of a stochastic integral with respect to S. In fact the following theorem [205,
Chapter 2] shows that when the source of randomness is a Brownian motion
and a Poisson random measure, a random variable with finite variance can be
always represented as a stochastic integral:

PROPOSITION 9.4
Let (Wy)iepo,m) be a d-dimensional Wiener process and M a Poisson random

measure on [0,T] x R?, independent from W. Then any random variable H
with finite variance depending on the history (Fi)iejo,r) of W and M between
0 and T can be represented as the sum of a constant, a stochastic integral
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with respect to W and a compensated Poisson integral with respect to M :
there exists a predictable process ¢ : Q0 x [0,T] — R and a predictable random
function ¥ : Q x [0,T] x R? — R such that

ﬁ:E[ﬁI]+/O ¢deS+/O /Rdi/)(s,y)M(ds dy). (9.16)

This property is also called a predictable representation property? by many
authors but has nothing to do with market completeness. As noted in Remark
8.1, even when S is driven by the same sources of randomness W and M
and M = Jg represents the jump measure of the process S, the expression
(9.16) cannot be represented as a stochastic integral with respect to S. Such
representations are nevertheless useful for discussing hedging strategies, as we
will see in Chapter 10.

Is market completeness a desirable property in an option pricing model?
Unfortunately, perfect hedges do not exist in practice. So if a model asserts
that all options can be perfectly hedged, it is likely to give a distorted view of
the risky nature of option trading, underestimating the risk inherent in writing
an option. Of course, one could always argue that “dynamic hedging” is a
continuous time concept and in a market with frictions, transaction costs, etc.,
perfect hedging is not achievable: these questions have stimulated a literature
on corrections induced by such “market imperfections” in diffusion models:
residual risk, increased hedging costs,... However, the real risks induced by
taking positions in options are market risks — gamma risk, vega risk — whose
order of magnitude is much larger than “corrections” induced by transaction
costs and other imperfections. In complete market models, these risks are
simply absent: they are reducible to “delta risk”, which can be hedged away
to zero! This is certainly a much rougher approximation than assuming zero
transaction costs. Thus in our view it makes more sense to use incomplete
market models where the risk of hedging can be quantified rather than sticking
to complete market models where the risk of hedging is by definition zero and
then elaborate on second-order effects such as market frictions. As most
discontinuous price models generically lead to incomplete markets, this is not
really a constraint on the model, while completeness is.

There is thus a one-to-one correspondence between arbitrage-free valuation
methods and equivalent martingale measures: the concept of equivalent mar-
tingale of measure thus plays an important role. The next section will describe
the construction of such equivalent martingale measures and the issue of their
uniqueness in models where the randomness is described by a Lévy process.

2More precisely one should say “predictable representation with respect to W, M” in this
case.
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9.3 Equivalence of measures for Lévy processes: simple
cases

Having seen the role played by equivalent changes of measure in defining
arbitrage-free pricing models, we will now study such changes of measure in
the case where the source of randomness is given by a Lévy process.

Recall that if the P and Q are equivalent probability measures then, as we
have seen in Section 2.1.3, there exists a positive random variable, called the
density of Q with respect to P and denoted % such that for any random

variable Z
dQ
Q71 = EF =
E¥[Z]=F {de}.

Let us start by considering a Poisson process defined by its jump size a and
its jump intensity A. The following result shows that if one wants two Poisson

processes to define equivalent measures on the set of sample paths, one can
freely change the intensity but the jump size must remain the same:

PROPOSITION 9.5 Equivalence of measure for Poisson processes
Let (N,Py,) and (N,Py,) be Poisson processes on (8, Fr) with intensities
A1 and Ao and jump sizes a1 and asg.

1. If a1 = a9 then Py, is equivalent to Py, with Radon-Nikodym density

d]P))\l )\2
= A — M) — Npln—1|. 1
TN exp | (A2 1) T1ln N (9.17)

2. If ay # ao then the measures Py, and Py, are not equivalent.

The result above means that changing the intensity of jumps amounts to
“reweighting” the probabilities on paths: no new paths are generated by sim-
ply shifting the intensity. However changing the jump size generates different
kind of paths: while the paths of V| are step functions with step size aq, the
paths of Ny are step functions with step size as. Therefore the intensity of a
Poisson process can be modified without changing the “support” of the pro-
cess, but changing the size of jumps generates a new measure which assigns
nonzero probability to some events which were impossible under the old one.

PROOF
1. Let B € Fr. We must show that

d

P
— P,\ )\1
Py {B}=FE 2{1BdIPA2}
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holds with the Radon-Nikodym derivative given by (9.17). For the left-
hand side of this equation we have, using the properties of Poisson pro-
cess:

2 e MT (N Tk
Py {B} = Z #EP“ {1B‘NT =k},

k=0
and the right-hand side simplifies to

dPy,

EP2{1p
2 { P

g

2
oo

el )\2T Ny Ao—A)T P
£ (2 -

o0 -1 )\
:Z%E%ugwﬂ}.
k=0 ’

Since conditionally on the number of jumps in the interval, the jump
times of a Poisson process are uniformly distributed on this interval,
EP*{lg‘NT = k} does not depend on A, which proves the assertion of
the proposition.

2. This is straightforward since all nonconstant paths possible under Py are
impossible under P>. Note that these measures are not singular because
they both assign a nonzero probability to the constant function.

REMARK 9.2 Two Poisson processes with different intensities define
equivalent measures only on a finite time interval. If T' = oo, formula (9.17)
shows that when intensities of two Poisson processes are different, the Radon-
Nikodym derivative is either zero or infinity, which means that the measures
are mutually singular. This corresponds to the fact that the intensity cannot
be “read” from a trajectory of finite length but it can be estimated in an
almost sure way from an infinite trajectory.

It is often interesting to restrict the change of measure to a shorter time
interval than the original one. Let us consider the information flow F; gen-
erated by the history of the process, defined in Section 2.4.2. The restriction
of probability measure P to F;, denoted by IP’| is a probability measure on

F; which assigns to all events in F; the same probablhty as P. The Radon-
dQ|#,
dP|x, -
is a P-martingale because for every B € F, we have

Nikodym derivative D; = is thus an (F;)-adapted process. Moreover, it

E¥{D1p} = E¥1} = E¥{D,15}.
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We now turn to the case of compound Poisson processes.

PROPOSITION 9.6 Equivalence of measures for compound Poisson
processes

Let (X,P) and (X,Q) be compound Poisson processes on (S, Fr) with Lévy
measures V° and v2. P and Q are equivalent if and only if V¥ and v2 are
equivalent. In this case the Radon-Nikodym derivative is

d
Dr = % =exp | TOAF = \Q) + ;¢(AXS) , (9.18)

where A = VF(R) and \? = v(R) are the jump intensities of the two pro-
cesses and ¢ = In (ZVTE)'

PROOF The if part. Suppose that v and v© are equivalent. Conditioning
the trajectory of X on the number of jumps in [0, 7] we have:

EP{DT} = EP{eT()‘Pka)JFngT ¢(AX5)}

o o= (APT)E
=e A TZ k‘ Ep{ed)(AX)}k — 1
k=0

Therefore D7 P is a probability measure. To prove the if part of the proposition
it is now sufficient to show that if X is a compound Poisson process under P
with Lévy measure vF then it is a compound Poisson process under Q with
Lévy measure 2. To show this we will first check that X has Q-independent
increments and second that the law of X7 under Q is that of a compound
Poisson random variable with Lévy measure Tv@. Let f and ¢ be two bounded
measurable functions and let s < ¢t < T. Using the fact that X and In D are
P-Lévy processes, and that D is a P-martingale we have:

E%{f(X5)g(Xe — X,)} = EY{f(X,)9(X: — X,)Di}
= B (J(X)DY B (g(X, — X) 21} = BX{f(X.)D.) E¥{g(X, — X.)D.)
= BHF(X)}HEHg(X, — Xo)},

which proves Q-independence of increments. Furthermore, by conditioning
the trajectory of X as above, we find

EP{eiuXr TV ANFE .cr 6(AX Y

e Pk
_ ef)\‘@T Z (>\ ]3;) E]P’{eiuAX+¢>(AX)}k = exp (T/(eiuz - l)I/Q(dZ')> )
k=0 ’
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The only if part. Suppose that v¥ and v are not equivalent. Then we can
find either a set B such that vF(B) > 0 and v%(B) =0 or a set B’ such that
VF(B) = 0 and v%(B) > 0. Suppose that we are in the first case. Then the set
of trajectories having at least one jump the size of which is in B has positive
P-probability and zero Q-probability, which shows that these two measures
are not equivalent. [

Before discussing measure change for general Lévy processes, we recall the
case of Brownian motion with drift.

PROPOSITION 9.7 Equivalence of measures for Brownian motions
with drift
Let (X,P) and (X,Q) be two Brownian motions on (Q, Fr) with volatilities
o >0 and 0@ > 0 and drifts ¥ and p®. P and Q are equivalent if o =
0@ and singular otherwise. When they are equivalent the Radon-Nikodym
derivative is

— =exp
o2 2 o2

d Q_ ,P 1 (u@ — P2
Q et (= =)\
dP

The proof of this proposition is similar to the previous ones and is left to
the reader. Note that the Radon-Nikodym derivative can be rewritten as an
exponential martingale:

where W; = X‘%“Pt is a standard Brownian motion under PP.

The above result — known as the Cameron-Martin theorem — shows that
the drift and the volatility play very different roles in specifying a diffusion
model. While modifying the drift amounts to reweighting the scenarios (paths
of X), changing the volatility will generate a completely different process,
leading to new scenarios which were initially impossible. Note also that we
have restricted the Brownian paths to [0, 7] as usual: as in the case of Poisson
processes, this result does not hold if T'= co. A more general version of this
result, valid for diffusion processes with random drift and volatility, is given
by the Girsanov theorem [215, 335].

REMARK 9.3 Up to now we have been exploring conditions under which
two exponential-Lévy models define equivalent probabilities on the space of
paths. However, it is important to note that for a given exponential-Lévy
model the class of equivalent models is very large and includes many models
which are not exponential Lévy models. Consider a compound Poisson process
(X,P) on (Q, Fr) with Lévy measure v*. Then from Equation (9.18) we know
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that the Radon-Nikodym derivative of the form

dQ

DT:di]P)

=exp [ T(\" =29 + ) 4(AX,)
s<T

defines a measure change such that the new process (X, Q) is again a com-
pound Poisson process. Let us now rewrite this formula in a different form:

denoting ¥(z) = ‘j’;—i(x) — 1, we find that

Dy =& | t\" = A9+ > W(AX,) | =€ (/[ | U (x)Jx(ds da:)) :
0,t] xR

s<t

where & stands for the stochastic exponential (defined in Section 8.4) and Jx
is the compensated jump measure of X. It is this last form of the Radon-
Nikodym derivative D, that is most interesting for us now. In order to define
a measure change on the path space, D must be a positive martingale. How-
ever, to obtain a positive martingale ¥ need not be a deterministic and time
independent function. If we only take such functions, the class of processes
that can be obtained via measure change is restricted to compound Poisson
processes. More general choices for U lead to other classes of processes which
live on the same set of paths. For example, if ¥ is deterministic but time-
dependent then

dQ - S, T ] S axr

defines a measure Q under which the increments of X will still be independent
but will no longer be stationary. If we go even further and allow ¥ to be a
random predictable function of x and s than we can obtain a process with de-
penden