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Preface

During the last decade Lévy processes and other stochastic processes with
jumps have become increasingly popular for modelling market fluctuations,
both for risk management and option pricing purposes. More than a hundred
research papers related to this topic have been published to this date in various
finance and applied mathematics journals, leading to a considerable literature
which is difficult to master for the nonspecialist. The time seems therefore
ripe for a book which can give a self-contained overview of the important
aspects of this body of research in a way that can be relevant for applications.

While there exists a considerable volume of mathematical literature related
to processes with jumps and Lévy processes in particular, this literature is
quite technical and difficult to access for readers not specialized in stochastic
analysis. On the other hand many of the applications of jump processes in
financial modelling use fairly sophisticated analytical and probabilistic tools
which are only explained in advanced mathematical texts. As a result, the
recent body of research on the use of jump processes in financial modelling has
been difficult to access for end users, who are sometimes under the impression
that jump processes and Lévy processes are complicated notions beyond their
reach.

We believe that it is not so; the concepts and tools necessary for understand-
ing and implementing these models can be explained in simple terms and in
fact are sometimes much more simple and intuitive than the ones involved in
the Black-Scholes model and diffusion models.

The motivation for our manuscript is precisely to provide a self-contained
overview of theoretical, numerical and empirical research on the use of jump
processes in financial modelling, understandable by students, researchers and
quants familiar with quantitative methods in finance at the level of classical
Black-Scholes option pricing theory.

Our goal has been to:
- explain the motivation for using Lévy processes in financial modelling in

terms understandable for nonspecialists
- motivate, through intuitive explanations, the necessity of introducing the

various mathematical tools used in the modelling process
- provide precise mathematical statements of results while trying to avoid

unnecessary technicalities
- emphasize clarity of exposition over the generality of results in order to

maximize their ease of use in applications
- illustrate the mathematical concepts by many numerical and empirical
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examples
- provide details of numerical implementation for pricing and calibration

algorithms
- provide real examples of uses of jump processes in option pricing and risk

management
- provide a pedagogical exposition which can be used as teaching material

for a graduate course for students in applied mathematics or quantitative
finance.

The goal of the present work is not:
- to be a comprehensive treatise on mathematical properties of Lévy pro-

cesses: such treatises already exist [49, 215, 345]. Here we intend to focus on
the mathematical tools necessary in the context of financial modelling, thus
omitting other mathematically interesting topics related to Lévy processes.

- to give the most general statement of mathematical results: we have
preferred to explain a concept on an example relevant for financial modelling
instead of giving abstract theorems.

- to provide an exhaustive survey of the literature on Lévy processes in
finance: rather than presenting a catalogue of models we have emphasized
common aspects of models in order to provide modelling tools and tried to
illustrate their use through examples.

The first part of the book (Chapters 2, 3, 4 and 5) presents a concise in-
troduction to the mathematical theory of Lévy processes — processes with
independent stationary increments which are building blocks for constructing
models with jumps. Chapter 2 presents some preliminary notions on proba-
bility spaces, random variables and the Poisson process. Lévy processes are
defined in Chapter 3 and their main properties are discussed: behavior of sam-
ple paths, distributional properties, the Markov property and their relation
to martingales. Examples of one-dimensional Lévy processes frequently used
in mathematical finance are presented and studied in Chapter 4. Chapter 5
presents some multidimensional models and tools for building them.

The second part (Chapters 6 and 7) deals with simulation and estimation
of models with jumps. Chapter 6 presents various methods for Monte Carlo
simulation of Lévy processes in one or several dimensions. Chapter 7 discusses
statistical properties of Lévy processes, their advantages and their drawbacks
for modelling financial time series.

The third and longest part of the book (Chapters 8 to 13) focuses on op-
tion pricing models based on jump processes. After a short introduction to
stochastic calculus for jump processes in Chapter 8, we study in Chapter 9
the concept of equivalent change of measure, its relevance in arbitrage pricing
theory and its application to Lévy processes. This allows us to show that
the models with jumps we consider correspond to arbitrage-free, incomplete
markets. These notions are further developed in Chapter 10, where we review
different approaches to option pricing and hedging in incomplete markets. We
then focus on a tractable class of models with jumps: exponential-Lévy mod-
els, in which the price of the underlying asset is modelled by the exponential of
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a Lévy process. Chapter 11 explores properties of option prices in these mod-
els, using Fourier-based pricing methods. Option prices in exponential-Lévy
models can also be expressed as solutions of certain integro-differential equa-
tions: these equations are derived in Chapter 12 and numerical algorithms for
solving them are presented. Chapter 13 discusses the problem of model cali-
bration: retrieving parameters of an option pricing model from market prices
of options. Several algorithms for solving this problem are presented in the
context of exponential-Lévy models and their implementation and empirical
performance is discussed.

The last part of the book deals with models with jumps which are not in the
exponential-Lévy class. The simplest extensions of exponential-Lévy models
are models in which log-returns are independent but not stationary. These
time-inhomogeneous models are discussed in Chapter 14. Stochastic volatility
models are another important class of models which have been the focus of a
lot of recent research. Chapter 15 discusses stochastic volatility models based
on Lévy processes.

Some of the results in the book are standard and well known in the litera-
ture. In this case our effort has focused on presenting them in a pedagogical
way, avoiding unnecessary technicalities, giving appropriate references for fur-
ther reading when necessary. Some other parts — in particular the material
in Chapters 5, 12, 13, 14 — are based on research work done by the authors
and collaborators.

One important question was the level of mathematical detail used to treat
all these topics. Many research papers dealing with financial applications of
jump processes are so technical that they are inaccessible to readers without a
graduate degree in probability theory. While technical content is unavoidable,
we believe that an alternative exposition is possible, provided that generality
is sacrificed in order to gain in clarity. In particular we have chosen to explain
the main ideas using Poisson processes and Lévy processes which are tractable
examples of models with jumps, mentioning semimartingales briefly in Chap-
ter 8. Accordingly, we have adopted the approach to stochastic integration
proposed by P. Protter [324] , which is more amenable to the applications
considered here. Mathematical definitions and proofs are given in detail when
we believe that they are important in the context of financial modelling: this
is the case, for example, for the construction of stochastic integrals in Chapter
8. For results of purely “technical” nature we have given appropriate refer-
ences. Sections with higher technical content are signaled by a (*) and can
be skipped at first reading.

Another issue was the level of generality. What classes of models should
be considered? Here the approaches in the financial modelling literature tend
to be extreme; while some books are entirely focused on diffusion models
and Brownian motion, others consider a knowledge of semimartingale theory
more or less as a prerequisite. While semimartingales provide the general
framework for stochastic integration and theoretical developments in arbi-
trage theory, financial modelling is focused on computing quantities so model
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building in quantitative finance has almost exclusively focused on Markovian
models and more precisely tractable Markovian models, which are the only
ones used in option pricing and risk management. We have therefore chosen
to develop the main ideas using Lévy processes, which form a tractable sub-
class of jump processes for which the theory can be explained in reasonably
simple terms. Extensions beyond Lévy processes are considered in the last
part of the book, where time-inhomogeneous models and stochastic volatility
models with jumps are considered.

We have assumed that the reader is typically familiar with the Black-Scholes
model and the machinery behind it — Brownian motion, the Itô formula for
continuous processes — but have tried to explain in detail notions specific to
jump processes. In particular the Poisson process seems not to be known to
many students trained in Black-Scholes theory!

We have tried not to give a catalog of models: since research papers typi-
cally focus on specific models we have chosen here a complementary approach
namely to provide tools for building, understanding and using models with
jumps and referring the reader to appropriate references for details of a par-
ticular model. The reader will judge whether we have succeeded in attaining
these objectives!

This book grew out of a graduate course on “Lévy processes and applica-
tions in finance” given by R. Cont at ENSAE in 2000. R. Cont thanks Griselda
Deelstra and Jean-Michel Grandmont for the opportunity to teach this course
and the graduate students of ENSAE, Université de Paris IX (DEA MASE)
and Paris I (DEA MMME) for their participation and interest in this topic
which encouraged us to write this book. The material in Chapter 12 resulted
from joint work with Ekaterina Voltchkova, who deserves special thanks for
the numerous discussions we had on the subject and suggestions for improv-
ing this chapter. We also thank Yann Braouezec, Andreas Kyprianou, Cecilia
Mancini and Olivier Pantz for their comments on a preliminary version of
the manuscript. Finally we are grateful to Dilip Madan and the editor Sunil
Nair for encouraging this project and to the CRC editorial staff who helped
us during the final stages: Jasmin Naim, Helena Redshaw, Jamie Sigal and
especially Andrea Demby for her careful reading of the manuscript.

Though we have done our best to avoid mistakes, they are unavoidable and
we will be grateful to the readers who take their time to inform us of the
errors and omissions they might remark. An updated list of corrections, as
well as other additional material, will be made available on the website:

http://www.cmap.polytechnique.fr/~rama/Jumps/

We hope that this volume will stimulate the interest of students and re-
searchers in applied mathematics and quantitative finance and make the realm
of discontinuous stochastic models more accessible to those interested in using
them.

Rama CONT and Peter TANKOV
Palaiseau (France), July 2003.
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3 Lévy processes: definitions and properties
3.1 From random walks to Lévy processes
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8.3.1 Pathwise calculus for finite activity jump processes
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Chapter 1

Financial modelling beyond
Brownian motion

In the end, a theory is accepted not because it is confirmed by conven-
tional empirical tests, but because researchers persuade one another that
the theory is correct and relevant.

Fischer Black (1986)

In the galaxy of stochastic processes used to model price fluctuations, Brow-
nian motion is undoubtedly the brightest star. A Brownian motion is a ran-
dom process Wt with independent, stationary increments that follow a Gaus-
sian distribution. Brownian motion is the most widely studied stochastic
process and the mother of the modern stochastic analysis. Brownian motion
and financial modelling have been tied together from the very beginning of
the latter, when Louis Bachelier [18] proposed to model the price St of an
asset at the Paris Bourse as:

St = S0 + σWt. (1.1)

The multiplicative version of Bachelier’s model led to the commonly used
Black-Scholes model [60] where the log-price lnSt follows a Brownian motion:

St = S0 exp[µt+ σWt]

or, in local form:

dSt
St

= σdWt + (µ+
σ2

2
)dt. (1.2)

The process S is sometimes called a geometric Brownian motion. Figure 1.1
represents two curves: the evolution of (the logarithm of) the stock price for
SLM Corporation (NYSE:SLM) between January 1993 and December 1996
and a sample path of Brownian motion, with the same average volatility as
the stock over the three-year period considered. For the untrained eye, it may
be difficult to tell which is which: the evolution of the stock does look like a
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2 Financial Modelling with jump processes

sample path of Brownian motion and examples such as Figure 1.1 are given
in many texts on quantitative finance to motivate the use of Brownian motion
for modelling price movements.

1993  1995 1997
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

SLM (NYSE) log−price vs Gaussian model. 1993−1996.

FIGURE 1.1: Evolution of the log price for SLM (NYSE), 1993-1996, com-
pared with a sample path of Brownian motion with same annualized return
and volatility. Which is which?

An important property of Brownian motion is the continuity of its sample
paths: a typical path t �→ Bt is a continuous function of time. This remark
already allows to distinguish the two curves seen on Figure 1.1: a closer look
shows that, unlike Brownian motion, the SLM stock price undergoes several
abrupt downward jumps during this period, which appear as discontinuities
in the price trajectory.

Another property of Brownian motion is its scale invariance: the statistical
properties of Brownian motion are the same at all time resolutions. Figure
1.2 shows a zoom on the preceding figure, with only the first three months of
the three-year period considered above. Clearly, the Brownian path in Fig-
ure 1.2 (left) resembles the one in Figure 1.1 and, if the scales were removed
from the vertical axis one could not tell them apart. But the evolution of
stock price (Figure 1.2, right) does not seem to verify this scale invariance
property: the jumps become more visible and now account for more than half
of the downward moves in the three-month period! The difference becomes
more obvious when we zoom in closer on the price behavior: Figure 1.3 shows
the evolution of SLM over a one-month period (February 1993), compared
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Financial modelling beyond Brownian motion 3
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SLM (NYSE), Jan−March 1993.

FIGURE 1.2: Evolution of SLM (NYSE), January-March 1993, compared
with a scenario simulated from a Black-Scholes model with same annualized
return and volatility.

to the simulated sample path of the Brownian motion over the same period.
While the Brownian path looks the same as over three years or three months,
the price behavior over this period is clearly dominated by a large downward
jump, which accounts for half of the monthly return. Finally, if we go down
to an intraday scale, shown in Figure 1.4, we see that the price moves essen-
tially through jumps while the Brownian model retains the same continuous
behavior as over the long horizons.

These examples show that while Brownian motion does not distinguish
between time scales, price behavior does: prices move essentially by jumps
at intraday scales, they still manifest discontinuous behavior at the scale of
months and only after coarse-graining their behavior over longer time scales
do we obtain something that resembles Brownian motion. Even though a
Black-Scholes model can be chosen to give the right variance of returns at a
given time horizon, it does not behave properly under time aggregation, i.e.,
across time scales. Since it is difficult to model the behavior of asset returns
equally well across all time scales, ranging from several minutes to several
years, it is crucial to specify from the onset which time scales are relevant
for applications. The perspective of this book being oriented towards option
pricing models, the relevant time scales for our purpose range between several
days and several months. At these time scales, as seen in Figures 1.2 and 1.3,
discontinuities cannot be ignored.

Of course, the Black-Scholes model is not the only continuous time model
built on Brownian motion: nonlinear Markov diffusions where instantaneous
volatility can depend on the price and time via a local volatility function have
been proposed by Dupire [122], Derman and Kani [112]:

dSt
St

= σ(t, St)dWt + µdt. (1.3)

Another possibility is given by stochastic volatility models [196, 203] where
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4 Financial Modelling with jump processes
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FIGURE 1.3: Price behavior of SLM (NYSE), February 1993, compared
with a scenario simulated from a Black-Scholes model with same annualized
return and volatility.

65

65.5

66

66.5

67

67.5

68

68.5

69

62.5

63

63.5

64

64.5

65

65.5

66

SLM (NYSE), 11 Feb 1993.

FIGURE 1.4: Price behavior of SLM (NYSE) on February 11, 1993, com-
pared with a scenario simulated from a Black-Scholes model with same annu-
alized return and volatility.

the price St is the component of a bivariate diffusion (St, σt) driven by a
two-dimensional Brownian motion (W 1

t ,W
2
t ):

dSt
St

= σtdW
1
t + µdt, (1.4)

σt = f(Yt) dYt = αtdt+ γtdW
2
t . (1.5)

While these models have more flexible statistical properties, they share with
Brownian motion the property of continuity, which does not seem to be shared
by real prices over the time scales of interest. Assuming that prices move in
a continuous manner amounts to neglecting the abrupt movements in which
most of the risk is concentrated.

Since the continuity of paths plays a crucial role in the properties of diffu-
sion models, one would like to know whether results obtained in such models
are robust to the removal of the continuity hypothesis. This book presents
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Financial modelling beyond Brownian motion 5

various stochastic models in which prices are allowed to display a discontin-
uous behavior, similar to that of market prices at the time scales of interest.
By examining some of the main issues studied in quantitative finance in the
framework of models with jumps, we will observe that many results obtained
in diffusion models are actually not robust to the presence of jumps in prices
and thus deserve to be reconsidered anew when jumps are taken into account.

A common approach to promote the use of models with jumps, has been to
compare them systematically with the Black-Scholes model, given by Equa-
tion (1.2), and conclude that the alternative model is superior in describing
empirical observations and its modelling flexibility. Since most classes of mod-
els with jumps include the Black-Scholes model as a particular instance, this
approach is not serious and we shall not adopt it here. The universe of dif-
fusion models extends far beyond the Black-Scholes framework and the full
spectrum of diffusion models, including local volatility models and stochastic
volatility models has to be considered in a comparative evaluation of modelling
approaches. Our objective is not so much to promote the use of discontinuous
models as to provide the reader with the necessary background to understand,
explore and compare models with jumps with the more well-known diffusion
models.

In the rest of this introductory chapter we will review some of the strengths
and weaknesses of diffusion models in three contexts: capturing the empirical
properties of asset returns, representing the main features of option prices and
providing appropriate tools and insights for hedging and risk management.
We will see that, while diffusion models offer a high flexibility and can be
fine-tuned to obtain various properties, these properties appear as generic in
models with jumps.

1.1 Models in the light of empirical facts

More striking than the comparison of price trajectories to those of Brownian
paths is the comparison of returns, i.e., increments of the log-price, which are
the relevant quantities for an investor. Figure 1.5 compares the five-minute
returns on the Yen/Deutschemark exchange rate to increments of a Brownian
motion with the same average volatility. While both return series have the
same variance, the Brownian model achieves it by generating returns which
always have roughly the same amplitude whereas the Yen/DM returns are
widely dispersed in their amplitude and manifest frequent large peaks cor-
responding to “jumps” in the price. This high variability is a constantly
observed feature of financial asset returns. In statistical terms this results in
heavy tails in the empirical distribution of returns: the tail of the distribution
decays slowly at infinity and very large moves have a significant probabil-
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6 Financial Modelling with jump processes

ity of occurring. This well-known fact leads to a poor representation of the
distribution of returns by a normal distribution. And no book on financial
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FIGURE 1.5: Five-minute log-returns for Yen/Deutschemark exchange
rate, 1992–1995, compared with log-returns of a Black-Scholes model with
same annualized mean and variance.

risk is nowadays complete without a reference to the traditional six-standard
deviation market moves which are commonly observed on all markets, even
the largest and the most liquid ones. Since for a normal random variable
the probability of occurrence of a value six times the standard deviation is
less than 10−8, in a Gaussian model a daily return of such magnitude occurs
less than once in a million years! Saying that such a model underestimates
risk is a polite understatement. Isn’t this an overwhelming argument against
diffusion models based on Brownian motion?

Well, not really. Let us immediately dissipate a frequently encountered
misconception: nonlinear diffusion processes such as (1.3) or (1.4) are not
Gaussian processes, even though the driving noise is Gaussian. In fact, as
pointed out by Bibby and Sorensen [367], an appropriate choice of a nonlinear
diffusion coefficient (along with a linear drift) can generate diffusion processes
with arbitrary heavy tails. This observation discards some casual arguments
that attempt to dismiss diffusion models simply by pointing to the heavy tails
of returns. But, since the only degree of freedom for tuning the local behavior
of a diffusion process is the diffusion coefficient, these heavy tails are produced
at the price of obtaining highly varying (nonstationary) diffusion coefficients in
local volatility models or unrealistically high values of “volatility of volatility”
in diffusion-based stochastic volatility models.

By contrast, we will observe that the simplest Markovian models with jumps
— Lévy processes — generically lead to highly variable returns with realis-
tic tail behavior without the need for introducing nonstationarity, choosing
extreme parameter values or adding unobservable random factors.

But the strongest argument for using discontinuous models is not a statis-
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tical one: it is the presence of jumps in the price! While diffusion models can
generate heavy tails in returns, they cannot generate sudden, discontinuous
moves in prices. In a diffusion model tail events are the result of the accu-
mulation of many small moves. Even in diffusion-based stochastic volatility
models where market volatility can fluctuate autonomously, it cannot change
suddenly. As a result, short-term market movements are approximately Gaus-
sian and their size is predictable. A purist would argue that one cannot tell
whether a given large price move is a true discontinuity since observations
are made in discrete time. Though true, this remark misses a point: the
question is not really to identify whether the price trajectory is objectively
discontinuous (if this means anything at all), but rather to propose a model
which reproduces the realistic properties of price behavior at the time scales
of interest in a generic manner, i.e., without the need to fine-tune parameters
to extreme values. While large sudden moves are generic properties of models
with jumps, they are only obtainable in diffusion processes at the price of
fine tuning parameters to extreme values. In a diffusion model the notion of
a sudden, unpredictable market move, which corresponds to our perception
of risk, is difficult to capture and this is where jumps are helpful. We will
review the statistical properties of market prices in more detail in Chapter 7
but it should be clear from the onset that the question of using continuous
or discontinuous models has important consequences for the representation of
risk and is not a purely statistical issue.

1.2 Evidence from option markets

Although an outsider could imagine that the main objective of a stochastic
model is to capture the empirical properties of prices, the driving force be-
hind the introduction of continuous-time stochastic models in finance has been
the development of option pricing models, which serve a somewhat different
purpose. Here the logic is different from the traditional time series models
in econometrics: an option pricing model is used as a device for capturing
the features of option prices quoted on the market, relating prices of market
instruments in an arbitrage-free manner (pricing of “vanilla” options consis-
tently with the market) and extrapolating the notion of value to instruments
not priced on the market (pricing of exotic options). In short, an option pric-
ing model is an arbitrage-free interpolation and extrapolation tool. Option
pricing models are also used to compute hedging strategies and to quantify
the risk associated with a given position. Given these remarks, a particular
class of models may do a good job in representing time series of returns, but
a poor one as a model for pricing and hedging.
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8 Financial Modelling with jump processes

1.2.1 Implied volatility smiles and skews

A first requirement for an option pricing model is to capture the state of
the options market at a given instant. To achieve this, the parameters of the
model are chosen to “fit” the market prices of options or at least to reproduce
the main features of these prices, a procedure known as the “calibration” of
the model to the market prices. The need for models which can calibrate
market prices has been one of the main thrusts behind the generalization of
the Black-Scholes model.

The market prices of options are usually represented in terms of their Black-
Scholes implied volatilities of the corresponding options. Recall that a Euro-
pean call option on an asset St paying no dividends, with maturity date T
and strike price K is defined as a contingent claim with payoff (ST − K)+

at maturity. Denoting by τ = T − t the time remaining to maturity, the
Black-Scholes formula for the value of this call option is:

CBS(St,K, τ, σ) = StN(d1) −Ke−rτN(d2), (1.6)

d1 =
− lnm+ τ(r + σ2

2 )
σ
√
τ

, d2 =
− lnm+ τ(r − σ2

2 )
σ
√
τ

. (1.7)

where m = K/St is the moneyness and N(u) = (2π)−1/2 ∫ u
−∞ exp(− z2

2 )dz.
Let us now consider, in a market where the hypotheses of the Black-Scholes
model do not necessarily hold, a call option whose (observed) market price
is denoted by C∗

t (T,K). Since the Black-Scholes value of a call option, as
a function of the volatility parameter, is strictly increasing from ]0,+∞[ to
](St−Ke−rτ )+, S0[, given any observed market price within this range, one can
find a value of the volatility parameter Σt(T,K) such that the corresponding
Black-Scholes price matches the market price:

∃! Σt(T,K) > 0, CBS(St,K, τ,Σt(T,K)) = C∗
t (T,K). (1.8)

In Rebonato’s terms [330] the implied volatility is thus a “wrong number
which, plugged into the wrong formula, gives the right answer.” Prices in op-
tion markets are commonly quoted in terms of Black-Scholes implied volatility.
This does not mean that market participants believe in the hypotheses of the
Black-Scholes model — they do not : the Black-Scholes formula is not used as
a pricing model for vanilla options but as a tool for translating market prices
into a representation in terms of implied volatility.

For fixed t, the implied volatility Σt(T,K) depends on the characteristics
of the option such as the maturity T and the strike level K: the function

Σt : (T,K) → Σt(T,K) (1.9)

is called the implied volatility surface at date t. A typical implied volatility
surface is displayed in Figure 1.6. A large body of empirical and theoretical
literature deals with the profile of the implied volatility surface for various
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Financial modelling beyond Brownian motion 9

markets as a function of (T,K) -or (m, τ) - at a given date, i.e., with (t, St)
fixed. While the Black-Scholes model predicts a flat profile for the implied
volatility surface:

Σt(T,K) = σ

it is a well documented empirical fact that the implied volatility is not constant
as a function of strike nor as a function of time to maturity [94, 95, 121, 330].
This phenomenon can be seen in Figure 1.6 in the case of DAX index options
and in Figure 1.7 for S&P 500 index options. The following properties of
implied volatility surfaces have been empirically observed [94, 95, 330]:

1. Smiles and skews: for equity and foreign exchange options, implied
volatilities Σt(T,K) display a strong dependence with respect to the
strike price: this dependence may be decreasing (“skew”) or U-shaped
(“smile”) and has greatly increased since the 1987 crash.

2. Flattening of the smile: the dependence of Σt(T,K) with respect to
K decreases with maturity; the smile/ skew flattens out as maturity
increases.

3. Floating smiles: if expressed in terms of relative strikes (moneyness
m = K/St), implied volatility patterns vary less in time than when
expressed as a function of the strike K.

Coming up with a pricing model which can reproduce these features has be-
come known as the “smile problem” and, sure enough, a plethora of general-
izations of the Black-Scholes model have been proposed to deal with it.

How do diffusion models fare with the smile problem? Well, at the level
of “fitting” the shape of the implied volatility surface, they do fairly well: as
shown by Dupire [122] for any arbitrage-free profile C0(T,K),T ∈ [0, T ∗],K >
0 of call option prices observed at t = 0, there is a unique “local volatility
function” σ(t, S) given by

σ(T,K) =

√
2
∂C0
∂T (T,K) +Kr ∂C0

∂K (T,K)

K2 ∂2C0
∂K2 (T,K)

, (1.10)

which is consistent with these option prices, in the sense that the model (1.3)
with σ(., .) given by (1.10) gives back the market prices Ct(T,K) for the call
options.

For long maturities, this leads to local volatilities which are roughly con-
stant, predicting a future smile that is much flatter than current smiles which
is, in the words of E. Derman, “an uncomfortable and unrealistic forecast that
contradicts the omnipresent nature of the skew.” More generally, though local
volatility models can fit practically any cross section of prices they give rise
to non-intuitive profiles of local volatility which, to this day, have received no
interpretation in terms of market dynamics. This means that local volatility
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10 Financial Modelling with jump processes

models, while providing an elegant solution to the “calibration” problem, do
not give an explanation of the smile phenomenon.

Diffusion-based stochastic volatility models can also reproduce the profile
of implied volatilities at a given maturity fairly well [196, 150]. However, they
have more trouble across maturities, i.e., they cannot yield a realistic term
structure of implied volatilities [330, 42]. In particular the “at-the-money
skew”, which is the slope of implied volatility when plotted against ln(K/St),
decays as 1/T in most stochastic volatility models [150], at odds with market
skews which decay more slowly. In addition, stochastic volatility models re-
quire a negative correlation between movements in stock and movements in
volatility for the presence of a skew. While this can be reasonably interpreted
in terms of a “leverage” effect, it does not explain why in some markets such
as options on major foreign exchange rates the “skew” becomes a smile: does
the nature of the leverage effect vary with the underlying asset? Nor does this
interpretation explain why the smile/skew patterns increased right after the
1987 crash: did the “leverage” effect change its nature after the crash? Since
the instantaneous volatility is unobservable, assertions about its (instanta-
neous) correlation with the returns are difficult to test but it should be clear
from these remarks that the explanation of the implied volatility skew offered
by stochastic volatility models is no more “structural” than the explanation
offered by local volatility models.

Models with jumps, by contrast, not only lead to a variety of smile/ skew
patterns but also propose a simple explanation in terms of market antici-
pations: the presence of a skew is attributed to the fear of large negative
jumps by market participants. This is clearly consistent with the fact that
the skew/smile features in implied volatility patterns have greatly increased
since the 1987 crash; they reflect the “jump fear” of the market participants
having experienced the crash [42, 40]. Jump processes also allow to explain
the distinction between skew and smile in terms of asymmetry of jumps an-
ticipated by the market: for index options, the fear of a large downward jump
leads to a downward skew as in Figure 1.6 while in foreign exchange mar-
kets such as USD/EUR where the market moves are symmetric, jumps are
expected to be symmetric thus giving rise to smiles.

1.2.2 Short-term options

The shortcomings discussed above are exacerbated when we look at options
with short maturities. The very existence of a market for short-term options
is evidence that jumps in the price are not only present but also recognized
as being present by participants in the options market. How else could the
underlying asset move 10% out of the money in a few days?

Not only are short-term options traded at significant prices but their mar-
ket implied volatilities also exhibit a significant skew, as shown for S&P 500
options in Figure 1.7. This feature is unattainable in diffusion-based stochas-
tic volatility models: in these models, the volatility and the price are both
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FIGURE 1.6: Implied volatilities of DAX index options, 2001.

continuous and their movements are conditionally Gaussian so one would re-
quire ridiculously high values of “volatility of volatility” to obtain realistic
short-term skews. In a local volatility model, one can always obtain an arbi-
trary short-term skew but at the price of a very high variability in the local
volatility surface, which is difficult to use or interpret. By contrast, we will
see in Chapter 11 that models with jumps generically lead to significant skews
for short maturities and this behavior can be used to test for the presence of
jumps using short-term option prices [85, 314]. More generally, we will see in
Chapter 15 that by adding jumps to returns in a stochastic volatility model as
in [41] one can easily enhance the empirical performance for short maturities
of stochastic volatility models which have an otherwise reasonable behavior
for long maturities.

1.3 Hedging and risk management

In the language of financial theory, one-dimensional diffusion models (“local
volatility” models) are examples of complete markets: any option can be per-
fectly replicated by a self-financing strategy involving the underlying and cash.
In such markets, options are redundant; they are perfectly substitutable by
trading in the underlying so the very existence of an options market becomes
a mystery. Of course, this mystery is easily solved: in real markets, perfect
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hedging is not possible and options enable market participants to hedge risks
that cannot be hedged by trading in the underlying only. Options thus allow
a better allocation and transfer of risk among market participants, which was
the purpose for the creation of derivatives markets in the first place [339].

While these facts are readily recognized by most users of option pricing mod-
els, the usage has been to twist the complete market framework of diffusion
models to adapt it to market realities. On the practical side one complements
delta hedging (hedging with the underlying) with gamma and vega hedging.
These strategies — while clearly enhancing the performance of “replication”
strategies proposed in such models — appear clearly at odds with the model:
indeed, in a complete market diffusion model vega and gamma hedges are
redundant with respect to delta hedging. On the theoretical side, it has
been shown [129] that the Black-Scholes delta-hedging strategy is valid out-
side the lognormal framework if one uses upper bounds for volatility to price
and hedge contingent claims: this property is known as the robustness of
the Black-Scholes formula. However, as we will see in Chapter 10, the upper
bound for “volatility” in a model with jumps is...infinity! In other words, the
only way to perfectly hedge a call option against jumps is to buy and hold the
underlying asset. This remark shows that, when moving from diffusion-based
complete market models to more realistic models, the concept of “replication,”
which is central in diffusion models, does not provide the right framework for
hedging and risk management.

Complete market models where every claim can be perfectly hedged by the
underlying also fail to explain the common practice of quasi-static hedging
of exotic options with vanilla options [5]. Again, this is a natural thing to
do in a model with jumps since in such incomplete markets options are not
redundant assets and such static (vega) hedges may be used to reduce the
residual risk associated with the jumps. Also, as we will see in Chapter 10,
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the hedge ratio in models with jumps takes into account the possibility of a
large move in the underlying asset and therefore partly captures the gamma
risk.

Stochastic volatility models do recognize the impossibility of perfectly hedg-
ing options with the underlying. However in diffusion-based stochastic volatil-
ity models completeness can be restored by adding a single option to the set of
available hedging instruments: stochastic volatility models then recommend
setting up a perfect hedge by trading dynamically in the underlying and one
option. While options are available and used for hedging, this is often done
in a static framework for liquidity reasons: dynamic hedging with options
remains a challenge both in theory and practice.

By contrast, from the point of view of the discontinuous price models con-
sidered in this book, the nonexistence of a perfect hedge is not a market im-
perfection but an imperfection of complete market models! We will see that in
models with jumps, “riskless replication” is an exception rather than the rule:
any hedging strategy has a residual risk which cannot be hedged away to zero
and should be taken into account in the exposure of the portfolio. This offers
a more realistic picture of risk management of option portfolios. Unlike what
is suggested by complete market models, option trading is a risky business!

In the models that we will consider — exponential-Lévy models, jump-
diffusion models, stochastic volatility models with jumps — one has to recog-
nize from the onset the impossibility of perfect hedges and to distinguish the
theoretical concept of replication from the practical concept of hedging: the
hedging problem is concerned with approximating a target future payoff by a
trading strategy and involves some risks which need to quantified and mini-
mized by an appropriate choice of hedging strategy, instead of simply being
ignored. These points will be discussed in more detail in Chapter 10.

1.4 Objectives

Table 1.1 lists some of the main messages coming out of more than three
decades of financial modelling and risk management and compares them with
the messages conveyed by diffusion models and models with jumps. This brief
comparison shows that, aside from having various empirical, computational
and statistical features that have motivated their use in the first place, discon-
tinuous models deliver qualitatively different messages about the key issues of
hedging, replication and risk.

Our point, which will be stressed again in Chapter 10, is not so much that
diffusion models such as (1.3), (1.4) or even (1.2) do not give good “fits”
of empirical data: in fact, they do quite well in some circumstances. The
point is that they have the wrong qualitative properties and therefore can
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14 Financial Modelling with jump processes

TABLE 1.1: Modelling market moves: diffusion models vs. models with
jumps.

Empirical facts Diffusion models Models with jumps

Large, sudden move-
ments in prices.

Difficult: need very large
volatilities.

Generic property.

Heavy tails. Possible by choosing
nonlinear volatility
structures.

Generic property.

Options are risky in-
vestments.

Options can be hedged in
a risk-free manner.

Perfect hedges do not
exist: options are risky
investments.

Markets are incom-
plete; some risks can-
not be hedged.

Markets are complete. Markets are incom-
plete.

Concentration: losses
are concentrated in a
few large downward
moves.

Continuity: price move-
ments are conditionally
Gaussian; large sudden
moves do not occur.

Discontinuity: jumps/
discontinuities in prices
can give rise to large
losses.

Some hedging strate-
gies are better than
others.

All hedging strategies
lead to the zero residual
risk, regardless of the risk
measure used.

Hedging strategy is
obtained by solving
portfolio optimization
problem.

Exotic options are
hedged using vanilla
(call/put) options.

Options are redundant:
any payoff can be repli-
cated by dynamic hedg-
ing with the underlying.

Options are not redun-
dant: using vanilla op-
tions can allow to re-
duce hedging error.
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convey erroneous intuitions about price fluctuations and the risk resulting
from them. We will argue that, when viewed as a subset of the larger family
of jump-diffusion models, which are the object of this book, diffusion models
should be considered as singularities: while they should certainly be included
in all finance textbooks as pedagogical examples, their conclusions for risk
measurement and management cannot be taken seriously.

The points outlined above should have convinced the reader that in the
models considered in this book we are not merely speaking about a general-
ization of the classical Black-Scholes model in view of “fitting” the distribution
of returns or implied volatility curves with some additional parameters. In
addition to matching empirical observations, these models will force us to
critically reconsider some of the main concepts which are the backbone of the
realm of diffusion models: arbitrage pricing, riskless hedges, market complete-
ness and even the Itô formula!

Our goal has been to provide the reader with the necessary tools for un-
derstanding these models and the concepts behind them. Instead of heading
for the full generality of “semimartingale” theory we have chosen to focus on
tractable families of models with jumps — Lévy processes, additive processes
and stochastic volatility models with jumps. The main ideas and modelling
tools can be introduced in these models without falling into excessive abstrac-
tion.

Exponential Lévy models, introduced in Chapters 3 and 4, offer analyti-
cally tractable examples of positive jump processes and are the main focus of
the book. They are simple enough to allow a detailed study both in terms
of statistical properties (Chapter 7) and as models for risk-neutral dynam-
ics, i.e., option pricing models (Chapter 11). The availability of closed-form
expressions for characteristic function of Lévy processes (Chapter 3) enables
us to use Fourier transform methods for option pricing. Also, the Markov
property of the price will allow us to express option prices as solutions of
partial integro-differential equations (Chapter 12). The flexibility of choice of
the Lévy measure allows us to calibrate the model to market prices of options
and reproduce implied volatility skews/smiles (Chapter 13).

We will see nevertheless that time-homogeneous models such as Lévy pro-
cesses do not allow for a flexible representation of the term structure of im-
plied volatility and imply empirically undesirable features for forward smiles/
skews. In the last part of the book, we will introduce extensions of these mod-
els allowing to correct these shortcomings while preserving the mathematical
tractability: additive processes (Chapter 14) and stochastic volatility models
with jumps (Chapter 15).

Finally, let us stress that we are not striving to promote the systematic
use of the models studied in this book. In the course of the exposition we
will point our their shortcomings as well as their advantages. We simply aim
at providing the necessary background so that jump processes and models
built using them will, hopefully, hold no mystery for the reader by the time
(s)he has gone through the material proposed here. Table 1.2 provides an
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16 Financial Modelling with jump processes

TABLE 1.2: Topics presented in this book

Concepts Mathematical tools Chapter

Constructing models Poisson random measures 2
with jumps Lévy processes 3,4

Multivariate models Lévy copulas 5

Time series modelling Statistical methods 7

Arbitrage pricing Changes of measure 9

Hedging in incomplete
markets

Stochastic calculus 8

Model calibration Inverse problems and regular-
ization methods

13

Numerical methods for Monte Carlo simulation 6
option pricing Fourier transform methods 11

Finite difference methods 12

Time-inhomogeneous
models

Additive processes 14

Stochastic volatility
models with jumps

Ornstein-Uhlenbeck processes
Time-changed Lévy processes

15

outline of the different topics presented in this book and the chapters where
they are discussed. The chapters have been designed to be as self-contained
as possible. However, to learn the necessary mathematical tools, the reader
should go through Chapters 2 and 3 before passing to the rest of the book.
In addition, it is recommended to read Chapter 8 before passing to Chapters
10 and 12 and to read Chapter 9 before continuing with Chapter 13.
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Chapter 2

Basic tools

Lorsque l’on expose devant un public de mathématiciens [. . . ] on peut
supposer que chacun connait les variétés de Stein ou les nombres de Betti
d’un espace topologique; mais si l’on a besoin d’une intégrale stochastique,
on doit définir à partir de zéro les filtrations, les processus prévisibles,
les martingales, etc. Il y a là quelque chose d’anormal. Les raisons en
sont bien sûr nombreuses, à commencer par le vocabulaire esotérique des
probabilistes. . .

Laurent Schwartz

Modern probability theory has become the natural language for formulating
quantitative models of financial markets. This chapter presents, in the form
of a crash course, some of its tools and concepts that will be important in the
sequel. Although the reader is assumed to have some background knowledge
on random variables and probability, there are some tricky notions that we
have found useful to recall. Instead of giving a catalog of definitions and
theorems, which can be found elsewhere, we have tried to justify why these
definitions are relevant and to promote an intuitive understanding of the main
results.

The mathematical concept of measure is important in the study of stochas-
tic processes in general and jump processes in particular. Basic definitions
and notions from measure theory are recalled in Section 2.1. Section 2.2 re-
calls some facts about random variables, probability spaces and characteristic
functions. Basic notions on stochastic processes are recalled in Section 2.4.
A fundamental example of a stochastic process is the Poisson process, dis-
cussed in Section 2.5. The study of the Poisson process naturally leads to the
notion of Poisson random measures, introduced in Section 2.6. Our presenta-
tion is concise and motivated by applications of these concepts in the sequel:
references for further reading are provided at the end of the chapter.
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2.1 Measure theory

2.1.1 σ-algebras and measures

The notion of measure is a straightforward generalization of the more fa-
miliar notions of length, area and volume to more abstract settings. Consider
a set E, which we will usually take to be R

d or some space of R
d-valued

functions. Intuitively, a measure µ on E associates to certain subsets A ⊂ E,
called measurable sets, a positive (possibly infinite) number µ(A) ∈ [0,∞],
called the measure of A. By analogy with the notions of area or volume, it
is natural to say that the empty set ∅ has measure 0: µ(∅) = 0. Also, if A
and B are disjoint measurable sets, A

⋃
B should also be measurable and its

measure is naturally defined to be µ(A
⋃
B) = µ(A)+µ(B). This is the addi-

tivity property. In order to consider limits it is useful to extend this property
to infinite sequences: if (An)n∈N is a sequence of disjoint measurable subsets
then

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An). (2.1)

This countable additivity property is sometimes known under the (obscure)
name of σ-additivity.

Note that we have not excluded that µ(A) = ∞ for some A: returning to
the analogy with volume, the volume of a half space is infinite, for instance. In
particular µ(E) may be finite or infinite. If µ(E) <∞ then for any measurable
set A, since its complement Ac verifies A

⋃
Ac = E, the additivity property

can be used to define the measure of the complement Ac by

µ(Ac) = µ(E) − µ(A).

Therefore it is natural to require that for any measurable set A its complement
Ac is also measurable.

These remarks can be summarized by saying that the domain of definition
of a measure on E is a collection of subsets of E which

• contains the empty set : ∅ ∈ E .

• is stable under unions:

An ∈ E , (An)n≥1 disjoint ⇒
⋃
n≥1

An ∈ E . (2.2)

• contains the complementary of every element: ∀A ∈ E , Ac ∈ E .

Such a collection of subsets is called a σ-algebra. We will usually denote σ-
algebras by curly letters like E ,B or F . A measurable set will then be an
element of the σ-algebra.
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All this is fine, but how does one construct such σ-algebras? Usually we
start with a collection of sets that we would like to be measurable (say, in-
tervals if we are on the real line) and then keep adding new sets by taking
reunions and complements until the collection forms a σ-algebra. The fol-
lowing result (see e.g., [153, Chapter 1]) shows that this operation is always
possible:

PROPOSITION 2.1

Given a collection A of subsets of E, there exists a unique σ-algebra denoted
σ(A) with the following property: if any σ-algebra F ′ contains A then σ(A) ⊂
F ′. σ(A) is the smallest σ-algebra containing A and is called the σ-algebra
generated by A.

An important example is the case where E has a topology, i.e., the notion of
open subset is defined on E. This is the case of E = R

d and more generally,
of function spaces for which a notion of convergence is available. The σ-
algebra generated by all open subsets is called the Borel σ-algebra 1 and we
will denote it by B(E) or simply B. An element B ∈ B is called a Borel set.
Obviously any open or closed set is a Borel set but a Borel set can be horribly
complicated. Defining measures on B will ensure that all open and closed sets
are measurable. Unless otherwise specified, we will systematically consider
the Borel σ-algebra in all the examples of measures encountered in the sequel.

Having defined σ-algebras, we are now ready to properly define a measure:

DEFINITION 2.1 Measure Let E be a σ-algebra of subsets of E.
(E, E) is called a measurable space. A (positive) measure on (E, E) is defined
as a function

µ : E → [0,∞]
A �→ µ(A)

such that

1. µ(∅) = 0.

2. For any sequence of disjoint sets An ∈ E

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An). (2.3)

An element A ∈ E is called a measurable set and µ(A) its measure.

1In French: tribu borélienne, literally “Borelian tribe”!
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Here we have required that µ(A) be positive but one can also consider non-
positive measures: if µ+ and µ− are two (positive) measures then µ = µ+−µ−
verifies the properties given in Definition (2.1) and is called a signed measure.
It is not clear at this stage why such objects might be interesting to consider
so we postpone their discussion until later. In the sequel the term “measure”
will be used synonymously with “positive measure.”

A well-known example of a measure is the Lebesgue measure on R
d: it is

defined on the Borel σ-algebra B(Rd) and corresponds to the (d-dimensional)
notion of volume:

λ(A) =
∫
A

dx.

More generally for any positive continuous function ρ : R
d → R

+ one can
define a measure on R

d as follows:

µ : B(Rd) → [0,∞]

A �→
∫
A

ρ(x)dx =
∫

1Aρ(x)dx. (2.4)

The function ρ is called the density of µ with respect to the Lebesgue measure
λ. More generally, the Equation (2.4) defines a positive measure for every
positive measurable function ρ (measurable functions are defined in the next
section).

Dirac measures are other important examples of measures. The Dirac mea-
sure δx associated to a point x ∈ E is defined as follows: δx(A) = 1 if x ∈ A
and δx(A) = 0 if x /∈ A. More generally one can consider a sum of such Dirac
measures. Given a countable set of points X = {xi, i = 0, 1, 2, ...} ⊂ E the
counting measure µX =

∑
i δxi

is defined in the following way: for any A ⊂ E,
µX(A) counts the number of points xi in A:

µ(A) = #{i, xi ∈ A} =
∑
i≥1

1xi∈A. (2.5)

A measurable set may have zero measure without being empty. Going
back to the analogy with length and volume, we can note that the area of a
line segment is zero, the “length” of a point is also defined to be zero. The
existence of nontrivial sets of measure zero is the origin of many subtleties in
measure theory. If A is a measurable set with µ(A) = 0, it is then natural
to set µ(B) = 0 for any B ⊂ A. Such sets — subsets of sets of measure zero
— are called null sets. If all null sets are not already included in E , one can
always include them by adding all null sets to E : the new σ-algebra is then
said to be complete.

A measure µ is said to be integer valued if for any measurable set A, µ(A)
is a (positive) integer. An example of an integer valued measure is a Dirac
measure. More generally, any counting measure is an integer valued measure.
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If µ is a measure on E, µ(E) need not be finite. A measure µ on (E, E)
is said to be finite if µ(E) < +∞ (which entails that µ(A) is finite for any
measurable set A). The quantity µ(E) is usually called the (total) mass of µ.
For example, a Dirac measure is a finite measure with mass 1. The counting
measure µX associated to the set X = {x1, x2, . . .} is finite if X is finite and
its mass µX(E) is simply the number of elements in X.

A finite measure with mass 1 is called a probability measure. In this case
(E, E , µ) is called a probability space. Probability measures will be considered
in more detail in Section 2.2.

Not all measures we will encounter will be finite measures. A well-known
example is the Lebesgue measure on R

d: the total mass is infinite. A more
flexible notion is that of a Radon measure:

DEFINITION 2.2 Radon measure Let E ⊂ R
d. A Radon measure on

(E,B) is a measure µ such that for every compact 2 measurable set B ∈ B,
µ(B) <∞.

For example the Lebesgue measure on R is a Radon measure: the length
of any bounded interval is finite. Dirac measures and any finite linear com-
bination of Dirac measures are also examples of Radon measures. We will
encounter these fundamental examples recurrently later on. More generally,
a measure µ on E ⊂ R

d is called σ-finite if

E =
∞⋃
i=1

Ei with µ(Ei) <∞. (2.6)

This condition holds for example if µ is a finite measure or a Radon measure.
The examples given above — the Lebesgue measure and Dirac measures —

differ in a fundamental way: while Dirac measures are concentrated on a finite
number of points, the Lebesgue measure assigns zero measure to any finite
set. A measure µ0 which gives zero mass to any point is said to be diffuse or
atomless:

∀x ∈ E, µ0({x}) = 0. (2.7)

The Lebesgue measure is an example of a diffuse measure. Measures with
a continuous density with respect to the Lebesgue measure on R

d are other
examples of diffuse measures.

The following result shows that any Radon measure can be decomposed
into a diffuse part and a sum of Dirac measures:

2A compact subset of R
d is simply a bounded closed subset.
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PROPOSITION 2.2 Decomposition of Radon measures
Any Radon measure µ can be decomposed into a sum of a diffuse measure µ0

and a linear combination of Dirac measures [227]:

µ = µ0 +
∑
j≥1

bjδxj
xj ∈ E, bj > 0. (2.8)

If µ0 = 0 then µ is said to be a (purely) atomic measure. Dirac measures
and linear combinations of Dirac measures are atomic measures.

2.1.2 Measures meet functions: integration

Let us now consider two measurable spaces (E, E) and (F,F). In most
applications we will be interested in evaluating a measure on a set of the
form:

{x ∈ E, f(x) ∈ A}.
For a given function f , there is no reason for this set to be measurable. This
motivates the following definition:

DEFINITION 2.3 Measurable function A function f : E → F is
called measurable if for any measurable set A ∈ F , the set

f−1(A) = {x ∈ E, f(x) ∈ A}
is a measurable subset of E.

As noted above we will often consider measures on sets which already have a
metric or topological structure such as R

d equipped with the Euclidean metric.
On such spaces the notion of continuity for functions is well defined and one
can then ask whether there is a relation between continuity and measurability
for a function f : E → F . In general, there is no relation between these
notions. However it is desirable that the notion of measurability be defined
such that all continuous functions be measurable. This is automatically true
if the Borel σ-algebra is chosen (since f is continuous if and only if f−1(A) is
open for every open set), which explains why we will choose it all the time.
Hence in the following, whenever the notion of continuous function makes
sense, all continuous functions will be measurable.

Simple examples of measurable functions f : E → R are functions of the
form

f =
n∑
j=1

cj1Aj
, (2.9)

where (Aj) are measurable sets and cj ∈ R. These functions are sometimes
called simple functions. The integral of such a simple function with respect
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to a measure µ is defined as

µ(f) =
n∑
j=1

cjµ(Aj). (2.10)

Having defined integrals for simple functions, we extend it to any positive
measurable function f : E → R by setting

µ(f) = sup{µ(ϕ), ϕ simple function, ϕ ≤ f}. (2.11)

The integral µ(f) is allowed to be infinite. Since any measurable function
f : E → R can be written as the sum of its positive and negative parts
f = f+ − f−, f+, f− ≥ 0 we can define separately µ(f+), µ(f−) as above.
If µ(f+), µ(f−) are not infinite we say that f is µ-integrable and we define
µ(f) = µ(f+) − µ(f−), called the integral of µ with respect to f . When µ is
the Lebesgue measure, µ(f) is simply the Lebesgue integral of f ; by analogy
with this case µ(f) is denoted using the “differential” notation

µ(f) =
∫
x∈E

f(x)µ(dx). (2.12)

If the measure µ has the decomposition (2.8) then the integral in (2.12) can
be interpreted as

µ(f) =
∫
f(x)µ0(dx) +

∑
j≥1

bjf(xj). (2.13)

Two measurable functions f, g on E are said to be equal µ-almost everywhere
if they differ only on a null set:

f = g µ− a.e. ⇐⇒ µ({x ∈ E, f(x) �= g(x)}) = 0.

If f, g are µ-integrable then

f = g µ− a.e. ⇒
∫
E

f(x)µ(dx) =
∫
E

g(x)µ(dx).

2.1.3 Absolute continuity and densities

Consider now a measurable space (E, E) with measures µ1 and µ2 defined
on it. How can these two measures be compared?

A natural idea to compare µ1 and µ2 is to look at the ratio µ2(A)/µ1(A)
for various measurable sets A. Of course this is only possible if µ2(A) = 0
every time µ1(A) = 0. This remark motivates the following definition:

DEFINITION 2.4 Absolute continuity A measure µ2 is said to be
absolutely continuous with respect to µ1 if for any measurable set A

µ1(A) = 0 ⇒ µ2(A) = 0. (2.14)
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Absolute continuity can be characterized in the following way:

PROPOSITION 2.3 Radon-Nikodym theorem
If µ2 is absolutely continuous with respect to µ1 then there exists a measurable
function Z : E → [0,∞[ such that for any measurable set A

µ2(A) =
∫
A

Zdµ1 = µ1(Z1A). (2.15)

The function Z is called the density or Radon-Nikodym derivative of µ2 with
respect to µ1 and denoted as dµ2

dµ1
. For any µ2-integrable function f

µ2(f) =
∫
E

fdµ2 = µ1(fZ) =
∫
E

dµ1Zf. (2.16)

Therefore if µ2 is absolutely continuous with respect to µ1, an integral with
respect to µ2 is a weighted integral with respect to µ1, the weight being given
by the density Z.

If both µ2 is absolutely continuous with respect to µ1 and µ1 is absolutely
continuous with respect to µ2 then µ1 and µ2 are said to be equivalent mea-
sures. This is equivalent to stating that Z > 0. The term “equivalent” is
somewhat confusing: it would be more appropriate to say that µ1 and µ2 are
comparable. However this is the usual terminology and we will continue to
use it.

2.2 Random variables

2.2.1 Random variables and probability spaces

Consider a set Ω, called the set of scenarios, equipped with a σ-algebra F .
In a financial modelling context, Ω will represent the different scenarios which
can occur in the market, each scenario ω ∈ Ω being described in terms of the
evolution of prices of different instruments. A probability measure on (Ω,F)
is a positive finite measure P with total mass 1. (Ω,F ,P) is then called a
probability space. A measurable set A ∈ F , called an event, is therefore a set
of scenarios to which a probability can be assigned. A probability measure
assigns a probability between 0 and 1 to each event:

P : F → [0, 1]
A �→ P(A).

Probability measures will be usually denoted by letters such as P,Q.
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An event A with probability P(A) = 1 is said to occur almost surely. If
P(A) = 0 this is interpreted by saying the event A is impossible. If we are
dealing with several probability measures defined on the same set then one
should be more specific: we will then replace “almost surely” or “impossible”
by “P-almost surely” or “impossible under P.” A P-null set is a subset of
an impossible event. As before, we can complete F to include all null sets.
This means we assign probability zero to subsets of impossible events, which
is intuitively reasonable. Unless stated otherwise, we shall consider complete
versions of all σ-algebras. We will say that a property holds P-almost surely
(P a.s. for short) if the set of ω ∈ Ω for which the property does not hold is
a null set.

As in Section 2.1.3, one can speak of absolute continuity and equivalence
for probability measures: two probability measures P and Q on (Ω,F) are
equivalent (or comparable) if they define the same impossible events:

P ∼ Q ⇐⇒ [∀A ∈ F , P(A) = 0 ⇐⇒ Q(A) = 0]. (2.17)

A random variable X taking values in E is a measurable function

X : Ω → E,

where (Ω,F ,P) is a probability space. An element ω ∈ Ω is called a scenario
of randomness. X(ω) represents the outcome of the random variable if the
scenario ω happens and is called the realization of X in the scenario ω. If X
and Y are two random variables, we write “X = Y P a.s.” (almost surely) if
P{ω ∈ Ω,X(ω) = Y (ω)} = 1. The law (or distribution) ofX is the probability
measure on E defined by:

µX(A) = P(X ∈ A). (2.18)

If µX = µY then X and Y are said to be identical in law and we write X d= Y .
Obviously if X = Y almost surely, they are identical in law.
X : Ω �→ E is called a real-valued random variable when E ⊂ R. As in

Section 2.1.2, one can define the integral of a positive random variable X
with respect to P: this quantity, called the expectation of X with respect to
P and denoted by EP[X] =

∫
E
X(ω)dP(ω), is either a positive number or

+∞. If EP[X] < ∞ then X is said to be P-integrable. By decomposing
any real-valued random variable Y into its positive and negative parts Y =
Y+ − Y−, one sees that if EP[ |Y | ] < ∞ then Y−, Y+ are integrable and the
expectation E[Y ] = E[Y+] − E[Y−] is well-defined. The set of (real-valued)
random variables Y verifying ||Y ||1 = EP[ |Y | ] <∞ is denoted by L1(Ω,P).

It is sometimes useful to allow “infinite” values for positive random vari-
ables, i.e., choose E = [0,∞[∪{+∞}. Of course if Y ∈ L1(Ω,P) then Y is
almost surely finite.
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2.2.2 What is (Ω,F ,P) anyway?

While many discussions of stochastic models start with the magic sentence
“let (Ω,F ,P) be a probability space” one can actually follow such discussions
without having the slightest idea what Ω is and who lives inside. So here
comes the question that many beginners are dying to ask without daring to:
what is “Ω,F ,P” and why do we need it? Indeed, for many users of proba-
bility and statistics, a random variable X is synonymous with its probability
distribution µX and all computations such as sums, expectations, etc., done
on random variables amount to analytical operations such as integrations,
Fourier transforms, convolutions, etc., done on their distributions. For defin-
ing such operations, you do not need a probability space. Isn’t this all there
is to it?

One can in fact compute quite a lot of things without using probability
spaces in an essential way. However the notions of probability space and
random variable are central in modern probability theory so it is important
to understand why and when these concepts are relevant.

From a modelling perspective, the starting point is a set of observations
taking values in some set E (think for instance of numerical measurement,
E = R) for which we would like to build a stochastic model. We would like
to represent such observations x1, . . . , xn as samples drawn from a random
variable X defined on some probability space (Ω,F ,P). It is important to see
that the only natural ingredient here is the set E where the random variables
will take their values: the set of events Ω is not given a priori and there are
many different ways to construct a probability space (Ω,F ,P) for modelling
the same set of observations.

Sometimes it is natural to identify Ω with E, i.e., to identify the randomness
ω with its observed effect. For example if we consider the outcome of a dice
rolling experiment as an integer-valued random variable X, we can define the
set of events to be precisely the set of possible outcomes: Ω = {1, 2, 3, 4, 5, 6}.
In this case, X(ω) = ω: the outcome of the randomness is identified with
the randomness itself. This choice of Ω is called the canonical space for the
random variable X. In this case the random variable X is simply the identity
map X(ω) = ω and the probability measure P is formally the same as the
distribution of X. Note that here X is a one-to-one map: given the outcome
of X one knows which scenario has happened so any other random variable Y
is completely determined by the observation of X. Therefore using the canon-
ical construction for the random variable X, we cannot define, on the same
probability space, another random variable which is independent of X: X will
be the sole source of randomness for all other variables in the model. These
remarks also show that, although the canonical construction is the simplest
way to construct a probability space for representing a given random variable,
it forces us to identify this particular random variable with the “source of ran-
domness” in the model. Therefore when we want to deal with models with a
sufficiently rich structure, we need to distinguish Ω — the set of scenarios of
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randomness — from E, the set of values of our random variables.
Let us give an example where it is natural to distinguish the source of ran-

domness from the random variable itself. For instance, if one is modelling the
market value of a stock at some date T in the future as a random variable
S1, one may consider that the stock value is affected by many factors such as
external news, market supply and demand, economic indicators, etc., summed
up in some abstract variable ω, which may not even have a numerical repre-
sentation: it corresponds to a scenario for the future evolution of the market.
S1(ω) is then the stock value if the market scenario which occurs is given by
ω. If the only interesting quantity in the model is the stock price then one
can always label the scenario ω by the value of the stock price S1(ω), which
amounts to identifying all scenarios where the stock S1 takes the same value
and using the canonical construction described above. However if one con-
siders a richer model where there are now other stocks S2, S3, . . . involved,
it is more natural to distinguish the scenario ω from the random variables
S1(ω), S2(ω), . . . whose values are observed in these scenarios but may not
completely pin them down: knowing S1(ω), S2(ω), . . . one does not necessar-
ily know which scenario has happened. In this way one reserves the possibility
of adding more random variables later on without changing the probability
space.

These comments, although a bit abstract at first sight, have the following
important consequence: the probabilistic description of a random variable
X can be reduced to the knowledge of its distribution µX only in the case
where the random variable X is the only source of randomness. In this case,
a stochastic model can be built using a canonical construction for X. In all
other cases — in fact as soon as we are concerned with a second random vari-
able which is not a deterministic function of X — the underlying probability
measure P contains more information on X than just its distribution. In par-
ticular, it contains all the information about the dependence of the random
variable X with respect to all other random variables in the model: specifying
P means specifying the joint distributions of all random variables constructed
on Ω. For instance, knowing the distributions µX , µY of two variables X,Y
does not allow to compute their covariance or joint moments. Only in the
case where all random variables involved are mutually independent can one
reduce all computations to operations on their distributions. This is the case
covered in most introductory texts on probability, which explains why one can
go quite far, for example in the study of random walks, without formalizing
the notion of probability space.

2.2.3 Characteristic functions

The characteristic function of a random variable is the Fourier transform of
its distribution. Many probabilistic properties of random variables correspond
to analytical properties of their characteristic functions, making this concept
very useful for studying random variables.
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DEFINITION 2.5 Characteristic function The characteristic func-
tion of the R

d-valued random variable X is the function ΦX : R
d → R defined

by

∀z ∈ R
d, ΦX(z) = E[exp(iz.X)] =

∫
Rd

eiz.xdµX(x). (2.19)

The characteristic function of a random variable completely characterizes
its law: two variables with the same characteristic function are identically dis-
tributed. A characteristic function is always continuous and verifies ΦX(0) =
1. Additional smoothness properties of ΦX depend on the existence of mo-
ments of the random variable X. The n-th moment of a random variable X
on R is defined by mn(X) = E[Xn]. The absolute moments of X are the
quantities mn(|X|) = E[|X|n]. The n-th centered moment µn is defined as
the n-th moment of X − E[X]:

µn(X) = E[(X − E[X])n]. (2.20)

The moments of a random variable may or may not exist, depending on how
fast the distribution µX decays at infinity. For example, for the exponential
distribution all moments are well-defined while the Student t distribution
with n degrees of freedom (see Table 2.1) only has moments of orders up to
n. The moments of a random variable are related to the derivatives at 0 of
its characteristic function:

PROPOSITION 2.4 Characteristic function and moments

1. If E[|X|n] <∞ then ΦX has n continuous derivatives at z = 0 and

∀k = 1 . . . n, mk ≡ E[Xk] =
1
ik
∂kΦX
∂zk

(0). (2.21)

2. If ΦX has 2n continuous derivatives at z = 0 then E[|X|2n] <∞ and

∀k = 1 . . . 2n, mk ≡ E[Xk] =
1
ik
∂kΦX
∂zk

(0). (2.22)

3. X possesses finite moments of all orders iff z �→ ΦX(z) is C∞ at z = 0.
Then the moments of X are related to the derivatives of ΦX by:

mn ≡ E[Xn] =
1
in
∂nΦX
∂zn

(0). (2.23)

If (Xi, i = 1 . . . n) are independent random variables, the characteristic
function of Sn = X1 +X2 + · · ·+Xn is the product of characteristic functions
of individual variables:

ΦSn
(z) =

n∏
i=1

ΦXi
(z). (2.24)
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2.2.4 Moment generating function

DEFINITION 2.6 Moment generating function The moment gen-
erating function of R

d-valued random variable X is the function MX defined
by

∀u ∈ R
d, MX(u) = E[exp(u.X)]. (2.25)

Contrarily to the characteristic function, which is always well-defined (as the
Fourier transform of a probability measure), the moment generating function
is not always defined: the integral in (2.25) may not converge for some (or
all) values of u. When MX is well-defined, it can be formally related to the
characteristic function ΦX by:

MX(u) = ΦX(−iu). (2.26)

If the moment generating function MX of a random variable X on R is defined
on a neighborhood [−ε, ε] of zero then in particular all (polynomial) moments
of X are finite and can be recovered from the derivatives of M in the following
manner:

mn =
∂nMX

∂un
(0). (2.27)

2.2.5 Cumulant generating function

Let X be a random variable and ΦX its characteristic functions. As men-
tioned above ΦX(0) = 1 and ΦX is continuous at z = 0 so ΦX(z) �= 0 in
a neighborhood of z = 0. One can then define a continuous version of the
logarithm of ΦX : there exists a unique continuous function ΨX defined in a
neighborhood of zero such that

ΨX(0) = 0 and ΦX(z) = exp[ΨX(z)]. (2.28)

The function ΨX is called the cumulant generating function or log-characteristic
function of X. Note that if ΦX(z) �= 0 for all z, the cumulant generating func-
tion can be extended to all R

d. The cumulants or semi-invariants of X are
defined by:

cn(X) =
1
in
∂nΨX

∂un
(0). (2.29)

By expanding the exponential function at z = 0 and using (2.25), the n-th cu-
mulant can be expressed as a polynomial function of the momentsmk(X), k =
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1 . . . n or the central moments µk(X) defined in (2.20). For instance

c1(X) = m1(X) = EX, (2.30)
c2(X) = µ2(X) = m2(X) −m1(X)2 = Var(X), (2.31)
c3(X) = µ3(X) = m3(X) − 3m2(X)m1(X) + 2m1(X)3, (2.32)
c4(X) = µ4(X) − 3µ2(X). (2.33)

Scale-free versions of cumulants can be obtained by normalizing cn by the
n-th power of the standard deviation:

s(X) =
c3(X)
c2(X)3/2

, κ(X) =
c4(X)
c2(X)2

. (2.34)

The quantity s(X) is called the skewness coefficient of X: if s(X) > 0, X
is said to be positively skewed. The quantity κ(X) is called the (excess)
kurtosis of X. X is said to be leptokurtic or “fat-tailed” if κ(X) > 0. Note
that if X follows a normal distribution, ΨX is a second degree polynomial so
∀n ≥ 3, cn(X) = 0. This allows to view s(X), κ(X) and higher cumulants as
measures of deviation from normality. By construction the skewness and the
kurtosis are invariant to a change of scale:

∀λ > 0, s(λX) = s(X) κ(λX) = κ(X). (2.35)

Cumulant generating functions of independent variables add up when the
variables are added: from (2.24) one easily deduces that, if (Xi)i=1...n are
independent random variables then

ΨX1+...+Xn
(z) =

n∑
i=1

ΨXi
(z). (2.36)

2.3 Convergence of random variables

When considering sequences or families of random variables, one can give
several different meanings to the notion of convergence. In this section we
define and compare these different notions of convergence which will be useful
in the sequel. While we define convergence in terms of sequences (indexed by
integers), our definitions also hold for continuously indexed families.

2.3.1 Almost-sure convergence

Consider a sequence of random variables (Xn)n≥1 taking values in some
normed vector space E, for instance E = R

d. Recall that a random variable
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TABLE 2.1: Some probability distributions and their characteristic
functions.

Distribution Density Characteristic function

Exponential
µ(x) = αe−αx1x≥0 Φ(z) =

α

α− iz

Two-sided ex-
ponential µ(x) =

α

2
e−α|x|

Φ(z) =
α

α2 + |z|2

Gamma

µ(x) =
λc

Γ(c)
xc−1e−λx1x≥0 Φ(z) =

1
(1 − iλ−1z)c

Gaussian

µ(x) =
exp(−(x−γ)2

2σ2 )√
2πσ Φ(z) = exp(−σ

2z2

2
+iγz)

Cauchy

µ(x) =
c

π[(x− γ)2 + c2]
Φ(z) = exp(−c|z| + iγz)

Symmetric
α-stable

Not known in closed form Φ(z) = exp(−c|z|α)

Student t

Γ((n+ 1)/2)√
nπΓ(n/2)

(1 +
x2

n
)−(n+1)/2 Not known in closed form
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is defined as a function X : Ω → E of the “randomness” ω ∈ Ω. One could
then consider applying to random variables various notions of convergence
which exist for sequences of functions. The simplest notion of convergence for
functions is that of pointwise convergence which requires that for each ω ∈ Ω,
the sequence (Xn(ω))n≥1 converge to X(ω) in E. This notion turns out to
be too strong in many cases since we are asking convergence for all samples
ω ∈ Ω without taking into account that many events may in fact be negligible,
i.e., of probability zero. The notion of almost-sure convergence takes this fact
into account and requires pointwise convergence only for realizations which
have a nonzero probability of occurrence:

DEFINITION 2.7 Almost-sure convergence A sequence (Xn) of ran-
dom variables on (Ω,F ,P) is said to converge almost surely to a random vari-
able X if

P( lim
n→∞Xn = X) = 1. (2.37)

For the above definition to make sense the variables (Xn)n≥1 have to be
defined on the same probability space (Ω,F ,P). Note that almost sure con-
vergence does not imply convergence of moments: if Xn → X almost surely,
E[Xk

n] may be defined for all n ≥ 1 but have no limit as n→ ∞.

2.3.2 Convergence in probability

While the almost-sure convergence of (Xn)n≥1 deals with the behavior of
typical samples (Xn(ω))n≥1, the notion of convergence in probability only
puts a condition on the probability of events when n→ ∞:

DEFINITION 2.8 Convergence in probability A sequence (Xn) of
random variables on (Ω,F ,P) is said to converge in probability to a random
variable X if for each ε > 0

lim
n→∞ P(|Xn −X| > ε) = 0. (2.38)

We denote convergence in probability by

Xn
P→

n→∞X. (2.39)

Almost sure convergence implies convergence in probability but the two no-
tions are not equivalent. Also note that convergence in probability requires
that the variables (Xn)n≥1 be defined on the same probability space (Ω,F ,P).
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2.3.3 Convergence in distribution

In many situations, especially in a modelling context, the random variable
is not a directly observable quantity itself and the only observable quantities
are expectations of various functions of this random variable: E[f(X)]. These
quantities will in fact be the same for two random variables having the same
distribution. In this context, a meaningful notion of convergence from the
point of view of observation is asking that E[f(Xn)] converge to E[f(X)] for
a given set of “observables” or test functions f : E → R. If the set of test
functions is rich enough, this will ensure the uniqueness of the law of X but
will not distinguish between two limits X and X ′ with the same distribution
µ. A commonly used choice of test functions is the set of bounded continuous
functions f : E → R, which we denote by Cb(E,R).

DEFINITION 2.9 Convergence in distribution A sequence (Xn)
of random variables with values in E is said to converge in distribution to a
random variable X if, for any bounded continuous function f : E → R

E[f(Xn)] →
n→∞E[f(X)]. (2.40)

Denote by µn the distribution of Xn: µn is a probability measure on E.
Then Equation (2.40) is equivalent to:

∀f ∈ Cb(E,R),
∫
E

dµn(x)f(x) →
n→∞

∫
x

dµ(x)f(x). (2.41)

In this form it is clear that, unlike almost-sure convergence, convergence in
distribution is defined not in terms of the random variables themselves but in
terms of their distributions. Therefore sometimes convergence in distribution
of (Xn)n≥1 is also called weak convergence of the measures (µn)n≥1 on E. We
write:

µn⇒µ or Xn
d→X. (2.42)

An important feature of convergence in distribution is that, unlike the other
notions of convergence mentioned above, it does not require the variables to
be defined on a common probability space. Nevertheless, in the case where
the variables (Xn) are defined on the same space, convergence in distribution
leads to convergence of probabilities of (regular) events in the following sense:

PROPOSITION 2.5
If (Xn) converges in distribution to X, then for any set A with boundary ∂A,

µ(∂A) = 0 ⇒ [P(Xn ∈ A) = µn(A) →
n→∞ P(X ∈ A) = µ(A)]. (2.43)

Note also that, unlike other notions of convergence, convergence in distri-
bution is not “stable under sums”: if (Xn) and (Yn) converge in distribution
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to X and Y , it is not true in general that (Xn + Yn) converges in distribu-
tion to (X + Y ). However from the definition it is readily observed that if
(Xn) converge in distribution to X then for any continuous function g, g(Xn)
converges in distribution to g(X).

The notion of weak convergence is relevant in studying numerical approx-
imations obtained by discretizing continuous time models [243, 193]. As we
will see in Chapter 10, option prices can be expressed as (risk-neutral) expec-
tations of their payoffs, so weak convergence of discrete time models to their
continuous time counterparts will imply convergence of the option prices in
the discretized model to the option prices in the continuous time model [193].

The following characterization of convergence in distribution in terms of
pointwise convergence of characteristic functions is useful in practice:

PROPOSITION 2.6
(Xn)n≥1 converges in distribution to X, if and only if for every z ∈ R

d

ΦXn
(z) → ΦX(z). (2.44)

Note however that pointwise convergence of (ΦXn
) does not imply the ex-

istence of a weak limit for (Xn) since the pointwise limit of (ΦXn
) is not

necessarily a characteristic function.
Convergence in distribution does not necessarily entail convergence of mo-

ments: one cannot choose f to be a polynomial in (2.41) since polynomials
are not bounded. In fact the moments of Xn,X need not even exist.

When (Xn) and X are defined on the same probability space, convergence
in distribution is the weakest notion of convergence among the above; almost
sure convergence entails convergence in probability, which entails convergence
in distribution.

2.4 Stochastic processes

A stochastic3 process is a family (Xt)t∈[0,T ] of random variables indexed
by time. The time parameter t may be either discrete or continuous, but
in this book we will consider continuous-time stochastic processes. For each
realization of the randomness ω, the trajectory X.(ω) : t → Xt(ω) defines
a function of time, called the sample path of the process. Thus stochastic
processes can also be viewed as random functions: random variables taking
values in function spaces. Some of these function spaces will be defined in
Section 2.4.1.

3Stochastic is just a fancy word for random!
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A further step must be taken if one interprets the index t as time: one
needs to take into account the fact that events become less uncertain as more
information becomes available through time. In order to precisely formulate
these intuitively important notions one needs to describe how information
is revealed progressively. This is done by introducing the important (and
delicate) notion of filtration, discussed in Section 2.4.2, which will allow us
to define the important notions of past information, predictability and non-
anticipativeness and to classify processes and random times according to these
properties.

Finally, a stochastic process can also be seen as a functionX : [0, T ]×Ω �→ E
of both time t and the randomness ω. This point of view leads us to define
notions of joint measurability and the concepts of optional and predictable
processes, discussed in Section 2.4.5.

2.4.1 Stochastic processes as random functions

In order to define stochastic processes as function-valued random variables,
one needs to define measures on function spaces. The simplest choice of
function space for a stochastic process taking values in R

d is the set of all
functions f : [0, T ] → R

d but this space happens to be too large: it contains
many “pathological” functions and it is not easy to define measures on this
space. Furthermore we expect the stochastic processes we work with to have
sample paths with some more specific properties.

Random processes with continuous sample paths can be constructed as
random variables defined on the space of continuous functions C([0, T ],Rd).
The usual topology on this space is defined by the sup norm

||f ||∞ = sup
t∈[0,T ]

||f(t)||, (2.45)

which in turn can be used to construct a Borel σ-algebra, on which measures
can be defined. The most well-known example is the Wiener measure, a
Gaussian measure on C([0, T ],Rd) describing the Wiener process. However
most of the processes encountered in this book will not have continuous sample
paths. We need therefore a space that allows for discontinuous functions. The
class of cadlag4 functions happens to be a convenient class of discontinuous
functions:

DEFINITION 2.10 Cadlag function A function f : [0, T ] → R
d is

said to be cadlag if it is right-continuous with left limits: for each t ∈ [0, T ]

4The obscure word “cadlag” is a French acronym for “continu à droite, limite à gauche”
which simply means “right-continuous with left limits.” While most books use this termi-
nology some authors use the (unpronounceable) English acronym “rcll.”
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the limits

f(t−) = lim
s→t,s<t

f(s) f(t+) = lim
s→t,s>t

f(s) (2.46)

exist and f(t) = f(t+).

Of course, any continuous function is cadlag but cadlag functions can have
discontinuities. If t is a discontinuity point we denote by

∆f(t) = f(t) − f(t−) (2.47)

the “jump” of f at t. However, cadlag functions cannot jump around too
wildly. A cadlag function f can have at most a countable number of discon-
tinuities: {t ∈ [0, T ], f(t) �= f(t−)} is finite or countable [153]. Also, for any
ε > 0, the number of discontinuities (“jumps”) on [0, T ] larger than ε should
be finite. So a cadlag function on [0, T ] has a finite number of “large jumps”
(larger than ε) and a possibly infinite, but countable number of small jumps.

An example of cadlag function is a step function having a jump at some
point T0, whose value at T0 is defined to be the value after the jump: f =
1[T0,T [(t). In this case f(T0−) = 0, f(T0+) = f(T0) = 1 and ∆f(T0) = 1.
More generally, given a continuous function g : [0, T ] → R and constants
fi, i = 0 . . . n − 1 and t0 = 0 < t1 < · · · < tn = T , the following function is
cadlag:

f(t) = g(t) +
n−1∑
i=0

fi1[ti,ti+1[(t). (2.48)

The function g can be interpreted as the continuous component of f to which
the jumps have been added: the jumps of f occur at ti, i ≥ 1 with ∆f(ti) =
fi − fi−1. Not every cadlag function has such a neat decomposition into a
continuous and a jump part but this example is typical. Cadlag functions are
therefore natural models for the trajectories of processes with jumps.

REMARK 2.1 Cadlag or caglad? In the above example the function
is right-continuous at jump times ti simply because we have defined its value
at ti to be the value after the jump: f(ti) := f(ti+). If we had defined
f(ti) to be the value before the jump f(ti) := f(ti−) we would have obtained
a left-continuous function with right limits (“caglad”). The reader might
wonder whether it makes any difference to interchange left and right. Yes, it
does make a difference: since t is interpreted as a time variable, right means
“after” and left means “before”! If a right continuous function has a jump at
time t, then the value f(t) is not foreseeable by following the trajectory up to
time t: the discontinuity is seen as a sudden event. By contrast, if the sample
paths were left-continuous, an observer approaching t along the path could
predict the value at t. In the context of financial modelling, jumps represent
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sudden, unforeseeable events so the choice of right-continuity is natural. On
the other hand, if we want to model a discontinuous process whose values are
predictable we should use a caglad process. This will be the case when we
model trading strategies in Chapter 8.

It is possible to define a topology and a notion of convergence on the
space of cadlag functions. For details we refer the reader to [215] or [364].
Equipped with this topology and the corresponding Borel σ-algebra (see Sec-
tion 2.1.2), the space of cadlag functions is known as the Skorokhod space and
denoted by D([0, T ],Rd) or simply D([0, T ]) if the context is clear. Obviously
C([0, T ]) ⊂ D([0, T ]). A random variable with values in D([0, T ]) is called
a cadlag process. In all the models considered in this book, prices will be
modelled as cadlag processes so when we will speak of “path space,” we will
refer to D([0, T ]).

2.4.2 Filtrations and histories

The interpretation of the index t as a time variable introduces a dynamic
aspect which needs to be taken into account by properly defining the notions of
information, causality and predictability in the context of a stochastic model.

In a dynamic context, as time goes on, more information is progressively
revealed to the observer. The result is that many quantities which are viewed
as “random” at t = 0 may change status at a later time t > 0 if their value
is revealed by the information available at time t. We must add some time-
dependent ingredient to the structure of our probability space (Ω,F ,P) to
accommodate this additional feature. This is usually done using the concept
of filtration:

DEFINITION 2.11 Information flow A filtration or information flow
on (Ω,F ,P) is an increasing family of σ-algebras (Ft)t∈[0,T ]: ∀t ≥ s ≥ 0,Fs ⊆
Ft ⊆ F .

Ft is then interpreted as the information known at time t, which increases
with time. Naturally if we start with a set of events F then Ft ⊆ F . A prob-
ability space (Ω,F ,P) equipped with a filtration is called a filtered probability
space. From an intuitive point of view, the probability of occurrence of a ran-
dom event will change with time as more information is revealed. However,
instead of changing the probability measure P with time, we will keep P fixed
and model the impact of information by conditioning on the information Ft.

The information flow being described by the filtration Ft, we can now dis-
tinguish quantities which are known given the current information from those
which are still viewed as random at time t. An event A ∈ Ft is an event such
that given the information Ft at time t the observer can decide whether A has
occurred or not. Similarly, an Ft-measurable random variable is nothing else
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but a random variable whose value will be revealed at time t. A process whose
value at time t is revealed by the information Ft is said to be nonanticipating:

DEFINITION 2.12 Nonanticipating process A stochastic process
(Xt)t∈[0,T ] is said to be nonanticipating with respect to the information struc-
ture (Ft)t∈[0,T ] or Ft-adapted if, for each t ∈ [0, T ], the value of Xt is revealed
at time t: the random variable Xt is Ft-measurable.

A nonanticipating process is also called an adapted process: (Xt)t∈[0,T ] is
said to be (Ft)t∈[0,T ] -adapted. While the term “adapted” is certainly less self-
explanatory than “nonanticipating,” it is commonly used in the literature.
If the only observation available is the past values of a stochastic process X,
then the information is represented by the history (also called the natural
filtration) of X defined as follows:

DEFINITION 2.13 History of a process The history of a process X
is the information flow (FX

t )t∈[0,T ] where FX
t is the σ-algebra generated by

the past values of the process, completed by the null sets:

FX
t = σ(Xs, s ∈ [0, t])

∨
N . (2.49)

One can think of FX
t as containing all the information one can extract

from having observed the path of X between 0 and t. All explicit examples
of information flow we will use will correspond to the history of a set of asset
prices. Notice that FX

t has been completed by adding the null sets; all the
null sets are stuffed into F0. This means that if a certain evolution for X
between 0 and T is deemed impossible, its impossibility is already known at
t = 0.

2.4.3 Random times

We will often have to deal with events happening at random times. A
random time is nothing else than a positive random variable T ≥ 0 which
represents the time at which some event is going to take place. Given an
information flow (Ft), a natural question is whether given the information in
Ft one can determine whether the event has happened (τ ≤ t) or not (τ > t).
If the answer is yes, the random time τ is called a nonanticipating random
time or stopping time. In other words, T is a nonanticipating random time
((Ft)-stopping time) if

∀t ≥ 0, {T ≤ t} ∈ Ft.

If T1 and T2 are stopping times then T1 ∧ T2 = inf{T1, T2} is also a stopping
time. The term “stopping time” seems to imply that something is going to

© 2004 by CRC Press LLC



stop at the τ : given a stopping time τ and a nonanticipating process (Xt) one
can define a new process Xτ∧t, the process X stopped at τ , by:

Xτ∧t = Xt if t < τ Xτ∧t = Xτ if t ≥ τ. (2.50)

Examples of stopping times are hitting times: given a nonanticipating cadlag
process X, the hitting time of an open set A is defined by the first time when
X reaches A:

TA = inf{t ≥ 0,Xt ∈ A}. (2.51)

At any given time t, it is enough to know the past positions of Xt to see
whether the set A has been reached (TA ≤ t) or not (TA > t). A frequently
encountered example is the following: if X is a real-valued process starting
from 0 and a > 0, the exit time of X from the interval ] −∞, a] is defined as

Ta = inf{t > 0,Xt > a}. (2.52)

It is the hitting time TA associated with the open interval A =]a,∞[.
An example of a random time which is not a stopping time is the first

instant t ∈ [0, T ] when X reaches its maximum:

Tmax = inf{t ∈ [0, T ],Xt = sup
s∈[0,T ]

Xs}. (2.53)

Obviously in order to know the value of the maximum one must first wait
until T to observe the whole path on [0, T ]. Therefore given the information
Ft at time t < T one cannot decide whether Tmax has occurred or not.

Given an information flow Ft and a nonanticipating random time τ , the
information set Fτ can be defined as the information obtained by observing
all nonanticipating (cadlag) processes at τ , i.e., the σ-algebra generated by
these observations: Fτ = σ(Xτ ,X nonanticipating cadlag process). It can be
shown that this definition is equivalent to the following (see [110, p. 186] or
[324, Chapter 1]):

Fτ = {A ∈ F , ∀t ∈ [0, T ], A ∩ {t ≤ τ} ∈ Ft}. (2.54)

2.4.4 Martingales

Consider now a probability space (Ω,F ,P) equipped with an information
flow Ft.

DEFINITION 2.14 Martingale A cadlag process (Xt)t∈[0,T ] is said
to be a martingale if X is nonanticipating (adapted to Ft), E[|Xt|] is finite
for any t ∈ [0, T ] and

∀s > t, E[Xs|Ft] = Xt. (2.55)
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In other words, the best prediction of a martingale’s future value is its
present value. A familiar example of a martingale is the Wiener process (Wt).

Notice that the definition of martingale makes sense only when the under-
lying information flow (Ft)t∈[0,T ] and the probability measure P have been
specified. To avoid confusion one should speak of (P,Ft)-martingales. When
several probability measures are involved, we shall use the term P-martingale
to emphasize the fact the notion of martingale depends on the probability
measure P.

A typical way to construct a martingale is the following: given a random
variable H revealed at T (i.e., FT -measurable) with E|H| < ∞, the process
(Mt)t∈[0,T ] defined by Mt = E[H|Ft] is a martingale. Conversely any mar-
tingale (Mt)t∈[0,T ] can be written in this form, by choosing as H = MT the
terminal value.5

An obvious consequence of (2.55) is that a martingale has constant expec-
tation: ∀t ∈ [0, T ], E[Xt] = E[X0]. One can wonder whether any “driftless”
process is a martingale. The answer is no; if (Wt) is a scalar Wiener process,
W 3
t has constant expectation E[W 3

t ] = 0 but is not a martingale: indeed, if
s > t

E[W 3
s |Ft] = E[(Ws −Wt +Wt)3|Ft]

= E[(Ws −Wt)3 +W 3
t + 3(Wt −Ws)W 2

t + 3(Wt −Ws)2Wt|Ft]
= E[(Ws −Wt)3] +W 3

t + 3W 2
t E[Wt −Ws] + 3E[(Wt −Ws)2]Wt

= 0 +W 3
t + 0 + 3(t− s)Wt �= W 3

t .

However, if one asks that the process be driftless when computed at random
times, then this property actually characterizes martingales [325]: if E[Xτ ] =
E[X0] for any stopping time τ then X is a martingale.

A fundamental property of martingales is the “sampling property”: the
martingale property (2.55) is verified when t, s are replaced by nonanticipating
random times.

PROPOSITION 2.7 Sampling theorem
If (Mt)t∈[0,T ] is a martingale and T1, T2 are nonanticipating random times

(stopping times) with T ≥ T2 ≥ T1 ≥ 0 a.s. then

E[MT2 |FT1 ] = MT1 . (2.56)

For a proof see [116] or [324, Section I.2]. In particular, a martingale stopped
at a nonanticipating random time is still a martingale.

A process (Xt)t∈[0,T ] is a called a local martingale if there exists a sequence
of stopping times (Tn) with Tn → ∞ a.s. such that (Xt∧Tn

)t∈[0,T ] is a martin-
gale. Thus a local martingale behaves like a martingale up to some stopping

5Note that here we define processes and martingales in particular on a finite time interval
[0, T ]; these results do not hold if the time parameter t ∈ [0,∞[ .
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time Tn, which can be chosen as large as one wants. Obviously any mar-
tingale is a local martingale but there exist local martingales which are not
martingales; this is the origin of many subtleties in martingale theory.

2.4.5 Predictable processes (*)

So far we have defined a stochastic process (Xt)t∈[0,T ] either by considering
it as a function of time for fixed ω — the sample path t �→ Xt(ω) — or as a
function of ω for a fixed t — the random variable Xt. Of course it is natural
to consider these two aspects jointly by considering X as a function defined
on [0, T ] × Ω. This requires defining σ-algebras and measurable functions 6

on [0, T ] × Ω. At first sight we could consider the σ-algebra generated by
products B × A where A ∈ F and B ⊂ [0, T ] is measurable. But if we are
given an information flow (Ft)t∈[0,T ] we would like the previously defined class
of nonanticipating cadlag processes to be measurable functions on [0, T ]. The
simplest choice is then to take the σ-algebra generated by these processes:

DEFINITION 2.15 Optional processes The optional σ-algebra is the
σ-algebra O generated on [0, T ] × Ω by all nonanticipating (adapted) cadlag
processes. A process X : [0, T ] × Ω �→ R

d which is measurable with respect to
O is called an optional process.7

With this definition, any nonanticipating cadlag process is optional but the
sample paths of an optional process need not be cadlag in general: nonan-
ticipating cadlag processes “generate” optional processes the same way that
continuous functions “generate” measurable functions.

The distinction made in Section 2.4.1 between left and right continuity and
its interpretation in terms of sudden vs. predictable jumps motivates the
definition of another σ-algebra on [0, T ] × Ω:

DEFINITION 2.16 Predictable processes The predictable σ-algebra
is the σ-algebra P generated on [0, T ]×Ω by all nonanticipating (adapted) left-
continuous processes. A mapping X : [0, T ] × Ω �→ R

d which is measurable
with respect to P is called a predictable process.

While the name “predictable” is justified given the discussion above, the
name “optional” is less transparent. We will not use this notion very often so
we will stick to this terminology. Any left-continuous process is therefore pre-
dictable (by definition): this is intuitive if lims→t,s<tXs = Xt then the value
of Xt is “announced” by the values at preceding instants. In the sense of

6See Section 2.1.2.
7The term “optional” has nothing to do with options!

© 2004 by CRC Press LLC



Definition 2.16, all predictable processes are “generated” from left-continuous
processes (in the same way that all Borel sets are “generated” from open inter-
vals). However there are predictable processes which are not left continuous
(which is less intuitive). In the same way, any nonanticipating process with
cadlag trajectories is “optional,” but the notion of optional process allows
sample paths to be more irregular.

Cadlag / Right-continuous + nonanticipating ⇒ Optional

Caglad / Left-continuous + nonanticipating ⇒ Predictable

The distinction between optional and predictable process will become clear in
Chapter 10 when we will use these notions in a financial modelling context:
state variables such as market prices will be modelled as optional processes
while the decisions of an investor — hedging strategies, portfolios — will be
represented by predictable processes.

The practical-minded reader might wonder why we bother to consider pro-
cesses more general than cadlag, if cadlag or piecewise continuous processes
are already rich enough to model discontinuities. As we shall observe in the
next chapters, in all models that we will encounter, prices will follow cad-
lag processes and all explicit examples of predictable processes will be left-
continuous. Also, on the theoretical side we will see that it is possible to
discuss stochastic integration, Itô’s formula, stochastic differential equations
and changes of measure only using cadlag processes. However when using
results of the type “there exists a predictable process such that. . . ” we will
need to consider more general predictable processes. Typical examples are
martingale representation theorems, discussed in Chapter 10.

2.5 The Poisson process

The Poisson process is a fundamental example of a stochastic process with
discontinuous trajectories and will be used as a building block for constructing
more complex jump processes.

2.5.1 Exponential random variables

Properties of exponential random variables and their sums will play an
important role in defining Markov processes with jumps. We review some of
these important properties in this section.

A positive random variable Y is said to follow an exponential distribution
with parameter λ > 0 if it has a probability density function of the form

λe−λy1y≥0. (2.57)
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The distribution function of Y is then given by

∀y ∈ [0,∞[ , FY (y) = P(Y ≤ y) = 1 − exp(−λy). (2.58)

FY is invertible and its inverse is given by:

∀y ∈ [0, 1], F−1
Y (y) = − 1

λ
ln(1 − y). (2.59)

A simple consequence is that if U is uniformly distributed on [0, 1] then
− 1
λ lnU is exponentially distributed with parameter λ. This result will be

used in Chapter 6 to simulate random variables with exponential distribu-
tion.

The exponential distribution has the following important property: if T is
an exponential random variable,

∀t, s > 0, P(T > t+ s|T > t) =

∫∞
t+s

λe−λydy∫∞
t
λe−λydy

= P(T > s). (2.60)

In other words, if one interprets T as a random time, the distribution of T − t
knowing T > t is the same as the distribution of T itself: this property is
usually called the “absence of memory.” In fact the exponential distribution
is the only distribution with this property:

PROPOSITION 2.8 Absence of memory
Let T ≥ 0 be a (nonzero) random variable such that

∀t, s > 0, P(T > t+ s|T > t) = P(T > s). (2.61)

Then T has an exponential distribution.

PROOF Let g(t) = P(T > t). Using Bayes rule we obtain that g is a
multiplicative function:

∀t, s > 0 g(t+ s) = P(T > t+ s|T > t)P(T > t) = g(s)g(t).

Since 1 − g is a distribution function, g is decreasing and right-continuous;
together with the multiplicative property this implies that g(t) = exp(−λt)
for some λ > 0.

Let (τi, i = 1 . . . n) be independent exponential random variables with pa-
rameter λ and define Tk = τ1+· · ·+τk. Then (T1, T2, . . . , Tn) has a probability
density on R

n given by

λne−λtn10<t1<···<tn(t1, . . . , tn), (2.62)

© 2004 by CRC Press LLC



and the random variable Tn = τ1 + · · · + τn has probability density

pn(t) = λe−λt
(λt)n−1

(n− 1)!
1[0,∞[(t). (2.63)

Sums of i.i.d. exponential variables bear a close relationship with the order
statistics of uniformly distributed random variables. Let U1, . . . , Un be in-
dependent random variables, uniformly distributed on [a, b]. Arrange them
in increasing order and call them (Y1, . . . , Yn): Yn = max{Ui, i = 1 . . . n},
Yn−1 = max({Ui, i = 1 . . . n} \ {Yn}), etc. Y1 ≤ · · · ≤ Yn are called the order
statistics of U1, . . . , Un and their density is given by

n!
(b− a)n

1{a<y1<y2<···<yn<b}(x). (2.64)

The law with density given by (2.64) is sometimes called the Dirichlet distri-
bution and denoted by Dn([a, b]). Starting with Equation (2.62), one can see
that the expression (2.62) can be rearranged in order to make (2.63) appear:

λne−λtn10<t1<···<tn(t1, . . . , tn)

= λe−λtn
(λtn)n−1

(n− 1)!
1tn≥0 × (n− 1)!

tn−1
n

10<t1<···<tn(t1, . . . , tn),

which is simply the product of (2.63) with a Dn−1([0, tn]) density. This leads
to the following result:

PROPOSITION 2.9
Let (τi, i = 1 . . . n + 1) be independent exponential random variables with

parameter λ and define Tk = τ1 + · · · + τk. Then

1. The law of (T1, . . . , Tn) knowing Tn+1 = t is Dn([0, t]).

2. The vector ( T1
Tn+1

, . . . , Tn

Tn+1
) is independent from Tn+1 and has the law

Dn([0, 1]).

The above proposition is interesting in practice since it gives us a way to
simulate from the joint law of (T1, . . . , Tn) by using independent uniformly
distributed random variables. We will put this property to use in Chapter 6.

PROPOSITION 2.10
Let U1, . . . , Un be independent random variables, uniformly distributed on
[0, 1], U(1) ≤ · · · ≤ U(n) be the corresponding order statistics and V be an
independent random variable with a density given by (2.63). Then the vari-
ables

V U(1), V (U(2) − U(1)), V (U(3) − U(2)), . . . , V (U(n) − U(n−1))

form a sequence of independent exponential variables with parameter λ.

© 2004 by CRC Press LLC



2.5.2 The Poisson distribution

An integer valued random variable N is said to follow a Poisson distribution
with parameter λ if

∀n ∈ N, P(N = n) = e−λ
λn

n!
. (2.65)

The Poisson distribution has a well-defined moment generating function given
by:

M(u) = exp[λ(eu − 1)]. (2.66)

There is an intimate connection between the Poisson distribution and sums
of independent exponential random variables:

PROPOSITION 2.11
If (τi)i≥1 are independent exponential random variables with parameter λ

then, for any t > 0 the random variable

Nt = inf{n ≥ 1,
n∑
i=1

τi > t} (2.67)

follows a Poisson distribution with parameter λt:

∀n ∈ N, P(Nt = n) = e−λt
(λt)n

n!
. (2.68)

PROOF Let Tk =
∑k
i=1 τi ∀k. The density of (T1, ..., Tk) is given by

λk10<t1<...<tke
−λtkdt1...dtk.

Since P(Nt = n) = P(Tn ≤ t < Tn+1), it can be computed as:

P(Nt = n) =
∫

0<t1<...tn<t<tn+1

λne−λtn+1dt1...dtndtn+1

= λne−λt
∫

0<t1<...tn<t

dt1...dtn = e−λt
(λt)n

n!
.

One interesting property of the Poisson distribution is the stability under
convolution: if Y1 and Y2 are independent Poisson variables with parameters
λ1 and λ2, then Y1 + Y2 also follows a Poisson law with parameter λ1 + λ2.
This can be readily deduced from the form of the moment generating function,
noting that MY1+Y2 = MY1MY2 .
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In particular this leads to the following consequence: for any integer n,
a Poisson random variable Y with parameter λ can be expressed as a sum
of n independent (Poisson) random variables Yi, with parameter λ/n. This
property, called infinite divisibility, can be interpreted as saying that a Poisson
random variable can be “divided” into an arbitrary number of i.i.d. random
variables. We will encounter this important property again in Chapter 3.

2.5.3 The Poisson process: definition and properties

DEFINITION 2.17 Poisson process Let (τi)i≥1 be a sequence of in-
dependent exponential random variables with parameter λ and Tn =

∑n
i=1 τi.

The process (Nt, t ≥ 0) defined by

Nt =
∑
n≥1

1t≥Tn
(2.69)

is called a Poisson process with intensity λ.

The Poisson process is therefore defined as a counting process: it counts
the number of random times (Tn) which occur between 0 and t, where (Tn −
Tn−1)n≥1 is an i.i.d. sequence of exponential variables. The following prop-
erties of the Poisson process can be easily deduced:

PROPOSITION 2.12
Let (Nt)t≥0 be a Poisson process.

1. For any t > 0, Nt is almost surely finite.

2. For any ω, the sample path t → Nt(ω) is piecewise constant and in-
creases by jumps of size 1.

3. The sample paths t �→ Nt are right continuous with left limite (cadlag).

4. For any t > 0, Nt− = Nt with probability 1.

5. (Nt) is continuous in probability:

∀t > 0, Ns
P→
s→t

Nt. (2.70)

6. For any t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N, P(Nt = n) = e−λt
(λt)n

n!
. (2.71)

7. The characteristic function of Nt is given by

E[eiuNt ] = exp{λt(eiu − 1)}, ∀u ∈ R. (2.72)
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8. (Nt) has independent increments: for any t1 < · · · < tn, Ntn−Ntn−1 ,. . . ,
Nt2 −Nt1 , Nt1 are independent random variables.

9. The increments of N are homogeneous: for any t > s, Nt −Ns has the
same distribution as Nt−s.

10. (Nt) has the Markov property:

∀t > s, E[f(Nt)|Nu, u ≤ s] = E[f(Nt)|Ns].

PROOF

1. Let Ω1 = {ω ∈ Ω, Tn

n (ω) → 1
λ}. By the law of large numbers, Tn

n → 1
λ

with probability 1 so P(Ω1) = 1. For any ω ∈ Ω1, Tn(ω) → ∞ so

∀ω ∈ Ω1,∃n0(ω) ≥ 1, ∀n ≥ n0(ω), Tn(ω) > t.

So P(Nt < ∞) = P(Ω1) = 1: the number of terms in the sum (2.17) is
almost surely finite.

2. From the expression (2.17) it is obvious that Nt is constant on each
interval ]Tn, Tn+1[ and increases by one at each Tn. Since the number
of jump points in each interval [0, t] is almost surely finite, property (2)
follows.

3. The cadlag property can be seen by comparing the definition of the
Poisson process to the example (2.48).

4. For a given ω ∈ Ω, the points of discontinuity of Nt(ω) are {Tn(ω), n ≥
1}. But for a given t, P(t ∈ {Tn(ω), n ≥ 1}) = 0. So, with probability
1, t is not a discontinuity point: Nt− = Nt with probability 1.

5. Consequence of the above, since almost sure convergence entails conver-
gence in probability.

6. This point was shown in proposition (2.11).

7. This is a easy consequence of the previous one.

8. Let 0 < t1 < · · · < tn and compute:

P(Nt1 = k1, Nt2 −Nt1 = k2, . . . , Ntn −Ntn−1 = kn). (2.73)

Define jn =
∑
i≤n ki for i ≥ 1. Then the above probability can be

rewritten as:

P(Tj1 ≤ t1 < Tj1+1, Tj2 ≤ t2 < Tj2+1, . . . , Tjn ≤ tn < Tjn+1).
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Conditionally on Tjn < tn < Tjn+1, (T1, T2, . . . , Tjn) are distributed
as the order statistics of jn uniform random variables on [0, tn]. The
conditional probability

P(Tj1 ≤ t1 < Tj1+1, Tj2 ≤ t2 < Tj2+1, . . .
∣∣Tjn ≤ tn < Tjn+1) (2.74)

is then equal to the probability that, given jn independent random vari-
ables U1, . . . , Ujn , uniformly distributed on [0, tn], k1 of them fall into
the interval [0, t1], k2 of them fall into the interval ]t1, t2], etc. The prob-
ability that Uk belongs to [ti−1, ti] being (ti − ti−1)/tn, the conditional
probability (2.74) is given by

jn!
tjnn

tk11

k1!

n∏
i=2

(ti − ti−1)ki

ki!
.

To obtain the unconditional probability (2.73), we multiply this ex-
pression by the density of Ntn , which is a Poisson distribution with
parameter λtn. After simplification this gives

λjne−λtn
tk11

k1!

n∏
i=2

(ti − ti−1)ki

ki!
.

Finally, substituting jn = k1 + k2 + · · ·+ kn we see that the probability
of interest factorizes into a product of n terms:

P(Nt1 = k1, Nt2 −Nt1 = k2, . . . , Ntn −Ntn−1 = kn)

=
{λt1}k1e−λt1

k1!

n∏
i=2

{λ(ti − ti−1)}kie−λ(ti−ti−1)

ki!
.

The joint law of the increments has a product form, which shows their
independence. Moreover, each term in the product is recognized to be
the density of a Poisson law with parameter λ(ti − ti−1) which shows
the homogeneity of the increments.

9. The Markov property follows from the independence of increments:

E[f(Nt)|Nu, u ≤ s] = E[f(Nt −Ns +Ns)|Nu, u ≤ s]
= E[f(Nt −Ns +Ns)|Ns].

since Nt −Ns is independent of Nu, u ≤ s.

Let us now comment on the properties (2), (3) and (4) which seem somewhat
paradoxical: on one hand we assert that with probability one, any sample path
of the Poisson process is discontinuous (in fact it only moves by jumps) and
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on the other hand at any given point t, the sample function is continuous
with probability 1! We will encounter this feature for all the jump processes
considered later: it is due to the fact that the points of discontinuity of the
process form a set of zero measure. A typical path of a Poisson process is
shown in Figure 2.1.
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FIGURE 2.1: Left: Sample paths of a Poisson process with intensity λ = 1.
Right: Sample path of a compensated Poisson process with intensity λ = 1.

The right continuity (cadlag property) of the Poisson process is not really
a “property”: we have defined Nt in such a way that at a discontinuity point
Nt = Nt+, i.e., we have chosen the right-continuous (cadlag) version of the
Poisson process. Another choice would have been the left-continuous one:

N ′
t =

∑
n≥0

1t>Tn
. (2.75)

The difference between N and N ′ is that the values of N ′ in the near future
are foreseeable since N ′

s → Nt as s→ t, s < t while the values of N are “unpre-
dictable” given the past. The jumps of N are interpreted as sudden events8,
which corresponds to our initial motivation for including jumps in models of
price dynamics. Hence we will always use the cadlag version (Nt)t≥0 of the
Poisson process. Following these remarks, for other examples of jump pro-
cess that we will encounter, we will always choose a right-continuous (cadlag)
version.

Poisson processes have some other useful properties which we mention here.
First, a superposition of independent Poisson processes is again a Poisson
process:

8See the discussion in Section 2.4.5.
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PROPOSITION 2.13 Sum of independent Poisson processes
If (N1

t )t≥0 and (N2
t )t≥0 are independent Poisson processes with intensities

λ1, λ2 then (N1
t +N2

t )t≥0 is a Poisson process with intensity λ1 + λ2.

A second useful property of Poisson processes is the so-called thinning prop-
erty. Let (Nt)t≥0 be a Poisson process with intensity λ and define a new pro-
cess Xt by “thinning” Nt: take all the jump events (Tn, n ≥ 1) corresponding
to N , keep them with probability 0 < p < 1 or delete them with probability
1 − p, independently from each other. Now order the points which have not
been deleted: T ′

1, . . . , T
′
n, . . . and define

Xt =
∑
n≥1

1T ′
n≥t. (2.76)

Then the process X is a Poisson process with intensity pλ. Another way to
see this result is the following: if the arrival Tn of each event in the Poisson
process N is marked with probability p, independently from event to event,
then the process of marked events thus obtained is again a Poisson process
whose intensity is equal to the intensity of N , decreased by the marking
probability: λX = pλ.

2.5.4 Compensated Poisson processes

Define the “centered” version of the Poisson process Nt by

Ñt = Nt − λt. (2.77)

Ñt follows a centered version of the Poisson law with characteristic function:

ΦÑt
(z) = exp[λt(eiz − 1 − iz)]. (2.78)

As the Poisson process, Ñ also has independent increments and it is easy to
show that:

E[Nt|Ns, s ≤ t] = E[Nt −Ns +Ns|Ns]
= E[Nt −Ns] +Ns = λ(t− s) +Ns,

so (Ñt) has the martingale property:

∀t > s,E[Ñt|Ñs] = Ñs. (2.79)

(Ñt)t≥0 is called a compensated Poisson process and (the deterministic expres-
sion) (λt)t≥0 is called the compensator of (Nt)t≥0: it is the quantity which
has to be subtracted from N in order to obtain a martingale. Sample paths of
the Poisson and compensated Poisson process are shown in Figure 2.1. Note
that the compensated Poisson process is no longer integer valued: unlike the
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Poisson process, it is not a counting process. Its rescaled version Ñt/λ has
the same first two moments as a standard Wiener process:

E

[
Ñt
λ

]
= 0 Var

[
Ñt
λ

]
= t. (2.80)

Figure 2.2 compares Ñt/λ with a standard Wiener process. The two graphs
look similar and this is not a coincidence: when the intensity of its jumps
increases, the (interpolated) compensated Poisson process converges in distri-
bution to a Wiener process [153]:

(
Ñt
λ

)
t∈[0,T ]

λ→∞⇒ (Wt)t∈[0,T ]. (2.81)

This result is a consequence of the Donsker invariance principle [228, Theo-
rem 14.9] and may be seen as a “functional” central limit theorem on Ω =
D([0, T ]).
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FIGURE 2.2: Left: Sample paths of a Wiener process with σ = 1. Right:
Sample path of a compensated Poisson process with intensity λ = 5, rescaled
to have the same variance as the Wiener process.

2.5.5 Counting processes

The Poisson process Nt counts the number of random times {Tn, n ≥ 1}
occurring in [0, t], where the random times Tn are partial sums of a sequence
of i.i.d. exponential random variables. More generally, given an increasing
sequence of random times {Tn, n ≥ 1} with P(Tn → ∞) = 1, one can define
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the associated counting process (Xt)t≥0 by

Xt =
∑
n≥1

1t≥Tn
= #{n ≥ 1, Tn ≥ t}.

Xt is simply the number of random times {Tn, n ≥ 1} occurring in [0, t]. The
condition P(Tn → ∞) = 1 guarantees that, with probability 1, Xt is well-
defined (finite) for any t ≥ 0. Like the Poisson process, (Xt)t≥0 is a cadlag
process with piecewise constant trajectories: its sample paths move by jumps
of size +1.

If the random times (Tn) are constructed as partial sums of a sequence
of i.i.d. exponential random variables, then X is a Poisson process. For a
general counting process, the sequence of random times (Tn) can have any
distribution and dependence structure. The following lemma shows that the
only counting processes with independent stationary increments are Poisson
processes:

LEMMA 2.1

Let (Xt) be a counting process with stationary independent increments. Then
(Xt) is a Poisson process.

PROOF This is an elementary result, but its combinatorial proof (see
for example [324, Chapter 1]) is rather long, so we prefer to give a shorter
but less elementary one, which has an additional benefit of illustrating Doob’s
sampling theorem (Proposition 2.7).

Let Tk = inf{t ≥ 0 : Xt ≥ k}. Define for n ≥ 1, Yn = Tn − Tn−1. The first
step is to prove that Y1 has exponential distribution.

P{Y1 > t+ s | Y1 > t} = P{Xt+s = 0 | Xt = 0}
= P{Xt+s −Xt = 0 | Xt = 0} = P{Xt+s −Xt = 0}
= P{Xs = 0} = P{Y1 > s}.

We have shown Y1 to have the memoryless property. Thus, by Proposition
2.8 it is an exponential random variable.

The second step is to show that (Xt+Y1 −XY1)t≥0 is independent from Y1

and has the same law as (Xt)t≥0. To see this observe that Y1 is a nonanticipat-
ing (stopping) time for the process Xt because the event {Y1 ≤ t} = {Xt ≥ 1}
does not depend on the trajectory of X after t. Let f(t) = E[eiuXt ] for u fixed.
Independence and stationarity of increments of (Xt) entail that for all s, t > 0,
f(s+ t) = f(s)f(t) and that

Mt =
eiuXt

f(t)
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is a martingale. Let Y n1 = n ∧ Y1. As Y n1 is a bounded stopping time, using
Doob’s optional sampling theorem we obtain:

E[eiu(XY n
1 +t−XY n

1
)+ivY n

1 |FY n
1

] =
f(t+ Y n1 )
f(Y n1 )

eivY
n
1 = f(t)eivY

n
1 .

Therefore

E[eiu(XY n
1 +t−XY n

1
)+ivY n

1 ] = E[eivY
n
1 ]E[eiuXt ].

By the dominated convergence theorem we can compute the limit n→ ∞:

E[eiu(XY1+t−XY1 )+ivY1 ] = E[eivY1 ]E[eiuXt ].

This result shows both that the process (XY1+t−XY1)t≥0 is independent from
Y1 (because we could have taken any number of increments) and that it has
the same distribution as (Xt)t≥0. This property allows to conclude that Y2 is
independent from Y1 and has an exponential distribution, Y3 is independent
from Y2 and Y1 and has exponential distribution so the result is obtained by
induction.

2.6 Random measures and point processes

The Poisson process (Nt)t≥0 was defined in Section 2.5 as a counting pro-
cess: if T1, T2, . . . is the sequence of jump times of N , then Nt is simply the
number of jumps between 0 and t:

Nt = #{i ≥ 1, Ti ∈ [0, t]}. (2.82)

Similarly, if t > s then

Nt −Ns = #{i ≥ 1, Ti ∈]s, t]}.
The jump times T1, T2, . . . form a random configuration of points on [0,∞[ and
the Poisson process Nt counts the number of such points in the interval [0, t].
This counting procedure defines a measure M on [0,∞[ : for any measurable
set A ⊂ R

+ let

M(ω,A) = #{i ≥ 1, Ti(ω) ∈ A}. (2.83)

Then M(ω, .) is a positive, integer valued measure and M(A) is finite with
probability 1 for any bounded set A. Note that the measure M(ω, .) depends
on ω: it is thus a random measure. The intensity λ of the Poisson process
determines the average value of the random measure M : E[M(A)] = λ|A|
where |A| is the Lebesgue measure of A.
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M is called the random jump measure9 associated to the Poisson process
N . The Poisson process may be expressed in terms of the random measure
M in the following way:

Nt(ω) = M(ω, [0, t]) =
∫

[0,t]

M(ω, ds). (2.84)

The properties of the Poisson process translate into the following properties
for the measure M : for disjoint intervals [t1, t′1], . . . , [tn, t

′
n]

1. M([tk, t′k]) is the number of jumps of the Poisson process in [tk, t′k]: it
is a Poisson random variable with parameter λ(t′k − tk).

2. For two disjoint intervals j �= k, M([tj , t′j ]) and M([tk, t′k]) are indepen-
dent random variables.

3. More generally for any (measurable) set A, M(A) follows a Poisson
distribution with parameter λ|A| where |A| =

∫
A
dx is the Lebesgue

measure of A.

The random measure M can also be viewed as the “derivative” of the Poisson
process. Recall that each trajectory t �→ Nt(ω) of a Poisson process is an
increasing step function. Hence its derivative (in the sense of distributions)
is a positive measure: in fact it is simply the superposition of Dirac masses
located at the jump times:

d

dt
Nt(ω) = M(ω, [0, t]) where M =

∑
i≥1

δTi(ω). (2.85)

In the same way, one can associate a random measure to the compensated
Poisson process Ñt, defined in Section 2.5.4, by:

M̃(ω,A) = M(ω,A) −
∫
A

λdt = M(ω,A) − λ|A|. (2.86)

M̃(A) then verifies E[M̃(A)] = 0 and Var[M̃(A)] = λ|A|. Note that unlike
M , M̃ is neither integer valued (counting measure) nor positive: it is a signed
measure. M̃ is an example of a compensated random measure and the measure
A �→ λ|A| is called the compensator of M . Note that here the compensator is
none other than λ times the Lebesgue measure: λ|A| = E[M(A)] and M̃ is
the “centered” version of M .

This construction can be generalized in various ways, leading to the notions
of Poisson random measure, point process, and marked point process.

9Note that in most texts M and N are denoted by the same letter, which can be quite
confusing for the beginner.
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2.6.1 Poisson random measures

The measure M defined in (2.83) specifies a random counting measure on
R

+ such that for any measurable set A ⊂ R
+, E[M(A)] is given by λ times

the Lebesgue measure of A. One can extend this construction to more general
settings, replacing R

+ by a E ⊂ R
d and the Lebesgue measure by any Radon10

measure µ on E:

DEFINITION 2.18 Poisson random measure Let (Ω,F ,P) be a prob-
ability space, E ⊂ R

d and µ a given (positive) Radon measure µ on (E, E). A
Poisson random measure on E with intensity measure µ is an integer valued
random measure:

M : Ω × E → N

(ω,A) �→ M(ω,A),

such that

1. For (almost all) ω ∈ Ω, M(ω, .) is an integer-valued Radon measure on
E: for any bounded measurable A ⊂ E, M(A) <∞ is an integer valued
random variable.

2. For each measurable set A ⊂ E, M(., A) = M(A) is a Poisson random
variable with parameter µ(A):

∀k ∈ N, P(M(A) = k) = e−µ(A) (µ(A))k

k!
. (2.87)

3. For disjoint measurable sets A1, . . . , An ∈ E, the variables M(A1), . . . ,,
M(An) are independent.

The following result allows to construct, given any Radon measure µ, a
Poisson random measure with intensity µ:

PROPOSITION 2.14 Construction of Poisson random measures
For any Radon measure µ on E ⊂ R

d, there exists a Poisson random measure
M on E with intensity µ.

PROOF We give an explicit construction of M from a sequence of inde-
pendent random variables. We begin by considering the case µ(E) <∞.

1. Take X1, X2, . . . to be i.i.d. random variables so that P(Xi ∈ A) = µ(A)
µ(E) .

10See Definition 2.2.
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2. Take M(E) to be a Poisson random variable on (Ω,F ,P) with mean
µ(E), independent of the Xi.

3. Define M(A) =
∑M(E)
i=1 1A(Xi), for all A ∈ E .

It is then easily verified that this M is a Poisson random measure with inten-
sity µ. If µ(E) = ∞, since µ is a Radon measure we can represent E ⊂ R

d

as E =
⋃∞
i=1Ei where µ(Ei) < ∞ and construct Poisson random measures

Mi(·), where the intensity of Mi is the restriction of µ to Ei. Make the Mi(·)
independent and define M(A) =

∑∞
i=1Mi(A) for all A ∈ E . The superpo-

sition and thinning properties of Poisson random variables (see Section 2.5)
imply that M has the desired properties.

The construction given in this proof shows that in fact any Poisson ran-
dom measure on E can be represented as a counting measure associated to a
random sequence of points11 in E: there exists {Xn(ω), n ≥ 1} such that:

∀A ∈ E , M(ω,A) =
∑
n≥1

1A(Xn(ω)). (2.88)

M is thus a sum of Dirac masses located at the random points (Xn)n≥1:

M =
∑
n≥1

δXn
.

Since we require M(A) to be finite for any compact A ⊂ E, this puts a
constraint on the sequence (Xn)n≥1: A ∩ {Xn, n ≥ 1} should be a.s. finite
for any compact subset A ⊂ E, i.e., the sequence should not accumulate at a
point in E.

A Poisson random measure on E can also be considered as as a random
variable taking values in the M(E), the set of Radon measures on E (see
Definition 2.2), on which a topology is defined as follows: a sequence µn of
Radon measures on E ⊂ R

d is said to converge to a Radon measure µ if for any
f : E → R with compact support

∫
fdµn → ∫

fdµ. Therefore the notions of
convergence defined for random variables in Section 2.2 also apply to Poisson
random measures. The following criterion [228] is useful for studying their
convergence:

PROPOSITION 2.15 Convergence of Poisson random measures
Let (Mn)n≥1 be a sequence of Poisson random measures on E ⊂ R

d with
intensities (µn)n≥1. Then (Mn)n≥1 converges in distribution if and only if
the intensities (µn) converge to a Radon measure µ. Then Mn ⇒ M where
M is a Poisson random measure with intensity µ.

11For this reason Poisson random measures are also called “Poisson point processes”, al-
though the word “process” is confusing since there is no time variable involved yet.
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2.6.2 Compensated Poisson random measure

In the same way as we defined the compensated Poisson process from the
Poisson process in Section 2.5.4, one can construct the compensated Poisson
random measure M̃ by subtracting from M its intensity measure:

M̃(A) = M(A) − µ(A). (2.89)

From the definition of Poisson random measures, one easily deduces that for
disjoint compact sets A1, . . . , An ∈ E , the variables M̃(A1), . . . , M̃(An) are
independent and verify

E[M̃(Ai)] = 0 Var[M̃(Ai)] = µ(Ai).

2.6.3 Building jump processes from Poisson random mea-
sures

Consider now a Poisson random measure M on E = [0, T ] × R
d\{0}: as

above, it can be described as the counting measure associated to a random
configuration of points (Tn, Yn) ∈ E:

M =
∑
n≥1

δ(Tn,Yn). (2.90)

Intuitively, each point (Tn(ω), Yn(ω)) ∈ [0, T ] × R
d corresponds to an ob-

servation made at time Tn and described by a (nonzero) random variable
Yn(ω) ∈ R

d.
Since we want to interpret the first coordinate t as time, we introduce as

in Section 2.4.2 an information flow Ft on (Ω,F ,P). We will say that M
is a nonanticipating Poisson random measure (or a Poisson random measure
adapted to Ft ) if:

• (Tn)n≥1 are nonanticipating random times.

• Yn is revealed at Tn: Yn is FTn
-measurable.

For each ω, M(ω, .) is a measure on E = [0, T ] × R
d\{0} and we can define,

as in Section 2.1.2, integrals with respect to this measure. First, for simple
functions f =

∑n
i=1 ci1Ai

where ci ≥ 0 and Ai ⊂ E are disjoint measurable
sets, we define M(f) =

∑n
i=1 ciM(Ai): M(f) is a random variable with ex-

pectation E[M(f)] =
∑n
i=1 ciµ(Ai). Next, for positive measurable function

f : E → [0,∞[ we defineM(f) = limn→∞M(fn) where fn ↑ f is an increasing
sequence of simple functions. By the monotone convergence theorem, M(f)
is a random variable with values in [0,∞[∪{∞} and (possibly infinite) expec-
tation E[M(f)] = µ(f). For a real-valued (measurable) function f : E �→ R,
one can decompose f into its positive and negative part: f = f+ − f−. If f
verifies

µ(|f |) =
∫

[0,T ]

∫
Rd\{0}

|f(s, y)|µ(ds× dy) <∞ (2.91)
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then the positive random variables M(f+),M(f−) have finite expectation:
E[M(f+)] = µ(f+) ≤ µ(|f |) < ∞. In particular, M(f+),M(f−) are almost
surely finite: we can therefore define M(f) := M(f+) −M(f−) and M(f)
thus defined is a random variable with expectation

E[M(f)] = µ(f) =
∫

[0,T ]

∫
Rd

f(s, y)µ(ds× dy).

Integrating f with respect to M up to time t, i.e., restricting the integral to
[0, t] × R

d \ {0} yields a nonanticipating stochastic process:

Xt =
∫ t

0

∫
Rd\{0}

f(s, y)M(ds dy) =
∑

{n,Tn∈[0,t]}
f(Tn, Yn). (2.92)

The second sum runs over the events (Tn, Yn) which have occurred before t,
i.e., Tn ≤ t. (Xt(f))t∈[0,T ] is thus a jump process whose jumps happen at
the random times Tn and have amplitudes given by f(Tn, Yn). As remarked
above, this construction makes sense if f verifies (2.91).

Similarly, under condition (2.91), one can define the integral of f with
respect to the compensated Poisson measure M̃ . The resulting process, called
the compensated integral, is in fact a martingale:

PROPOSITION 2.16 Compensated Poisson integrals
Let M be a nonanticipating Poisson random measure on E = [0, T ]×R

d \{0}
with intensity µ with compensated random measure M̃ = M − µ and f : E →
R
d verifying (2.91). Then the process

Xt =
∫ t

0

∫
Rd\{0}

f(s, y)M̃(ds dy)

=
∫ t

0

∫
Rd\{0}

f(s, y)M(ds dy) −
∫ t

0

∫
Rd\{0}

f(s, y) µ(ds dy) (2.93)

is a martingale.

Note that, even though the integrals defined in this section are random
variables, they are defined pathwise i.e., for any ω ∈ Ω.

2.6.4 Marked point processes (*)

As observed above, a Poisson random measure on [0, T ]×R
d can be repre-

sented as a counting measure:

M(ω, .) =
∑
n≥1

δ(Tn(ω),Yn(ω)) (2.94)
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for some random sequence (Tn, Yn)n≥1 of points in [0, T ]×R
d. Using this rep-

resentation one can define integer valued random measures with more complex
dependence properties: given a random sequence (Tn, Yn) ∈ [0, T ] × E where
(Tn)n≥1 is a sequence of nonanticipating random times describing the occur-
rence of some events and Yn ∈ E ⊆ R

d a quantity observed at time Tn (Yn is
FTn

measurable), we can define a counting measure M by (2.94). M is called
an integer valued random measure on [0, T ] × E and the random sequence
(Tn, Yn) ∈ [0, T ] × E is then called a marked point process. The random
variables (Yn)n≥1 are called “marks”.

DEFINITION 2.19 Marked point process A marked point process
on (Ω,F , (Ft),P) is a sequence (Tn, Yn)n≥1 where

• (Tn)n≥1 is an increasing sequence of nonanticipating random times with
Tn → ∞ almost surely as n→ ∞.

• (Yn)n≥1 is a sequence of random variables taking values in E.

• The value of Yn is revealed at Tn: Yn is FTn
measurable.

The condition Tn → ∞ guarantees that the number of events occurring on
[0, T ] is a.s. finite. For each ω ∈ Ω, M(ω, .) is a counting measure on [0, T ]×E.
If µ is a diffuse measure12, i.e., µ({(t, y)}) = 0 for all points (t, y) ∈ E then,
with probability 1, each point occurs at most once: M({(t, y)}) = 0 or 1.

Marked point processes do not have the independence properties of Pois-
son random measures: if A1 ∩ A2 = ∅ then M([0, t] × A1),M([0, t] × A2) are
not independent anymore, nor are they Poisson random variables: they allow
for arbitrary distributions and dependence structures. Any Poisson random
measure on [0, T ]×R can be represented as in (2.94) but (Tn) does not neces-
sarily verify Tn → ∞ so all Poisson random measures cannot be represented
by marked point processes: only those with µ([0, T ] × R

d) <∞.
For a function f : [0, T ] × E → R

d verifying
∫
[0,T ]×E |f(t, y)|µ(dt dy) one

can construct the integral with respect to the random measure M : it is given
by the random variable

M(f) =
∫

[0,T ]×E
f(t, y)M(dt dy) =

∑
n≥1

f(Tn, Yn). (2.95)

One can then construct a jump process from f as in Section 2.6.1:

Xt(f) =
∫

[0,t]×Rd\{0}
f(s, y)M(ds dy) =

∑
{n,Tn∈[0,t]}

f(Tn, Yn). (2.96)

12See Section 2.1.
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(Xt(f))t∈[0,T ] is a nonanticipating jump process with cadlag trajectories whose
jumps are described by the marked point process M : the jumps occur at
(Tn)n≥1 and their amplitudes are given by f(Tn, Yn). This construction gives
a systematic way of generating jump processes from marked point processes.

Conversely, to each cadlag process (Xt)t∈[0,T ] with values in R
d one can

associate a random measure JX on [0, T ]×R
d called the jump measure, in the

following manner. As mentioned in Section 2.4, X has at most a countable
number of jumps: {t ∈ [0, T ], ∆Xt = Xt − Xt− �= 0} is countable: its
elements can be arranged in a sequence (Tn)n≥1 (not necessarily increasing),
which are the (random) jump times of X. At time Tn, the process X has
a discontinuity of size Yn = XTn

− XTn− ∈ R
d \ {0}. (Tn, Yn)n≥1 defines

a marked point process on [0, T ] × R
d \ {0} which contains all information

about the jumps of the process X: the jump times Tn and the jump sizes Yn.
The associated random measure, which we denote by JX , is called the jump
measure of the process X:

JX(ω, .) =
∑
n≥1

δ(Tn(ω),Yn(ω)) =
∆Xt �=0∑
t∈[0,T ]

δ(t,∆Xt). (2.97)

In intuitive terms, for any measurable subset A ⊂ R
d:

JX([0, t] ×A) := number of jumps of X occurring between 0 and t
whose amplitude belongs to A.

The random measure JX contains all information about the discontinuities
(jumps) of the process X: it tells us when the jumps occur and how big they
are. JX does not tell us anything about the continuous component of X. It is
easy to see that X has continuous sample paths if and only if JX = 0 almost
surely (which simply means that there are no jumps!).

All quantities involving the jumps of X can be computed by integrating
various functions against JX . For example if f(t, y) = y2 then one obtains
the sum of the squares of the jumps of X:∫

[0,T ]×R

y2JX(dtdy) =
∑

t∈[0,T ]

(∆Xt)2. (2.98)

Such expressions may involve infinite sums and we will see, in Chapters 3 and
8, when and in what sense they converge.

Example 2.1 Jump measure of a Poisson process
The jump measure of the Poisson process (2.69) is given by JN =

∑
n≥1 δ(Tn,1):

JN ([0, t] ×A) = #{i ≥ 1, Ti ∈ [0, t]} if 1 ∈ A

= 0 if 1 /∈ A.
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Example 2.2
Consider a sequence of nonanticipating random times T1, T2, . . . and let (Xn)n≥1

be a sequence of random variables such that Xn is revealed at Tn. Then

Xt =
∑
n≥1

Xn1[Tn,Tn+1[

defines a cadlag process with jump times Tn and jump sizes ∆XTn
= Xn −

Xn−1. Its jump measure is given by:

JX =
∑
n≥1

δ(Tn,Xn−Xn−1).

If Tn → ∞ a.s. then (Tn,Xn −Xn−1)n≥1 defines a marked point process.

Finally, let us note that if Xt is a jump process built from a Poisson random
measure M as in (2.96):

M =
∑
n≥1

δ(Tn,Yn) Xt =
∫

[0,t]×Rd\{0}
f(s, y)M(ds dy)

then the jump measure JX can be expressed in terms of the Poisson random
measure M by

JX =
∑
n≥1

δ(Tn,f(Tn,Yn)). (2.99)

Further reading

General references on topics covered in this chapter are [228] or [153]. For
general notions on probability spaces, random variables, characteristic func-
tions and various notions of convergence we refer the reader to the excellent
introductory text by Jacod and Protter [214]. Poisson processes are treated
in most texts on stochastic processes; the link with point processes is treated,
in increasing level of difficulty by Kingman [235], Bouleau [68], Resnick [333],
Fristedt & Gray [153], Neveu [306]. A short introduction to Poisson random
measures is given in [205]. Point processes are considered in more detail in
[227] using a measure theory viewpoint. A modern treatment using martin-
gales is given in [306, 73] see also [295].
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Simeon-Denis Poisson

The Poisson distribution and the Poisson process were named after the
French mathematician Simeon-Denis Poisson (1781–1840). Poisson studied
mathematics at Ecole Polytechnique in Paris, under Joseph Louis Lagrange,
Pierre Simon Laplace and Jean Baptiste Fourier. Elected to the French
Academy of Sciences at age 30, he held academic positions at Ecole Poly-
technique and Sorbonne. Poisson made major contributions to the theories of
electricity and magnetism, the motion of the moon, the calculus of variations,
differential geometry and, of course, probability theory. Poisson found the
limiting form of the binomial distribution that is now named after him: the
Poisson distribution. The importance of this discovery was only recognized
years later, by Chebyshev in Russia. His works on probability appeared in
the book Recherches sur la probabilité des jugements en matière criminelle
et en matière civile, précédées des règles générales du calcul des probabilités,
published in 1837, where he was the first to use the notion of cumulative
distribution function, to define the density as its derivative and to develop
an asymptotic theory of central limit type with remainder for hypergeometric
sampling [362]. The expression “law of large numbers” is due to Poisson: “La
loi universelle des grands nombres est à la base de toutes les applications du
calcul des probabilités” 13. Poisson was also the first to compute the Fourier
transform of x → exp(−|x|) and thus discovered what is now (erroneously)

13The universal law of large numbers lies at the foundation of all applications of probability
theory.
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called the “Cauchy distribution” (also called the Lorentzian curve by physi-
cists). He observed in particular that the law of large numbers did not apply
to this distribution, which does not possess a first moment, thus finding the
first counterexample to the law of large numbers [173, 120].

Poisson was also interested in the use of statistics in the study of social phe-
nomena. In his book Recherches sur la probabilité des jugements, Poisson ad-
vocated the use of probability as the natural way of describing socio-economic
phenomena. Herbert Solomon writes in [173]: “While Poisson’s name is com-
monplace to us, the breadth and variety of Poisson’s work is neglected in
formal courses undertaken by even the most advanced students.”
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Chapter 3

Lévy processes: definitions and
properties

Dans la galaxie des mathématiques, le cas du calcul des probabilités est un
peu spécial car tout le monde n’est pas d’accord pour savoir si cette disci-
pline appartient aux mathématiques. . . Voilà qui, en un certain sens, nous
redonne de l’espoir car si les probabilités ne sont pas des mathématiques
peut-être gardons nous une chance d’y comprendre quelque chose?

Marc Petit L’équation de Kolmogoroff, Ramsay: Paris, p 221.

Just as random walks — sums of independent identically distributed ran-
dom variables — provide the simplest examples of stochastic processes in
discrete time, their continuous-time relatives — processes with independent
stationary increments, called Lévy processes in honor of the French mathe-
matician Paul Lévy — provide key examples of stochastic processes in con-
tinuous time and provide ingredients for building continuous-time stochastic
models. The Poisson process and the Wiener process, discussed in Chapter 2,
are fundamental examples of Lévy processes. We will see later in this chapter
that they can be thought of as building blocks of Lévy processes because every
Lévy process is a superposition of a Wiener process and a (possibly infinite)
number of independent Poisson processes.

In this chapter, we introduce Lévy processes and discuss some of their gen-
eral properties. The next one will be devoted to several parametric examples
of Lévy processes. First, in Sections 3.2 and 3.3, we discuss compound Pois-
son processes, which are the simplest examples of Lévy processes and can be
considered as Poisson processes with random jump sizes. The class of com-
pound Poisson processes is both simple to study and rich enough to introduce
two important theoretical tools: the Lévy-Khinchin formula that allows to
study distributional properties of Lévy processes and the Lévy-Itô decom-
position, that describes the structure of their sample paths. For compound
Poisson processes the proofs are elementary and we give them in full detail.
In Section 3.4 we show how the fundamental results obtained in compound
Poisson case can be extended to a more general setting. Here we prefer to
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68 Financial Modelling with jump processes

explain the principles underlying the proofs rather than give full mathemati-
cal details. Finally, in last sections of the chapter we use the Lévy-Khinchin
formula and the Lévy-Itô decomposition to derive the fundamental properties
of Lévy processes.

3.1 From random walks to Lévy processes

DEFINITION 3.1 Lévy process A cadlag1 stochastic process (Xt)t≥0

on (Ω,F ,P) with values in R
d such that X0 = 0 is called a Lévy process if it

possesses the following properties:

1. Independent increments: for every increasing sequence of times t0 . . . tn,
the random variables Xt0 ,Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

2. Stationary increments: the law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0.

The third condition does not imply in any way that the sample paths are
continuous: as noted in Proposition 2.12, it is verified by the Poisson process.
It serves to exclude processes with jumps at fixed (nonrandom) times, which
can be regarded as “calendar effects” and are not interesting for our purpose.
It means that for given time t, the probability of seeing a jump at t is zero:
discontinuities occur at random times.

If we sample a Lévy process at regular time intervals 0,∆, 2∆, . . ., we obtain
a random walk: defining Sn(∆) ≡ Xn∆, we can write Sn(∆) =

∑n−1
k=0 Yk where

Yk = X(k+1)∆−Xk∆ are i.i.d random variables whose distribution is the same
as the distribution of X∆. Since this can be done for any sampling interval ∆
we see that by specifying a Lévy process we have specified a whole family of
random walks Sn(∆): these models simply correspond to sampling the Lévy
process X at different frequencies.

Choosing n∆ = t, we see that for any t > 0 and any n ≥ 1, Xt = Sn(∆)
can be represented as a sum of n i.i.d. random variables whose distribution is
that of Xt/n: Xt can be “divided” into n i.i.d. parts. A distribution having
this property is said to be infinitely divisible:

1Some authors do not impose the cadlag (right-continuity and left limits) property in the
definition of a Lévy pro cess but it can b e shown (see [324, Theorem 30] or [345, Chapter 1])
that every Lévy process (defined without the cadlag property) has a unique modification
that is cadlag, therefore the cadlag property can be assumed without loss of generality.

© 2004 by CRC Press LLC
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DEFINITION 3.2 Infinite divisibility A probability distribution F
on R

d is said to be infinitely divisible if for any integer n ≥ 2, there exists n
i.i.d. random variables Y1, ...Yn such that Y1 + ...+ Yn has distribution F .

Since the distribution of i.i.d. sums is given by convolution of the distri-
bution of the summands, if we denote by µ the distribution of the Yk-s in
the definition above, then F = µ ∗ µ ∗ · · · ∗ µ is the n-th convolution of µ.
So an infinitely divisible distribution can also be defined as a distribution F
for which the n-th convolution root is still a probability distribution, for any
n ≥ 2.

Thus, if X is a Lévy process, for any t > 0 the distribution of Xt is infinitely
divisible. This puts a constraint on the possible choices of distributions for
Xt: whereas the increments of a discrete-time random walk can have arbi-
trary distribution, the distribution of increments of a Lévy process has to be
infinitely divisible.

The most common examples of infinitely divisible laws are: the Gaussian
distribution, the gamma distribution, α-stable distributions and the Pois-
son distribution: a random variable having any of these distributions can be
decomposed into a sum of n i.i.d. parts having the same distribution but
with modified parameters. For example, if X ∼ N(µ, σ2) then one can write
X =

∑n−1
k=0 Yk where Yk are i.i.d. with law N(µ/n, σ2/n). Less trivial exam-

ples are the log-normal, Pareto, Student distributions. Finally, an example of
distribution which is not infinitely divisible is the uniform law on an interval.

Conversely, given an infinitely divisible distribution F , it is easy to see that
for any n ≥ 1 by chopping it into n i.i.d. components we can construct a
random walk model on a time grid with step size 1/n such that the law of the
position at t = 1 is given by F . In the limit, this procedure can be used to
construct a continuous time Lévy process (Xt)t≥0 such that the law of X1 if
given by F :

PROPOSITION 3.1 Infinite divisibility and Lévy processes

Let (Xt)t≥0 be a Lévy process. Then for every t, Xt has an infinitely divisible
distribution. Conversely, if F is an infinitely divisible distribution then there
exists a Lévy process (Xt) such that the distribution of X1 is given by F .

The direct implication was shown above. For the proof of the converse
statement see [345, Corollary 11.6].

Define the characteristic function of Xt:

Φt(z) ≡ ΦXt
(z) ≡ E[eiz.Xt ], z ∈ R

d.

For t > s, by writing Xt+s = Xs + (Xt+s − Xs) and using the fact that
Xt+s −Xs is independent of Xs, we obtain that t �→ Φt(z) is a multiplicative
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70 Financial Modelling with jump processes

function:

Φt+s(z) = ΦXt+s
(z) = ΦXs

(z)ΦXt+s−Xs
(z)

= ΦXs
(z)ΦXt

(z) = ΦsΦt.

The stochastic continuity of t �→ Xt implies in particular that Xt → Xs in
distribution when s → t. Therefore, from Proposition 2.6, ΦXs

(z) → ΦXt
(z)

when s → t so t �→ Φt(z) is a continuous function of t. Together with the
multiplicative property Φs+t(z) = Φs(z).Φt(z) this implies that t �→ Φt(z) is
an exponential function:

PROPOSITION 3.2 Characteristic function of a Lévy process
Let (Xt)t≥0 be a Lévy process on R

d. There exists a continuous function
ψ : R

d �→ R called the characteristic exponent of X, such that:

E[eiz.Xt ] = etψ(z), z ∈ R
d. (3.1)

Recalling the definition of the cumulant generating function of a random
variable (2.29), we see that ψ is the cumulant generating function of X1:
ψ = ΨX1 and that the cumulant generating function of Xt varies linearly in t:
ΨXt

= tΨX1 = tψ. The law of Xt is therefore determined by the knowledge
of the law of X1 : the only degree of freedom we have in specifying a Lévy
process is to specify the distribution of Xt for a single time (say, t = 1).

3.2 Compound Poisson processes

DEFINITION 3.3 Compound Poisson process A compound Poisson
process with intensity λ > 0 and jump size distribution f is a stochastic process
Xt defined as

Xt =
Nt∑
i=1

Yi, (3.2)

where jumps sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson
process with intensity λ, independent from (Yi)i≥1.
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FIGURE 3.1: Left: A compound Poisson process with a Gaussian distri-
bution of jump sizes. Right: A jump diffusion: Lévy process with Gaussian
component and finite jump intensity.

The following properties of a compound Poisson process are easily deduced
from the definition:

1. The sample paths of X are cadlag piecewise constant functions.

2. The jump times (Ti)i≥1 have the same law as the jump times of the Pois-
son process Nt: they can be expressed as partial sums of independent
exponential random variables with parameter λ.

3. The jump sizes (Yi)i≥1 are independent and identically distributed with
law f .

The Poisson process itself can be seen as a compound Poisson process on
R such that Yi ≡ 1. This explains the origin of term “compound Poisson” in
the definition.

Let R(n), n ≥ 0 be a random walk with step size distribution f : R(n) =∑n
i=0 Yi. The compound Poisson process Xt can be obtained by changing the

time of R with an independent Poisson process Nt: Xt = R(Nt). Xt thus
describes the position of a random walk after a random number of time steps,
given by Nt. This operation is similar to the subordination of Lévy processes,
to be discussed in Chapter 4.

The left graph in Figure 3.1 depicts a typical trajectory of a compound
Poisson process — note the piecewise constant path. Compound Poisson pro-
cesses are Lévy processes and they are the only Lévy processes with piecewise
constant sample paths, as shown by the following proposition.

PROPOSITION 3.3
(Xt)t≥0 is compound Poisson process if and only if it is a Lévy process and
its sample paths are piecewise constant functions.
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72 Financial Modelling with jump processes

PROOF of the “if” part Let (Xt)t≥0 be a Lévy process with piecewise
constant paths. To show that it is a compound Poisson process we need to
prove properties 2 and 3 of Definition 3.3. Let us first prove property 2. We
can construct, path by path, a process (Nt, t ≥ 0) which counts the jumps of
X:

Nt = #{0 < s ≤ t : Xs− 
= Xs}. (3.3)

Since the trajectories of X are piecewise constant, X has a finite number
of jumps in any finite interval which entails that Nt is finite for all finite t.
Hence, it is a counting process. Let h < t. Then

Nt −Nh = #{h < s ≤ t : Xs− 
= Xs} = #{h < s ≤ t : Xs− −Xh 
= Xs −Xh}
Hence, Nt −Nh depends only on (Xs −Xh), h ≤ s ≤ t. Therefore, from the
independence and stationarity of increments of (Xt) it follows that (Nt) also
has independent and stationary increments. Lemma 2.1 entails that (Nt) is a
Poisson process, which proves property 2 of Definition 3.3.

Using the processN , we can compute the jump sizes ofX: Yn = XSn
−XSn−

where Sn = inf{t : Nt ≥ n}. To check property 3 of Definition 3.3 and
complete the proof of the “if” part, it remains to show that these jump sizes
are i.i.d. Let us prove that they are independent. First we would like to show
that the increments ofX conditionally on the trajectory ofN are independent.
Let t > s and consider the following four sets:

A1 ∈ σ(Xs) B1 ∈ σ(Nr, r ≤ s)
A2 ∈ σ(Xt −Xs) B2 ∈ σ(Nr −Ns, r > s)

such that P (B1) > 0 and P (B2) > 0. The independence of increments of
X implies that processes (Xr −Xs, r > s) and (Xr, r ≤ s) are independent.
Hence,

P[A1 ∩B1 ∩A2 ∩B2] = P[A1 ∩B1]P[A2 ∩B2].

Moreover,
- A1 and B1 are independent from B2.
- A2 and B2 are independent from B1.
- B1 and B2 are independent from each other.
Therefore, the conditional probability of interest can be expressed as follows:

P[A1 ∩A2

∣∣B1 ∩B2] =
P[A1 ∩B1]P[A2 ∩B2]

P[B1]P[B2]

=
P[A1 ∩B1 ∩B2]P[A2 ∩B1 ∩B2]

P[B1]2P[B2]2
= P[A1

∣∣B1 ∩B2]P[A2

∣∣B1 ∩B2].

This proves that Xt−Xs and Xs are independent conditionally on the trajec-
tory of N . In particular, choosing B1 = {Ns = 1} and B2 = {Nt −Ns = 1}
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we obtain that Y1 and Y2 are independent. Since we could have taken any
number of increments of X and not just two of them, this proves that (Yi)i≥1

are independent.
Finally, to prove that the jump sizes have the same law, observe that the

two-dimensional process (Xt, Nt) has stationary increments. Therefore, for
every n ≥ 0 and for every s > h > 0,

E[f(Xh)
∣∣Nh = 1, Ns −Nh = n]

= E[f(Xs+h −Xs)
∣∣Ns+h −Ns = 1, Ns −Nh = n],

where f is any bounded Borel function. This entails that for every n ≥ 0, Y1

and Yn+2 have the same law which completes the proof.

PROOF of the “only if” part Let (Xt)t≥0 be a compound Poisson
process.

• Independence of increments. Let 0 < r < s and let f and g be bounded
Borel functions on R

d. To ease the notation, we prove only that Xr is inde-
pendent from Xs −Xr, but the same reasoning applies to any finite number
of increments. We must show that

E[f(Xr)g(Xs −Xr)] = E[f(Xr)]E[g(Xs −Xr)].

From the representation Xr =
∑Nr

i=1 Yi and Xs − Xr =
∑Ns

i=Nr+1 Yi the fol-
lowing observations can be made:
- Conditionally on the trajectory of Nt for t ∈ [0, s], Xr and Xs − Xr are
independent because the first expression only depends on Yi for i ≤ Nr and
the second expression only depends on Yi for i > Nr.
- The expectation E[f(Xr)

∣∣Nt, t ≤ s] depends only on Nr and the expectation
E[g(Xs −Xr)

∣∣Nt, t ≤ s] depends only on Ns −Nr.
Now, using the independence of increments of the Poisson process, we can
write:

E[f(Xr)g(Xs −Xr)] = E[E[f(Xr)g(Xs −Xr)
∣∣Nt, t ≤ s]]

= E[E[f(Xr)
∣∣Nt, t ≤ s]E[g(Xs −Xr)

∣∣Nt, t ≤ s]]

= E[E[f(Xr)
∣∣Nt, t ≤ s]]E[E[g(Xs −Xr)

∣∣Nt, t ≤ s]]
= E[f(Xr)]E[g(Xs −Xr)].

• Stationarity of increments. Let 0 < r < s as above and let f be a bounded
Borel function. Using the observations made above, we can write:

E[f(Xs −Xr)] = E[E[
Ns∑

i=Nr+1

Yi
∣∣Nt, t ≤ s]]

= E[E[
Ns−Nr∑
i=1

Yi
∣∣Nt, t ≤ s]] = E[E[

Ns−r∑
i=1

Yi
∣∣Nt, t ≤ s]] = E[f(Xs−r)].
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• Stochastic continuity. Xt only jumps if Nt does. By Proposition 2.12, for
every t > 0,

P(Ns
s<t→
s→t

Nt) = 1.

Hence, for every t > 0,

P(Xs
s<t→
s→t

Xt) = 1.

Since almost sure convergence entails convergence in probability, this implies
stochastic continuity.

Since any cadlag function may be approximated by a piecewise constant
function, one may expect that general Lévy processes can be well approxi-
mated by compound Poisson ones and that by studying compound Poisson
processes one can gain an insight into the properties of Lévy processes.

PROPOSITION 3.4 Characteristic function of a compound Poisson
process

Let (Xt)t≥0 be a compound Poisson process on R
d. Its characteristic function

has the following representation:

E[exp iu.Xt] = exp
{
tλ

∫
Rd

(eiu.x − 1)f(dx)
}
, ∀u ∈ R

d, (3.4)

where λ denotes the jump intensity and f the jump size distribution.

Comparing (3.4) with the characteristic function of the Poisson process
(2.72) we see that a compound Poisson random variable can be represented
as a superposition of independent Poisson processes with different jump sizes.
The total intensity of Poisson processes with jump sizes in the interval [x, x+
dx] is determined by the density λf(dx).

PROOF Conditioning the expectation on Nt and denoting the character-
istic function of f by f̂ , we find

E[exp iu.Xt] = E[E[exp iu.Xt]
∣∣Nt] = E[(f̂(u))Nt ]

=
∞∑
n=0

e−λt(λt)n(f̂(u))n

n!
= exp{λt(f̂(u) − 1)}

= exp
{
tλ

∫
Rd

(eiu.x − 1)f(dx)
}
.
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Lévy processes: definitions and properties 75

For one-dimensional compound Poisson processes the characteristic func-
tion has a simpler form:

E[exp{iuXt}] = exp
{
tλ

∫ ∞

−∞
(eiux − 1)f(dx)

}
, ∀u ∈ R.

Introducing a new measure ν(A) = λf(A), we can rewrite the formula (3.4)
as follows:

E[exp iu.Xt] = exp
{
t

∫
Rd

(eiu.x − 1)ν(dx)
}
, ∀u ∈ R

d. (3.5)

ν is called the Lévy measure of process (Xt)t≥0. ν is a positive measure on
R but not a probability measure since

∫
ν(dx) = λ 
= 1. Formula (3.5) is a

particular case of the so called Lévy-Khinchin representation (see Theorem
3.1).

3.3 Jump measures of compound Poisson processes

We will now use the notion of random measure, introduced in Section 2.6,
to study the behavior of jumps of a compound Poisson process. As shown in
Section 2.6.4, to every cadlag process and in particular to every compound
Poisson process (Xt)t≥0 on R

d one can associate a random measure on R
d ×

[0,∞[ describing the jumps of X: for any measurable set B ⊂ Rd × [0,∞[

JX(B) = #{(t,Xt −Xt−) ∈ B}. (3.6)

For every measurable set A ⊂ R
d, JX([t1, t2] × A) counts the number of

jump times of X between t1 and t2 such that their jump sizes are in A. The
following proposition shows that JX is a Poisson random measure in the sense
of Definition 2.18.

PROPOSITION 3.5 Jump measure of a compound Poisson process

Let (Xt)t≥0 be a compound Poisson process with intensity λ and jump size
distribution f . Its jump measure JX is a Poisson random measure on R

d ×
[0,∞[ with intensity measure µ(dx× dt) = ν(dx)dt = λf(dx)dt.

This proposition suggests an alternative interpretation of the Lévy measure
of a compound Poisson process as the average number of jumps per unit of
time. In fact, we will see in the sequel that this interpretation is much more
general than the one that uses the jump size distribution. It can be used
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to define the Lévy measure for all Lévy processes and not only compound
Poisson ones as follows:

DEFINITION 3.4 Lévy measure Let (Xt)t≥0 be a Lévy process on
R
d. The measure ν on R

d defined by:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 
= 0, ∆Xt ∈ A}], A ∈ B(Rd) (3.7)

is called the Lévy measure of X: ν(A) is the expected number, per unit time,
of jumps whose size belongs to A.

PROOF of Proposition 3.5 From the Definition (3.6) it is clear that
JX is an integer valued measure. Let us first check that JX(B) is Poisson
distributed. It is sufficient to prove this property for a set of the form B =
A× [t1, t2] with A ∈ B(Rd). Let (Nt)t≥0 be the Poisson process, counting the
jumps of X. Conditionally on the trajectory of N , the jump sizes Yi are i.i.d.
and JX([t1, t2]×A) is a sum of N(t2)−N(t1) i.i.d. Bernoulli variables taking
value 1 with probability f(A). Therefore,

E[eiuJX([t1,t2]×A)] = E[E[eiuJX([t1,t2]×A)
∣∣Nt, t ≥ 0]]

= E[{eiuf(A) + 1 − f(A)}N(t2)−N(t1)] = exp{λ(t2 − t1)f(A)(eiu − 1)}

because N(t2)−N(t1) is Poisson distributed with parameter λ(t2− t1). Thus,
JX([t1, t2] × A) is a Poisson random variable with parameter f(A)λ(t2 − t1)
which was to be shown.

Now let us check the independence of measures of disjoint sets. First, let
us show that if A and B are two disjoint Borel sets in R

d then JX([t1, t2]×A)
and JX([t1, t2] × B) are independent. Conditionally on the trajectory of N ,
the expression iuJX([t1, t2]×A)+ ivJX([t1, t2]×B) is a sum of N(t2)−N(t1)
i.i.d. random variables taking values:

iu with probability f(A);
iv with probability f(B);
0 with probability 1 − f(A) − f(B).

Proceeding like in the first part of the proof, we factorize the characteristic
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Lévy processes: definitions and properties 77

function as follows

E[eiuJX([t1,t2]×A)+ivJX([t1,t2]×B)]

= E[{(eiu − 1)f(A) + (eiv − 1)f(B) + 1}N(t2)−N(t1)]

= exp{λ(t2 − t1)(f(A)(eiu − 1) + f(B)(eiv − 1))}
= E[eiuJX([t1,t2]×A)]E[eivJX([t1,t2]×B)].

Second, let [t1, t2] and [s1, s2] be two disjoint intervals. The independence
of JX([t1, t2]×A) and JX([s1, s2]×B) follows directly from the independence
of increments of the process X.

Now the independence of jump measures of any finite number of disjoint
sets of [0,∞[×R

d follows from the additivity of JX and from the fact that the
methods used in this proof work for any finite number of sets.

Proposition 3.5 implies that every compound Poisson process can be repre-
sented in the following form:

Xt =
∑
s∈[0,t]

∆Xs =
∫

[0,t]×Rd

xJX(ds× dx), (3.8)

where JX is a Poisson random measure with intensity measure ν(dx)dt. This
is a special case of the Lévy-Itô decomposition for Lévy processes. Here we
have only rewritten the process X as the sum of its jumps. Since a compound
Poisson process has almost surely a finite number of jumps in interval [0, t],
the stochastic integral appearing in (3.8) is a finite sum, so there are no
convergence problems.

The following lemma is a useful tool for computing various quantities, re-
lated to Poisson random measures. It is somewhat analogous to Proposition
2.9.

LEMMA 3.1

Let M be a Poisson random measure with intensity measure µ and let A
be a measurable set such that 0 < µ(A) < ∞. Then the following two ran-
dom measures on the subsets of A have the same distribution conditionally on
M(A):

• M
∣∣
A
, the restriction of M to A.

• M̂A defined by M̂A(B) = #{Xi ∈ B} for all measurable subsets B of A,
where Xi, i = 1, . . . ,M(A) are independent and distributed on A with
the law µ(dx)

µ(A) . In other words, M̂A is the counting measure of M(A)
independent random points, identically distributed on A.
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PROOF Let B1, · · · , Bk be measurable disjoint subsets of A and denote
B̃ = A \ (B1 ∪ · · · ∪Bk) and ñ = n−∑i ni. Then

P{M(B1) = n1, . . . ,M(Bk) = nk
∣∣M(A) = n}

=
P{M(B1) = n1, . . . ,M(Bk) = nk,M(B̃) = ñ}

P{M(A) = n}

=
n!

n1! . . . nk!ñ!

(
µ(B1)
µ(A)

)n1

. . .

(
µ(Bk)
µ(A)

)nk
(
µ(B̃)
µ(A)

)ñ
,

which is clearly equal to the distribution of M̂A(B1), . . . , M̂A(Bk). Using
the additivity of measures, we can show that the sets B1, . . . , Bk must not
necessarily be disjoint. The statement of the lemma follows.

As an application of the preceding lemma, consider the following result.

PROPOSITION 3.6 Exponential formula for Poisson random mea-
sures
Let M be a Poisson random measure with intensity measure µ. Then the

following formula holds for every measurable set B such that µ(B) < ∞ and
for all functions f such that

∫
B
ef(x)µ(dx) <∞:

E exp
{∫

B

f(x)M(dx)
}

= exp
{∫

B

(ef(x) − 1)µ(dx)
}
. (3.9)

PROOF Condition the expectation on µ(B) and use Lemma 3.1.

In the sequel we will see that to obtain this formula we do not need the
assumption that both µ(B) and

∫
B
ef(x)µ(dx) be finite, it suffices only to

require
∫
B

∣∣ef(x) − 1
∣∣µ(dx) <∞.

Proposition 3.6 allows to establish a one-to-one correspondence between
compound Poisson processes and Poisson random measures with intensity
measures of the form ν(dx)dt with ν finite. Indeed, let ν be a finite measure
on R

d and let M be a Poisson random measure on R
d × [0,∞[ with intensity

measure ν(dx)dt. Then one can show using Proposition 3.6 that Equation
(3.8) defines a compound Poisson process with Lévy measure ν.

3.4 Infinite activity Lévy processes

In the preceding section, we saw that every piecewise constant Lévy process
X0
t can be represented in the form (3.8) for some Poisson random measure
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with intensity measure of the form ν(dx)dt where ν is a finite measure, defined
by

ν(A) = E[#{t ∈ [0, 1] : ∆X0
t 
= 0, ∆X0

t ∈ A}], A ∈ B(Rd). (3.10)

Given a Brownian motion with drift γt+Wt, independent from X0, the sum
Xt = X0

t + γt +Wt defines another Lévy process, which can be decomposed
as:

Xt = γt+Wt +
∑
s∈[0,t]

∆Xs = γt+Wt +
∫

[0,t]×Rd

xJX(ds× dx),

where JX is a Poisson random measure on [0,∞[×R
d with intensity ν(dx)dt.

Can every Lévy process be represented in this form? Given a Lévy process
Xt, we can still define its Lévy measure ν as above. ν(A) is still finite for
any compact set A such that 0 /∈ A: if this were not true, the process would
have an infinite number of jumps of finite size on [0, T ], which contradicts the
cadlag property. So ν defines a Radon measure on R

d \ {0}. But ν is not
necessarily a finite measure: the above restriction still allows it to blow up at
zero and X may have an infinite number of small jumps on [0, T ]. In this case
the sum of the jumps becomes an infinite series and its convergence imposes
some conditions on the measure ν, under which we obtain a decomposition of
X similar to the one above:

PROPOSITION 3.7 Lévy-Itô decomposition

Let (Xt)t≥0 be a Lévy process on R
d and ν its Lévy measure, given by Defi-

nition 3.4.

• ν is a Radon measure on R
d \ {0} and verifies:

∫
|x|≤1

|x|2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞.

• The jump measure of X, denoted by JX , is a Poisson random measure
on [0,∞[×R

d with intensity measure ν(dx)dt.

• There exist a vector γ and a d-dimensional Brownian motion2 (Bt)t≥0
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with covariance matrix A such that

Xt = γt+Bt +X l
t + lim

ε↓0
X̃ε
t , where (3.11)

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx) and

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

x{JX(ds× dx) − ν(dx)ds}

≡
∫

ε≤|x|<1,s∈[0,t]

xJ̃X(ds× dx).

The terms in (3.11) are independent and the convergence in the last term is
almost sure and uniform in t on [0, T ].

The Lévy-Itô decomposition entails that for every Lévy process there exist
a vector γ, a positive definite matrix A and a positive measure ν that uniquely
determine its distribution. The triplet (A, ν, γ) is called characteristic triplet
or Lévy triplet of the process Xt.

Given the importance of this result, let us comment a bit on the meaning of
the terms in (3.11). First, γt+Bt is a continuous Gaussian Lévy process and
every Gaussian Lévy process is continuous and can be written in this form and
can be described by two parameters: the drift γ and the covariance matrix of
Brownian motion, denoted by A.

The other two terms are discontinuous processes incorporating the jumps of
Xt and are described by the Lévy measure ν. The condition

∫
|y|≥1

ν(dy) <∞
means that X has a finite number of jumps with absolute value larger than
1. So the sum

X l
t =

|∆Xs|≥1∑
0≤s≤t

∆Xs

contains almost surely a finite number of terms and X l
t is a compound Poisson

process. There is nothing special about the threshold ∆X = 1: for any ε > 0,
the sum of jumps with amplitude between ε and 1:

Xε
t =

1>|∆Xs|≥ε∑
0≤s≤t

∆Xs =
∫

ε≤|x|<1,s∈[0,t]

xJX(ds× dx) (3.12)

2In terminology used here a Brownian motion may have arbitrary covariance matrix whereas
the term Wiener process is used for a standard Brownian motion, with unit covariance
matrix.
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is again a well-defined compound Poisson process. However, contrarily to
the compound Poisson case, ν can have a singularity at zero: there can be
infinitely many small jumps and their sum does not necessarily converge. This
prevents us from making ε go to 0 directly in Expression 3.12. In order to
obtain convergence we have to center the remainder term, i.e., replace the
jump integral by its compensated version, defined in Section 2.6.2:

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

xJ̃X(ds× dx) (3.13)

which, as seen in Proposition 2.16, is a martingale. While Xε can be in-
terpreted as an infinite superposition of independent Poisson processes, X̃ε

t

should be seen as an infinite superposition of independent compensated, i.e.,
centered Poisson processes to which a “central-limit” type argument can now
be applied to show convergence (see below).

An important implication of the Lévy-Itô decomposition is that every Lévy
process is a combination of a Brownian motion with drift and a possibly
infinite sum of independent compound Poisson processes. This also means
that every Lévy process can be approximated with arbitrary precision by a
jump-diffusion process, that is by the sum of Brownian motion with drift
and a compound Poisson process, a point which is useful both in theory and
in practice. The right graph of Figure 3.1 shows a typical trajectory of a
jump-diffusion process.

The Lévy-Itô decomposition was originally found by Lévy [251] using a
direct analysis of the paths of Lévy processes and completed by Itô [206].
There are many proofs available in the literature. A probabilistic approach
close to the original proof of Lévy is given in [164]. We will not give a detailed
proof but sketch the main ideas of this approach:

PROOF of the Lévy-Itô decomposition (outline)
First, we construct a Poisson random measure JX on [0, t]×R

d from the jumps
of (Xt). Since (Xt) is cadlag, for any positive ε the set {t : |Xt −Xt−| ≥ ε}
is finite and the Poisson random measure (of any closed set not containing
0) can be constructed using Proposition 3.5. The intensity measure of JX is
homogeneous and equal to ν(dx)dt. Throughout the rest of the proof we can
suppose without loss of generality that all jumps of (Xt) are smaller than 1
in absolute value. The next step is to prove the following lemma.

LEMMA 3.2

Let (Xt, Yt) be a Lévy process. If (Yt) is compound Poisson and (Xt) and
(Yt) never jump together, then they are independent.

For a proof see for example [228, Lemma 13.6].
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This lemma together with the exponential formula (3.6) allows to prove
that the Lévy measure ν satisfies the integrability condition

∫
(|x|2 ∧ 1)ν(dx) <∞. (3.14)

We give this part of the proof in full detail to explain the origin of this con-
dition. Since the Lévy measure of any closed set not containing zero is finite,
it is sufficient to prove that for some δ > 0,

∫
|x|≤δ |x|2ν(dx) <∞.

Let Xε
t be as above in (3.13) and let Rεt = Xt − Xε

t . Then (Xε
t , R

ε
t ) is

a Lévy process because (Xt) is. Clearly for some u and some t we have∣∣E exp{iuXt} > 0
∣∣. Let us fix this u and this t. Since by Lemma 3.2, (Xε

t )
and (Rεt ) are independent,

E exp{iuXt} = E exp{iuRεt}E exp{iuXε
t },

and this means that
∣∣E exp{iuXε

t }
∣∣ is bounded from below by a positive num-

ber which does not depend on ε. By the exponential formula (Proposition 3.6)
this is equivalent to

∣∣∣exp

{
t

∫
|x|≥ε

(eiux − 1)ν(dx)

}∣∣∣ ≥ C > 0,

which implies that
∫
|x|≥ε(1−cos(ux))ν(dx) ≤ C̃ <∞. Making ε tend to zero,

we obtain the desired result (3.14).
Now we can use it to show the convergence of X̃ε

t . Consider a sequence
{εn} ↓ 0 and let Yn = X̃

εn+1
t − X̃εn

t . All the variables Yi have zero mean
and (3.14) entails that

∑
VarYi < ∞. Hence, by Kolmogorov’s three series

Theorem [228, Theorem 3.18],
∑
Yi converges almost surely, which means

that X̃ε
t converges almost surely as ε → 0. Using Kolmogorov’s maximum

inequality [228, Lemma 3.15], one can show that the convergence is uniform
in t.

To complete the proof, consider the process Xc
t = Xt− lim X̃ε

t . It is a Lévy
process which is independent from lim X̃ε

t by Lemma 3.2. It is continuous,
because X̃ε

t converges uniformly in t and therefore one can interchange the
limits. Finally, the Feller-Lévy central limit Theorem [228, Theorem 4.15]
implies that it is also Gaussian.

Our knowledge of the structure of paths of a Lévy process allows to obtain
almost without additional work the second fundamental result of the theory:
the expression of the characteristic function of a Lévy process in terms of its
characteristic triplet (A, ν, γ).
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Lévy processes: definitions and properties 83

THEOREM 3.1 Lévy-Khinchin representation
Let (Xt)t≥0 be a Lévy process on R

d with characteristic triplet (A, ν, γ).
Then

E[eiz.Xt ] = etψ(z), z ∈ R
d (3.15)

with ψ(z) = −1
2
z.Az + iγ.z +

∫
Rd

(eiz.x − 1 − iz.x1|x|≤1)ν(dx).

For real-valued Lévy processes, the formula (3.15) takes the form

E[eizXt ] = etψ(z), z ∈ R

with ψ(z) = −1
2
Az2 + iγz +

∫ ∞

−∞
(eizx − 1 − izx1|x|≤1)ν(dx).

An equivalent version of the Lévy-Khinchin representation may be obtained
by truncating the jumps larger than an arbitrary number ε:

ψ(z) = −1
2
z.Az + iγε.z +

∫
Rd

(eiz.x − 1 − iz.x1|x|≤ε)ν(dx),

where γε = γ +
∫

Rd

x(1|x|≤ε − 1|x|≤1)ν(dx).

More generally, for every bounded measurable function g : R
d → R satisfying

g(x) = 1 + o(|x|) as x→ 0 and g(x) = O(1/|x|) as x→ ∞, one can write:

ψ(z) = −1
2
z.Az + iγg.z +

∫
Rd

(eiz.x − 1 − iz.xg(x))ν(dx).

Such a function g is called the truncation function and the characteristic
triplet (A, ν, γg) is called the characteristic triplet of X with respect to the
truncation function g. Different choices of g do not affect A and ν which
are intrinsic parameters of the Lévy process, but γ depends on the choice of
truncation function so one should avoid calling it “the drift” of the process.
Various choices of the truncation function have been used in the literature.
Paul Lévy used the truncation function g(x) = 1

1+|x|2 while most recent texts
use g(x) = 1|x|≤1. In the sequel, when we refer to the Lévy triplet of a Lévy
process we implicitly refer to the truncation function g(x) = 1|x|≤1.

If the Lévy measure satisfies the additional condition
∫
|x|≥1

|x|ν(dx) < ∞
there is no need to truncate large jumps and one can use the simpler form

ψ(z) = −1
2
z.Az + iγc.z +

∫
Rd

(eiz.x − 1 − iz.x)ν(dx).

In this case it can be shown that E[Xt] = γct and γc is called the center of
process (Xt). It is linked to γ by the relation γc = γ +

∫
|x|≥1

xν(dx).
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PROOF of Theorem 3.1 The Lévy-Itô decomposition (Theorem 3.7)
shows that for every t, the random variable Xc

t +X l
t +Xε

t converges almost
surely to Xt when ε tends to 0. Since almost sure convergence implies conver-
gence in distribution, the characteristic function of Xc

t +X l
t +Xε

t converges
to the characteristic function of Xt. Since Xc

t , X
l
t and Xε

t are independent,

E[exp{iz.(Xc
t +X l

t +Xε
t )}] = exp{−1

2
tz.Az + itγ.z}

× exp{t
∫
|x|≥1

(eiz.x − 1)ν(dx)} exp{t
∫
ε≤|x|<1

(eiz.x − 1 − iz.x)ν(dx)}

and this expression converges to (3.15) for every z when ε tends to 0.

When ν(Rd) = ∞ (infinite activity case), the set of jump times of every
trajectory of the Lévy process is countably infinite and dense in [0,∞[. The
countability follows directly from the fact that the paths are cadlag. To prove
that the set of jump times is dense in [0,∞[, consider a time interval [a, b] and
let

ε(n) = sup{r :
∫
|x|≥r

ν(dx) ≥ n}

and Yn =
∫
ε(n)≤|x|<ε(n−1),t∈[a,b]

JX(dx× dt).

Then, if the Lévy measure has no atoms, Yi are independent and identically
Poisson distributed random variables. The total number of jumps in the
interval [a, b] is equal to

∑∞
i=1 Yi, hence, by the law of large numbers, it is

almost surely infinite. Since this is true for every nonempty time interval
[a, b], this means that the set of jump times is dense in [0,∞[. The proof can
be easily modified to include the case when the Lévy measure has atoms.

Since any infinitely divisible distribution is the distribution at time t = 1 of
some Lévy process, the Lévy-Khinchin formula also gives the a general repre-
sentation for the characteristic function of any infinitely divisible distribution:
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THEOREM 3.2 Characteristic function of infinitely divisible dis-
tributions
Let F be an infinitely divisible distribution on R

d. Its characteristic function
can be represented as:

ΦF (z) = eψ(z), z ∈ R
d

ψ(z) = −1
2
z.Az + iγ.z +

∫
Rd

(eiz.x − 1 − iz.x1|x|≤1)ν(dx),

where A is a symmetric positive n × n matrix, γ ∈ R
d and ν is a positive

Radon measure on R
d \ {0} verifying:∫

|x|≤1

|x|2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞.

ν is called the Lévy measure of the distribution F .

3.5 Pathwise properties of Lévy processes

In this section, using the Lévy-Itô decomposition, we deduce some proper-
ties of typical sample paths of a Lévy process from analytical properties of its
characteristic triplet (A, ν, γ).

Piecewise constant trajectories We saw in the preceding section (Propo-
sition 3.3) that almost all trajectories of a Lévy process are piecewise constant
if and only if it is of compound Poisson type. Combining this with the For-
mula (3.4), which gives the characteristic function of a compound Poisson
processes, we obtain the following criterion:

PROPOSITION 3.8

A Lévy process has piecewise constant trajectories if and only if its charac-
teristic triplet satisfies the following conditions: A = 0,

∫
Rd ν(dx) <∞ and

γ =
∫
|x|≤1

xν(dx) or equivalently, if its characteristic exponent is of the form:

ψ(z) =
∫ ∞

−∞
(eiux − 1)ν(dx) with ν(R) <∞.
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Lévy processes of finite variation We recall that the total variation of
a function f : [a, b] → R

d is defined by

TV (f) = sup
n∑
i=1

|f(ti) − f(ti−1)|,

where the supremum is taken over all finite partitions a = t0 < t1 < · · · <
tn−1 < tn = b of the interval [a, b]. In particular, in one dimension every
increasing or decreasing function is of finite variation and every function of
finite variation is a difference of two increasing functions.

A Lévy process is said to be of finite variation if its trajectories are functions
of finite variation with probability 1.

PROPOSITION 3.9 Finite variation Lévy processes

A Lévy process is of finite variation if and only if its characteristic triplet
(A, ν, γ) satisfies:

A = 0 and
∫
|x|≤1

|x|ν(dx) <∞. (3.16)

PROOF The if part. Under the stated conditions, Xt can be represented
in the following form:

Xt = bt+
∫
|x|≥1,s∈[0,t]

xJX(ds× dx) + lim
ε↓0

X̃ε
t ,

where X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

xJX(ds× dx).

The first two terms are of finite variation, therefore we only need to consider
the third term. Its variation on the interval [0, t] is

TV (X̃ε
t ) =

∫
ε≤|x|<1,s∈[0,t]

|x|JX(ds× dx).

Since the integrand in the right-hand side is positive, we obtain, using Fubini’s
theorem

E[TV (X̃ε
t )] = t

∫
ε≤|x|<1

|x|ν(dx),

which converges to a finite value when ε→ 0. Therefore E[TV (limε↓0 X̃ε
t )] <

∞, which implies that the variation of Xt is almost surely finite.
The only if part. Consider the Lévy-Itô decomposition (3.11) of Xt. Since

the variation of any cadlag function is greater or equal to the sum of its jumps,

© 2004 by CRC Press LLC
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we have for every ε > 0:

TV (Xt) ≥
∫
ε≤|x|<1,s∈[0,t]

|x|JX(ds× dx)

= t

∫
ε≤|x|<1

|x|ν(dx) +
∫
ε≤|x|<1,s∈[0,t]

|x|(JX(ds× dx) − ν(dx)ds).

Using the exponential formula (Proposition 3.6), one can show that the vari-
ance of the second term in the last line is equal to t

∫
ε≤|x|<1,s∈[0,t]

|x|2ν(dx).
Hence, by the same argument that was used in the proof of Lévy-Itô decompo-
sition, the second term converges almost surely to something finite. Therefore,
if the condition

∫
(|x| ∧ 1)ν(dx) <∞ is not satisfied, the first term in the last

line will diverge and the variation of Xt will be infinite. Suppose now that
this condition is satisfied. This means that Xt may be written as

Xt = Xc
t +

∫
[0,t]×Rd

xJX(ds× dx),

where the second term is of finite variation. Since trajectories of Brownian
motion are almost surely of infinite variation (see [335]), if A is nonzero, Xt

will also have infinite variation. Therefore we must have A = 0.

The preceding proposition shows that in the finite variation case Lévy-Itô
decomposition and Lévy-Khinchin representation can be simplified:

COROLLARY 3.1 Lévy-Itô decomposition and Lévy-Khinchin
representation in the finite-variation case
Let (Xt)t≥0 be a Lévy process of finite variation with Lévy triplet given by

(ν, 0, γ). Then X can be expressed as the sum of its jumps between 0 and t
and a linear drift term:

Xt = bt+
∫

[0,t]×Rd

xJX(ds× dx) = bt+
∆Xs �=0∑
s∈[0,t]

∆Xs (3.17)

and its characteristic function can be expressed as:

E[eiz.Xt ] = exp t
{
ib.z +

∫
Rd

(eiz.x − 1)ν(dx)
}
, (3.18)

where b = γ − ∫|x|≤1
xν(dx).

Note that the Lévy triplet of X is not given by (b, 0, ν) but by (γ, 0, ν). In
fact, as mentioned before γ is not an intrinsic quantity and depends on the
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truncation function used in the Lévy-Khinchin representation while bt has an
intrinsic interpretation as the continuous part of X.

Increasing Lévy processes (subordinators) Increasing Lévy processes
are also called subordinators because they can be used as time changes for
other Lévy process (see Chapter 4). They are very important ingredients for
building Lévy-based models in finance.

PROPOSITION 3.10

Let (Xt)t≥0 be a Lévy process on R. The following conditions are equivalent:

i. Xt ≥ 0 a.s. for some t > 0.

ii. Xt ≥ 0 a.s. for every t > 0.

iii. Sample paths of (Xt) are almost surely nondecreasing: t ≥ s⇒ Xt ≥ Xs

a.s.

iv. The characteristic triplet of (Xt) satisfies A = 0, ν((−∞, 0]) = 0,∫∞
0

(x ∧ 1)ν(dx) < ∞ and b ≥ 0, that is, (Xt) has no diffusion com-
ponent, only positive jumps of finite variation and positive drift.

PROOF i ⇒ iii. For every n, Xt is a sum of n i.i.d. random variables
Xt/n,X2t/n − Xt/n, . . . , Xt − X(n−1)t/n. This means that all these variables
are almost surely nonnegative. With the same logic we can prove that for
any two rationals p and q such that 0 < p < q, Xqt −Xpt ≥ 0 a.s. Since the
trajectories are right-continuous, this entails that they are nondecreasing.

The implications iii⇒ ii and ii⇒ i are trivial.
iv ⇒ iii. Under the conditions of (iv) the process is of finite variation,

therefore equal to the sum of its jumps plus an increasing linear function.
For every trajectory the number of negative jumps on any fixed interval is
a Poisson random variable with intensity 0, hence, almost surely zero. This
means that almost every trajectory is nondecreasing.
iii ⇒ iv. Since the trajectories are nondecreasing, they are of finite vari-

ation. Therefore, A = 0 and
∫∞
−∞(x ∧ 1)ν(dx) < ∞. For trajectories to be

nonincreasing, there must be no negative jumps, hence ν(] −∞, 0]) = 0. If a
function is nondecreasing then after removing some of its jumps, we obtain
another nondecreasing function. When we remove all jumps from a trajec-
tory of Xt, we obtain a deterministic function bt which must therefore be
nondecreasing. This allows to conclude that b ≥ 0.

An important example of subordinator is introduced by the following propo-
sition.
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PROPOSITION 3.11

Let (Xt)t≥0 be a Lévy process on R
d and let f : R

d → [0,∞[ be a positive
function such that f(x) = O(|x|2) when x → 0. Then the process (St)t≥0

defined by

St =
∑
s≤t

∆Xs �=0

f(∆Xs) (3.19)

is a subordinator.

PROOF Let us first show that the sum in (3.19) converges to something
finite. By truncating large jumps we can suppose that for each s, ∆Xs ≤ ε
for some ε > 0 and f(∆Xs) ≤ C∆X2

s for some C > 0. But then

E[St] =
∫

[0,t]×R

f(x)dsν(dx) <∞. (3.20)

Since all the terms in the sum are positive, this means that it always converges
and St is almost surely finite for all t. The fact that S has independent and
stationary increments follows directly from independence and stationarity of
increments of X. To prove that it is continuous in probability one can once
again suppose that jumps of Xt are bounded (because the compound Poisson
part is always continuous in probability). But then E[|St−Ss|] → 0 as s→ t.
Therefore, S is continuous in probability.

The choice f(x) = x2 yields the sum of squared jumps

St =
∑
s≤t

∆Xs �=0

|∆Xs|2. (3.21)

This process which by the above proposition is a subordinator, is usually
denoted [X,X]d and called the “discontinuous quadratic variation” of X. We
will encounter it again in Section 8.2.

REMARK 3.1 There exist Lévy processes without diffusion component,
having no negative jumps, but satisfying

∫ 1

0
|x|ν(dx) = ∞. The above proposi-

tion entails that these processes cannot have increasing trajectories, whatever
drift coefficient they may have. The explanation of this “mysterious” behavior
is that in this case the process is not equal to the sum of its jumps, because
the jumps must be compensated. These compensation terms add up to an
“infinitely strong” negative drift between the jumps, which cannot be made
positive by changing the drift coefficient.
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3.6 Distributional properties

If (Xt)t≥0 is a Lévy process then for any t > 0, the distribution of Xt

is infinitely divisible and has a characteristic function of the form (3.15).
However, Xt does not always have a density: indeed, if Xt is a compound
Poisson process we have

P(Xt = 0) = e−λt > 0 (3.22)

so the probability distribution has an atom at zero for all t. But if X is not
a compound Poisson process, then Xt has a continuous density; we give the
following result for d = 1 from [312]:

PROPOSITION 3.12 Existence of a smooth density
Let X be a real-valued Lévy process with Lévy triplet (σ2, ν, γ).

• If σ > 0 or ν(R) = ∞ then Xt has a continuous density pt(.) on R
d.

• If the Lévy measure ν verifies

∃β ∈]0, 2[, lim inf
ε↓0

ε−β
∫ ε

−ε
|x|2dν(x) > 0 (3.23)

then for each t > 0, Xt has a smooth density pt(.) such that

pt(.) ∈ C∞(R) ∀n ≥ 1,
∂npt
∂xn

(t, x) →
|x|→∞

0. (3.24)

These and other properties of the density may be obtained using the Lévy-
Khinchin representation and the properties of the Fourier transform, see [345,
Chapter 5].

Relation between probability density and Lévy density In the com-
pound Poisson case there is a simple relation between probability distribution
at time t and the jump size distribution/Lévy measure. Let (Xt)t≥0 be a
compound Poisson process with intensity λ and jump size distribution f and
(Nt)t≥0 be the number of jumps of X on [0, t]. Then

P{Xt ∈ A} =
∞∑
n=0

P{Xt ∈ A
∣∣Nt = n}e

−λt(λt)n

n!

= e−λtδ0 +
∞∑
n=1

f∗n(A)
e−λt(λt)n

n!
, (3.25)
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where f∗n denotes the n-th convolution power of f , and δ0 is the Dirac mea-
sure concentrated at 0. As noted above, this probability measure does not
have a density because P{Xt = 0} > 0. However, if the jump size distri-
bution has a density with respect to Lebesgue measure, then the law of Xt

is absolutely continuous everywhere except at zero (because convolution of
absolutely continuous distributions is absolutely continuous), i.e., the law of
Xt can be decomposed as

P{Xt ∈ A} = e−λt10∈A +
∫
A

pact (x)dx where

pact (x) =
∞∑
n=1

f∗n(x)
e−λt(λt)n

n!
∀x 
= 0.

where we denote the jump size density by f(x). pact is the density condi-
tional on the fact that the process has jumped at least once. This implies in
particular the following asymptotic relation:

lim
t↓0

1
t
pact (x) = λf(x) = ν(x) ∀x 
= 0,

where ν(x) is the Lévy density. This means that the Lévy density describes
the small time behavior of the probability density.

This relation also gives the small time behavior for expectations of functions
of Xt: given any bounded measurable function f such that f(0) = 0,

lim
t↓0

1
t
E[f(Xt)] = lim

t↓0
1
t

∫
Rd

f(x)pt(dx) =
∫

Rd

f(x)ν(dx). (3.26)

In the infinite activity setting the classical asymptotic result for expectations
(see [345, Corollary 8.9]) is weaker: it states that the formula (3.26) holds for
any bounded continuous function f vanishing in the neighborhood of zero.
More results on the relation between probability density of Xt and the Lévy
measure for infinite-activity processes may be found in [33] and [341].

Moments and cumulants The tail behavior of the distribution of a Lévy
process and its moments are determined by the Lévy measure, as shown by
the following proposition, which is a consequence of [345, Theorem 25.3].

PROPOSITION 3.13 Moments and cumulants of a Lévy process

Let (Xt)t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ). The
n-th absolute moment of Xt, E[|Xt|n] is finite for some t or, equivalently,
for every t > 0 if and only if

∫
|x|≥1

|x|nν(dx) < ∞. In this case moments of
Xt can be computed from the its characteristic function by differentiation. In
particular, the form of cumulants (defined in Section 2.2.5) of Xt is especially
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simple:

E[Xt] = t(γ +
∫
|x|≥1

xν(dx)),

c2(Xt) = VarXt = t(A+
∫ ∞

−∞
x2ν(dx)),

cn(Xt) = t

∫ ∞

−∞
xnν(dx) for n ≥ 3.

This entails in particular that all infinitely divisible distributions are lep-
tokurtic since c4(Xt) > 0. Also, the cumulants of the distribution of Xt

increase linearly with t. In particular the kurtosis and skewness3 of X∆ (or,
equivalently, of the increments Xt+∆ −Xt are given by:

s(X∆) =
c3(X)
c2(X)3/2

=
s(X1)√

∆
, κ(X∆) =

c4(X∆)
c2(X∆)2

=
κ(X1)

∆
. (3.27)

Therefore the increments of a Lévy process or, equivalently, all infinitely di-
visible distributions are always leptokurtic but the kurtosis (and skewness, if
there is any) decreases with the time scale over which increments are com-
puted: the skewness falls as ∆−1/2 while the kurtosis decays as 1/∆.

PROPOSITION 3.14 Exponential moments
Let (Xt)t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ) and let
u ∈ R. The exponential moment E[euXt ] is finite for some t or, equivalently,
for all t > 0 if and only if

∫
|x|≥1

euxν(dx) <∞. In this case

E[euXt ] = etψ(−iu).

where ψ is the characteristic exponent of the Lévy process defined by (3.15).

For a proof see [345, Theorem 25.17].

3.7 Stable laws and processes

A remarkable property of Brownian motion is its selfsimilarity property: if
W is a Wiener process on R then

∀a > 0,
(
Wat√
a

)
t≥0

d= (Wt)t≥0.

3See Equation (2.34) for a definition of skewness and kurtosis.
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If we consider a Brownian motion with drift Bt = Wt + γt then this property
is only verified up to a translation:

∀a > 0,
(
Bat√
a

)
t≥0

d= (Bt +
√
aγt)t≥0.

A natural question is whether there exist other real valued Lévy processes that
share this selfsimilarity property: a Lévy process Xt is said to be selfsimilar
if

∀a > 0, ∃b(a) > 0 :
(
Xat

b(a)

)
t≥0

d= (Xt)t≥0.

Since the characteristic function of Xt has the form ΦXt
(z) = exp[−tψ(z)],

this property is equivalent to the following property of the characteristic func-
tion:

∀a > 0, ∃b(a) > 0 : ΦXt
(z)a = ΦXt

(zb(a)) ∀z.
The distributions that verify this property are called strictly stable distribu-
tions. More precisely, we have the following definition.

DEFINITION 3.5 A random variable X ∈ R
d is said to have stable

distribution if for every a > 0 there exist b(a) > 0 and c(a) ∈ R
d such that

ΦX(z)a = ΦX(zb(a))eic.z, ∀z ∈ R
d. (3.28)

It is said to have a strictly stable distribution if

ΦX(z)a = ΦX(zb(a)), ∀z ∈ R
d. (3.29)

The name stable comes from the following stability under addition property:
if X has stable distribution and X(1), . . . , X(n) are independent copies of X
then there exist a positive number cn and a vector d such that

X(1) + · · · +X(n) d= cnX + d. (3.30)

This property is clearly verified if the distribution of X is that of a selfsimilar
Lévy process at a given time t.

It can be shown (see [344, corollary 2.1.3]) that for every stable distribution
there exists a constant α ∈ (0, 2] such that in Equation (3.28), b(a) = a1/α.
This constant is called the index of stability and stable distributions with index
α are also referred to as α-stable distributions. The only 2-stable distributions
are Gaussian.

A selfsimilar Lévy process therefore has strictly stable distribution at all
times. For this reason, such processes are also called strictly stable Lévy
processes. A strictly α-stable Lévy process satisfies:

∀a > 0,
(
Xat

a1/α

)
t≥0

d= (Xt)t≥0. (3.31)
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In the case of the Wiener process α = 2. More generally, an α-stable Lévy
process satisfies this relation up to a translation:

∀a > 0, ∃c ∈ R
d : (Xat)t≥0

d= (a1/αXt + ct)t≥0.

A stable Lévy process defines a family of stable distributions and the con-
verse is also true: every stable distribution is infinitely divisible and can be
seen as the distribution at a given time of a stable Lévy process. The following
result gives the form of characteristic triplet of all stable Lévy processes and
stable distributions:

PROPOSITION 3.15 Stable distributions and Lévy processes
A distribution on R

d is α-stable with 0 < α < 2 if and only if it is infinitely
divisible with characteristic triplet (0, ν, γ) and there exists a finite measure λ
on S, a unit sphere of R

d, such that

ν(B) =
∫
S

λ(dξ)
∫ ∞

0

1B(rξ)
dr

r1+α
. (3.32)

A distribution on R
d is α-stable with α = 2 if and only if it is Gaussian.

A proof is given in [345, Theorem 14.3], see also [344].
For real-valued stable variables and Lévy processes (d = 1) the above rep-

resentation can be made explicit: if X is a real-valued α-stable variable with
0 < α < 2 then its Lévy measure is of the form

ν(x) =
A

xα+1
1x>0 +

B

|x|α+1
1x<0 (3.33)

for some positive constants A and B. The characteristic function at time 1 of
a real-valued stable random variable X has the form

ΦX(z) = exp
{
−σα|z|α(1 − iβ sgn z tan

πα

2
) + iµz

}
, if α 
= 1,

ΦX(z) = exp
{
−σ|z|(1 + iβ

2
π

sgn z log |z|) + iµz

}
, if α = 1, (3.34)

where α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R. In the sequel, a stable
distribution on R in this parameterization is denoted by Sα(σ, β, ν). In this
representation, σ is the scale parameter (note that is has nothing to do with
the Gaussian component if α < 2), µ is the shift parameter (when α 
= 1 this
is not true: see [344, Section 1.2]), α determines the shape of the distribution
and β its skewness. When β = 0 and µ = 0, X is said to have a symmetric
stable distribution and the characteristic function is given by

ΦX(z) = exp(−σα|z|α).
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The explicit form of the Lévy measure (3.33) shows that α-stable distribu-
tions on R never admit a second moment, and they only admit a first moment
if α > 1. The probability density of an α-stable law is not known in closed
form except in the following three cases (plus the degenerate case of a constant
random variable)

• The Gaussian distribution S2(σ, 0, µ) with density (note the nonstan-
dard parameterization)

1
2σ

√
π
e−(x−µ)2/4σ2

. (3.35)

• The Cauchy distribution S1(σ, 0, µ) with density

σ

π((x− µ)2 + σ2)
. (3.36)

• The Lévy distribution S1/2(σ, 1, µ) with density

( σ
2π

)1/2 1
(x− µ)3/2

exp
{
− σ

2(x− µ)

}
1x>µ. (3.37)

While the first two distributions are symmetric around their mean, the last one
is concentrated on (µ,∞). Despite the fact that closed formulae for probability
density are only available in these three cases, closed-form algorithms for
simulating stable random variables on R exist for all values of parameters
(see Chapter 6).

3.8 Lévy processes as Markov processes

An important property of Lévy processes is the Markov property, which
states that conditionally on Xt, the evolution of the process after time t is
independent on its past before this moment. In other words, for every random
variable Y depending on the history Ft of Xt one must have

E[Y |Ft] = E[Y |Xt].

The transition kernel of process Xt is defined as follows:

Ps,t(x,B) = P{Xt ∈ B|Xs = x}, ∀B ∈ B. (3.38)

The Markov property implies the following relation between transition kernels
(known as the Chapman-Kolmogorov equations):

Ps,u(x,B) =
∫

Rd

Ps,t(x, dy)Pt,u(y,B).
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It is easily seen from the Definition (3.38) that the transition kernels of Lévy
processes are homogeneous in space and time, that is,

Ps,t(x,B) = P0,t−s(0, B − x).

Lévy processes are completely characterized by this condition (see [345, The-
orem 10.5]): they are the only Markov processes which are homogeneous in
space and time.

Lévy processes satisfy a stronger version of the Markov property, namely,
for all t, the process (Xt+s−Xt)s≥0 has the same law as the process (Xs)s≥0

and is independent from (Xs)0≤s≤t.
Finally, the strong Markov property of Lévy processes allows to replace the

nonrandom time t by any random time which is nonanticipating with respect
to the history of X (see Section 2.4.2): if τ is a nonanticipating random time,
then the process Yt = Xt+τ −Xτ is again a Lévy process, independent from
Fτ and with same law as (Xt)t≥0.

The transition operator for Markov processes is defined as follows:

Ptf(x) = E[f(x+Xt)].

Chapman-Kolmogorov equations and the time homogeneity of transition ker-
nels imply the following semigroup relation between transition operators:

PtPs = Pt+s.

Let C0 be the set of continuous functions vanishing at infinity. Then for any
t > 0, Ptf ∈ C0 and

∀x lim
t↓0

Ptf(x) = f(x). (3.39)

where the convergence is in the sense of supremum norm on C0. This property
is called the Feller property. A semigroup Pt verifying the Feller property
(3.39) can be described by means of its infinitesimal generator L which is a
linear operator defined by

Lf = lim
t↓0

t−1(Ptf − f), (3.40)

where the convergence is in the sense of supremum norm on C0 and f should
be such that the right-hand side of (3.40) exists. The infinitesimal generator
of a Lévy process can be expressed in terms of its characteristic triplet:

PROPOSITION 3.16 Infinitesimal generator of a Lévy process

Let (Xt)t≥0 be a Lévy process on R
d with characteristic triplet (A, ν, γ). Then
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the infinitesimal generator of X is defined for any f ∈ C2
0 (R) as

Lf(x) =
1
2

d∑
j,k=1

Ajk
∂2f

∂xj∂xk
(x) +

d∑
j=1

γj
∂f

∂xj
(x)

+
∫

Rd

⎛
⎝f(x+ y) − f(x) −

d∑
j=1

yj
∂f

∂xj
(x)1|y|≤1

⎞
⎠ ν(dy), (3.41)

where C2
0(Rd) is the set of twice continuously differentiable functions, vanish-

ing at infinity.

We will give a proof of this result in a slightly different setting in Chapter
12. For a classical proof see [345, Theorem 31.5]. We will see in Chapters 8
and 12 that the computation of expectations of various functionals of Lévy
processes can be transformed into partial integro-differential equations involv-
ing the infinitesimal generator. Due to this fact, infinitesimal generators are
important tools in option pricing.

3.9 Lévy processes and martingales

The notion of martingale (see Section 2.4.4) is crucial for probability theory
and mathematical finance. Different martingales can be constructed from
Lévy processes using their independent increments property.

PROPOSITION 3.17
Let (Xt)t≥0 be a real-valued process with independent increments. Then

1.
(

eiuXt

E[eiuXt ]

)
t≥0

is a martingale ∀u ∈ R.

2. If for some u ∈ R, E[euXt ] < ∞ ∀t ≥ 0 then
(

euXt

E[euXt ]

)
t≥0

is a martin-

gale.

3. If E[Xt] <∞ ∀t ≥ 0 then Mt = Xt−E[Xt] is a martingale (and also a
process with independent increments).

4. If Var[Xt] <∞ ∀t ≥ 0 then (Mt)2 −E[(Mt)2] is a martingale, where M
is the martingale defined above.

If (Xt) is a Lévy processes, for all of the processes of this proposition to be
martingales it suffices that the corresponding moments be finite for one value
of t (see Theorems 25.17 and 25.3 in [345]).
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These statements follow from the independent increments property. Details
of the proof are left to the reader as an exercise.

Sometimes, in particular in financial applications, it is important to check
whether a given Lévy process or its exponential is a martingale. We will now
obtain the necessary and sufficient conditions.

PROPOSITION 3.18

Let (Xt)t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ).

1. (Xt) is a martingale if and only if
∫
|x|≥1

|x|ν(dx) <∞ and

γ +
∫
|x|≥1

xν(dx) = 0.

2. exp(Xt) is a martingale if and only if
∫
|x|≥1

exν(dx) <∞ and

A

2
+ γ +

∫ ∞

−∞
(ex − 1 − x1|x|≤1)ν(dx) = 0. (3.42)

This proposition is a consequence of Proposition 3.17 and the Lévy-Khinchin
formula. Exponential of Lévy processes are further discussed in section 8.4.

Further reading

A summary of properties of Lévy processes can be found in [51]. The mono-
graph by Sato [345] is a detailed study of Lévy processes and their properties
using an analytic viewpoint. The original probabilistic approach introduced
by Paul Lévy was to analyze the sample paths of a Lévy process directly, this
approach is detailed in [164]. An analytical approach of the Lévy Khinchin
formula is given in [208, 209]. Bertoin’s book [49] treats more advanced topics
on Lévy processes, not discussed in the first two references, including local
times and excursion theory. A detailed treatment of subordinators is given
in the Saint Flour lectures of Bertoin [50]. Stroock [370] discusses in detail
the Lévy-Khinchin representation and the construction of Lévy processes as
Markov processes using Itô’s original approach. Stable laws and processes are
discussed in detail in [344] and in the monograph by Zolotarev [394].
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REMARK 3.2 Lévy flights α-stable Lévy processes (see Section
3.7) are known in the physics literature under the name of Lévy flights or
anomalous diffusions and have been extensively used for modelling physical
phenomena; see, e.g., [26]. Lévy flights are Lévy processes with infinite vari-
ance and possess scale invariance and self-similarity properties (see Section
7.4 for a discussion of self-similarity). Some authors have used the names
“Lévy process” and “Lévy flight” interchangeably, giving the wrong impres-
sion that all Lévy processes have infinite variance and scaling properties.
It should be clear to the reader that Lévy processes are much more general
than Lévy flights and do not share most of their properties (except, of course,
independence and stationarity of increments). In fact, all the examples of
Lévy processes given in Chapter 4 have finite variance and are neither self-
similar nor self-affine.
Non-Gaussian α-stable distributions are also referred to as “Lévy distri-
butions” in the physics literature. Finally, to add to the confusion, some
authors in the mathematics literature call the α-stable distribution with
α = 1/2 the “Lévy distribution.”
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Paul Lévy

Lévy processes were named after the French mathematician Paul Lévy, one
of the founding fathers of the modern theory of stochastic processes. Lévy
was born into a family counting several mathematicians. His grandfather was
a professor of mathematics and Paul’s father, Lucien Lévy, was an examiner
at the Ecole Polytechnique and wrote papers on geometry. Paul attended the
Lycée Saint Louis in Paris where he achieved brilliant results, winning prizes
not only in mathematics but also in Greek, chemistry and physics. He ranked
first in the entrance examination to the Ecole Normale Supérieure and second
for entry to the Ecole Polytechnique. He chose to attend the Ecole Polytech-
nique and in 1905, while still an undergraduate there, he published his first
paper on semi-convergent series. In 1919 Lévy was asked to give three lectures
at the École Polytechnique on “... notions of calculus of probabilities and the
role of Gaussian law in the theory of errors.” Taylor writes in [377]: “At that
time there was no mathematical theory of probability — only a collection of
small computational problems. Now it is a fully-fledged branch of mathemat-
ics using techniques from all branches of modern analysis and making its own
contribution of ideas, problems, results and useful machinery to be applied
elsewhere. If there is one person who has influenced the establishment and
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growth of probability theory more than any other, that person must be Paul
Lévy.”

This was the beginning of his lifelong interest in probability theory, which
lead to the discovery of a wealth of results, many of which have become to-
day standard material for undergraduate and graduate courses in probability
theory. He made major contributions to the study of Gaussian variables and
processes, the law of large numbers, the central limit theorem, stable laws,
infinitely divisible laws and pioneered the study of processes with independent
and stationary increments, now known as Lévy processes. The book he wrote
on this topic, Théorie de l’addition des variables aléatoires, has served as an
inspiration to many researchers in probability and physics, where stable pro-
cesses with independent increments have become known as Lévy flights. He
pioneered the study of the properties of Brownian paths, in which he intro-
duced the notion of local time. These studies culminated in his classic book
Processus stochastiques et mouvement Brownien [260].

Michel Loève, in [264], gives a vivid description of Lévy’s contributions:
“Paul Lévy was a painter in the probabilistic world. Like the very great
painting geniuses, his palette was his own and his paintings transmuted forever
our vision of reality. . . His three main, somewhat overlapping, periods were:
the limit laws period, the great period of additive processes and of martingales
painted in pathtime colours, and the Brownian pathfinder period.”

Although he was a contemporary of Kolmogorov, Lévy did not adopt the
axiomatic approach to probability. Joseph Doob writes of Lévy: “[Paul Lévy]
is not a formalist. It is typical of his approach to mathematics that he defines
the random variables of a stochastic process successively rather than postu-
lating a measure space and a family of functions on it with stated properties,
that he is not sympathetic with the delicate formalism that discriminates be-
tween the Markov and strong Markov properties, and that he rejects the idea
that the axiom of choice is a separate axiom which need not be accepted. He
has always traveled an independent path, partly because he found it painful
to follow the ideas of others.”

This attitude was in strong contrast to the mathematicians of his time,
especially in France where the Bourbaki movement dominated the academic
scene. Adding this to the fact that probability theory was not regarded as a
branch of mathematics by many of his contemporary mathematicians, one can
see why his ideas did not receive in France the attention they deserved at the
time of their publication. P.A. Meyer writes:“Malgré son titre de professeur,
malgré son élection à l’Institut [. . . ], Paul Lévy a été méconnu en France. Son
oeuvre y était considérée avec condéscendance, et on entendait fréquemment
dire que ‘ce n’était pas un mathématicien.”’4

4Authors translation: Although he was a professor and a member of the Institut [i.e., the
Academy of Sciences], Paul Lévy was not well recognized in France. His work was not
highly considered and one frequently heard that ‘he was not a mathematician’.
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However, Paul Lévy’s work was progressively recognized at an international
level. The first issue of Annals of Probability, an international journal of
probability theory, was dedicated to his memory in 1973, two years after his
death.

An excellent mathematical biography is given by Loève in [264]. For those
who read French, the Web site:

http://www.annales.org/archives/x/paullevy.html

contains interesting biographical notes by Benoit Mandelbrot, Paul-André
Meyer and Jacques Neveu. Paul Lévy has also written a scientific autobi-
ography [253]. Lévy’s role in the discovery of the central limit theorem is
discussed by LeCam in [247]. Other biographies include [233, 377, 74, 354].
The collected papers of Paul Lévy have been published in six volumes by
Ecole Polytechnique [254, 255, 256, 257, 258, 259].
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Chapter 4

Building Lévy processes

Having discussed general properties of Lévy processes in Chapter 13, we will
now give some tractable examples of Lévy processes which can be used in
model building. Rather than giving an exhaustive inventory of all Lévy pro-
cesses that can be found in the financial modelling literature, we will discuss
various transformations which allow to build new Lévy processes from known
ones, emphasizing the relations between various models.

4.1 Model building with Lévy processes

Let us start by some general considerations on Lévy processes, their use as
models for price dynamics and different ways to specify such models.

4.1.1 “Jump-diffusions” vs. infinite activity Lévy processes

Financial models with jumps fall into two categories. In the first category,
called jump-diffusion models, the “normal” evolution of prices is given by a
diffusion process, punctuated by jumps at random intervals. Here the jumps
represent rare events — crashes and large drawdowns. Such an evolution
can be represented by modelling the (log-)price as a Lévy process with a
nonzero Gaussian component and a jump part, which is a compound Poisson
process with finitely many jumps in every time interval. Examples of such
models are the Merton jump-diffusion model with Gaussian jumps [291] and
the Kou model with double exponential jumps [238]. In Chapter 15, we will
see a model combining compound Poisson jumps and stochastic volatility: the
Bates model [41]. In these models, the dynamical structure of the process is
easy to understand and describe, since the distribution of jump sizes is known.
They are easy to simulate and efficient Monte Carlo methods for pricing path-
dependent options can be used. Models of this type also perform quite well
for the purposes of implied volatility smile interpolation (see Chapter 13).
However they rarely lead to closed-form densities: statistical estimation and
computation of moments or quantiles may be quite difficult.

The second category consists of models with infinite number of jumps in
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TABLE 4.1: Compound Poisson or infinite activity: a comparison of
two modelling approaches

Jump-diffusion models Infinite activity models

Must contain a Brownian compo-
nent.

Do not necessarily contain a Brow-
nian component.

Jumps are rare events. The process moves essentially by
jumps.

Distribution of jump sizes is
known.

“Distribution of jump sizes” does
not exist: jumps arrive infinitely
often.

Perform well for implied volatility
smile interpolation.

Give a realistic description of the
historical price process.

Densities not known in closed form. Closed form densities available in
some cases.

Easy to simulate. In some cases can be represented
via Brownian subordination, which
gives additional tractability.

every interval, which we will call infinite activity models. In these models,
one does not need to introduce a Brownian component since the dynamics of
jumps is already rich enough to generate nontrivial small time behavior [80]
and it has been argued [270, 80, 160] that such models give a more realistic
description of the price process at various time scales. In addition, many
models from this class can be constructed via Brownian subordination (this
point will be addressed in detail below), which gives them additional analytical
tractability compared to jump-diffusion models.

One could also consider pure jump processes of finite activity without dif-
fusion component [320] but these models do not lead to a realistic description
of price dynamics.

Table 4.1 compares the advantages and drawbacks of these two categories.
It should be kept in mind that since the price process is observed on a discrete
grid, it is difficult if not impossible to see empirically to which category the
price process belongs. The choice is more a question of modelling convenience
than an empirical one.

There are three convenient ways to define a parametric Lévy process, sum-
marized in Table 4.2.

The first approach is to obtain a Lévy process by subordinating a Brownian
motion with an independent increasing Lévy process. Here the characteris-
tic function of the resulting process can be obtained immediately, but we
do not always have an explicit formula for the Lévy measure. Due to the
conditionally Gaussian structure of the process, simulation and some compu-
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tations can be considerably simplified (for instance, call option price can be
expressed as an integral involving Black-Scholes prices). The interpretation of
the subordinator as a “business time” [162] makes models of this type easier to
understand and interpret. Multidimensional extensions are also possible: one
can take a multidimensional Brownian motion and change the time scale of
all components with the same subordinator. However, we will see in Chapter
5 that dependence structures obtained using this method are rather limited
and sometimes have dependence properties with undesirable features.

The second approach is to specify the Lévy measure directly. We will
illustrate it later in this chapter using the example of tempered stable process.
This approach provides a dynamic vision of the Lévy process because we model
directly the jump structure and we know, via the Lévy-Khinchin formula, the
distribution of the process at any time, although sometimes it is not very
explicit.

The third approach is to specify an infinitely divisible density as the density
of increments at a given time scale, say ∆. Generalized hyperbolic processes
(see Section 4.6) can be constructed in this way. In this approach it is easy to
simulate the increments of the process at the same time scale and to estimate
parameters of the distribution if data are sampled with the same period ∆,
but in general the Lévy measure is not known. Therefore, unless this distri-
bution belongs to some parametric class closed under convolution, we do not
know the law of the increments at other time scales. In particular, given an
infinitely divisible distribution it is not easy to infer from its density whether
the corresponding Lévy process has a Gaussian component or whether it has
finite or infinite activity.

4.2 Building new Lévy processes from known ones

To construct new Lévy processes, we use three basic types of transforma-
tions, under which the class of Lévy processes is invariant: linear transforma-
tions, subordination (time changing a Lévy process with another increasing
Lévy process) and exponential tilting of the Lévy measure. We start with a
rather intuitive result about linear transformation of Lévy processes.

4.2.1 Linear transformations

THEOREM 4.1

Let (Xt)t≥0 be a Lévy process on R
d with characteristic triplet (A, ν, γ) and

let M be an n × d matrix. Then Yt = MXt is a Lévy process on R
n with
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TABLE 4.2: Three approaches to building Lévy processes

Brownian subordi-
nation

Specifying the Lévy
measure

Specifying probabil-
ity density for t = ∆

Interpretation as
“Brownian motion in
business time”.

Clear vision of the
pathwise properties.

Structure of jumps is
not known.

Simulation is easy if we
know how to simulate
the subordinator.

Simulation is quite in-
volved.

Simulation is easy on a
grid of size ∆.

Estimation via maxi-
mum likelihood may be
difficult.

Estimation can be done
by approximating the
transition density.

Estimation is easy for
data with sampling in-
terval ∆.

Multivariate gener-
alizations possible
using multidimensional
Brownian motion.

Rich variety of models. The infinite divisibility
of a given model may
be diffucult to prove.

characteristic triplet (AY , νY , γY ) where

AY = MAM t, (4.1)
νY (B) = ν({x : Mx ∈ B}), ∀B ∈ B(Rn), (4.2)

γY = Mγ +
∫

Rn

y(1{|y|≤1}(y) − 1S1(y))νY (dy). (4.3)

S1 is the image by M of a unit ball in R
d: S1 = {Mx : |x| ≤ 1}.

PROOF (Yt)t≥0 is clearly a Lévy process on R
n, so we only need to prove

that (4.2) defines a Lévy measure, that the integral in (4.3) is finite and that
(AY , νY , γY ) is the characteristic triplet of Y . The measure νY is a positive
measure on R

n. It satisfies∫
Rn

(|y|2 ∧ 1)νY (dy) =
∫

Rd

(|Mx|2 ∧ 1)ν(dx) <∞

because the norm of M is finite. Hence, νY is a Lévy measure on R
n.

Let us now turn to the integral in (4.3). It is sufficient to integrate not over
the whole R

n but over its subspace S ⊆ R
n defined by S = {Mx : x ∈ R

d}
because the measure νY is concentrated on this subspace. Therefore we can
multiply the integrand in (4.3) by the indicator function of this subspace,
obtaining

f(y) = y(1{|y|≤1}(y) − 1S1(y))1S(y).
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We will show that the integral is finite by proving that there exist two con-
stants 0 < c < C < ∞ such that f(y) = 0 for all y such that |y| ≥ C and
f(y) = 0 for all y such that |y| ≤ c.
C can be taken equal to any constant greater than max(|M |, 1). Indeed, if

|y| > max(|M |, 1) then one cannot find an x ∈ R
d satisfying at the same time

|x| ≤ 1 and Mx = y, therefore, 1{|y|≤1}(y) and 1S1(y) are both equal to zero
and f(y) = 0.

On the other hand, the mapping M̃ : R
d → S which to every x ∈ R

d

associates Mx is a continuous linear surjection between Banach spaces, hence,
by the open mapping theorem, it maps open sets into open sets. Therefore,
the set S̃1 = {Mx : x ∈ R

d, |x| < 1} is open in S. This means that the set
S̃1 ∩ {y ∈ S : |y| < 1} is also open in S. Since this set contains zero, we
have found a neighborhood of zero in S such that f(y) = 0 for every y in this
neighborhood. This means that there exists c > 0 such that f(y) = 0 for all
y such that |y| ≤ c and the finiteness of the integral is shown.

To complete the proof, we use the Lévy-Khinchin formula for process Xt:

E[eiu.MXt ] = E[eiM
tu.Xt ]

= exp t{−1
2
M tu.AM tu+ iγ.M tu+

∫
Rd

(eiM
tu.x − 1 − iM tu.x1|x|≤1)ν(dx)}

= exp t{−1
2
u.AY u+ iγY .u+

∫
Rn

(eiu.x − 1 − iu.x1|x|≤1)νY (dx)}.

Example 4.1 Sums of independent Lévy processes
Let (Xt)t≥0 and (Yt)t≥0 be two independent Lévy processes with characteristic

triplets (A1, ν1, γ1) and (A2, ν2, γ2). Using Theorem 4.1 with M =
(

1
1

)
and

Proposition 5.3 from Chapter 5 we obtain that Xt+Yt is a Lévy process with
characteristic triplet (A, ν, γ) where

A = A1 +A2,

ν(B) = ν1(B) + ν2(B) ∀B ∈ B(R),

γ = γ1 + γ2 −
∫

[−√
2,−1]∪[1,

√
2]

yν(dy).

For Lévy processes of finite variation, Theorem 4.1 can be simplified. Na-
mely, let (Xt)t≥0 be a Lévy process of finite variation on R

d with characteristic
function

E[eiz.Xt ] = exp t
{
ib.z +

∫
Rd

(eiz.x − 1)ν(dx)
}

(4.4)
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and let M be an n× d matrix. Then Yt = MXt is a Lévy process on R
n with

Lévy measure νY (B) = ν({x : Mx ∈ B}) and bY = Mb.

4.2.2 Subordination

Let (St)t≥0 be a subordinator, that is, a Lévy process satisfying one of
the equivalent conditions of Proposition 3.10, which means in particular that
its trajectories are almost surely increasing. Since St is a positive random
variable for all t, we describe it using Laplace transform rather than Fourier
transform. Let the characteristic triplet of S be (0, ρ, b). Then the moment
generating function of St is

E[euSt ] = et l(u) ∀u ≤ 0, where l(u) = bu+
∫ ∞

0

(eux − 1)ρ(dx). (4.5)

We call l(u) the Laplace exponent of S. Since process S is increasing it can
be interpreted as a “time deformation” and used to “time change” other Lévy
processes as shown by the following theorem.

THEOREM 4.2 Subordination of a Lévy process
Fix a probability space (Ω,F ,P). Let (Xt)t≥0 be a Lévy process on R

d with
characteristic exponent Ψ(u) and triplet (A, ν, γ) and let (St)t≥0 be a sub-
ordinator with Laplace exponent l(u) and triplet (0, ρ, b). Then the process
(Yt)t≥0 defined for each ω ∈ Ω by Y (t, ω) = X(S(t, ω), ω) is a Lévy process.
Its characteristic function is

E[eiuYt ] = etl(Ψ(u)), (4.6)

i.e., the characteristic exponent of Y is obtained by composition of the Laplace
exponent of S with the characteristic exponent of X. The triplet (AY , νY , γY )
of Y is given by

AY = bA,

νY (B) = bν(B) +
∫ ∞

0

pXs (B)ρ(ds), ∀B ∈ B(Rd), (4.7)

γY = bγ +
∫ ∞

0

ρ(ds)
∫
|x|≤1

xpXs (dx), (4.8)

where pXt is the probability distribution of Xt.

(Yt)t≥0 is said to be subordinate to the process (Xt)t≥0.

PROOF Let us first prove that Y is a Lévy process. Denote by FS
t

the filtration of (St)t≥0 with FS ≡ FS
∞. For every sequence of times t0 <
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t1 < . . . < tn we obtain, using the independent increments property of X,
Lévy-Khinchin formula for X and the independent increments property of S:

E

[
n∏
i=1

eiui(X(Sti
)−X(Sti−1 ))

]
= E

{
E

[
n∏
i=1

eiui(X(Sti
)−X(Sti−1 ))

∣∣∣FS

]}

= E

{
n∏
i=1

E
[
eiui(X(Sti

)−X(Sti−1 ))
∣∣∣FS

]}
= E

{
n∏
i=1

e(Sti
−Sti−1 )Ψ(ui)

}

=
n∏
i=1

E
{
e(Sti

−Sti−1 )Ψ(ui)
}

=
n∏
i=1

E
{
eiui(X(Sti

)−X(Sti−1 ))
}
.

Therefore, Y has independent increments. The stationarity of increments can
be shown in the same way. To show that Y is continuous in probability, first
observe that every Lévy process is uniformly continuous in probability, due
to the stationarity of its increments. Further, for every ε > 0 and δ > 0, one
can write:

P
{
|X(Ss) −X(St)| > ε

}
≤ P

{
|X(Ss) −X(St)| > ε

∣∣∣|Ss − St| < δ
}

+ P
{
|Ss − St| ≥ δ

}
.

The first term can be made arbitrarily small simultaneously for all values of
s and t by changing δ, because X is uniformly continuous in probability. As
for the second term, its limit as s→ t is always zero, because S is continuous
in probability. Hence, P

{|X(Ss) −X(St)| > ε
}→ 0 as s→ t.

The formula (4.6) is easily obtained by conditioning on FS :

E
[
eiuX(St)

]
= E

{
E
[
eiuX(St)

∣∣∣FS
]}

= E
{
eStΨ(u)

}
= etl(Ψ(u)).

For the detailed proof of the expression for the characteristic triplet of Y
we refer the reader to [345, Theorem 30.1]. Here we will instead explain what
is going on on a simple example. Suppose that S is a compound Poisson
subordinator with characteristic triplet (0, ρ, 0). Then Y is again a compound
Poisson process with the same intensity, because it moves only by jumps
and its jumps occur at the same times as those of S. Therefore its drift
and Gaussian component are equal to zero. To compute its jump measure,
suppose that S has a jump at t. Conditionally on St − St− = s, the size of
jump in Y has the distribution pXs . Integrating with respect to jump measure
of S, we obtain formula (4.7). Finally, rewriting the characteristic triplet of
Y with respect to the truncation function 1|x|≤1, we obtain formula (4.8) for
γY .

Example 4.2
A stable subordinator is an α-stable process with α ∈ (0, 1), Lévy measure

concentrated on the positive half-axis and a nonnegative drift (such a process
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is a subordinator because it satisfies the last condition of Proposition 3.10).
Let (St)t≥0 be a stable subordinator with zero drift. Its Laplace exponent is

l(u) = c1

∫ ∞

0

eux − 1
x1+α

dx = −c1Γ(1 − α)
α

(−u)α (4.9)

for some constant c1 > 0. Let (Xt)t≥0 be a symmetric β-stable process on
R with characteristic exponent Ψ(u) = −c2|u|β for some constant c2 > 0.
Then the process (Yt)t≥0 subordinate to X by S has characteristic exponent
l(Ψ(u)) = −c|u|βα, where c = c1c2Γ(1 − α)/α, that is, Y is a symmetric
stable process with index of stability βα. In particular, when X is a Brownian
motion, the subordinate process is 2α-stable.

4.2.3 Tilting and tempering the Lévy measure

As we noted before, one way to specify a Lévy process is by giving an admis-
sible Lévy triplet: in particular, the Lévy measure must verify the constraints:

∫
|x|≤1

|x|2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞.

Any transformation of the Lévy measure, respecting the integrability con-
straint above, will lead to a new Lévy process. Examples of such transforma-
tions are obtained by multiplying ν(.) by an exponential function. If there
exists θ ∈ R

d such that
∫
|x|≥1

eθ.xν(dx) <∞ then the measure ν̃ defined by

ν̃(dx) := eθ.xν(dx) (4.10)

is a Lévy measure. Then for any Lévy process (Xt)t≥0 on R
d with charac-

teristic triplet (A, ν, γ), the process with characteristic triplet (A, ν̃, γ) is also
a Lévy process, called the Esscher transform of X. The transform given by
(4.10) is called exponential tilting of the Lévy measure. Esscher transforms
will be discussed in more detail in Chapter 9.

When d = 1, we can consider asymmetric version of this transformation: if
ν is a Lévy measure on R then

ν̃(dx) = ν(dx)
(
1x>0e

−λ+x + 1x<0e
−λ−|x|

)
,

where λ+ and λ− are positive parameters, is also a Lévy measure and defines
a Lévy process whose large jumps are “tempered,” i.e., the tails of the Lévy
measure are exponentially damped.
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4.3 Models of jump-diffusion type

A Lévy process of jump-diffusion type has the following form:

Xt = γt+ σWt +
Nt∑
i=1

Yi, (4.11)

where (Nt)t≥0 is the Poisson process counting the jumps of X and Yi are jump
sizes (i.i.d. variables). To define the parametric model completely, we must
now specify the distribution of jump sizes ν0(x). It is especially important
to specify the tail behavior of ν0 correctly depending on one’s beliefs about
behavior of extremal events, because as we have seen in Chapter 3, the tail
behavior of the jump measure determines to a large extent the tail behavior
of probability density of the process (cf. Propositions 3.13 and 3.14).

In the Merton model [291], jumps in the log-price Xt are assumed to have
a Gaussian distribution: Yi ∼ N(µ, δ2). This allows to obtain the probability
density of Xt as a quickly converging series. Indeed,

P{Xt ∈ A} =
∞∑
k=0

P{Xt ∈ A
∣∣Nt = k}P{Nt = k},

which entails that the probability density of Xt satisfies

pt(x) = e−λt
∞∑
k=0

(λt)k exp
{
− (x−γt−kµ)2

2(σ2t+kδ2)

}
k!
√

2π(σ2t+ kδ2)
. (4.12)

In a similar way, prices of European options in the Merton model can be
obtained as a series where each term involves a Black-Scholes formula.

In the Kou model [238], the distribution of jump sizes is an asymmetric
exponential with a density of the form

ν0(dx) = [pλ+e
−λ+x1x>0 + (1 − p)λ−e−λ−|x|1x<0]dx (4.13)

with λ+ > 0, λ− > 0 governing the decay of the tails for the distribution of
positive and negative jump sizes and p ∈ [0, 1] representing the probability
of an upward jump. The probability distribution of returns in this model
has semi-heavy (exponential) tails. The advantage of this model compared to
the previous one is that due to the memoryless property of exponential ran-
dom variables, analytical expressions for expectations involving first passage
times may be obtained [239]. Key properties of Merton and Kou models are
summarized in Table 4.3.
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TABLE 4.3: Two jump-diffusion models: the Merton model and the Kou
model

Merton model Kou model

Model type Compound Poisson jumps + Brownian motion

Parameters
(excluding drift)

4 parameters: σ — diffusion
volatility, λ — jump intensity,
µ — mean jump size and δ —
standard deviation of jump size

5 parameters: σ — diffusion
volatility, λ — jump inten-
sity, λ+, λ−, p— parameters
of jump size distribution

Lévy density ν(x) = λ
δ
√

2π
exp{− (x−µ)2

2δ2 } ν(x) = pλλ+e
−λ+x1x>0 +

(1 − p)λλ−e−λ−|x|1x<0

Characteristic
exponent

Ψ(u) = −σ2u2

2 + ibu +
λ{e−δ2u2/2+iµu − 1}

Ψ(u) = −σ2u2

2 + ibu +
iuλ{ p

λ+−iu − 1−p
λ−+iu}

Probability
density

Admits a series expansion
(4.12)

Not available in closed form

Cumulants:
E[Xt] t(b+ λµ) t(b+ λp/λ+ − λ(1 − p)/λ−)

VarXt t(σ2 + λδ2 + λµ2) t(σ2 +λp/λ2
+ +λ(1− p)/λ2

−)

c3 tλ(3δ2µ+ µ3) tλ(p/λ3
+ − (1 − p)/λ3

−)

c4 tλ{3δ3 + 6µ2δ2 + µ4} tλ(p/λ4
+ + (1 − p)/λ4

−)

Tail behavior
of probability
density

Tails are heavier than Gaus-
sian but all exponential mo-
ments are finite

Semi-heavy (exponential)
tails: p(x) ∼ e−λ+x when
x→ +∞ and p(x) ∼ e−λ−|x|

when x→ −∞
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4.4 Building Lévy processes by Brownian subordination

4.4.1 General results

Let (St)t≥0 be a subordinator with Laplace exponent l(u) and let (Wt)t≥0

be a Brownian motion independent from S. Subordinating Brownian mo-
tion with drift µ by the process S, we obtain a new Lévy process Xt =
σW (St) + µSt. This process is a Brownian motion if it is observed on a
new time scale, that is, the stochastic time scale given by St. This time
scale has the financial interpretation of business time (see [161]), that is,
the integrated rate of information arrival. This interpretation makes mod-
els based on subordinated Brownian motion easier to understand than gen-
eral Lévy models. Formula (4.6) entails that X has characteristic exponent
Ψ(u) = l(−u2σ2/2 + iµu). This allows in particular to compute cumulants of
Xt from those of St. Consider the symmetric case µ = 0. Then Xt is sym-
metric, therefore has zero mean and skewness, and one can easily compute its
variance and excess kurtosis:

VarXt = σ2E[St],

κ(Xt) =
3VarSt
E[St]2

.

Therefore, Xt is leptocurtic if the subordinator is not a deterministic process.
Although the representation via Brownian subordination is a nice prop-

erty, which makes the model easier to understand and adds tractability, it
imposes some important limitations on the form of the Lévy measure. The
following theorem characterizes Lévy measures of processes that can be repre-
sented as subordinated Brownian motion with drift. We recall that a function
f : [a, b] → R is called completely monotonic if all its derivatives exist and
(−1)k d

kf(u)
duk > 0 for all k ≥ 1.

THEOREM 4.3
Let ν be a Lévy measure on R and µ ∈ R. There exists a Lévy process (Xt)t≥0

with Lévy measure ν such that Xt = W (Zt) + µZt for some subordinator
(Zt)t≥0 and some Brownian motion (Wt)t≥0 independent from Z if and only
if the following conditions are satisfied:

1. ν is absolutely continuous with density ν(x).

2. ν(x)e−µx = ν(−x)eµx for all x.

3. ν(
√
u)e−µ

√
u is a completely monotonic function on (0,∞).

This theorem allows to describe the jump structure of a process, that can
be represented as time changed Brownian motion with drift. For example,
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the Lévy measure of such a process has an exponentially tilted version that is
symmetric on R. Since the exponential tilting mainly affects the big jumps,
this means that small jumps of such a process will always be symmetric.

Let ν be a Lévy measure on R
d. It can be the Lévy measure of a subor-

dinated Brownian motion (without drift) if and only if it is symmetric and
ν(
√
u) is a completely monotonic function on (0,∞). Furthermore, consider a

subordinator with zero drift and Lévy measure ρ. Formula (4.7) entails that
a Brownian motion with drift µ time changed by this subordinator will have
Lévy density ν(x) given by

ν(x) =
∫ ∞

0

e−
(x−µt)2

2t
ρ(dt)√

2πt
. (4.14)

We can symbolically denote this operation by BSµ(ρ) = ν, where BS stands
for Brownian subordination. The inverse transform is denoted by BS−1

µ (ν) =
ρ. Then (4.14) allows to write

BS−1
µ (ν) = eµ

2t/2BS−1
0 (νe−µx). (4.15)

Hence, we can deduce the time changed Brownian motion representation for
an exponentially tilted Lévy measure from the representation for its symmetric
modification.

PROOF of Theorem 4.3 The only if part. The absolute continuity of ν
is a direct consequence of (4.7), because the Gaussian probability distribution
is absolutely continuous. Omitting the constant factor, the formula (4.14) can
be rewritten as

ν(x)e−µx =
∫ ∞

0

e−
x2
2t e−

µ2t
2 t−1/2ρ(dt),

which shows that ν(x)e−µx must be symmetric. Further, by making the vari-
able change u = x2/2 and s = 1/t we obtain (to simplify the notation we
suppose that ρ has a density):

∫ ∞

0

e−use−
µ2

2s s−3/2ρ(1/s)ds = ν(
√

2u)e−µ
√

2u, (4.16)

which shows that ν(
√

2u)e−µ
√

2u is the Laplace transform of a positive mea-
sure and therefore, by Bernstein’s theorem (see [141, Volume 2, page 439]) it
is a completely monotonic function.

The if part. Using absolute continuity of ν and since Bernstein’s theorem is
a necessary and sufficient result, we can conclude, using the same reasoning as
in the first part of the proof, that there exists a positive measure ρ on (0,∞)
such that (4.14) holds. Therefore it remains to prove that

∫∞
0

(t∧1)ρ(dt) <∞.
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We suppose without loss of generality that µ ≥ 0. The subordinated Lévy
measure ν satisfies

∫
R
(x2 ∧ 1)ν(dx) <∞. Using Fubini’s theorem we obtain∫ ∞

0

ρ(dt)t−1/2

∫
R

(x2 ∧ 1)e−
(x−µt)2

2t dx =
∫ ∞

0

ρ(dt)g(t) <∞.

To complete the proof of theorem we must show that g(t) ≥ c(t∧ 1) for some
constant c > 0. After variable change we get:

g(t) =
∫

R

((u
√
t+ µt)2 ∧ 1)e−u

2/2du ≥
∫ ∞

0

((u
√
t+ µt)2 ∧ 1)e−u

2/2du

≥
∫ ∞

0

(u2t ∧ 1)e−u
2/2du.

If t ≤ 1 then

g(t) ≥
∫ ∞

0

(u2t ∧ 1)e−u
2/2du ≥

∫ 1

0

(u2t ∧ 1)e−u
2/2du =

∫ 1

0

u2te−u
2/2du = tc1

with c1 > 0. On the other hand, if t > 1 then

g(t) ≥
∫ ∞

0

(u2t ∧ 1)e−u
2/2du ≥

∫ ∞

1

(u2t ∧ 1)e−u
2/2du

=
∫ ∞

1

e−u
2/2du = c2 > 0.

Therefore, there exists a constant c > 0 such that g(t) ≥ c(t∧1) and the proof
is completed.

4.4.2 Subordinating processes

Let us consider the tempered stable subordinator, that is, an exponentially
tempered version of the stable subordinator, discussed in Example 4.2. It is
a three-parameter process with Lévy measure

ρ(x) =
ce−λx

xα+1
1x>0, (4.17)

where c and λ are positive constants and 1 > α ≥ 0. For greater generality we
include the case α = 0 (the gamma process) although it cannot be obtained
from a stable subordinator via exponential tilting. A tempered stable subor-
dinator is, of course, a tempered stable process in the sense of formula (4.26).
The parameter c alters the intensity of jumps of all sizes simultaneously; in
other words, it changes the time scale of the process, λ fixes the decay rate
of big jumps and α determines the relative importance of small jumps in the
path of the process. The Laplace exponent of tempered stable subordinator
in the general case (α 
= 0) is

l(u) = cΓ(−α){(λ− u)α − λα} (4.18)
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TABLE 4.4: Gamma subordinator and inverse Gaussian subordinator
Subordinator Gamma process Inverse Gaussian process

Lévy density ρ(x) = ce−λx

x 1x>0 ρ(x) = ce−λx

x3/2 1x>0

Laplace
transform

E[euSt ] = (1 − u/λ)−ct E[euSt ] = e−2ct
√
π(

√
λ−u−√

λ)

Probability
density

pt(x) = λct

Γ(ct)x
ct−1e−λx

for x > 0
pt(x) = ct

x3/2 e
2ct

√
πλe−λx−πc

2t2/x

for x > 0

and l(u) = −c log(1 − u/λ) if α = 0. The probability density of tempered
stable subordinator is only known in explicit form for α = 1/2 (inverse Gaus-
sian subordinator) and α = 0 (gamma subordinator). These two cases are
compared in Table 4.4.

The tempered stable subordinator possesses the following scaling property.
Let (St(α, λ, c))t≥0 be a tempered stable subordinator with parameters α, λ
and c. Then for every r > 0, rSt(α, λ, c) has the same law as Srαt(α, λ/r, c).
Because of this scaling property and the scaling property of Brownian motion
(rWt has the same law as Wr2t), in subordinated models it is sufficient to
consider only tempered stable subordinators with E[St] = t, which in this case
form a two-parameter family. For all computations related to characteristic
function, moments and cumulants it is convenient to use the parameterization

ρ(x) =
1

Γ(1 − α)

(
1 − α

κ

)1−α
e−(1−α)x/κ

x1+α
, (4.19)

where α is the index of stability. In this new parameterization κ is equal to the
variance of subordinator at time 1. Since the expectation of the subordinator
at time 1 is equal to 1, κ actually determines how random the time change is,
and the case κ = 0 corresponds to a deterministic function. In the variance
gamma case this formula simplifies to

ρ(x) =
1
κ

e−x/κ

x
(4.20)

and in the inverse Gaussian case

ρ(x) =
1√
2πκ

e−
x
2κ

x3/2
. (4.21)

4.4.3 Models based on subordinated Brownian motion

By time changing an independent Brownian motion (with volatility σ and
drift θ) by a tempered stable subordinator, we obtain the so-called normal
tempered stable process (it is customary in the literature to name processes
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TABLE 4.5: Two models based on Brownian subordination: variance gamma
process and normal inverse Gaussian process

Model name Variance gamma Normal inverse Gaussian

Model type Finite variation process with in-
finite but relatively low activity
of small jumps

Infinite variation process with
stable-like (α = 1) behavior
of small jumps

Parameters
(excluding drift)

3 parameters: σ and θ — volatility and drift of Brownian
motion and κ — variance of the subordinator

Lévy measure ν(x) = 1
κ|x|e

Ax−B|x| with

A = θ
σ2 and B =

√
θ2+2σ2/κ

σ2

ν(x) = C
|x|e

AxK1(B|x|) with

C =
√
θ2+σ2/κ

2πσ
√
κ

and denoting

A = θ
σ2 and B =

√
θ2+σ2/κ

σ2

Characteristic
exponent

Ψ(u) = − 1
κ log(1 + u2σ2κ

2 − iθκu) Ψ(u) = 1
κ

− 1
κ

√
1 + u2σ2κ− 2iθuκ

Probability
density

pt(x) = C|x| t
κ− 1

2 eAxK t
κ− 1

2
(B|x|)

with C =
√

σ2κ
2π

(θ2κ+2σ2)
1
4− θ

2κ

Γ(t/κ)

pt(x) = CeAx
K1(B

√
x2+t2σ2/κ)√

x2+t2σ2/κ

with C = t
π e

t/κ
√

θ2

κσ2 + 1
κ2

Cumulants:
E[Xt] θt θt

VarXt σ2t+ θ2κt σ2t+ θ2κt

c3 3σ2θκt+ 2θ3κ2t 3σ2θκt+ 3θ3κ2t

c4 3σ4κt+ 6θ4κ3t+ 12σ2θ2κ2t 3σ4κt+ 15θ4κ3t+ 18σ2θ2κ2

Tail behavior Both Lévy density and probability density have exponential
tails with decay rates λ+ = B −A and λ− = B +A.

resulting from Brownian subordination by adding the word “normal” to the
name of subordinator). Its characteristic exponent is

Ψ(u) =
1 − α

κα

{
1 −

(
1 +

κ(u2σ2/2 − iθu)
1 − α

)α}
(4.22)

in the general case and

Ψ(u) = − 1
κ

log{1 +
u2σ2κ

2
− iθκu} (4.23)

in the variance gamma case (α = 0).
The Lévy measure of a normal tempered stable process can be computed
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using Equation (4.7). It has a density ν(x) given by

ν(x) =
2c

σ
√

2π

∫ ∞

0

e−
(x−θt)2

2tσ2 −λt dt

tα+3/2

=
2c

σ
√

2π

(√
θ2 + 2λσ2

|x|

)α+1/2

eθx/σ
2
Kα+1/2

(
|x|√θ2 + 2λσ2

σ2

)

=
C(α, κ, σ, θ)
|x|α+1/2

eθx/σ
2
Kα+1/2

⎛
⎝ |x|

√
θ2 + 2

κσ
2(1 − α)

σ2

⎞
⎠ , (4.24)

where C(α, κ, σ, θ) = 2
Γ(1−α)σ

√
2π

(
1−α
κ

)1−α (θ2 + 2
κσ

2(1−α))α/2+1/4 and K is
the modified Bessel function of the second kind (see Appendix A.1). In accor-
dance with Theorem 4.3, this measure is an exponential tilt of a symmetric

measure. Introducing tail decay rates λ+ = 1
σ2

(√
θ2 + 2

κσ
2(1 − α) − θ

)
and

λ− = 1
σ2

(√
θ2 + 2

κσ
2(1 − α) + θ

)
, we can rewrite this measure in the follow-

ing form:

ν(x) =
C

|x|α+1/2
ex(λ−−λ+)/2Kα+1/2(|x|(λ− + λ+)/2). (4.25)

From the asymptotic behavior formulae for K, we deduce that

ν(x) ∼ 1
|x|2α+1

, when x→ 0,

ν(x) ∼ 1
|x|α+1

e−λ+x, when x→ ∞,

ν(x) ∼ 1
|x|α+1

e−λ−|x|, when x→ −∞,

that is, the Lévy measure has stable-like behavior near zero and exponential
decay with decay rates λ+ and λ− at the tails.

Because the probability density of tempered stable subordinator is known in
closed form for α = 1/2 and α = 0, the corresponding subordinated processes
are also more mathematically tractable and easier to simulate and therefore
they have been widely used in the literature. Namely, the variance gamma
process has been used as a model for the logarithm of stock prices in [83, 271]
and the normal inverse Gaussian process (NIG) has been used for financial
modelling in [342, 32, 30]. Properties of these two important models are
summed up in Table 4.5.
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4.5 Tempered stable process

The tempered stable process is obtained by taking a one-dimensional stable
process and multiplying the Lévy measure with a decreasing exponential on
each half of the real axis. After this exponential softening, the small jumps
keep their initial stable-like behavior whereas the large jumps become much
less violent. A tempered stable process is thus a Lévy process on R with no
Gaussian component and a Lévy density of the form

ν(x) =
c−

|x|1+α e
−λ−|x|1x<0 +

c+
x1+α

e−λ+x1x>0, (4.26)

where the parameters satisfy c− > 0, c+ > 0, λ− > 0, λ+ > 0 and α < 2. This
model was introduced by Koponen in [237] and used in financial modelling in
[93, 67]. A version of this model is also used in [81].

REMARK 4.1 Generalized tempered stable processes Unlike the
case of stable processes, which can only be defined for α > 0, in the tempered
stable case there is no natural lower bound on α and the expression (4.26)
yields a Lévy measure for all α < 2. In fact, taking negative values of α
we obtain compound Poisson models with rich structure. It may also be
interesting to allow for different values of α on the two sides of real axis. To
include these cases into our treatment, we use the name “tempered stable” for
the process with Lévy measure of the form (4.26) with α > 0 (because only in
this case do the small jumps have stable-like behavior), and we use the term
generalized tempered stable model for the process with Lévy measure

ν(x) =
c−

|x|1+α−
e−λ−|x|1x<0 +

c+
x1+α+

e−λ+x1x>0 (4.27)

with α+ < 2 and α− < 2. All the formulae of this section will be given
for generalized tempered stable model, but they are of course valid in the
tempered stable case.

The following proposition shows that the tempered stable model allows for
richer structures than the subordinated Brownian motion models that we have
treated in the preceding section.

PROPOSITION 4.1 Time changed Brownian motion representa-
tion for tempered stable process

A generalized tempered stable process (4.27) can be represented as a time
changed Brownian motion (with drift) if and only if c− = c+ and α− = α+ =
α ≥ −1.
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REMARK 4.2 The subordinator in this representation can be expressed
via special functions: the representation is given by µ = (λ− − λ+)/2 and

ρ(t) =
c

tα/2+1
etµ

2/2−tλ2/4D−α(λ
√
t), (4.28)

where λ = (λ− + λ+)/2, c is a constant and D−α(z) denotes the Whittaker’s
parabolic cylinder function (see [1, page 686]).

REMARK 4.3 The condition on the coefficients means that small jumps
must be symmetric whereas decay rates for big jumps may be different. In
other words the class of tempered stable processes which are representable as
time changed Brownian motion coincides with the models discussed by Carr
et al. [81] under the name “CGMY.” Hence, in the class of tempered stable
processes one has a greater modelling freedom than with models based on
Brownian subordination because tempered stable models allow for asymmetry
of small jumps. However, since the main impact on option prices is due to
large jumps, the CGMY subclass is probably as flexible as the whole class of
tempered stable processes.

PROOF In order for the first condition of Theorem 4.3 to be satisfied, we
must clearly have c− = c+ = c and α− = α+. In this case the Lévy measure
has a symmetric exponentially tilted modification (with µ = (λ−−λ+)/2) that
is given by ν̃(x) = c e

−λ|x|
|x|α+1 . To finish the proof we must therefore show that

e−λ
√

u

u(α+1)/2 is completely monotonic on (0,∞) if and only if α ≥ −1. If α < −1
this function cannot be completely monotonic (because it is not monotonic).
When α ≥ −1, the function 1

u(1+α)/2 is completely monotonic (this can be ver-
ified directly). Further, a product of two completely monotonic functions is
completely monotonic, therefore it remains to prove the complete monotonic-
ity of e−λ

√
u. To see this, observe that (−1)neλ

√
u dne−λ

√
u

dun is a polynomial in
1√
u
, all coefficients of which are positive, because this is evident for n = 1 and

at each successive differentiation all the coefficients of eλ
√
u dne−λ

√
u

dun change
sign. Hence, e−λ

√
u is completely monotonic on (0,∞), which completes the

proof of the first part.
The second part follows from (4.15) and the corresponding Laplace trans-

form inversion formula.

From Propositions 3.8, 3.9 and 3.10 we deduce that a generalized tempered
stable process

• is of compound Poisson type if α+ < 0 and α− < 0,

• has trajectories of finite variation if α+ < 1 and α− < 1,
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• is a subordinator (positive Lévy process) if c− = 0, α+ < 1 and the drift
parameter is positive.

The limiting case α− = α+ = 0 corresponds to an infinite activity process. If
in addition c+ = c−, we recognize the variance gamma model of the previous
section.

Excluding the deterministic drift parameter we see that the generalized
tempered stable process is a parametric model with six parameters. We will
discuss the role of the parameters a little later, after computing the charac-
teristic function of the process.

Working with tempered stable process becomes more convenient if we use
the version of Lévy-Khinchin formula without truncation of big jumps, namely
we write

E[eiuXt ] = exp t{iuγc +
∫ ∞

−∞
(eiux − 1 − iux)ν(x)dx}. (4.29)

This form can be used because of exponential decay of the tails of Lévy mea-
sure. In this case E[Xt] = γct. To compute the characteristic function, we
first consider the positive half of the Lévy measure and suppose that α± 
= 1
and α± 
= 0.

∫ ∞

0

(eiux − 1 − iux)
e−λx

x1+α
dx

=
∞∑
n=2

(iu)n

n!

∫ ∞

0

xn−1−αe−λxdx =
∞∑
n=2

(iu)n

n!
λα−nΓ(n− α)

= λαΓ(2−α)

{
1
2!

(
iu

λ

)2

+
2 − α

3!

(
iu

λ

)3

+
(2 − α)(3 − α)

4!

(
iu

λ

)4

+ . . .

}
.

The expression in braces resembles to the well-known power series

(1 + x)µ = 1 + µx+ µ(µ− 1)
x2

2!
+ . . .

Comparing the two series we conclude that
∫ ∞

0

(eiux − 1 − iux)
e−λx

x1+α
dx = λαΓ(−α)

{(
1 − iu

λ

)α
− 1 +

iuα

λ

}
. (4.30)

The interchange of sum and integral and the convergence of power series that
we used to obtain this expression can be formally justified if |u| < λ but the
resulting formula can be extended via analytic continuation to other values of
u such that �u > −λ. To compute the power in (4.30) we choose a branch of
zα that is continuous in the upper half plane and maps positive half-line into
positive half-line.
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A similar computation in the case α = 1, that is left to the reader as an
exercise, yields that∫ ∞

0

(eiux − 1 − iux)
e−λx

x2
dx = (λ− iu) log

(
1 − iu

λ

)
+ iu (4.31)

and if α = 0, ∫ ∞

0

(eiux − 1 − iux)
e−λx

x
dx =

u

iλ
+ log

iλ

u+ iλ
. (4.32)

Assembling together both parts of the Lévy measure, we obtain the charac-
teristic function of the generalized tempered stable process.

PROPOSITION 4.2
Let (Xt)t≥0 be a generalized tempered stable process. In the general case

(α± 
= 1 and α± 
= 0) its characteristic exponent Ψ(u) = t−1 logE[eiuXt ] is

Ψ(u) = iuγc + Γ(−α+)λα+
+ c+

{(
1 − iu

λ+

)α+

− 1 +
iuα+

λ+

}

+ Γ(−α−)λα−
− c−

{(
1 +

iu

λ−

)α−

− 1 − iuα−
λ−

}
. (4.33)

If α+ = α− = 1,

Ψ(u) = iu(γc + c+ − c−) + c+(λ+ − iu) log
(

1 − iu

λ+

)

+ c−(λ− + iu) log
(

1 +
iu

λ−

)
, (4.34)

and if α+ = α− = 0,

Ψ(u) = iuγc − c+

{
iu

λ+
+ log

(
1 − iu

λ+

)}

− c−

{
− iu

λ−
+ log

(
1 +

iu

λ−

)}
. (4.35)

The other cases (when only one of the α-s is equal to 0 or 1) can be obtained
in a similar fashion.

Proposition 3.13 allows to compute the first cumulants of the tempered
stable process. Taking derivatives of the characteristic exponent, we find in
the general case:

K1 = E[Xt] = tγc,

K2 = VarXt = tΓ(2 − α+)c+λ
α+−2
+ + tΓ(2 − α−)c−λ

α−−2
− ,

K3 = tΓ(3 − α+)c+λ
α+−3
+ − tΓ(3 − α−)c−λ

α−−3
− ,

K4 = tΓ(4 − α+)c+λ
α+−4
+ + tΓ(4 − α−)c−λ

α−−4
− .
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These expressions do not completely clarify the role of different parameters.
For example, suppose that the process is symmetric. Then the excess kurtosis
of the distribution of Xt is

k =
K4

(VarXt)2
=

(2 − α)(3 − α)
ctλα

,

which shows that we can decrease the excess kurtosis by either increasing λ
(the jumps become smaller and the process becomes closer to a continuous
one) or increasing c (the jumps become more frequent and therefore the central
limit theorem works better). However, this expression does not allow us to
distinguish the effect of c and λ. To fully understand the role of different
parameters we must pass to the dynamical viewpoint and look at the Lévy
measure rather than at the moments of the distribution. Then it becomes
clear that λ− and λ+ determine the tail behavior of the Lévy measure, they
tell us how far the process may jump, and from the point of view of a risk
manager this corresponds to the amount of money that we can lose (or earn)
during a short period of time. c+ and c− determine the overall and relative
frequency of upward and downward jumps; of course, the total frequency of
jumps is infinite, but if we are interested only in jumps larger than a given
value, then these two parameters tell us, how often we should expect such
events. Finally, α+ and α− determine the local behavior of the process (how
the price evolves between big jumps). When α+ and α− are close to 2, the
process behaves much like a Brownian motion, with many small oscillations
between big jumps. On the other hand, if α+ and α− is small, most of price
changes are due to big jumps with periods of relative tranquillity between
them.

Key properties of the tempered stable model are summed up in Table 4.6.

4.6 Generalized hyperbolic model

This last example of this chapter illustrates the modelling approach by
specifying the probability density directly. Let us first come back to the
inverse Gaussian subordinator with probability density at some fixed time

p(x) = c(χ, ζ)x−3/2e−
1
2 (χx−ζ/x)1x>0, (4.36)

where we used a different parameterization than in Table 4.4. Introducing an
additional parameter into this distribution, we obtain the so-called generalized
inverse Gaussian law (GIG):

p(x) = c(λ, χ, ζ)xλ−1e−
1
2 (χx−ζ/x)1x>0. (4.37)
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TABLE 4.6: Tempered stable process

Model name Tempered stable process

Model type Infinite activity but finite variation if α1 < 1, α2 <
1 and at least one of them is non-negative; infinite
variation if at least one of them is greater or equal to
1. Small jumps have stable-like behavior if α− and α+

are positive.

Parameters 6: three for each side of the Lévy measure. λ− and λ+

are tail decay rates, α− and α+ are describe the Lévy
measure at 0 negative and positive jumps, and c− and
c+ determine the arrival rate of jumps of given size.

Lévy measure ν(x) = c−
|x|1+α− e

−λ−|x|1x<0 + c+
x1+α+

e−λ+x1x>0

Characteristic
exponent

Ψ(u) = Γ(−α+)λα+
+ c+

{(
1 − iu

λ+

)α+ − 1 + iuα+
λ+

}
+

Γ(−α−)λα−
− c−

{(
1 + iu

λ−

)α− − 1 − iuα−
λ−

}
if α± 
= 1

and α± 
= 0. Expressions for these particular cases are
given in Proposition 4.2.

Probability
density

Not available in closed form.

Cumulants:
E[Xt] 0 because we use the representation (4.29)

VarXt tΓ(2 − α+)c+λ
α+−2
+ + tΓ(2 − α−)c−λ

α−−2
−

c3 tΓ(3 − α+)c+λ
α+−3
+ − tΓ(3 − α−)c−λ

α−−3
−

c4 tΓ(4 − α+)c+λ
α+−4
+ + tΓ(4 − α−)c−λ

α−−4
−

Tail behavior Both Lévy density and probability density have expo-
nential tails with decay rates λ+ and λ−.
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This distribution was proven to be infinitely divisible [183] and can generate a
Lévy process (a subordinator). However, GIG laws do not form a convolution
closed class, which means that distributions of this process at other times
will not be GIG. Let S be a GIG random variable and W be an independent
standard normal random variable. Then the law of

√
SW + µS, where µ is

a constant, is called normal variance-mean mixture with mixing distribution
GIG. This can be seen as a static analog of Brownian subordination (indeed,
the distribution of the subordinated process at time t is a variance-mean
mixture with the mixing distribution being that of the subordinator at time t).
Normal variance-mean mixtures of GIG laws are called generalized hyperbolic
distributions (GH) and they are also infinitely divisible. GH laws have been
used for financial modelling by a number of authors (see [123, 128, 125]). The
one-dimensional GH law is a five-parameter family that is usually defined via
its Lebesgue density:

p(x;λ, α, β, δ, µ) = C(δ2 + (x− µ)2)
λ
2 − 1

4Kλ− 1
2
(α
√
δ2 + (x− µ)2)eβ(x−µ)

C =
(α2 − β2)λ/2√

2παλ−1/2δλKλ(δ
√
α2 − β2)

, (4.38)

where K is the modified Bessel function of the second kind. The characteristic
function of this law has the following form:

Φ(u) = eiµu
(

α2 − β2

α2 − (β + iu)2

)λ/2
Kλ(δ

√
λ2 − (β + iu)2)

Kλ(δ
√
α2 − β2)

. (4.39)

The main disadvantage of GH laws is that they are not closed under convolu-
tion: the sum of two independent GH random variables is not a GH random
variable. This fact makes GH laws inconvenient for working with data on
different time scales. For example, it is difficult to calibrate a GH model to a
price sheet with options of several maturities. In this case one has to choose
one maturity at which the stock price distribution is supposed to be general-
ized hyperbolic, and distributions at other maturities must be computed as
convolution powers of this one. On the contrary, it is relatively easy to sample
from a GH distribution and to estimate its parameters when all data are on
the same time scale (e.g., when one disposes of an equally spaced price series).

Because the GH law is infinitely divisible, one can construct a generalized
hyperbolic Lévy process whose distributions at fixed times have characteristic
functions Φ(u)t. The Lévy measure of this process is difficult to compute and
work with but some of its properties can be read directly from the character-
istic function, using the following lemma.

LEMMA 4.1
Let (Xt) be a Lévy process with characteristic exponent Ψ(u) = 1

t logE[eiuXt ]
and let Ψ̃(u) = Ψ(u)+Ψ(−u)

2 be the symmetrized characteristic exponent.
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1. If X is a compound Poisson process then Ψ̃(u) is bounded.

2. If X is a finite variation process then Ψ̃(u)
u → 0 as u→ ∞.

3. If X has no Gaussian part then Ψ̃(u)
u2 → 0 as u→ ∞.

PROOF From the Lévy-Khinchin formula we have:

Ψ̃(u) = −1
2
σ2u2 −

∫ ∞

−∞
(1 − cos(ux))ν(dx).

Suppose that X is a compound Poisson process. Then by Proposition 3.8,
A = 0 and ν is a finite measure on R. Since |Ψ̃(u)| ≤ 2

∫∞
−∞ ν(dx), it follows

that Ψ̃(u) is bounded.
Suppose now that X is a finite variation process. Then by Proposition

3.9, A = 0 and
∫ 1

−1
|x|ν(dx) < ∞. The latter property and the inequality

|1 − cos(z)| ≤ |z|, z ∈ R allow to use the dominated convergence theorem to
compute the limit:

lim
u→∞

∫ ∞

−∞

1 − cos(ux)
u

ν(dx) =
∫ ∞

−∞
lim
u→∞

1 − cos(ux)
u

ν(dx) = 0.

Finally suppose that X has no Gaussian part, that is A = 0. Then using the
fact that |1 − cos(z)| ≤ z2, z ∈ R and once again the dominated convergence
theorem, we conclude that

lim
u→∞

Ψ̃(u)
u2

= − lim
u→∞

∫ ∞

−∞

1 − cos(ux)
u2

ν(dx) = 0.

For the GH distribution we find, using the asymptotic properties of Bessel
functions (see Appendix A.1), that Ψ̃(u) ∼ −δ|u| when u→ ∞. This relation
is valid in the general case but it does not hold in some particular cases (e.g.,
when δ = 0). This means that except in some particular cases generalized
hyperbolic Lévy process is an infinite variation process without Gaussian part.

The principal advantage of the GH law is its rich structure and great vari-
ety of shapes. Indeed, many of the well-known probability distributions are
subclasses of GH family. For example,

• The normal distribution is the limiting case of GH distribution when
δ → ∞ and δ/α→ σ2.

• The case λ = 1 corresponds to the hyperbolic distribution with density

p(x;α, β, δ, µ) = a(α, β, δ) exp(−α
√
δ2 + (x− µ)2 + β(x− µ)).

This distribution (and the GH distribution itself) owes its name to the
fact that the logarithm of its density is a hyperbola.
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TABLE 4.7: Generalized hyperbolic model

Model name Generalized hyperbolic model

Model type Infinite variation process without Gaussian part (in the general
case).

Parameters 5: δ is the scale parameter, µ is the shift parameter, λ, α and
β determine the shape of the distribution.

Lévy measure The Lévy measure is known, but the expression is rather com-
plicated as it involves integrals of special functions.

Characteristic
function

Φ(u) = eiµu
(

α2−β2

α2−(β+iu)2

)λ/2 Kλ(δ
√
λ2−(β+iu)2)

Kλ(δ
√
α2−β2)

.

Probability
density

p(x) = C(δ2 + (x − µ)2)
λ
2 − 1

4Kλ− 1
2
(α
√
δ2 + (x− µ)2)eβ(x−µ)

where C = (α2−β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2−β2)

.

Cumulants:
E[Xt] µ+ βδ√

α2−β2

Kλ+1(ζ)
Kλ(ζ) where ζ = δ

√
α2 − β2.

VarXt δ2
(
Kλ+1(ζ)
ζKλ(ζ) + β2

α2−β2

{
Kλ+2(ζ)
Kλ(ζ) −

(
Kλ+1(ζ)
Kλ(ζ)

)2
})

.

Tail behavior In the general case both Lévy density and probability density
have exponential tails with decay rates λ+ = α− β and λ− =
α+ β.

• The case λ = −1/2 corresponds to the normal inverse Gaussian law that
we have already discussed.

• The case δ = 0 and µ = 0 corresponds to variance gamma process.

• Student t distributions are obtained for λ < 0 and α = β = µ = 0.

A summary of analytical facts about generalized hyperbolic distribution and
examples of their application in finance can be found in [128]. Key properties
of this model are summed up in Table 4.7.

Further reading

More details on the Merton jump-diffusion model, including pricing for-
mulae for European options, are given in [291]. Kou’s double exponential
jump-diffusion model is described in [238], this paper also derives formulae
for pricing European and barrier options. Bates [41] discusses a model with
compound Poisson jumps and stochastic volatility.
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The variance gamma model was introduced in the symmetric case by Madan
and Seneta in [273]. The general case is discussed in [271]. Normal inverse
Gaussian process was introduced by Barndorff-Nielsen (see [32, 30]) and ex-
tensively studied by Rydberg [342].

Tempered stable laws have appeared in the literature under many different
names (see remarks below). First introduced by Koponen [237] under the
name truncated Lévy flights, they have been applied in financial modelling in
[93, 67, 71, 80]. Boyarchenko and Levendorskĭı [71] study it under the name of
KoBoL process. Carr et al. [80] discuss a four-parameter subclass of tempered
stable models under the name CGMY process.

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen
[31]. They were proven to be infinitely divisible by Halgreen [183], which
made it possible to construct generalized hyperbolic Lévy processes. Financial
applications of this process were studied by Eberlein [123] and by Raible in
his PhD thesis [329].

REMARK 4.4 Tempered stable processes and truncated Lévy flights
The tempered stable process was defined in Section 4.5 as a Lévy process
whose Lévy measure has a density of the form:

ν(x) =
c−

|x|1+α+
e−λ−|x|1x<0 +

c+
x1+α−

e−λ+x1x>0.

In the case α− = α+ = α this process is obtained by multiplying the Lévy
density of an α-stable process by a (two-sided) exponential factor which can
be asymmetric. This exponentially decreasing factor has the effect of temper-
ing the large jumps of a Lévy process and giving rise to finite moments, while
retaining the same behavior for the small jumps hence the name of tempered
stable process. Incidentally, this exponential tempering also destroys the self-
similarity and scaling properties of the α-stable process, but one can argue
that these scaling properties hold approximately for short times [93, 285].

First proposed in this form by Koponen [237] under the name of “truncated
Lévy flight1” (and not truncated Lévy process), tempered stable processes
were used in financial modelling in [93, 288, 67]. Variants with λ+ 
= λ−
have been studied by Boyarchenko and Levendorskĭı [71] under the name of
“KoBoL” processes and in [81] under the name of “CGMY” processes. We
have used here the more explanatory denomination of “tempered stable”.

In [71], Boyarchenko & Levendorskĭı study a generalization of tempered
stable processes, called regular Lévy processes of exponential type (RLPE),
where the Lévy density does not exactly have the form above, but behaves
similarly both when x → ∞ and x → 0: a Lévy process is said be a RLPE2

of type [−λ−, λ+] and order α ∈]0, 2[ if the Lévy measure has exponentially
decaying tails with rates λ±:∫ −1

−∞
eλ−|y|ν(dy) <∞,

∫ −∞

1

eλ+yν(dy) <∞
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Building Lévy processes 129

and behaves near zero as |y|−(1+α): there exists α′ < α such that

∣∣∣∫
|y|>ε

ν(dy) − C

|ε|α
∣∣∣ ≤ c

|ε|α′ .

The class of RLPEs includes hyperbolic, normal inverse Gaussian and tem-
pered stable processes but does not include the variance gamma process. Since
these processes are essentially the only analytical examples of RLPE, this class
should be seen more as a unified framework for studying properties of such
processes rather than a new class of models.

1The term “Truncated Lévy flight” was actually coined by Mantegna and Stanley in [284]
but for a discrete time random walk which does not have an infinitely divisible distribution
and therefore does not correspond to a Lévy process. Note that these authors do not speak
of a Lévy processes but of “Lévy flight” which is a discrete time process.
2Note that these authors give several different definitions of RLPE in their different papers.
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Chapter 5

Multidimensional models with jumps

Apart from the pricing and hedging of options on a single asset, practically all
financial applications require a multivariate model with dependence between
components: examples are basket option pricing, portfolio optimization, sim-
ulation of risk scenarios for portfolios. In most of these applications, jumps
in the price process must be taken into account. However, multidimensional
models with jumps are more difficult to construct than one-dimensional ones.
This has led to an important imbalance between the range of possible ap-
plications and the number of available models in the multidimensional and
one-dimensional cases: a wide variety of one-dimensional models have been
developed for relatively few applications, while multidimensional applications
continue to be dominated by Brownian motion.

One reason for the omnipresence of Gaussian models is that dependence
in the Gaussian world can be parameterized in a simple manner, in terms of
correlation matrices. In particular, in this case marginal properties — given
by volatilities — are easy to separate from dependence properties — described
by correlations. A second reason is that it is easy to simulate Gaussian time
series with arbitrary correlation matrices.

In this chapter, we will provide tools for building multivariate models with
jumps and propose a framework for parameterizing these models that allows
the same flexibility as the Gaussian multivariate case: separating dependence
from marginal properties and easy simulation.

A simple method to introduce jumps into a multidimensional model is to
take a multivariate Brownian motion and time change it with a univariate
subordinator (see [123, 319]). This approach, that we summarize in Section
5.1, allows to construct multidimensional versions of the models we discussed
in the preceding chapter, including variance gamma, normal inverse Gaussian
and generalized hyperbolic processes. The principal advantage of this method
is its simplicity and analytic tractability; in particular, processes of this type
are easy to simulate. However, this approach to dependence modelling lacks
flexibility; the range of possible dependence patterns is quite limited (for
instance, independence is not included), only components of the same type
can be used (e.g., either all of the components are variance gamma or all of
the components are normal inverse Gaussian) and no quantitative measure of
dependence is available.

In finite activity models, a more accurate modelling of dependence may be
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achieved by specifying directly the dependence of individual jumps in one-
dimensional compound Poisson processes (see [263]). This approach is dis-
cussed in Section 5.2. If the jumps are Gaussian, their dependence can be de-
scribed via correlation coefficients. If they are not Gaussian (e.g., if they have
double exponential distribution like in Kou’s model) then one has to model
their dependence with copulas (described in Section 5.3). This approach is
useful in presence of few sources of jump risk (e.g., when all components jump
at the same time) because in this case it allows to achieve a precise descrip-
tion of dependence within a simple model. On the other hand, when there are
several sources of jump risk, that is, the compound Poisson processes do not
all jump at the same time, one has to introduce a separate copula for each
jump risk source and the model quickly becomes very complicated. Another
inconvenience of this modelling approach is that it does not allow to couple
components of different types (all of them must be compound Poisson).

Comparison of advantages and drawbacks of these two methods leads to
an understanding of the required properties of a multidimensional modelling
approach for Lévy processes. In general, such an approach must satisfy the
following conditions:

• The method should allow to specify any one-dimensional model for each
of the components.

• The range of possible dependence structures should include complete
dependence and independence with a “smooth” transition between these
two extremes.

• The dependence should be modelled in a parametric fashion and the
number of parameters must be small.

This program can be implemented if the dependence is separated from the
marginal behavior of the components. In a more restrictive setting of random
vectors this idea has long existed in the statistical literature: the dependence
structure of a random vector can be disentangled from its margins via the
notion of copula.1 We discuss this notion in Section 5.3 and show how it
can be carried over from the static setting of random variables to the dy-
namic framework of Lévy processes. The dependence among components of
a multidimensional Lévy processes can be completely characterized with a
Lévy copula — a function that has the same properties as ordinary copula
but is defined on a different domain. This allows us to give a systematic
method to construct multidimensional Lévy processes with specified depen-
dence. We suggest several parametric families of Lévy copulas, which can
be used to construct an n-dimensional Lévy processes by taking any set of n
one-dimensional Lévy processes and coupling them with a Lévy copula from

1For an introduction to copulas see [305] — this monograph treats mostly bivariate case —
and [223] for multivariate case.
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a parametric family. This method is described in Section 5.5 in the setting of
Lévy processes with positive jumps and generalized in Section 5.6 to all Lévy
processes. The models constructed using the Lévy copula approach may be
less mathematically tractable and somewhat harder to implement than the
simple models of Sections 5.1 and 5.2 but their main advantage is the ability
to describe every possible dependence pattern for a multidimensional Lévy
process with arbitrary components.

In the following sections, for ease of presentation, examples are given in
the two-dimensional case. A summary of important definitions and results in
higher dimensions is provided at the end of sections.

5.1 Multivariate modelling via Brownian subordination

A possible generalization of the Black-Scholes model is to suppose that the
stock prices do follow a multidimensional Brownian motion but that they
do it on a different (stochastic) time scale. In other words, the clock of the
market is not the one that we are used to: sometimes it may run faster
and sometimes slower than ours. Suppose that this market time scale is
modelled by a subordinator (Zt) with Laplace exponent l(u) and let (B(t))t≥0

be a d-dimensional Brownian motion with covariance matrix Σ and µ ∈ R
d.

Time changing the Brownian motion with drift µ with (Zt), we obtain a new
d-dimensional Lévy process Xt = B(Zt) + µZt. This process can be used to
model d dependent stocks: Sit = exp(Xi

t) for i = 1 . . . d. The characteristic
function of Xt can be computed using Theorem 4.2: for every u ∈ R

d

E{eiu.Xt} = etl(−
1
2u.Σu+iµ.u).

Formulae (4.7) and (4.8) also allow to compute the characteristic triplet of
(Xt). The conditionally Gaussian nature of this model makes it easy to simu-
late the increments of Xt. This can be done by first simulating the increment
of the subordinator and then the increment of d-dimensional Brownian motion
at the time scale given by the increment of subordinator.

Let us take a closer look at some properties of this model. To ease the
notation, we switch to the two-dimensional case. Two stock price processes
(S1
t ) and (S2

t ) are modelled as follows:

S1
t = exp(X1

t ), X1
t = B1(Zt) + µ1Zt,

S2
t = exp(X2

t ), X2
t = B2(Zt) + µ2Zt,

where B1 and B2 are two components of a planar Brownian motion, with
variances σ2

1 and σ2
2 and correlation coefficient ρ. The correlation of returns,
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ρ(X1
t ,X

2
t ), can be computed by conditioning on Zt:

ρ(X1
t ,X

2
t ) =

σ1σ2ρE[Zt] + µ1µ2 VarZt
(σ2

1E[Zt] + µ2
1 VarZt)1/2(σ2

2E[Zt] + µ2
2 VarZt)1/2

.

In the completely symmetric case (µ1 = µ2 = 0) and in this case only
ρ(X1

t ,X
2
t ) = ρ: the correlation of returns equals the correlation of Brown-

ian motions that are being subordinated. However, the distributions of real
stocks are skewed and in the skewed case the correlation of returns will be dif-
ferent from the correlation of Brownian motions that we put into the model.
Even if the Brownian motions are independent, the covariance of returns is
equal to µ1µ2 VarZt and if the distributions of stocks are not symmetric, they
are correlated.

In the symmetric case, if Brownian motions are independent, the two stocks
are decorrelated but not independent. Since the components of the Brownian
motion are time changed with the same subordinator, large jumps in the two
stocks (that correspond to large jumps of the subordinator) will tend to arrive
together, which means that absolute values of returns will be correlated. If
µ1 = µ2 = 0 and ρ = 0 then the covariance of squares of returns is

Cov((X1
t )

2, (X2
t )

2) = σ1σ2 Cov(W 2
1 (Zt),W 2

2 (Zt)) = σ1σ2 VarZt,

therefore squares of returns are correlated if the subordinator Zt is not deter-
ministic. This phenomenon can lead to mispricing and errors in evaluation of
risk measures. The following example illustrates this point.

Example 5.1

Let (Xt) and (Yt) be two symmetric identically distributed variance gamma
Lévy processes and suppose that we are interested in the distribution of Xt +
Yt for a horizon of 10 business days, which corresponds roughly to t = 1/25.
The parameters of the distribution of Xt and Yt have been chosen to have
an annualized volatility of 30% and an excess kurtosis at time t equal to
3. In the first test the two processes, Xt and Yt, were assumed completely
independent, whereas in the second test they result from the subordination
of independent Brownian motions by the same gamma subordinator. Various
statistics of the distributions of Xt + Yt in the two cases were computed
using the Monte Carlo method with 50, 000 trials and are summed up in
Table 5.1. They show that in the case when Xt and Yt are obtained by
subordination with the same subordinator, the distribution of Xt+Yt is more
leptokurtic than in the completely independent case, and its small quantiles
are higher in absolute value. This means in particular that the use for risk
management of an incorrect model with dependence between assets when they
are really independent will result in higher requirements in regulatory capital
and therefore in unjustified extra costs for the bank.
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TABLE 5.1: Decorrelation vs. independence: independent processes
cannot be modelled via independent Brownian motions time changed with
the same subordinator

Statistics of
Xt + Yt

Xt and Yt independent Xt and Yt decorrelated

Volatility 41.9% 41.8%
Excess kurtosis 1.54 2.64
5% quantile −0.136 −0.133
1% quantile −0.213 −0.221
0.1% quantile −0.341 −0.359

Thus, subordination of a multidimensional Brownian motion allows to con-
struct simple and tractable multivariate parametric models based on Lévy
processes. However, this construction has two important drawbacks: first,
one cannot specify arbitrary one-dimensional models for the components and
second, the range of available dependence structures is too narrow, in partic-
ular, it does not include complete independence — the components obtained
are always partially dependent.

5.2 Building multivariate models from common Poisson
shocks

Suppose that we want to improve a d-dimensional Black-Scholes model by
allowing for “market crashes.” The dates of market crashes can be modelled
as arrival times of a standard Poisson process (Nt). This leads us to the
following model for the log-price processes of d assets:

Xi
t = µit+Bit +

Nt∑
j=1

Y ij , i = 1 . . . d,

where (Bt) is a d-dimensional Brownian motion with covariance matrix Σ, and
{Yj}∞j=1 are i.i.d. d-dimensional random vectors which determine the sizes of
jumps in individual assets during a market crash. This model contains only
one driving Poisson shock (Nt) because we only account for jump risk of
one type (global market crash affecting all assets). To construct a parametric
model, we need to specify the distribution of jumps in individual assets during
a crash (distribution of Y i for all i) and the dependence between jumps in
assets. If we make a simplifying assumption that Yj are Gaussian random
vectors, then we need to specify their covariance matrix Σ′ and the mean
vector m. We thus obtain a multivariate version of Merton’s model (see
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Chapter 4 and the numerical example at the end of Chapter 11). If the jumps
are not Gaussian, we must specify the distribution of jumps in each component
and the copula function describing their dependence.

In the case of only one driving Poisson shock, everything is relatively easy
and simple, but sometimes it is necessary to have several independent shocks
to account for events that affect individual companies or individual sectors
rather than the entire market. In this case we need to introduce several
driving Poisson processes into the model, which now takes the following form:

Xi
t = µit+Bit +

M∑
k=1

Nk
t∑

j=1

Y ij,k, i = 1 . . . d,

where N1
t , . . . , N

M
t are Poisson processes driving M independent shocks and

Y ij,k is the size of jump in i-th component after j-th shock of type k. The vec-
tors {Y ij,k}di=1 for different j and/or k are independent. To define a parametric
model completely, one must specify a one-dimensional distribution for each
component for each shock type — because different shocks influence the same
stock in different ways — and one d-dimensional copula for each shock type.
This adds up to M × d one-dimensional distributions and M one-dimensional
copulas. How many different shocks do we need to describe sufficiently rich
dependence structures? The answer depends on the particular problem, but
to describe all possible dependence structures, such that the d-dimensional
process remains a Lévy process of compound Poisson type, one needs a total
of 2M − 1 shocks (M shocks that affect only one stock, M(M−1)

2 shocks that
affect two stocks etc., adding up to 2M − 1). It is clear that as the dimen-
sion of the problem grows, this kind of modelling quickly becomes infeasible.
Not only the number of parameters grows exponentially, but also, when the
number of shocks is greater than one, one cannot specify directly the laws
of components because the laws of jumps must be given separately for each
shock.

Building multivariate models from compound Poisson shock is therefore
a feasible approach in low-dimensional problems and/or when few sources
of jump risk need to be taken into account. For a detailed discussion of
this modelling approach including examples from insurance and credit risk
modelling, the reader is referred to [263].

5.3 Copulas for random variables

The law of a two-dimensional random vector (X,Y ) is typically described
via its cumulative distribution function

F (x, y) = P [X ≤ x, Y ≤ y]. (5.1)
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We call marginal laws or margins of (X,Y ) the laws of X and Y taken sepa-
rately. These marginal laws can be described via their respective distribution
functions F1(x) = P [X ≤ x] and F2(y) = P [Y ≤ y] which can, of course, be
obtained from the two-dimensional distribution function:

F1(x) = F (x,∞), F2(y) = F (∞, y).

To know the distribution of a two-dimensional random vector, it is not enough
to know its marginal distributions; in addition to the margins the distribu-
tion function F (x, y) contains the information about dependence. Two vec-
tors with the same margins but different dependence structures have different
distribution functions. For example, for a random vector with marginal dis-
tributions F1(x) and F2(y), F (x, y) = F1(x)F2(y) if the components are in-
dependent and F (x, y) = min(F1(x), F2(y)) if they are completely dependent,
that is, one of the components is a strictly increasing deterministic function
of the other.

The copula of a two-dimensional random vector (or, more precisely, of its
distribution) is a two-place function that characterizes its dependence struc-
ture and does not depend on the margins. The pair copula + margins
gives an alternative description of the law of a random vector. The distri-
bution function can be computed from the copula C(x, y) and the margins:
F (x, y) = C(F1(x), F2(y)). If F1(x) and F2(y) are continuous then the cop-
ula is unique and can be computed from the distribution function and the
margins: C(x, y) = F (F−1

1 (x), F−1
2 (y)).

Saying that the copula of a distribution does not depend on the margins
means that it is invariant under strictly increasing transformations of the
components of the random vector. That is, for every two strictly increasing
functions f and g the copula of X and Y is the same as the copula of f(X)
and g(Y ). The term “dependence structure” refers to all characteristics of a
distribution that do not depend on the margins and that, together with the
margins, allow to reconstruct the entire distribution.

To proceed, we must add some mathematics to these intuitive explanations.
Let us come back to the distribution function F (x, y) of a random vector. This
function has the following properties:

1. For any rectangle B = [x1, x2] × [y1, y2],

F (x2, y2) − F (x2, y1) − F (x1, y2) + F (x1, y1) = P [(X,Y ) ∈ B] ≥ 0.

2. For every x, F (−∞, x) = F (x,−∞) = 0.

The first property can be seen as a generalization of the notion of increasing
function to multiple dimensions, leading to the following definitions:

DEFINITION 5.1 Let S1 and S2 be two possible infinite closed intervals
of R̄ = R ∪ {∞} ∪ {−∞} and consider a function F : S1 × S2 → R̄.
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• F -volume of a rectangle B = [x1, x2] × [y1, y2] ⊂ S1 × S2 is defined by

VF (B) = F (x2, y2) − F (x2, y1) − F (x1, y2) + F (x1, y1).

• F is 2-increasing if for every rectangle B in its domain, VF (B) ≥ 0.

• F is grounded if for every x ∈ S1, F (x,minS2) = 0 and for every
y ∈ S2, F (minS1, y) = 0.

REMARK 5.1 If a two-place function is increasing in each of its argu-
ments, it is not in general 2-increasing (the example of such function that is not
2-increasing is F (x, y) = − 1

xy for x, y > 0). If a function is 2-increasing, it is
not necessarily increasing in each of its arguments (for example, F (x, y) = xy
is 2-increasing but not increasing in its arguments if x, y < 0). However,
if a function is increasing and grounded, then it is increasing in each of its
arguments.

In the sequel, we will need the following two properties of increasing func-
tions (both of which the reader can easily prove).

LEMMA 5.1
Let F be a 2-increasing function.

1. Increasing variable changes: if the functions f1 and f2 are increasing
then F (f1(x), f2(y)) is 2-increasing.

2. Transformation by a function with positive derivatives: if F is grounded
and f is increasing, convex and satisfies f(0) = 0 then the superposition
f ◦ F is a 2-increasing grounded function.

In the theory of copulas the definition of a distribution function is slightly
non-standard.

DEFINITION 5.2 An abstract distribution function is a function from
R̄

2 to [0, 1] that is grounded, 2-increasing and satisfies F (∞,∞) = 1.

In addition to the above properties, a probability distribution function, de-
fined by Equation (5.1) must possess some continuity properties: for every
x0, y0 ∈ R,

lim
x↓x0,y↓y0

F (x, y) = F (x0, y0).

However, it can be shown, that for every abstract distribution function F there
exists a unique probability distribution function F̃ such that VF (B) = VF̃ (B)
for every continuity rectangle B of F , where a continuity rectangle is defined
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as a rectangle B such that for every sequence of rectangles whose vertices
converge to B, the sequence of F -volumes of these rectangles converges to
VF (B). Having said that, we are not going to use the word “abstract” in the
sequel, the meaning of the term “distribution function” being clear from the
context.

Generalizing the notion of margins of a distribution function, for any func-
tion F : S1 × S2 → R̄ the one-place functions F1(x) = F (x,maxS2) and
F2(y) = F (maxS1, y) are called margins of F .

DEFINITION 5.3 (Copula) A two-dimensional copula is a function
C with domain [0, 1]2 such that

1. C is grounded and 2-increasing.

2. C has margins Ck, k = 1, 2, which satisfy Ck(u) = u for all u in [0, 1].

From the probabilistic point of view this definition means that a two-
dimensional copula is a distribution function on [0, 1]2 with uniform margins.

The next theorem is fundamental for the theory of copulas.

THEOREM 5.1 (Sklar)
Let F be a two-dimensional distribution function with margins F1, F2. Then

there exists a two-dimensional copula C such that for all x ∈ R̄
2,

F (x1, x2) = C(F1(x1), F2(x2)). (5.2)

if F1, F2 are continuous then C is unique, otherwise C is uniquely determined
on RanF1 × RanF2. Conversely, if C is a copula and F1, F2 are distribu-
tion functions, then the function F defined by (5.2) is an two-dimensional
distribution function with margins F1 and F2.

PROOF We suppose that F1 and F2 are continuous (a complete proof for
the general case can be found in [365]).

The direct statement. Since F1 is continuous, one can find an increasing
function F−1

1 (u) satisfying F−1
1 (0) = −∞, F−1

1 (1) = +∞ and F1(F−1(u)) =
u for all u ∈ R̄. The inverse function of F2 can be chosen in the same way.
Let C̃(u, v) = F (F−1

1 (u), F−1
2 (v)). Then by property 1 of Lemma 5.1, C

is increasing. Moreover, C̃(0, v) = F (F−1
1 (0), F−1

2 (v)) = F (−∞, F−1
2 (v)) =

0 and C̃(1, v) = F (F−1
1 (1), F−1

2 (v)) = F (∞, F−1
2 (v)) = F2(F−1

2 (v)) = v.
Hence, C̃ is a copula. To show the uniqueness, suppose that there exists
another copula ˜̃C that corresponds to the same distribution. Then for every
x ∈ R̄ and y ∈ R̄, C̃(F1(x), F2(y)) = ˜̃C(F1(x), F2(y)). Therefore, from the
continuity of F1 and F2, we conclude that for every u ∈ [0, 1] and v ∈ [0, 1],
C̃(u, v) = ˜̃C(u, v).

© 2004 by CRC Press LLC



140 Financial Modelling with jump processes

The converse statement. By property 1 of Lemma 5.1, the function defined
in (5.2) is 2-increasing. One can then check by direct substitution that it is
grounded, has margins F1 and F2 and that F (1, 1) = 1. Therefore, it is a
distribution function.

Examples of copulas

• If X and Y are independent, the copula of (X,Y ) is C⊥(u, v) = uv. If
the distributions of X and/or Y are not continuous, the copula is not
unique, so C⊥ is only one of the possible copulas. This remark also
applies to the next two examples.

• If X = f(Y ) for some strictly increasing deterministic function f , then
C‖(u, v) = min(u, v). This copula is called the complete dependence
copula or the upper Fréchet bound, because for every copula C one has
C(u, v) ≤ C‖(u, v), ∀u, v.

• If X = f(Y ) with f strictly decreasing then C(u, v) = max(x+y−1, 0).
This is the complete negative dependence copula or the lower Fréchet
bound.

• The Clayton family of copulas is a one-parameter family given by

Cθ(x, y) = (x−θ + y−θ − 1)−1/θ, θ > 0. (5.3)

The Clayton family includes the complete dependence copula and the
independence copula as limiting cases:

Cθ → C‖ as θ → ∞,

Cθ → C⊥ as θ → 0.

• The Gaussian copula family corresponds to the dependence structure of
a Gaussian random vector:

Cρ(x, y) = N2,ρ(N−1(x), N−1(y))

where N2,ρ is the distribution function of a bivariate standard normal
distribution with correlation ρ and N is the univariate standard normal
distribution function. Here the case ρ = 1 corresponds to complete
dependence and ρ = 0 corresponds to independence.

Figure 5.1 illustrates the difference between the Gaussian copula and the
Clayton copula. Both graphs depict 1000 realizations of a two-dimensional
random vector with standard normal margins and a correlation of 80%. How-
ever, the dependence of the left graph is given by the Gaussian copula and
the dependence of the right graph is parameterized by the Clayton copula.
The Clayton copula is asymmetric: the structure of the lower tail is different

© 2004 by CRC Press LLC



Multidimensional models with jumps 141

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

FIGURE 5.1: 1000 realizations of a random vector with standard normal
margins and correlation ρ = 0.8. Left: Gaussian copula. Right: Clayton
copula.

from the upper one. There is more tail dependence in the lower tail: there is a
relatively high probability of having a large negative jump in one component
given that there is a large negative jump in the other. This is not the case for
the Gaussian copula on the left.

The Clayton copula is a representative of the class of Archimedean copulas
defined by the following proposition.

PROPOSITION 5.1
Let φ : [0, 1] → [0,∞] be a continuous strictly decreasing function. Then

C(u, v) = φ−1(φ(u) + φ(v))

is a copula if and only if φ is convex.

A proof of this proposition and multivariate generalizations can be found
in [305]. The function φ is called the generator of an Archimedean copula.
φ(t) = (t−θ − 1)/θ produces the Clayton family and φ(t) = − log(t) produces
the independence copula C⊥.

Summary of definitions and results for multivariate case

DEFINITION 5.4 F-volume Let S1, · · · , Sn be nonempty subsets of R̄,
let F be a real function of n variables such that DomF = S1 × · · · × Sn and
for a ≤ b (ak ≤ bk for all k) let B = [a,b] be an n-box whose vertices are in
DomF . Then the F -volume of B is defined by

VF (B) =
∑

sgn(c)F (c),
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where the sum is taken over all vertices c of B, and sgn(c) is

sgn(c) =

{
1, if ck = ak for an even number of vertices,

−1, if ck = ak for an odd number of vertices.

DEFINITION 5.5 n-increasing function, grounded function, mar-
gins

• A real function F of n variables is called n-increasing if VF (B) ≥ 0 for
all n-boxes B whose vertices lie in DomF .

• Suppose that the domain of F is S1 × · · · × Sn where each Sk has a
smallest element ak. F is said to be grounded if F (t) = 0 for all t in
DomF such that tk = ak for at least one k.

• If each Sk is nonempty and has a greatest element bk, then (one-dimen-
sional) margins of F are functions Fk with DomFk = Sk defined by
Fk(x) = F (b1, · · · , bk−1, x, bk+1, · · · , bn) for all x in Sk.

DEFINITION 5.6 Copula An n-dimensional copula is a function C
with domain [0, 1]n such that

1. C is grounded and n-increasing.

2. C has margins Ck, k = 1, 2, · · · , n, which satisfy Ck(u) = u for all u in
[0, 1].

An n-dimensional distribution function F is an n-increasing grounded func-
tion with domain R̄

n such that F (∞, · · · ,∞) = 1. Copulas can be seen as
distribution functions with uniform margins.

THEOREM 5.2 Sklar

Let F be an n-dimensional distribution function with margins F1, · · · , Fn.
Then there exists an n-dimensional copula C such that for all x ∈ R̄

n,

F (x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn)). (5.4)

If F1, · · · , Fn are all continuous then C is unique; otherwise, C is uniquely
determined on RanF1 × · · · × RanFn. Conversely, if C is an n-copula and
F1, · · · , Fn are distribution functions, then the function F defined by (5.4) is
a n-dimensional distribution function with margins F1, · · · , Fn.
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5.4 Dependence concepts for Lévy processes

In Chapter 3, we saw that the law of a Lévy process (Xt) is completely
determined by the law of Xt for some t > 0. Therefore, the dependence
structure of a two-dimensional Lévy process (Xt, Yt) can be parameterized by
the copula Ct of Xt and Yt for some t > 0. However, this approach has a
number of drawbacks.

• Except in the case of stable processes, the copula Ct may depend on t
(an explicit example of a Lévy process with nonconstant copula is given
in [373]). Cs for some s 
= t cannot in general be computed from Ct
because it also depends on the margins.

• For given infinitely divisible distributions of Xt and Yt, it is unclear,
which copulas Ct will yield a two-dimensional infinitely divisible distri-
bution.

• The laws of components of a multidimensional Lévy process are usually
specified via their Lévy measures (see Chapter 4). In this case it would
be inconvenient to model dependence using the copula of probability
distribution.

The traditional concept of dependence for random variables, meaning all
characteristics of a distribution that are invariant under strictly increasing
transformations of the margins, is not suitable in the framework of Lévy pro-
cesses. The property of infinite divisibility of a random variable is destroyed
under strictly increasing transformations. We need therefore to redefine the
notion of dependence with respect to some other type of margin transfor-
mation, the one that preserves the Lévy property and reflects the dynamic
structure of Lévy processes. The following example clarifies this point.

Example 5.2 Dynamic complete dependence for Lévy processes
Let (Xt) be a pure jump Lévy process and (Yt) be a Lévy process, constructed
from the jumps of (Xt): Yt =

∑
s≤t ∆X

3
s . From the dynamic point of view

(Xt) and (Yt) are completely dependent, because the trajectory of one of them
can be reconstructed from the trajectory of the other. However, the copula of
Xt and Yt is not that of complete dependence because Yt is not a deterministic
function of Xt.

This example shows that the important dependence concept for Lévy pro-
cesses is the dependence of jumps, that should be studied using the Lévy
measure. Knowledge of jump dependence gives a “microscopic” vision of a
Lévy process and allows to characterize its dynamic structure, which is very
important for risk management and other financial applications.
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Here we will not dwell on the dependence structure of the continuous Gaus-
sian part of Lévy processes, because on one hand it is very simple and well
studied (it is completely characterized by the covariance matrix) and on the
other hand it can be treated separately from jump dependence because the
Gaussian part of every Lévy process is independent from its jump part. In
the rest of this chapter, all Lévy processes are supposed to have no Gaussian
part.

Before introducing the equivalent of copulas to describe dependence of Lévy
processes, we show how independence of Lévy processes and their marginal
laws are expressed in terms of the Lévy measure.

PROPOSITION 5.2 Margins of Lévy measure
Let (Xt, Yt) be a Lévy process with characteristic triplet (A, ν, γ). Then (Xt)
has characteristic triplet (AX , νX , γX) where

AX = A11,

νX(B) = ν(B×] −∞,∞[), ∀B ∈ B(R),

γX = γ1 +
∫

R2
x(1x2≤1 − 1x2+y2≤1)ν(dx× dy). (5.5)

The most important fact in this proposition is that the margins of a Lévy
measure can be computed in exactly the same way as the margins of a prob-
ability measure.

PROOF This result follows directly from Theorem 4.1.

PROPOSITION 5.3 Independence of Lévy processes
Let (Xt, Yt) be a Lévy process with Lévy measure ν and without Gaussian part.
Its components are independent if and only if the support of ν is contained in
the set {(x, y) : xy = 0}, that is, if and only if they never jump together. In
this case

ν(A) = νX(AX) + νY (AY ), (5.6)

where AX = {x : (x, 0) ∈ A} and AY = {y : (0, y) ∈ A}, and νX and νY are
Lévy measures of (Xt) and (Yt).

PROOF The only if part. Suppose that (Xt) and (Yt) are independent
and have characteristic triplets (0, νX , γX) and (0, νY , γY ). Then, using the
Lévy-Khinchin formula for Xt and Yt, we obtain

E[eiuXt+ivYt ] = E[eiuXt ]E[eivYt ] = exp t{iγXu+ iγY v

+
∫

R

(eiux − 1 − iux1|x|≤1)νX(dx) +
∫

R

(eivy − 1 − ivy1|y|≤1)νY (dy)}. (5.7)
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One-dimensional integrals in this expression can be rewritten in two-dimen-
sional form:∫

R

(eiux − 1 − iux1|x|≤1)νX(dx)

=
∫

R2
(eiux+ivy − 1 − (iux+ ivy)1x2+y2≤1)ν̃X(dx× dy), (5.8)

where ν̃X(A) = νX(AX) ∀A ∈ B(R). The equality in (5.8) holds because ν̃X
is supported by the set {(x, 0), x ∈ R} which means that in the integrand y
is in reality always zero. Rewriting the second integral in (5.7) in the same
manner, we complete the proof of the first part.

The if part. Since the Lévy measure is supported by the set {(x, y) : xy =
0}, it can be represented in the form (5.6) for some positive measures νX
and νY . Proposition (5.2) entails that these measures coincide with the Lévy
measures of (Xt) and (Yt). To conclude it remains to apply the Lévy-Khinchin
formula for process (Xt, Yt).

5.5 Copulas for Lévy processes with positive jumps

The key idea of our approach is that for parametrizing the dependence be-
tween jumps of Lévy processes, the Lévy measure plays the same role as the
probability measure for random variables. Hence, to model the dependence,
we must construct copulas for Lévy measures. The principal difference from
the random variable case and the main difficulty is that Lévy measures are
not necessarily finite: they may have a nonintegrable singularity at zero. Due
to this fact, Lévy copulas that we are about to introduce are defined on infi-
nite intervals rather than on [0, 1]2. Lévy copulas for processes with positive
jumps are functions from [0,∞]2 to [0,∞] and Lévy copulas for general Lévy
processes are functions from [−∞,∞]2 to [−∞,∞].

In this section, we discuss the conceptually simpler case of Lévy processes
with positive jumps, that is, processes with Lévy measure concentrated on
]0,∞[2. The next section shows how to generalize this approach to other
types of Lévy processes.

The role of distribution function is now played by the tail integral. At this
stage we do not impose any integrability or continuity conditions.

DEFINITION 5.7 A d-dimensional tail integral is a function U : [0,∞] →
[0,∞] such that

1. (−1)dU is a d-increasing function.

2. U is equal to zero if one of its arguments is equal to ∞.
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3. U is finite everywhere except at zero and U(0, . . . , 0) = ∞.

Later, U will be interpreted as the tail integral of a Lévy measure:

U(x1, . . . , xd) = ν([x1,∞[× . . .× [xd,∞[), x1, . . . , xd ∈ [0,∞[d\{0}, (5.9)

but at this stage we only need this abstract tail integral, analogous to ab-
stract distribution function (Definition 5.2). The margins of a tail integral
are defined similarly to the margins of a distribution function:

U(0, . . . , 0, xk, 0, . . . , 0) = Uk(xk).

DEFINITION 5.8 Lévy copula for processes with positive jumps
A two-dimensional Lévy copula for Lévy processes with positive jumps, or,
for short, a positive Lévy copula, is a 2-increasing grounded function F :
[0,∞]2 → [0,∞] with uniform margins, that is, F (x,∞) = F (∞, x) = x.

REMARK 5.2 Copulas for general Lévy processes that we will define in
the next section, are functions from [−∞,∞]2 to [−∞,∞]. However, positive
Lévy copulas can be extended to copulas for general Lévy processes, by setting
F (x, y) = 0 if x < 0 or y < 0 .

The next theorem is a reformulation of Sklar’s theorem for tail integrals and
Lévy copulas. It shows that Lévy copulas link multidimensional tail integrals
to their margins in the same way as the copulas link the distribution functions
to their margins.

THEOREM 5.3
Let U be a two-dimensional tail integral with margins U1 and U2. There

exists a positive Lévy copula F such that

U(x1, x2) = F (U1(x1), U2(x2)). (5.10)

If U1 and U2 are continuous, this Lévy copula is unique. Otherwise it is unique
on RanU1 × RanU2, the product of ranges of one-dimensional tail integrals.

Conversely, if F is a positive Lévy copula and U1, U2 are one-dimensional
tail integrals then (5.10) defines a two-dimensional tail integral.

PROOF We suppose for simplicity that U1 and U2 are continuous. The
proof in the general case can be carried out along the lines of the proof of
Sklar’s theorem [365] but it is rather lengthy.

The direct statement. Choose the inverses U−1
1 and U−1

2 such that U−1
1 (0) =

U−1
2 (0) = ∞ and U−1

1 (∞) = U−1
2 (∞) = 0 and let

F̃ (y1, y2) = U(U−1
1 (y1), U−1

2 (y2)). (5.11)
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It is now easy to check directly that F̃ is a Lévy copula and that it satisfies
(5.10). Suppose that there exists another such Lévy copula ˜̃F . Then for
every x1 ∈ [0,∞] and x2 ∈ [0,∞], F̃ (U1(x1), U2(x2)) = ˜̃F (U1(x1), U2(x2)).
Therefore, from the continuity of U1 and U2, we conclude that for every y1 ∈
[0,∞] and y2 ∈ [0,∞], F̃ (y1, y2) = ˜̃F (y1, y2).

The converse statement is a matter of straightforward verification.

Tail integrals and Lévy measures

For every Lévy measure ν on [0,∞[2, one can define its tail integral as
follows:

U(x1, x2) = 0 if x1 = ∞ or x2 = ∞;
U(x1, x2) = ν([x1,∞[×[x2,∞[) for (x1, x2) ∈ [0,∞[2\{0};
U(0, 0) = ∞.

On the other hand, modulo a discussion of continuity properties, identical
to the one following Definition 5.2, every two-dimensional tail integral defines
a positive measure ν on [0,∞[2\{0}. However, to be a Lévy measure, ν must
satisfy the integrability condition of Theorem 3.7:∫

[0,1]2
|x|2ν(dx) =

∫
[0,1]2

|x|2dU <∞, (5.12)

where the second integral is a Stieltjes integral which exists because U is an in-
creasing function. The following simple lemma shows, when this integrability
condition is satisfied.

LEMMA 5.2
Let U be a two-dimensional tail integral with margins U1 and U2. U defines

a Lévy measure on [0,∞[2\{0}, that is, the integrability condition (5.12) is
satisfied if and only if the margins of U correspond to Lévy measures on [0,∞[,
that is, for k = 1, 2, ∫ 1

0

x2dUk(x) <∞.

PROOF The stated equivalence follows from the estimation:

∫
[0,1]2

|x|2dU(x) =
∫

[0,1]2

2∑
i=1

x2
i dU(x)

=
2∑
i=1

∫
[0,1]2

x2
i dU(x) =

2∑
i=1

∫ 1

0

x2
iUi(xi) − C1 − C2,
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where the constants

C1 =
∫

[0,1]×[1,∞]

x2
1dU(x) ≤

∫
[0,1]×[1,∞]

dU(x) and

C2 =
∫

[1,∞]×[0,1]

x2
2dU(x) ≤

∫
[1,∞]×[0,1]

dU(x)

are clearly finite.

Now all the tools are ready to characterize dependence structures of Lévy
processes (for the moment, only the ones with positive jumps).

THEOREM 5.4
Let (Xt, Yt) be a two-dimensional Lévy process with positive jumps having
tail integral U and marginal tail integrals U1 and U2. There exists a two-
dimensional positive Lévy copula F which characterizes the dependence struc-
ture of (Xt, Yt), that is, for all x1, x2 ∈ [0,∞],

U(x1, x2) = F (U1(x1), U2(x2)). (5.13)

If U1 and U2 are continuous, this Lévy copula is unique. Otherwise it is unique
on RanU1 × RanU2.

Conversely, let (Xt) and (Yt) be two one-dimensional Lévy processes with
positive jumps having tail integrals U1 and U2 and let F be a two-dimensional
positive Lévy copula. Then there exists a two-dimensional Lévy process with
Lévy copula F and marginal tail integrals U1 and U2. Its tail integral is given
by Equation (5.13).

This result is a direct consequence of Theorem 5.3 and Lemma 5.2. The
first part of this theorem states that all types of dependence of Lévy pro-
cesses, including complete dependence and independence, can be represented
with Lévy copulas and the second part shows that one can construct multivari-
ate Lévy process models by specifying separately jump dependence structure
and one-dimensional laws for the components. The laws of components can
have very different structure, in particular, it is possible to couple compound
Poisson components with infinite-activity ones.

When the dependence is specified via a Lévy copula and both the copula
and the one-dimensional tail integrals are sufficiently smooth, the Lévy density
can be computed by differentiation:

ν(x1, x2) =
∂2F (y1, y2)
∂y1∂y2

∣∣∣
y1=U1(x1),y2=U2(x2)

ν1(x1)ν2(x2)

Examples of positive Lévy copulas

Now we will compute the Lévy copulas that correspond to various basic
dependence structures.
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Example 5.3 Independence
Let (Xt, Yt) be a Lévy process with independent components. By Proposition
5.3, its Lévy measure is ν(A) = ν1(AX) + ν2(AY ). The tail integral of this
Lévy measure is U(x1, x2) = U1(x1)1x2=0 + U2(x2)1x1=0 and Formula (5.11)
allows to compute the Lévy copula of independent processes:

F⊥(x1, x2) = x11x2=∞ + x21x1=∞. (5.14)

If U1 and/or U2 are not continuous, Equation (5.14) gives one of the possible
Lévy copulas of (Xt, Yt).

To discuss complete jump dependence or comonotonicity of components of
a Lévy process with positive jumps, we need the notion of an increasing set.

DEFINITION 5.9 A subset S of R̄
2 is called increasing if for every two

vectors (v1, v2) ∈ S and (u1, u2) ∈ S either vk < uk ∀k or vk > uk ∀k.

Clearly, an element of an increasing set is completely determined by one
coordinate only. This motivates the following definition of jump dependence.

DEFINITION 5.10 Let X ≡ (X1
t ,X

2
t ) be a Lévy process with positive

jumps. Its jumps are said to be completely dependent or comonotonic if there
exists an increasing subset S of ]0,∞[2 such that every jump ∆X of X is in
S.

Clearly, if the jumps of two pure-jump Lévy processes are completely depen-
dent, the trajectory of one of them can be reconstructed from the trajectory
of the other.

PROPOSITION 5.4 Complete dependence

Let X ≡ (X1
t ,X

2
t ) be a Lévy process with positive jumps. If its jumps

are completely dependent, then (a possible) Lévy copula of X is the complete
dependence Lévy copula defined by

F‖(x1, x2) = min(x1, x2).

Conversely, if the Lévy copula of X is given by F‖ and the tail integrals of
components of X are continuous, then the jumps of X are completely depen-
dent.

PROOF The direct statement. The jumps of X are completely dependent
if and only if there exists an increasing subset S of ]0,∞[2 such that the Lévy
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measure ν of X is concentrated on S. Therefore, for every x = (x1, x2),

U(x) =
∫
{y≥x}∩S

ν(dy);

Uk(xk) =
∫
{yk≥xk}∩S

ν(dy) k = 1, 2.

Comparing the above equalities and using the properties of an increasing
subset we find:

U(x) = min(U1(x1), U2(x2)), (5.15)

which proves the first part of the theorem.
The converse statement. In this case the tail integral of X has the form

(5.15) which means that the Lévy measure of X is concentrated on the set
{(x1, x2) : U1(x1) = U2(x2)}. If the tail integrals U1 and U2 are continuous,
this set is increasing.

Example 5.4 Dependence of stable processes
Lévy copulas of stable processes are homogeneous functions of order one,

that is,

∀c > 0, F (cx1, cx2) = cF (x1, x2).

Indeed, by formula (3.32) the Lévy measure of an α-stable process satisfies

ν(B) = cαν(cB) ∀c > 0 ∀B ∈ B(R2).

This means in particular that the tail integral satisfies

U(cx1, cx2) = c−αU(x1, x2).

Substituting α-stable margins into this formula, we conclude that the Lévy
copula is homogeneous of order 1.

The dependence structure of two stable processes can alternatively be spec-
ified via the spherical part of the Lévy measure of the two-dimensional process
(see Proposition 3.15). In this case the two-dimensional process will also be
stable. Lévy copulas allow a greater variety of possible dependence struc-
tures, because using Lévy copulas one can construct a Lévy process that has
α-stable margins but is not α-stable itself. To do this, it suffices to take a
Lévy copula that is not homogeneous, for example,

F (u, v) = log
{

1 − e−u−v

e−u + e−v − 2e−u−v

}
.

This example is an Archimedean Lévy copula with generator φ(x) = e−x

1−e−x

(see Proposition 5.6 below).
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Dependence of compound Poisson processes

Dependence of a compound Poisson process can be described using ordinary
copulas (compare with Section 5.2). Indeed, a two-dimensional compound
Poisson process (Xt, Yt) can always be split onto dependent and independent
parts (this is a consequence of the Lévy-Itô decomposition).

Xt = X⊥
t +X

‖
t

Yt = Y ⊥
t + Y

‖
t

where (X⊥
t ) and (Y ⊥

t ) are independent from each other and the two other
components (independent part of the process) whereas (X‖

t ) and (Y ‖
t ) are

dependent, have the same intensity and jump at the same time (dependent
part of the process). Lévy measures of components in this decomposition are
related to the Lévy measure ν of (Xt, Yt):

ν⊥X(A) = ν(A× {0}) ∀A ∈ B(R+)
ν⊥Y (A) = ν({0} ×A) ∀A ∈ B(R+)
ν‖(A) = ν(A) − ν(AX × {0}) − ν({0} ×AY ) ∀A ∈ B(R2

+)

The sets AX and AY were defined in Proposition 5.3.
To fix the model completely, one must specify

• the intensity and jump size distribution of (X⊥
t ),

• the intensity and jump size distribution of (Y ⊥
t ),

• the intensity of common shocks,

• jump size distributions of (X‖
t ) and (Y ‖

t ),

• the copula of the last two distributions.

Hence, this approach requires a lot of different quantities, some of which are
difficult to observe. It also does not allow to separate the dependence from
the margins completely, because the intensities and the distributions of the
components are determined both by the dependence structure and by the
margins. It is therefore more convenient to use the Lévy copula approach. In
this case one must specify two things:

• the margins via the intensity and jump size distribution of (Xt) and (Yt)
(which are easy to observe),

• the dependence structure via the Lévy copula of the process.

All other quantities can be computed from these ones (for the computation we
suppose that the copula is continuous and that Lévy measures of components
have no atoms, except the one at zero).
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Let F be the Lévy copula and let UX and UY be the tail integrals of (Xt)
and (Yt). Then the intensities of (Xt) and (Yt) are

λX = lim
x↓0

UX(x) and λY = lim
y↓0

UY (y).

We cannot simply write λX = UX(0) because, according to our definition of
tail integral (see Page 147), UX(0) = ∞ for all processes, including compound
Poisson. The tail integral of the two-dimensional process (Xt, Yt) is U(x, y) =
F (UX(x), UY (y)). Its intensity is equal to the Lévy measure of R

2
+ \ {0},

which means that

λ = lim
x,y↓0

(UX(x) + UY (y) − U(x, y)) = λX + λY − F (λX , λY ).

Since for every positive Lévy copula 0 ≤ F (x, y) ≤ min(x, y), this intensity
is always contained between max(λX , λY ) (strongest possible dependence)
and λX + λY (independence). The intensity of the common Poisson shock
(intensity of X‖

t and Y ‖
t ) is equal to F (λX , λY ). Tail integrals of independent

components are

U⊥
X (x) = ν([x,∞[×{0}) = U(x, 0) − lim

y↓0
U(x, y) = UX(x) − F (UX(x), λY )

and U⊥
Y (y) = UY (y) − F (λX , UY (y))

for x, y ∈]0,∞[. Finally, the tail integral of (X‖
t , Y

‖
t ) is

U‖(x, y) = lim
x′↓x;y′↓y

U(x′, y′) = F (min(UX(x), λX),min(UY (y), λY ))

for (x, y) ∈ [0,∞[2\{0}, and the survival function2 of its jump size distribution
has the form

H(x, y) =
F (min(UX(x), λX),min(UY (y), λY ))

F (λX , λY )
.

Construction of positive Lévy copulas

Lévy copulas can be computed from multidimensional Lévy processes using
formula (5.11). However, this method is not very useful because there are not
many multivariate Lévy models available. In this subsection, we give several
other methods to construct Lévy copulas.

PROPOSITION 5.5
Let C be an (ordinary) 2-copula and f(x) an increasing convex function from
[0, 1] to [0,∞]. Then

F (x, y) = f(C(f−1(x), f−1(y))) (5.16)

2The survival function H(x) of a random variable X is defined by H(x) = P (X > x) and the
joint survival function H(x, y) of random variables X and Y is H(x, y) = P (X > x, Y > y).
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defines a two-dimensional positive Lévy copula.

PROOF The fact that F is an 2-increasing function follows from properties
1 and 2 of Lemma 5.1. Groundedness and marginal properties can be checked
directly.

There are many functions from [0, 1] to [0,∞] with positive derivatives of
all orders that can be used in this proposition, one example is f(x) = x

1−x .
By analogy to Archimedean copulas, one can also construct Archimedean

Lévy copulas.

PROPOSITION 5.6

Let φ be a strictly decreasing convex function from [0,∞] to [0,∞] such that
φ(0) = ∞ and φ(∞) = 0. Then

F (x, y) = φ−1(φ(x) + φ(y)) (5.17)

defines a two-dimensional positive Lévy copula.

PROOF This is again a consequence of properties 1 and 2 of Lemma 5.1,
after observing that the function φ−1(−u) is increasing and convex.

Example 5.5

For φ(u) = u−θ with θ > 0, we obtain the following parametric family of Lévy
copulas:

Fθ(u, v) = (u−θ + v−θ)−1/θ (5.18)

which reminds us of the Clayton family of copulas (5.3). It includes as limiting
cases complete dependence (when θ → ∞) and independence (when θ → 0).

Probabilistic interpretation of positive Lévy copulas

Unlike ordinary copulas, Lévy copulas are not distribution functions, but
their derivatives have an interesting probabilistic interpretation.

LEMMA 5.3

Let F be a two-dimensional positive Lévy copula. Then for almost all x ∈
[0,∞], the function

Fx(y) =
∂

∂x
F (x, y)
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exists and is continuous for all y ∈ [0,∞] outside a countable set. Moreover, it
is a distribution function of a positive random variable, that is, it is increasing
and satisfies Fx(0) = 0 and Fx(∞) = 1.

PROOF For every fixed non-negative y, Fx(y) exists for almost all non-
negative x because F (x, y) is increasing in x. It follows that for almost all
x, Fx(y) exists for all y ∈ Q+, where Q+ denotes the set of all non-negative
rational numbers. Let us fix one such x for the rest of the proof.
Fx(y) is increasing on Q+ because F (x, y) is 2-increasing. In addition,

because F has uniform margins, Fx(y) satisfies 0 ≤ Fx(y) ≤ 1 for all y ∈ Q+.
Therefore, for every point y ∈ R+ and for every two sequences of rational
numbers {y+

n } and {y−n } such that y+
n ↓ y and y−n ↑ y, the limits limFx(y+

n )
and limFx(y−n ) exist. Moreover, for all y outside a countable set Cx these
limits are equal. In this case we denote

limFx(y+
n ) = limFx(y−n ) ≡ F̃x(y).

For every nonnegative y ∈ Cx, every n and every ∆ ∈ R we can write:

F (x+ ∆, y) − F (x, y)
∆

− F̃x(y) ≤ F (x+ ∆, y+
n ) − F (x, y+

n )
∆

− F̃x(y)

since F (x, y) is 2-increasing. Now we would like to show that for every ε > 0
there exist δ > 0 such that for all ∆ verifying |∆| < δ, the left-hand side of
the above inequality is smaller than ε. First observe that for every ε > 0 it
is possible to choose n such that |Fx(y+

n ) − F̃x(y)| ≤ ε/2 because F̃x(y) was
definied as the limit of Fx(y+

n ). Moreover, for this fixed n one can choose δ
such that for all ∆ verifying |∆| ≤ δ,

∣∣∣F (x+ ∆, y+
n ) − F (x, y+

n )
∆

− Fx(y+
n )
∣∣∣ ≤ ε/2. (5.19)

because y+
n is rational and Fx(y) exists for rational y.

Therefore, for every ∆ verifying |∆| ≤ δ,

F (x+ ∆, y) − F (x, y)
∆

− Fx(y) ≤ ε (5.20)

The second sequence, {y−n }, can be used to bound this expression from below,
which allows to conclude that for every nonnegative y ∈ Cx, F (x, y) is differ-
entiable and Fx(y) = ∂

∂xF (x, y) is continuous. The fact that Fx is increasing
was also established in the proof and the other claims of the lemma can be
verified directly.

The following theorem shows that F determines the law of the (transformed)
jump in the second component of a Lévy process conditionally on the size
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of jump in the first one. It will be useful in Chapter 6 for simulation of
multivariate dependent Lévy processes. Its proof can be found in [373].

THEOREM 5.5
Let (Xt, Yt) be a two-dimensional Lévy process with positive jumps, having

marginal tail integrals U1, U2 and Lévy copula F . Let ∆Xt and ∆Yt be the
sizes of jumps of the two components at time t. Then, if U1 has a non-zero
density at x, FU1(x) is the distribution function of U2(∆Yt) conditionally on
∆Xt = x:

FU1(x)(y) = P{U2(∆Yt) ≤ y|∆Xt = x} (5.21)

Summary of definitions and results for multivariate case

All results of this section can be easily generalized to more than two dimen-
sions (see [373]). Some of the generalizations are given below; others are left
to the reader as exercise.

DEFINITION 5.11 Positive Lévy copula A n-dimensional positive
Lévy copula is a n-increasing grounded function F : [0,∞]n → [0,∞] with
margins Fk, k = 1 . . . n, which satisfy Fk(u) = u for all u in [0,∞].

THEOREM 5.6
Let U be the tail integral of an n-dimensional Lévy process with positive jumps
and let U1, · · · , Un be the tail integrals of its components. Then there exists
an n-dimensional positive Lévy copula F such that for all vectors (x1, · · · , xn)
in R

n
+,

U(x1, · · · , xn) = F (U1(x1), · · · , Un(xn)).
If U1, · · · , Un are continuous then F is unique, otherwise it is unique on
RanU1 × · · · × RanUn.

Conversely, if F is a n-dimensional positive Lévy copula and U1, · · · , Un are
tail integrals of Lévy measures on [0,∞[, then the function U defined above
is the tail integral of a n-dimensional Lévy process with positive jumps having
marginal tail integrals U1, · · · , Un.

The independence Lévy copula in the multivariate case has the form:

F⊥(x1, . . . , xn) = x11x2=∞,...,xn=∞ + . . .+ xn1x1=∞,...,xn−1=∞

and the complete dependence Lévy copula is

F‖(x1, . . . , xn) = min(x1, . . . , xn)

Finally, we give a multidimensional equivalent of Proposition 5.6.
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PROPOSITION 5.7
Let φ be a strictly decreasing function from [0,∞] to [0,∞] such that φ(0) =
∞, φ(∞) = 0 and φ−1 has derivatives up to the order n on ]0,∞[with alter-
nating signs, that is, (−1)k d

kφ−1(t)
dtk

> 0. Then

F (x1, · · · , xn) = φ−1(φ(x1) + · · · + φ(xn))

defines a n-dimensional positive Lévy copula.

5.6 Copulas for general Lévy processes

DEFINITION 5.12 F (x, y) : [−∞,∞]2 → [−∞,∞] is a Lévy copula3

if it has the following three properties:

• F is 2-increasing

• F (0, x) = F (x, 0) = 0 ∀x
• F (x,∞) − F (x,−∞) = F (∞, x) − F (−∞, x) = x

From this definition it is clear that a positive Lévy copula can be extended
to a Lévy copula by putting F (x, y) = 0 if x < 0 or y < 0.

Constructing models with Lévy copulas is simple when both the Lévy copula
and the marginal tail integrals are sufficiently smooth to allow using Lévy
density.

Case of Lévy measures with densities

We start by defining the notion of tail integral for Lévy measures on R.
Note that this definition, used in the setting of Lévy measures with densities,
is slightly different from the one that we will use in the general case (Definition
5.14).

DEFINITION 5.13 Let ν be a Lévy measure on R. The tail integral of
ν is a function U : R̄ \ {0} → ∞ defined by

U(x) = ν([x,∞[) for x ∈]0,∞[,
U(x) = −ν(] −∞,−x]) for x ∈] −∞, 0[,
U(∞) = U(−∞) = 0.

3We thank Jan Kallsen for suggesting this method of extending positive Lévy copulas to
copulas for general Lévy processes.
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The signs are chosen in such way that the tail integral is a decreasing
function both on ]0,∞] and on [−∞, 0[.

The following result allows to construct two-dimensional Lévy densities
from one dimensional ones using Lévy copulas that are sufficiently smooth.

PROPOSITION 5.8
Let F be a two-dimensional Lévy copula, continuous on [−∞,∞]2, such that
∂F (u,v)
∂u∂v exists on ]−∞,∞[2 and let U1 and U2 be one-dimensional tail integrals

with densities ν1 and ν2. Then

∂F (u, v)
∂u∂v

∣∣∣
u=U1(x),v=U2(y)

ν1(x)ν2(y)

is the Lévy density of a Lévy measure with marginal Lévy densities ν1 and ν2.

General case

If the Lévy copula and the marginal tail integrals are not sufficiently smooth,
multidimensional tail integrals must be used instead of Lévy densities. Be-
cause the singularity (zero) is now in the center of the domain of interest,
each corner of the Lévy measure must be treated separately, that is, in the
one-dimensional case we need two tail integrals: U+ and U− and in the two-
dimensional case we need four tail integrals: U++, U+−, U−+ and U−−.

DEFINITION 5.14 Let ν be a Lévy measure on R. This measure has two
tail integrals, U+ : [0,∞] → [0,∞] for the positive part and U− : [−∞, 0] →
[−∞, 0] for the negative part, defined as follows:

U+(x) = ν([x,∞[) for x ∈]0,∞[, U+(0) = ∞, U+(∞) = 0;

U−(x) = −ν(] −∞,−x]) for x ∈] −∞, 0[, U−(0) = −∞, U−(−∞) = 0.

Let ν be a Lévy measure on R
2 with marginal tail integrals U+

1 , U−
1 , U+

2 and
U−

2 . This measure has four tail integrals: U++, U+−, U−+ and U−−, where
each tail integral is defined on its respective quadrant, including the coordinate
axes, as follows:

U++(x, y) = ν([x,∞[×[y,∞[), if x ∈]0,∞[ and y ∈]0,∞[

U+−(x, y) = −ν([x,∞) × (−∞, y]), if x ∈]0,∞[ and y ∈] −∞, 0[

U−+(x, y) = −ν((−∞, x] × [y,∞)), if x ∈] −∞, 0[ and y ∈]0,∞[

U−−(x, y) = ν((−∞, x] × (−∞, y]), if x ∈] −∞, 0[ and y ∈] −∞, 0[

If x or y is equal to +∞ or −∞, the corresponding tail integral is zero and
if x or y is equal to zero, the tail integrals satisfy the following “marginal”
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conditions:

U++(x, 0) − U+−(x, 0) = U+
1 (x)

U−+(x, 0) − U−−(x, 0) = U−
1 (x)

U++(0, y) − U−+(0, y) = U+
2 (y)

U+−(0, y) − U−−(0, y) = U−
2 (y)

When a two-dimensional Lévy measure charges the coordinate axes, its tail
integrals are not determined uniquely because it is unclear, which of the tail
integrals should contain the mass on the axes. Hence, different sets of tail
integrals can sometimes correspond to the same Lévy measure.

The relationship between Lévy measures and Lévy copulas is introduced
via a representation theorem, analogous to Theorems 5.1 and 5.3.

THEOREM 5.7
Let ν be a Lévy measure on R

2 with marginal tail integrals U+
1 , U−

1 , U+
2 and

U−
2 . There exists a Lévy copula F such that U++, U+−, U−+ and U−− are

tail integrals of ν where

U++(x, y) = F (U+
1 (x), U+

2 (y)) if x ≥ 0 and y ≥ 0
U+−(x, y) = F (U+

1 (x), U−
2 (y)) if x ≥ 0 and y ≤ 0

U−+(x, y) = F (U−
1 (x), U+

2 (y)) if x ≤ 0 and y ≥ 0
U−−(x, y) = F (U−

1 (x), U−
2 (y)) if x ≤ 0 and y ≤ 0 (5.23)

If the marginal tail integrals are absolutely continuous and ν does not charge
the coordinate axes, the Lévy copula is unique.

Conversely, if F is a Lévy copula and U+
1 , U−

1 , U+
2 and U−

2 are tail integrals
of one-dimensional Lévy measures then the above formulae define a set of tail
integrals of a Lévy measure.

PROOF The Lévy copula can be constructed in each of the four quad-
rants along the lines of the proof of Theorem 5.3 and Lemma 5.2. With this
construction we obtain a function that is 2-increasing on each quadrant but
not on the whole R

2. However, the fact that each of the four parts is con-
tinuous on its domain including the coordinate axes and equal to zero on the
axes entails that F is 2-increasing on R̄

2.

Example 5.6 Independence of Lévy processes
Since the Lévy measure of a two-dimensional Lévy process with independent
components is supported by the coordinate axes, the corresponding Lévy cop-
ula is not unique. In this case, Proposition 5.3 entails that for every x and y
such that xy 
= 0 the corresponding tail integral is zero. Hence, F (x, y) = 0
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if x and y are finite. Formulae (5.23) show that every Lévy copula that sat-
isfies this property is a Lévy copula of independence. Examples of possible
independence Lévy copulas are x1y=∞ + y1x=∞, −x1y=−∞ − y1x=−∞, etc.

Example 5.7 Complete dependence
In the setting of Lévy processes with jumps of arbitrary sign, one must

distinguish two types of complete dependence. In the first case (complete
positive dependence) there exists an increasing subset S of R

2 such that every
jump ∆X of the two-dimensional process is in S. In this situation, using the
same method as in Proposition 5.4, we find

U++(x, y) = min{U+
1 (x), U+

2 (y)}
U−−(x, y) = min{−U−

1 (x),−U−
2 (y)}

U+− ≡ U−+ ≡ 0

Hence, F↑↑(x, y) = min(|x|, |y|)1xy≥0 is a possible copula for this process.
In the second case (complete negative dependence) every jump of the two-
dimensional process must belong to a decreasing subset of R

2, that is, a set
S such that for every two vectors (v1, v2) ∈ S and (u1, u2) ∈ S either v1 < u1

and v2 > u2 or v1 > u1 and v2 < u2. In this case

U+−(x, y) = −min{U+
1 (x),−U−

2 (y)}
U−+(x, y) = −min{−U−

1 (x), U+
2 (y)}

U++ ≡ U−− ≡ 0

and F↑↓(x, y) = −min(|x|, |y|)1xy≤0.

Example 5.8

Starting from the positive Lévy copula (5.18) one can define a one-parameter
family of Lévy copulas which includes independence and complete positive
and negative dependence.

Fθ(u, v) =
{

(|u|−θ + |v|−θ)−1/θ1xy≥0 if θ > 0
−(|u|θ + |v|θ)1/θ1xy≤0 if θ < 0

(5.24)

Computing the limits we find that

Fθ → F↑↓ when θ → −∞
Fθ → F‖ when θ → 0
Fθ → F↑↑ when θ → ∞
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Construction of Lévy copulas

Construction of general Lévy copulas is more difficult than that of positive
ones because Propositions 5.5 and 5.6 cannot be directly extended to this
setting. A possible solution that we will now discuss is to construct general
Lévy copulas from positive ones by gluing them together: this amounts to
specifying the dependence of jumps of different signs separately. Let F++,
F−−, F−+ and F+− be positive Lévy copulas and consider the following
expression:

F (x, y) = F++(c1|x|, c2|y|)1x≥0,y≥0 + F−−(c3|x|, c4|y|)1x≤0,y≤0

− F+−(c5|x|, c6|y|)1x≥0,y≤0 − F−+(c7|x|, c8|y|)1x≤0,y≥0

F is a 2-increasing function if the constants c1, . . . , c8 are positive. The
marginal conditions impose four additional constraints. For example, for
x > 0 one has F (x,∞) − F (x,−∞) = c1x + c5x = x, therefore c1 + c5 = 1.
The other constraints are c7 + c3 = 1, c2 + c8 = 1 and c6 + c4 = 1. Finally we
obtain that

F (x, y) = F++(c1|x|, c2|y|)1x≥0,y≥0 + F−−(c3|x|, c4|y|)1x≤0,y≤0

−F+−((1−c1)|x|, (1−c4)|y|)1x≥0,y≤0−F−+((1−c3)|x|, (1−c2)|y|)1x≤0,y≥0

(5.25)

defines a Lévy copula if c1, . . . , c4 are constants between 0 and 1.
To understand the meaning of this construction, let us fix marginal Lévy

measures ν1 and ν2 and look at the two-dimensional Lévy measure that we
obtain with copula (5.25). Its upper right-hand tail integral is

U++(x, y) = F++(c1U+
1 (x), c2U+

2 (y))

This means that the upper right-hand quadrant of the Lévy measure corre-
sponds to a Lévy process with positive jumps, Lévy copula F++ and marginal
Lévy measures c1ν1(dx)1x>0 and c2ν2(dy)1y>0.

Treating the other quadrants in the same manner, we conclude that a Lévy
process with Lévy copula of the form (5.25) is a sum of four independent parts,
that correspond to four quadrants of the Lévy measure. The components of
the first part that corresponds to the upper right-hand quadrant, jump only
upwards, have Lévy measures c1ν1(dx)1x>0 and c2ν2(dx)1x>0 and are linked
with each other via the positive Lévy copula F++. The second independent
part of the process corresponds to the lower right-hand quadrant. Its first
component jumps only upwards and has Lévy measure (1 − c1)ν1(dx)1x>0

whereas its second component jumps downwards and has Lévy measure (1 −
c4)ν2(dx)1x<0. The two components are linked with each other via positive
Lévy copula F+−. The other two independent parts of the Lévy process can
be characterized in the same way.
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Because the proportion of jumps in the first component that is linked to
the positive jumps of the second component does not depend on the size of
jumps (it only depends on their sign), we call the Lévy copula defined by
(5.25) constant proportion Lévy copula.

The class of all Lévy copulas is much larger than the class of constant pro-
portion ones, but the latter one is already sufficiently large for most practical
applications. Moreover, Lévy copulas of stable processes can always be rep-
resented in the form (5.25). Indeed, following Example 5.4, one can show
that Lévy copulas of stable processes are homogeneous functions of order 1.
Let F (x, y) be one such Lévy copula. It satisfies F (x,∞) = xF (1,∞). This
means that

F̃ (x, y) := F (
x

F (1,∞)
,

y

F (∞, 1)
), for x ≥ 0 and y ≥ 0

is a positive Lévy copula. Treating the other three corners of F in the same
manner, we obtain the representation (5.25).

Summary of definitions and results for the multivariate case

DEFINITION 5.15 Lévy copula A n-dimensional Lévy copula is a
function F : [−∞,∞]n → [−∞,∞] with the following three properties:

• F is n-increasing

• F is equal to zero if at least one of its arguments is zero

• F has “uniform” margins.

To construct multidimensional Lévy measures from Lévy copulas, we intro-
duce a special type of interval:

I(x) =
{

[x,∞[, if x > 0
] −∞, x], if x < 0

Using this notation we can now compute tail integrals of the Lévy measure
everywhere except on the axes as follows:

ν(I(x1) × . . .× I(xn)) = (−1)sgn x1··· sgn xnF (U sgn x1
1 (x1), . . . , U sgn xn

n (xn))

where U+
1 , U

−
1 , . . . , U

+
n , U

−
n are one-dimensional marginal tail integrals. The

nonuniqueness problems on the axes can be solved as it was done in the two-
dimensional case in the beginning of this section.

Constructing Lévy copulas in high dimensions using the constant proportion
method is not very practical, because in the general case, one needs to specify
2n positive Lévy copulas plus many additional constants to construct one
n-dimensional Lévy copula. A better solution is to use simplified constructions
similar to Example 5.8.
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5.7 Building multivariate models using Lévy copulas

In previous sections we saw that the multivariate dependence of Lévy pro-
cesses can be described using the notion of the Lévy copula, which plays
for Lévy processes a role analogous to copulas for random variables. In this
section we will show using concrete examples that, as in the case of ordi-
nary copulas, the appropriate choice of Lévy copula allows to distinguish the
usual concept of linear correlation between returns from the concept of tail
dependence and to prescribe different dependence patterns for upward and
downward price moves. This distinction is relevant for applications in risk
measurement where large comovements in asset prices are of a primary con-
cern. As a result, copulas have been used in applications such as credit risk
modelling and quantitative models of operational risk. The framework of the
Lévy copulas allows to extend such approaches to truly dynamical settings.

Multivariate variance gamma modelling

Suppose that one wants to model the prices of two stocks, or stock indices,
S1
t and S2

t , by exponentials of variance gamma Lévy processes (see Table 4.5).
How to describe dependence between them? A simple method, discussed in
Section 5.1, consists in representing logS1

t and logS2
t as two components of

a bivariate correlated Brownian motion, time changed by the same gamma
subordinator. In this method the dependence structure is described by a single
parameter ρ — correlation coefficient of the Brownian motion. The two stocks
always have the same jump structure parameter (i.e., κ), are dependent even
if the Brownian motions are decorrelated and have the same dependence of
upward and downward jumps.

An alternative model can be constructed using Lévy copulas. We have:

logS1
t = Xt, logS2

t = Yt,

where Xt and Yt are two arbitrary variance gamma processes with dependence
specified via a Lévy copula F . It can be taken of the form (5.25) (constant
proportion copula). In this case, to specify the dependence structure com-
pletely one has to choose four positive Lévy copulas F++ (dependence of
positive jumps of X and positive jumps of Y ), F+− (dependence of positive
jumps of X and negative jumps of Y ), F−+ and F−− and four parameters c1,
c2, c3 and c4, which are real numbers between zero and one. If every positive
Lévy copula is in some one-parameter family, then in order to specify the
dependence in this model completely, one needs eight parameters. In most
cases this is too many and some simplifying assumptions can be made.

Example 5.9 Stock price model
Here we assume that positive jumps of Xt are independent from negative

© 2004 by CRC Press LLC



Multidimensional models with jumps 163

jumps of Yt and vice versa. This assumption is reasonable for stocks but it does
not necessarily hold for exchange rates. In addition, dependence structure of
positive jumps is described by a Clayton Lévy copula with parameter θ+ and
the dependence structure of negative jumps is given by a Clayton Lévy copula
with parameter θ−. In this case our model takes the form

logS1
t = Xt = X+

t −X−
t

logS2
t = Yt = Y +

t − Y −
t

where X+
t and Y +

t denote the positive jump parts of the corresponding pro-
cesses and X−

t and Y −
t are the negative jump parts; the couples (X+, Y +)

and (X−, Y −) are independent, X+ and Y + are dependent with copula Fθ+
and X− and Y − are dependent with copula Fθ− . The dependence structure
of (Xt, Yt) is thus described by two parameters: θ+ describes positive jumps
and θ− describes negative jumps. This allows to prescribe different depen-
dence structures for positive and negative jumps, which was impossible within
the simple model based on correlated Brownian motions. In addition, in this
model (Xt) and (Yt) can follow arbitrary variance gamma models and can be
completely independent (this is the limiting case when θ+ and θ− approach
zero).

If (Xt) is a variance gamma process with parameters σ, θ and κ then
(X+

t ) will be a gamma subordinator with parameters c+ = 1/κ and λ+ =
(
√
θ2 + 2σ2/κ − θ)/σ2 and X−

t will be a gamma subordinator with param-
eters c− = 1/κ and λ− = (

√
θ2 + 2σ2/κ + θ)/σ2. The Lévy measure of the

process (Xt, Yt) is always supported by the set {(x, y) : xy ≥ 0}, that is by the
upper right-hand and lower left-hand quadrants. This means, in particular,
that this model does not include negative dependence between jumps (but
there may be some negative dependence between returns).

The left graph in Figure 5.2 depicts typical trajectories of two variance
gamma processes with dependence structure described by this model with
dependence parameters θ− = 5 (strong dependence of downward jumps) and
θ− = 1 (moderate dependence of upward jumps).

To further compare this model to the model using subordinated Brownian
motion, Figure 5.3 presents scatter plots of 50-day returns in the two models.
The marginal processes are the same for the two graphs, both are variance
gamma with parameters σ = 0.3, θ = −0.1 and κ = 0.5. In the left graph, the
dependence is specified via a Lévy copula model with parameters θ+ = 0.5 and
θ− = 10. This corresponds to a linear correlation of approximately 80%. In
the right graph, the two variance gamma processes result from subordinating
a correlated Brownian motion with the same gamma subordinator. The pa-
rameters were again chosen to have a correlation of 80%. From the left graph
it is clear that in models based on Lévy copulas, the dependence structures of
positive and negative jumps can be radically different, which is an important
issue in risk measurement. In addition to the strong asymmetry of positive
and negative jumps, the left graph is characterized by a much stronger tail
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FIGURE 5.2: Left: Trajectories of two variance gamma processes with
different dependence of upward and downward jumps. Right: Trajectories of
two variance gamma processes with negative dependence.

dependence in the lower tail, than the right one. In particular, for the left
graph, the expected jump size in the second component given that the jump
in the first component is smaller than −0.4, is equal to −0.55, whereas for the
right graph this expectation is only −0.43.

These two graph may remind the reader of the two graphs in Figure 5.1,
obtained with ordinary copulas. However, there is a fundamental difference:
Lévy copulas allow to construct dynamic models, that is, in a Lévy copula
model the dependence is known at all time scales, whereas with ordinary
copulas the dependence can only be prescribed for one chosen time scale, and
it is hard to say anything about the others.

For comparison, Figure 5.4 provides a scatter plot of weakly returns of
two major European stock market indices, DAX and AEX, for the period
from January 1, 1990 to November 4, 2002. This graph clearly exhibits tail
asymmetry and dependence in the left tail, but both phenomena are not as
strong as in the left graph of Figure 5.3.

Example 5.10 Exchange rate model
In major foreign exchange markets upward and downward movements are
more or less symmetric but modelling negative dependence can be an impor-
tant issue. One can build multivariate jump models with such properties by
taking a Lévy copula of the form (5.24). Here one only needs one parameter
to specify the dependence structure and the model includes independence and
both positive and negative dependence. For positive values of θ the two un-
derlying assets always move in the same direction, and for negative values of
θ they always move in opposite directions. The latter situation is represented
on the right graph of Figure 5.2. Here both processes are variance gamma
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FIGURE 5.3: Scatter plots of 50-day returns of two exp-Lévy models
driven by dependent variance gamma processes. Left: the dependence is
described with a Lévy copula model. Right: The dependence is modelled by
subordinating two correlated Brownian motions with the same gamma sub-
ordinator.

with the same parameters and θ = −3.

5.8 Summary

Many problems in quantitative finance involve the specification of joint
models for several assets in a portfolio. In multivariate Gaussian models, de-
pendence among returns of various assets is represented via the corresponding
correlation coefficients. Once jump processes are introduced to account for
large returns, tools are needed to parameterize the dependence between the
jumps: as indicated by empirical studies, jumps often represent systemic risk
and cannot be assumed to be independent across assets.

Two solutions proposed in the literature are to represent asset prices by
multivariate subordinated Brownian motions or as a factor model driven by
Poisson processes. Modelling by Brownian subordination allows to build
analytically tractable multivariate Lévy processesbut does not allow a flex-
ible specification of the dependence structure involved. Also, it restricts the
choices for the dynamics of individual assets. Modelling dependence by com-
mon Poisson shocks is feasible for low-dimensional problems but requires the
simultaneity of jumps in all assets involved.

A systematic way to describe the dependence structure of two random vari-
ables is to use copula functions, described in Section 5.3. Extending this
notion to the case of Lévy processes, we have described in Section 5.6 the
notion of Lévy copula which provides a systematic way to build multivariate
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FIGURE 5.4: Scatter plot of weakly returns of DAX and AEX, for the
period from January 1, 1990 to November 4, 2002.

Lévy processes from one-dimensional Lévy processes. Model building by Lévy
copulas is a general approach which enables a flexible specification of depen-
dence between returns while allowing for an arbitrary marginal distribution
of returns for each asset.

Lévy copulas can also be useful outside the realm of financial modelling.
Other contexts where modelling dependence in jumps is required are portfolios
of insurance claims and models of operational risk.

Consider an insurance company with two subsidiaries, in France and in
Germany. The aggregate loss process of the French subsidiary is modelled
by the subordinator Xt and the loss process of the German one is Yt. The
nature of processes Xt and Yt may be different because the subsidiaries may
not be working in the same sector and many risks that cause losses are local.
However, there will be some dependence between the claims, because there
are common risks involved. In this setting it is convenient to model the
dependence between Xt and Yt using a positive Lévy copula. In this case,
the two-dimensional Lévy measure of (Xt, Yt) is known and the overall loss
distribution and ruin probability can be computed.

Another example where jump processes naturally appear is given by models
of operational risk. The 2001 Basel agreement defines the operational risk
as “the risk of direct and indirect loss resulting from inadequate or failed
internal processes, people and systems or from external events” and allows
banks to use internal loss data to compute regulatory capital requirements.
Consequently, reliable measures of risk taking into account the dependence
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between different business lines are required.4 Aggregate loss processes from
different business lines can be dynamically modelled by subordinators and the
dependence between them can be accounted for using a positive Lévy copula.

4The internal management approach proposed by the Basel Committee on Banking Super-
vision does not take into account dependence between different business lines at present,
because current industry practice does not permit reliable empirical measurement of such
dependence. However, the possibility of accounting for it is likely to appear as banks and
supervisors gain more experience.
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Chapter 6

Simulating Lévy processes

Anyone attempting to generate random numbers by deterministic means
is, of course, living in a state of sin.

John von Neumann

Lévy processes allow to build more realistic models of price dynamics and
offer a more accurate vision of risk than traditional diffusion-based models.
However, the price to pay for this is an increased complexity of computations.
Although Lévy processes are quite tractable compared to nonlinear diffusion
models, analytical pricing methods are only available for European options.
For all other applications, such as pricing of exotic options, scenario simulation
for risk management, etc., numerical methods are unavoidable. Two possible
choices are Monte Carlo methods and the numerical solution of partial integro-
differential equations (see Chapter 12). However, as the dimension of the
problem grows, PIDE methods become less feasible because computational
complexity for fixed precision grows exponentially with dimension. On the
contrary, the complexity of Monte Carlo methods for fixed precision grows
only linearly with the dimension of the problem. Hence, in higher dimensions
there is no alternative to simulation methods and it is very important to
develop efficient algorithms for simulating Lévy processes.

For most Lévy processes the law of increments is not known explicitly.
This makes it more difficult to simulate a path of a general Lévy process
than for example of a Brownian motion. Depending on the type of Lévy
process (compound Poisson, stable, etc.) and on the type of problem that
must be solved (computing a functional of the entire trajectory, simulating
the trajectory at a finite set of dates), the problem of simulating a Lévy process
may be split into the following subproblems, which determine the structure
of this chapter.

In Section 6.1, we discuss the simulation of compound Poisson processes.
Sample paths of compound Poisson processes are piecewise linear and there is
a finite number of jumps in every bounded interval. Hence, we can simulate a
sample path exactly (without any discretization error) using a finite number
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of computer operations. To compute every functional of the trajectory it is
sufficient to simulate a finite number of jump times and jump sizes.

In Section 6.2, we give examples of classes of Lévy processes that allow
exact simulation of increments. Some option pricing problems (European
or Bermudan options) and some portfolio management problems (discrete
trading) only require the knowledge of the trajectory in a finite number of
points. In this case, when one knows how to sample from the law of increments
of a Lévy process, he or she can simulate the trajectory at discrete times
without approximation. That is, for given times t1, . . . , tn one can simulate
an n-dimensional random vector (X(t1), . . . , X(tn)).

When the law of increments of a Lévy process is not known explicitly or
when the problem requires an accurate knowledge of the trajectory, the Lévy
process must be approximated by a compound Poisson process. A simple
approximation consists in truncating the jumps smaller than some level ε.
We treat this approximation in Section 6.3.

Such an approximation converges quite slowly when the jumps of the Lévy
process are highly concentrated around zero. However, the small jumps of
such processes, when properly renormalized, behave like a Brownian motion.
In other words, when the precision of the Poisson approximation is low, one
can improve it because an explicit expression of the renormalized limiting
process is available. This improved approximation is discussed in Section 6.4.

Section 6.5 covers series representations for Lévy processes. Such represen-
tations can be seen as a more intelligent way to approximate Lévy processes
by compound Poisson ones.

Finally, in Section 6.6, we discuss the simulation of multivariate Lévy pro-
cesses, using the tools that were introduced in Chapter 5.

Except in a few important cases we do not discuss the methods of simulating
random variables with known law. In general, whenever an explicit expression
for the density is available, one can construct an appropriate rejection method.
Many simulation algorithms for almost all known distributions can be found
in the book by Devroye [113].

Table 6.1 lists available simulation methods for various Lévy processes, used
in financial modelling. In the rest of this chapter we discuss these methods in
detail.

6.1 Simulation of compound Poisson processes

Let (Xt)t≥0 be a compound Poisson process with Lévy measure ν. For
greater generality we also add drift b. Its characteristic function is

φt(u) = exp t[iub+
∫

R

(eiux − 1)ν(dx)]
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TABLE 6.1: Available simulation methods for different Lévy processes
Compound Poisson See Algorithms 6.1 and 6.2. CP processes can be sim-

ulated exactly (Section 6.1); the computational time
grows linearly with intensity

Jump diffusion See Algorithms 6.3 and 6.4. One can simulate a dis-
cretized trajectory using the fact that diffusion part is
independent from the jump part.

Stable See Algorithms 6.6 and 6.15. There exist explicit
methods for simulating the increments of a stable pro-
cess (Example 6.3). Series representations are also
available (Example 6.15). Their convergence rates may
be improved using normal approximation (Example
6.10).

Variance gamma See Algorithm 6.11. Variance gamma process can be
represented either as the difference of two gamma pro-
cesses or as a Brownian motion subordinated by a
gamma process. Since efficient methods for simulat-
ing the gamma process are available (see Examples 6.4
and 6.16), the variance gamma process is also easy to
simulate.

Normal inverse
Gaussian

See Algorithm 6.12. This process can be obtained
by subordinating a Brownian motion with an inverse
Gaussian subordinator, which is easy to simulate (Ex-
ample 6.5). Because the Lévy measure of the IG pro-
cess is explicit, one can construct series representations
for both IG and NIG processes. The normal approxi-
mation of small jumps is valid.

Generalized hyper-
bolic

More difficult to simulate than the others because the
Lévy measure is not known in explicit form while the
probability density is only known for one time scale
and even for this time scale the expression involves
special functions. One can simulate a discretized tra-
jectory (Example 6.6) using the fact that GH can be
obtained by subordinating Brownian motion with a
generalized inverse Gaussian subordinator and GIG
random variables are easier to simulate (see [113]) be-
cause their probability density is analytic.

Tempered stable See Example 6.9. May be simulated using compound
Poisson approximation or series representations (the
Lévy measure is explicit). Normal approximation is
valid for small jumps.

© 2004 by CRC Press LLC



174 Financial Modelling with jump processes

and the jump intensity is λ = ν(R). A trajectory of this process can be
simulated exactly on the interval [0, T ] using the following simple algorithm
(which uses the fact that waiting times between the jumps are independent
exponentially distributed random variables with parameter λ):

ALGORITHM 6.1 Simulation of compound Poisson process

Initialize k := 0

REPEAT while
k∑
i=1

Ti < T

Set k := k + 1
Simulate Tk ∼ exp(λ)
Simulate Yk from the distribution µ = ν/λ

The trajectory is given by

X(t) = γb+
N(t)∑
i=1

Yi where N(t) = sup{k :
k∑
i=1

Ti ≤ t}.

We will now improve this algorithm using two following observations

• The number of jumps N(T ) of a compound Poisson process on the
interval [0, T ] is a Poisson random variable with parameter λT .

• Conditionally on N(T ), the exact moments of jumps on this interval
have the same distribution as N(T ) independent random numbers, uni-
formly distributed on this interval, rearranged in increasing order (see
Proposition 2.9).

ALGORITHM 6.2 Improved algorithm for compound Poisson pro-
cess

• Simulate a random variable N from Poisson distribution with parameter
λT . N gives the total number of jumps on the interval [0, T ].

• Simulate N independent r.v., Ui, uniformly distributed on the interval
[0, T ]. These variables correspond to the jump times.

• Simulate jump sizes: N independent r.v. Yi with law ν(dx)
λ .

The trajectory is given by

X(t) = bt+
N∑
i=1

1Ui<tYi.
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Simulating Lévy processes 175

Figure 6.1 depicts a typical trajectory of compound Poisson process, simulated
using Algorithm 6.2.
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FIGURE 6.1: Typical trajectory of a compound Poisson process. Here
jump size distribution is standard normal, the jump intensity is equal to 10
and the drift parameter is equal to 3.

When the Lévy process has a Gaussian component and a jump component
of compound Poisson type (in this book, such a process is called a jump-
diffusion), one can simulate the two independent components separately. The
following algorithm gives a discretized trajectory for a process of this type
with characteristic triplet (σ2, ν, b).

ALGORITHM 6.3 Simulating jump-diffusions on a fixed time grid

Simulation of (X1, . . . , Xn) for n fixed times t1, . . . , tn.

• Simulate n independent centered Gaussian random variables Gi with
variances Var(Gi) = (ti− ti−1)σ2 where t0 = 0. A simple algorithm for
simulating Gaussian random variables is described in Example 6.2.

• Simulate the compound Poisson part as described in the Algorithm 6.2.

The discretized trajectory is given by

X(ti) = bti +
i∑

k=1

Gk +
N∑
j=1

1Uj<tiYj .

A typical trajectory of process simulated by Algorithm 6.3 is shown in Fig-
ure 6.2. In Section 6.4, we will see that many infinite activity Lévy processes
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can be well approximated by a process of such type: the small jumps are
truncated and replaced with a properly renormalized Brownian motion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

FIGURE 6.2: Typical trajectory of a Lévy process with a Gaussian com-
ponent and a jump component of compound Poisson type. Here jump size
distribution is normal with zero mean and standard deviation 0.5, the jump
intensity is 10, the diffusion volatility is 5 and there is no drift.

Note that in the above algorithm the law of increments X(ti) − X(ti−1)
is rather complicated because the number of jumps on the interval [ti−1, ti]
is unknown. This makes it difficult to compute functionals like supt≤T Xt,
which depend on the entire trajectory and not only on its values at discrete
times. To overcome this problem, one can exploit the independence of the
continuous part and the jump part in the following way.

First, simulate the jump times of the compound Poisson part τ1, . . . , τN , the
values of the compound Poisson part N(τi) and the values of the continuous
part at these times W (τi). Conditionally on this information, the trajectory of
the process (Xt) between each two adjacent jump times is continuous. In fact,
between two such times τi and τi+1, (Xt) is a Brownian motion, conditioned
by its values in τi and τi+1. Now we will be able to compute the required
functionals between the jumping times because joint laws of many functionals
of the Brownian motion and its final value are well known (see, e.g., [66]).
This method is very useful in financial applications like pricing exotic options
by Monte Carlo and we illustrate it in the following example.

Example 6.1 Monte Carlo method for jump-diffusion models
In this example, we discuss the pricing of an up-and-out call option in a

jump-diffusion model (see Chapter 11 for a description of barrier options and

© 2004 by CRC Press LLC
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exp-Lévy models). The pricing problem reduces to computing the following
expectation (we suppose zero interest rates):

C = E{(eXT −K)+1MT<b}, (6.1)

where (Xt)t≥0 is a jump-diffusion process: Xt = γt+σWt+Nt, such that (eXt)
is a martingale and Mt = max0≤s≤tXs is the maximum process associated
to X. We will show how to compute this expectation using the Monte Carlo
method.

The key idea of the method is as follows. First, simulate the jump times
τi of compound Poisson part, the jump sizes Xτi

−Xτi− and the values of X
at the jump times τi and at T . If any of these values is beyond the barrier,
the payoff for this trajectory is zero. Otherwise, we can analytically compute
the probability that this trajectory has gone over the barrier and come back
between two consecutive jump times (because between the jump times the
trajectory is simply a Brownian bridge). The payoff of this trajectory will
then be (eXT − K)+ multiplied by this probability. Now we can repeat the
simulation a sufficient number of times to obtain the desired precision.

Put F∗ = σ{Nt, 0 ≤ t ≤ T ;W (τi), 0 ≤ i ≤ N} where τi, 0 ≤ i ≤ N − 1 are
the jump times of the compound Poisson part and τN = T . We can rewrite
the expectation (6.1) as follows:

C = E
{
(eXT −K)+E[1MT ≤b|F∗]

}
(6.2)

because XT is F∗-measurable. In other words, we condition the inner expec-
tation on the trajectory of the compound Poisson part and on the values of
the Brownian part at the jump times of the compound Poisson process and
at T . The outer expectation in (6.2) will be computed by the Monte Carlo
method, and the inner conditional expectation will be computed analytically.
To do this we write, using the Markov property of Brownian motion:

E[1MT ≤b|F∗] = E[
N∏
i=1

1Mi≤b|F∗] =
N∏
i=1

P [Mi ≤ b|X(τi−1),X(τi−)],

where Mi = maxτi−1≤t<τi
Xt. We can further write, using the fact that Xt

does not jump on the interval (τi−1, τi):

P [Mi ≤ b|X(τi−1),X(τi−)]

= PX(τi−1)[ sup
0≤t<τi−τi−1

σŴt + γt ≤ b|σWτi−τi−1 + γ(τi − τi−1) = X(τi−)],

where Ŵ is a new Brownian motion and Px denotes the probability under
which σŴ0 = x. This expression can be computed analytically [66]:

Px[ sup
0≤t≤l

σWt + γt ≤ b
∣∣σWl + γl = z] = 1 − exp

(
−2(z − b)(x− b)

lσ2

)
.
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Substituting it expression into (6.2), we find the final result:

C =

E

[
(eXT −K)+

N∏
i=1

1X(τi)<b

{
1 − exp

(
−2(Xτi− − b)(Xτi−1 − b)

(τi − τi−1)σ2

)}]
(6.3)

This outer expectation will be evaluated using the Monte Carlo method with
Algorithm 6.4.

ALGORITHM 6.4 Monte Carlo method for jump-diffusions

• Simulate jump times {τi} and values {Nτi
} of the compound Poisson

part.

• Simulate the values {Wτi
} of the Brownian part at the points {τi}.

• Evaluate the functional under the expectation in (6.3).

• Repeat the first three steps a sufficient number of times to compute the
average value of the functional with the desired precision.

Algorithms 6.3 and 6.4 can be generalized to jump-diffusion processes, when
the continuous component is not a Brownian motion but an arbitrary Marko-
vian diffusion. In this case increments of the diffusion may be approximated
with an Euler scheme and law of the diffusion on some sufficiently small inter-
val conditionally on the values at its ends may still be quite well approximated
by a Brownian bridge for the purposes of pricing exotic options.

Algorithm 6.2 allows to simulate the trajectories exactly and to compute
all functionals of the path. However, the computational complexity is roughly
proportional to the number of jumps on the interval, hence, this algorithm
cannot be directly generalized to infinite activity Lévy processes. The alterna-
tive is to simulate increments of the process between arbitrary times. This is
only possible in some particular cases which are the topic of the next section.

6.2 Exact simulation of increments

To simulate a discretized trajectory of a Lévy process, one must be able
to simulate the increments of the process at any time scale. Since the law of
increments at a given time scale can be obtained as the convolution power of
the law at time 1, simulation is typically possible when the laws of increments
lay in the same convolution closed class. There are many distributions with
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explicit density, that are known to be infinitely divisible but do not lay in
a convolution-closed class making the corresponding Lévy processes hard to
simulate. This is, e.g., the case for Student distribution and the log-normal
distribution. If (Xt) is a Lévy process and X1 is log-normal, then X2 is not
log-normal. For completeness, we start with the Brownian motion.

Example 6.2 Simulation of Gaussian random variables
There exist many methods to simulate standard normal variables. One of

the oldest and the simplest ones (though not the fastest) is the Box-Muller
method, which allows to simulate two standard normal variables at the same
time. Let U and V be independent random variables, uniformly distributed on
[0, 1]. Then

√−2 log(U) cos(2πV ) and
√−2 log(U) sin(2πV ) are independent

standard normal. To simulate a normally distributed random variable with
arbitrary mean and variance observe that if N is standard normal then σN+θ
has mean θ and variance σ2. To simulate a d-dimensional Gaussian random
vector with covariance matrix Σ and mean vector µ, take a vector X of d
independent standard normal random variables. Then Y = Σ1/2X+µ, where
Σ1/2 is an arbitrary matrix square root of Σ, has covariance matrix Σ and
mean vector µ.

ALGORITHM 6.5 Discretized trajectory of Brownian motion
Simulation of (X(t1), . . . , X(tn)) for n fixed times t1, . . . , tn, where (Xt) is a
Brownian motion with volatility σ and drift b.

• Simulate n independent standard normal variables N1 . . . Nn.
Set ∆Xi = σNi

√
ti − ti−1 + b(ti − ti−1) where t0 = 0.

The discretized trajectory is given by X(ti) =
i∑

k=1

∆Xi.

Example 6.3 α-stable Lévy process
Stable processes were defined in Section 3.7. α-stable Lévy processes with α
strictly between 0 and 2 have infinite variance, which makes them somewhat
inconvenient for financial modelling (though a recent paper by Carr and Wu
[84] uses a log-stable process for option pricing; see also [327]), but they are
important in other domains including physics, biology, meteorology, etc. Here
we use the parameterization (3.34), writing X ∼ Sα(σ, β, µ) when X is an α-
stable random variable with skewness parameter β, scale parameter σ and
shift parameter µ.

The class of α-stable random variables is convolution closed: if X1 and X2

are independent random variables with Xi ∼ Sα(σi, βi, µi) then X1 + X2 ∼
Sα(σ, β, µ) with

σ = (σα1 + σα2 )1/α, β =
β1σ

α
1 + β2σ

α
2

σα1 + σα2
and µ = µ1 + µ2
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(for the proof see [344, Property 1.2.1]). If Xt is an α-stable Lévy process
with X1 ∼ Sα(σ, β, µ) then Xt ∼ Sα(σ(t)1/α, β, µt). The only parameters
that are different for different time scales are thus the scale parameter σ and
the shift parameter µ. However, a stable variable with arbitrary shift and
scale parameters can be obtained from a variable X ∼ Sα(1, β, 0) as follows:

σX + µ ∼ Sα(σ, β, µ), if α �= 1;

σX +
2
π
βσ lnσ + µ ∼ Sα(σ, β, µ), if α = 1.

Thus, to simulate a discrete skeleton of an α-stable Lévy process with skewness
parameter β, one only needs to simulate stable variables of type Sα(1, β, 0).
Chambers, Mallows and Stuck [87] describe a method for generating α-stable
random variates with any admissible values of α and β and give a listing of
a Fortran program rstab which implements this method. This program is
now a part of S-PLUS statistical language. We will give an algorithm for
simulating symmetric stable processes (with β = 0 and no drift). Its proof
can be found in [344]. This reference also contains a modified version of rstab
program.

ALGORITHM 6.6 Discretized trajectory for symmetric α-stable
process
Simulation of (X(t1), . . . , X(tn)) for n fixed times t1, . . . , tn.

• Simulate n independent random variables γi, uniformly distributed on
(−π/2, π/2) and n independent standard exponential random variables
Wi.

• Compute ∆Xi for i = 1 . . . n using

∆Xi = (ti − ti−1)1/α
sinαγi

(cos γi)1/α

(
cos((1 − α)γi)

Wi

)(1−α)/α

(6.4)

with the convention t0 = 0.

The discretized trajectory is given by X(ti) =
i∑

k=1

∆Xk.

Figure 6.3 presents typical trajectories of symmetric stable processes with
various stability indices. When α is small (left graph), the process has very
fat tails, and the trajectory is dominated by big jumps. Note how this graph
resembles the trajectory of a compound Poisson process (Figure 6.1). When
α is large (bottom graph), the behavior is determined by small jumps and
the trajectory resembles that of a Brownian motion, although occasionally
we see some jumps. The right graph corresponds to the Cauchy process
(α = 1) which is between the two cases. Here both big and small jumps
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Simulating Lévy processes 181

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

FIGURE 6.3: Simulated trajectories of α-stable processes with α = 0.5
(left), α = 1 (right) and α = 1.9 (bottom).

have a significant effect. Comparing the three graphs with Figure 6.2 makes
one think that stable processes may be approximated by a combination of
compound Poisson process and Brownian motion. We will see shortly that
this is indeed the case for stable processes and many other Lévy processes.

Example 6.4 Gamma process
The gamma subordinator was defined in Table 4.4. At a fixed time t this

process has the well-studied gamma distribution with density

pt(x) =
λct

Γ(ct)
xct−1e−λx.

Gamma process has the following scaling property: if St is a gamma process
with parameters c and λ then λSt is a gamma process with parameters c and
1. Therefore it is sufficient to be able to simulate gamma random variables
with density of the form

p(x) =
xa−1

Γ(a)
e−x.
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There exist many algorithms for generating such random variables. A survey
of available methods can be found in [113]. Below we reproduce two algorithms
from this book. The first one should be used if a ≤ 1 (which is most often
the case in applications) and the second one if a > 1. Typical trajectories of
gamma process with different values of c are shown in Figure 6.4.

ALGORITHM 6.7 Johnk’s generator of gamma variables, a ≤ 1

REPEAT
Generate i.i.d. uniform [0, 1] random variables U , V
Set X = U1/a, Y = V 1/(1−a)

UNTIL X + Y ≤ 1
Generate an exponential random variable E
RETURN XE

X+Y

ALGORITHM 6.8 Best’s generator of gamma variables, a ≥ 1

Set b = a− 1, c = 3a− 3
4

REPEAT
Generate i.i.d. uniform [0, 1] random variables U , V
Set W = U(1 − U), Y =

√
c
W (U − 1

2 ), X = b+ Y
If X < 0 go to REPEAT
Set Z = 64W 3V 3

UNTIL log(Z) ≤ 2(b log(Xb ) − Y )
RETURN X

Example 6.5 Inverse Gaussian process
The inverse Gaussian Lévy process gives another example of a subordinator

for which both Lévy measure and probability density are known in explicit
form (see Table 4.4). The inverse Gaussian density has the form

p(x) =

√
λ

2πx3
e
−λ(x−µ)2

2µ2x 1x>0. (6.5)

Below we reproduce the algorithm of Michael, Schucany and Haas for simu-
lating inverse Gaussian variables (see [113]).

ALGORITHM 6.9 Generating inverse Gaussian variables

Generate a normal random variable N
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FIGURE 6.4: Two trajectories of gamma process with c = 3 (left), c = 30
(right) and λ = 1 for both graphs. These trajectories were simulated using
series representation (6.16).

Set Y = N2

Set X1 = µ+ µ2Y
2λ − µ

2λ

√
4µλY + µ2Y 2

Generate a uniform [0, 1] random variable U
IF U ≤ µ

X1+µ
RETURN X1 ELSE RETURN µ2

X1

Example 6.6 Subordinated Brownian motion
A popular class of processes for stock price modelling is obtained by subordi-
nating the standard Brownian motion or a Brownian motion with drift with
an independent positive Lévy process. If the subordinator is denoted by Vt
then the resulting process will be

Xt = WVt
+ bVt, (6.6)

where W is standard Brownian motion. When Vt is the gamma process or the
inverse Gaussian process, we obtain, respectively, the variance gamma process
and the normal inverse Gaussian process. Processes of type (6.6) possess
a number of useful properties because they are conditionally Gaussian. In
particular, if one knows how to simulate the increments of the subordinator,
the increments of Xt can be simulated using the following algorithm.

ALGORITHM 6.10 Generating the subordinated Brownian motion
on a fixed time grid
Simulation of (X(t1), . . . , X(tn)) for n fixed times t1, . . . , tn where X(t) =
B(S(t)) is Brownian motion with volatility σ and drift b, time changed with
subordinator (St).

• Simulate increments of the subordinator: ∆Si = Sti −Sti−1 where S0 =
0.
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• Simulate n independent standard normal random variables N1, . . . , Nn.
Set ∆Xi = σNi

√
∆Xi + b∆Si.

The discretized trajectory is given by X(ti) =
i∑

k=1

∆Xk.

The following two algorithms show how the above method can be used to
simulate variance gamma processes and normal inverse Gaussian processes on
a fixed time grid:

ALGORITHM 6.11 Simulating a variance gamma process on a
fixed time grid
Simulation of (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn: a discretized tra-

jectory of the variance gamma process with parameters σ, θ, κ.

• Simulate, using Algorithms 6.7 and 6.8, n independent gamma variables
∆S1, . . . ,∆Sn with parameters t1

κ ,
t2−t1
κ , . . . , tn−tn−1

κ .
Set ∆Si = κ∆Si for all i.

• Simulate n i.i.d. N(0, 1) random variables N1, . . . , Nn.
Set ∆Xi = σNi

√
∆Si + θ∆Si for all i.

The discretized trajectory is X(ti) =
∑i
k=1 ∆Xi.

ALGORITHM 6.12 Simulating normal inverse Gaussian process
on a fixed time grid
Simulation of (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn: a discretized tra-

jectory of the normal inverse Gaussian process with parameters σ, θ, κ.

• Simulate, using Algorithm 6.9 n independent inverse Gaussian variables
∆S1, . . . ,∆Sn with parameters λi = (ti−ti−1)

2

κ and µi = ti − ti−1 where
we take t0 = 0.

• Simulate n i.i.d. N(0, 1) random variables N1, . . . , Nn.
Set ∆Xi = σNi

√
∆Si + θ∆Si for all i.

The discretized trajectory is X(ti) =
∑i
k=1 ∆Xi.

6.3 Approximation of an infinite activity Lévy process
by a compound Poisson process

Let (Xt)t≥0 be an infinite activity Lévy process with characteristic triplet
(0, ν, γ). The goal of this and the following section is to find a process (Xε

t )t≥0
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which is of compound Poisson type (but possibly with a nontrivial Gaussian
component) and which approximates the initial process X in some sense to
be specified. We will also give some precision estimates and convergence rates
for the approximations that we derive.

From the Lévy-Itô decomposition we know that X can be represented as a
sum of a compound Poisson process and an almost sure limit of compensated
compound Poisson processes:

Xt = γt+
∑
s≤t

∆Xs1|∆Xs|≥1 + lim
ε↓0

Nε
t ,

where Nε
t =

∑
s≤t

∆Xs1ε≤|∆Xs|<1 − t

∫
ε≤|x|≤1

xν(dx).

Therefore a natural idea is to approximate Xt by

Xε
t = γt+

∑
s≤t

∆Xs1|∆Xs|≥1 +Nε
t . (6.7)

The residual term (incorporating compensated jumps smaller than ε) is given
by

Rεt = −Nε
t + lim

δ↓0
N δ
t .

It is a Lévy process with characteristic triplet (0, 1|x|≤εν(dx), 0) satisfying
E[Rεt ] = 0.

In the finite variation case small jumps need not be compensated and one
can use zero truncation function in the Lévy-Khinchin representation. The
process X can therefore be written as a sum of its jumps plus drift (different
from γ because the truncation function is not the same).

Xt = bt+
∑
s≤t

∆Xs

and Xε
t = bt+

∑
s≤t

∆Xs1ε≤|∆Xs| + E[
∑
s≤t

∆Xs1|∆Xs|<ε].

Therefore, in the finite variation case the approximation (6.7) is constructed
by replacing small jumps with their expectation.

The process Xε is of compound Poisson type and may be simulated using
Algorithm 6.2. Let us analyze the quality of this approximation. The er-
ror process Rε is an infinite activity Lévy process with bounded jumps and,
therefore, finite variance. By Proposition 3.13,

VarRεt = t

∫
|x|<ε

x2ν(x)dx ≡ tσ2(ε).

Hence, the quality of the approximation depends on the speed at which σ2(ε)
converges to zero as ε → 0. Suppose that the approximation (6.7) is used to
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compute functionals of the terminal value of the process using the Monte Carlo
method. The following proposition gives a convergence rate for this problem.
We only estimate the precision of approximation (6.7) without taking into
account the intrinsic error of the Monte Carlo method, that is due to finite
number of trajectories.

PROPOSITION 6.1

Let f(x) be a real-valued differentiable function such that |f ′(x)| < C for
some constant C. Then∣∣E[f(Xε

T +RεT )] − E[f(Xε
T )]
∣∣ ≤ Cσ(ε)

√
T . (6.8)

PROOF The difference in question can be estimated as follows:

∣∣E[f(Xε
T +RεT )] − E[f(Xε

T )]
∣∣ = ∣∣E[RεT

∫ 1

0

f ′(Xε
T + uRεT )du]

∣∣ ≤ CE
∣∣RεT ∣∣.

For any random variable Z, Jensen’s inequality yields:

E[|Z|]2 ≤ E[|Z|2] = E[Z2].

Applying this to RεT , we conclude that E
∣∣RεT ∣∣ ≤ σ(ε)

√
T .

REMARK 6.1 The function f in Proposition 6.1 can correspond to
the payoff function of a European put option. Suppose that under the risk
neutral probability logarithm of the stock price is a Lévy process. In this
case, for a put option f(x) = (K − S0e

x)+ where K is the strike of the
option and S0 denotes the initial price of the underlying. For this function
f ′(x) = −S0e

x1x≤log(K/S0) and |f ′(x)| ≤ K. If the price of this option is
approximated by E[f(Xε

T )] then the worst case pricing error is given by (6.8).

REMARK 6.2 Note that the variance of Rεt in approximation (6.7) grows
linearly with time, and therefore the error of the Monte Carlo method is
proportional to the square root of time.

In Proposition 6.1, we have found that the worst case error of the Monte
Carlo method is proportional to the dispersion of the residual process. As ε
goes to zero, the pricing error decreases, but the intensity of Xε

t grows causing
a proportional increase in the computer time required to simulate every tra-
jectory. In the examples that follow, we will compute the convergence rates
for various processes and see how the pricing error depends on the number of
basic computer operations required.
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Example 6.7 Convergence rates: symmetric stable process
For symmetric α-stable processes σ(ε) ∼ ε1−α/2. This means that for stable

processes with a large index of stability that have many small jumps in the
neighborhood of zero, convergence rate of the Monte Carlo method may be
very low and some kind of improvement is necessary. A simple computation
shows that for symmetric stable processes the intensity N of the approximat-
ing compound Poisson process, truncated at the level ε, is proportional to
ε−α for fixed α. We denote the intensity by N because it corresponds ap-
proximately to the number of operations required to simulate one trajectory.
Substituting this expression into the formula for σ(ε), we find that

σ(ε) ∼ N
1
2− 1

α for symmetric stable process.

Thus, for stable processes convergence rates range from extremely bad (when
there are many jumps in the neighborhood of zero) to very good.

Example 6.8 Convergence rates: gamma process
For the gamma process, σ(ε) ∼ ε, so the quality of the approximation by

a compound Poisson process is very good. The intensity of approximating
process is N ∼ − log(ε). Substituting this into the expression for σ(ε), we
find that:

σ(ε) ∼ e−N for gamma process.

This means that for the gamma process the convergence is exponential, that
is, by adding ten more jumps we gain a factor of e10 in the precision!

Example 6.9 Simulation of tempered stable processes by compound Poisson
approximation
For simplicity we treat the case of tempered stable subordinator, but the

method can be easily generalized to processes with jumps of different signs.
The method consists of simulating the big jumps and replacing the small ones
with their expectation:

Xt ≈ Xε
t = bt+

∑
s≤t

∆Xs1∆Xs≥ε + E

⎧⎨
⎩
∑
s≤t

∆Xs1∆Xs<ε

⎫⎬
⎭ .

The Lévy density of a tempered stable subordinator is given by ν(x) = ce−λx

xα+1

with 0 < α < 1. Therefore, the process (Xε
t ) has drift bε = b + c

∫ ε
0
e−λxdx
xα

(note that this expression can be easily computed via incomplete gamma
function) and finite Lévy measure with density νε(x) = ce−λx

xα+1 1x≥ε. It is a
compound Poisson process with intensity U(ε) = c

∫∞
ε

e−λxdx
xα+1 and jump size

distribution pε(x) = νε(x)/U(ε) and it can be simulated using Algorithm 6.2
if one knows how to simulate random variables with distribution pε(x).
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Observe that for all x we have

pε(x) ≤ fε(x)
ε−αe−λε

αU(ε)
,

where fε(x) = αε−α

xα+1 1x≥ε is a probability density. Note that f(x) has survival
function F ε(x) = εα

xα 1x≥ε and inverse survival function F−1
ε (u) = εu−1/α.

Random variables with distribution pε(x) may be simulated using the rejection
method as follows (see [113] for a general description of the rejection method).

REPEAT
Generate W , V : independent and uniformly distributed on [0, 1].
Set X = εW−1/α (X has distribution fε).
Set T = fε(X)ε−αe−λε

pε(X)αU(ε)

UNTIL V T ≤ 1
RETURN X

The variableX produced by this algorithm has distribution pε and the average
number of loops needed to generate one random variable is equal to

ε−αe−λε

αU(ε)
∼ 1 + Γ(1 − α)(λε)α when ε→ 0,

which is good because in applications, ε will typically be close to 0.

The compound Poisson approximation has very good accuracy if there are
not “too many small jumps,” i.e., if the growth of the Lévy measure near zero
is not too fast, as in the case of the Gamma process. In the next section, we
present a method (due to Asmussen and Rosinski [12]) that allows to increase
the accuracy of the above approximation by replacing the small jumps by a
Brownian motion: this correction will be efficient precisely when there are
many small jumps, i.e., exactly when compound Poisson approximations are
poor, so the two methods are complementary.

6.4 Approximation of small jumps by Brownian motion

In this section, we show that in many cases, the normalized error process
σ(ε)−1Rε converges in distribution to Brownian motion. First, we will pro-
vide an intuitive explanation of this fact and derive a sufficient condition for
convergence. Then we will give the exact criterion of convergence, due to
Asmussen and Rosinski [12]. Finally, we will prove that this convergence may
indeed be used to improve the approximation (6.7), that is, we will show that
the approximation

X̃ε
t = Xε

t + σ(ε)Wt (6.9)
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FIGURE 6.5: Convergence of renormalized small jumps of the Cauchy
process to Brownian motion. Left graph: Residual process for ε = 0.5. Right
graph: Residual process for ε = 0.0001. These trajectories were approximated
using a series representation.

has better convergence rates than (6.7) in the same problem of pricing a
European option by the Monte Carlo method.

Put Y εt = σ(ε)−1Rε. Suppose that the following condition is satisfied

σ(ε)
ε

→ ∞ as ε→ 0. (6.10)

Because the jumps of Rε are bounded by ε, condition (6.10) means that the
jumps of Y ε are bounded by some number that converges to zero. This means
that the limiting process has no jumps. Since Y ε for every ε is a Lévy process
with zero mean and the variance of Y ε1 is equal to one, the limiting process
will be a continuous Lévy process with mean zero and variance at time 1 equal
to one, hence, a standard Brownian motion.

Figure 6.5 illustrates this convergence: the left graph shows the renormal-
ized residual process for Cauchy process with ε = 0.5 and the right graph
shows the residual process for ε = 0.0001.

It turns out that the condition (6.10) is not always necessary; although,
as Remark 6.3 shows, it is necessary in most cases of interest. The following
theorem gives a necessary and sufficient condition for convergence.

THEOREM 6.1 Asmussen and Rosinski [12]
σ(ε)−1Rε →W in distribution as ε→ 0 if and only if for all k > 0

σ(kσ(ε) ∧ ε)
σ(ε)

→ 1, as ε→ 0. (6.11)

REMARK 6.3 Condition (6.11) is clearly implied by Condition (6.10),
which is much easier to check. Moreover, Asmussen and Rosinski[12] prove
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that the two conditions are equivalent if ν has no atoms in some neighborhood
of zero. This is the case for all examples in Table 6.1 and more generally, for
all examples considered in this chapter. Hence, for all these examples it is
sufficient to check the condition (6.10).

Example 6.10 Validity of normal approximation for different processes
For symmetric stable processes, σ(ε) ∼ ε1−α/2, the condition (6.10) is satis-

fied and the normal approximation holds. It is easy to check that it also holds
for general stable processes and for all Lévy processes with stable-like (power
law of type 1

|x|1+α with α > 0) behavior near the origin, for example, normal
inverse Gaussian, truncated stable, etc. The normal approximation does not
hold for compound Poisson processes (σ(ε) = o(ε)) nor for the gamma process
(σ(ε) ∼ ε).

In the following proposition we analyze the effect of using normal approx-
imation of small jumps (6.9) on the worst case error of the Monte Carlo
approximation to option price.

PROPOSITION 6.2

Let f be a real-valued differentiable function such that |f ′(x)| < C for some
constant C. Then

∣∣E[f(Xε
T +RεT )] − E[f(Xε

T + σ(ε)WT )]
∣∣ ≤ Aρ(ε)Cσ(ε), (6.12)

where ρ(ε) ≡
∫ ε
−ε

|x|3ν(dx)
σ3(ε) and A is a constant satisfying A < 16.5.

REMARK 6.4 Notice that at least under the stronger condition (6.10)
this is a better convergence rate compared to Proposition 6.1 because ρ(ε) <
ε

σ(ε) .

REMARK 6.5 Contrary to Proposition 6.1, here the error does not grow
with T since as T grows, due to a “central limit theorem” effect, the quality
of normal approximation also improves because Rε

T√
VarRε

T

becomes closer to a

standard normal variable.

PROOF

∣∣E[f(Xε
T +RεT )] − E[f(Xε

T + σ(ε)WT )]
∣∣

≤
∫
p(dx)

∣∣E[f(x+RεT )] −E[f(x+ σ(ε)WT )]
∣∣,
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where p(dx) denotes the law of Xε
T . We can further write:

∣∣E[f(x+RεT )] − E[f(x+ σ(ε)WT )]
∣∣ = ∣∣∫ f(x+ y){pR(y) − pW (y)}dy∣∣

=
∣∣∫ f ′(x+ y){FR(y) − FW (y)}dy∣∣ ≤ C

∫ ∣∣FR(y) − FW (y)
∣∣dy,

where pR(y) and pW (y) are probability density functions of, respectively, RεT
and σ(ε)WT and FR(y) and FW (y) are their distribution functions. We now
need to find an estimate for

∫ |FR(y) − FW (y)|dy.
RεT can be seen as the sum of n i.i.d. random variables with the same law

as RεT/n. These variables have zero mean and variance Tσ2(ε)/n. Now using
a nonuniform Berry-Esseen type theorem [315, Theorem V.16] we find that
for all n, ∫ ∣∣FR(y) − FW (y)

∣∣dy ≤ Aσ(ε)
√
T
ρn√
n
,

where A is a constant with A < 16.5 and ρn =
n3/2E|Rε

T/n|3
σ3(ε)T 3/2 . Asmussen and

Rosinski show [12, Lemma 3.2] that if the Lévy measure ν of a Lévy process
(Zt)t≥0 has finite absolute moment of order p ≥ 2, one has

lim
n→∞nE|Z1/n|p =

∫ ∞

−∞
|x|pν(dx).

Hence, we find that

∫ ∣∣FR(y) − FW (y)
∣∣dy ≤ Aσ(ε)

∫ ε
−ε |x|3ν(dx)
σ3(ε)

and finally

∣∣E[f(Xε
T +RεT )] − E[f(Xε

T + σ(ε)WT )]
∣∣ ≤ ACσ(ε)

∫ ε
−ε |x|3ν(dx)
σ3(ε)

.

Example 6.11 Improved convergence rates: symmetric stable process
For symmetric stable processes, ρ(ε) ∼ εα/2. Since σ(ε) ∼ ε1−α/2, the im-
proved convergence rate is independent of the stability index and is always
proportional to ε. For processes with small α, the improvement of conver-
gence rate due to normal approximation is small, however, the compound
Poisson approximation converges sufficiently fast even without the improve-
ment. When α is large, the direct compound Poisson approximation does
not converge fast enough but there are many small jumps which are well
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approximated by a Brownian motion. In terms of the number of computer
operations required to simulate a given trajectory, the convergence rate is
N−1/α. Hence, this scheme always converges faster than N−1/2, which is the
typical convergence rate of the Monte Carlo method

Example 6.12 No improvement for the gamma process
For gamma process ρ(ε) ∼ const and there is no improvement (this fact is easy
to understand since the renormalized residual process does not converge to
Brownian motion). However, for this process the compound Poisson approx-
imation converges exponentially fast, therefore the correction is not needed.

6.5 Series representations of Lévy processes (*)

In this section, we first introduce series representations of Lévy processes
through an important example and then give a general result due to Rosinski
[338], that allows to construct such series representations and prove their
convergence. The example concerns series representations for subordinators
(positive Lévy processes).

PROPOSITION 6.3 Series representation of a subordinator
Let (Zt)t≥0 be a subordinator whose Lévy measure ν(dx) has tail integral

U(x) ≡ ∫∞
x
ν(dξ), let {Γi} be a sequence of jumping times of a standard

Poisson process, and {Vi} be an independent sequence of independent random
variables, uniformly distributed on [0, 1]. Z is representable in law, on the
time interval [0, 1], as

{Zs, 0 ≤ s ≤ 1} L= {Z̃s, 0 ≤ s ≤ 1}
with

Z̃s =
∞∑
i=1

U (−1)(Γi)1Vi≤s, (6.13)

where the generalized inverse U (−1) is defined by

U (−1)(y) = inf{x > 0 : U(x) < y}
The series in (6.13) converges almost surely and uniformly on s ∈ [0, 1].

For practical simulations, the series (6.13) must be truncated. The right
way to truncate it is not to keep a fixed number of terms for each simulated
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trajectory, but to fix some τ and keep a random number N(τ) of terms where
N(τ) = inf{i : Γi ≥ τ}. In this case, as will become clear from the proof,
the truncated series is also a Lévy process (compound Poisson) and this ap-
proximation turns out to be equivalent to the one discussed in Section 6.3.
One can also use the normal approximation of small jumps to improve the
convergence rates of series representations like (6.13), but we do not discuss
this issue here since there is no fundamental difference from the case already
discussed in Section 6.4.

Proposition 6.3 leads to the following algorithm for approximate simulation
of subordinators using series representation. To implement it one needs a
closed form expression for the inverse tail integral U (−1)(x) or at least some
reasonably fast method to compute it.

ALGORITHM 6.13 Simulation of subordinator on [0, 1] by series
representation

Fix a number τ depending on the required precision and computational capac-
ity. This number is equal to the average number of terms in the series and it
determines the truncation level: jumps smaller than U (−1)(τ) are truncated.

Initialize k := 0

REPEAT WHILE
k∑
i=1

Ti < τ

Set k = k + 1
Simulate Tk: standard exponential.
Simulate Vk: uniform on [0, 1]

The trajectory is given by

X(t) =
k∑
i=1

1Vi≤tU
(−1)(Γi), where Γi =

i∑
j=1

Tj .

PROOF of Proposition 6.3 Let N(τ) = inf{i : Γi ≥ τ}. We start by
analyzing the truncated series

Z̃τs =
N(τ)∑
i=1

U (−1)(Γi)1Vi≤s. (6.14)

First, we will prove that (Z̃τs ) is a compound Poisson process in s with Lévy
measure

ντ (A) = ν(A ∩ [U (−1)(τ),∞[).
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Let h > s > 0. Then for all u and v, inserting first the conditional expectation
on Γi, i ≥ 1 and then on N(τ), we find:

E
{

exp
(
iuZ̃τs + iv(Z̃τh − Z̃τs )

)}

= E

⎧⎨
⎩exp

⎛
⎝N(τ)∑

i=1

U (−1)(Γi)(iu1Vi≤s + iv1s<Vi≤h)

⎞
⎠
⎫⎬
⎭

= E

⎧⎨
⎩
N(τ)∏
i=1

(
seiuU

(−1)(Γi) + (h− s)eivU
(−1)(Γi) + 1 − h

)⎫⎬
⎭

= E

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝1 +

1
τ

τ∧U(0)∫
0

(
seiuU

(−1)(z) + (h− s)eivU
(−1)(z) − h

)
dz

⎞
⎟⎠
N(τ)

⎫⎪⎪⎬
⎪⎪⎭ .

(6.15)

The next step is to show that the image measure of the Lebesgue measure
on ]0, U(0)[, induced by the mapping U (−1), coincides with ν, in other words,
for all B ∈ B(]0,∞[), ν(B) = λ({y : U (−1)(y) ∈ B}), where λ denotes the
Lebesgue measure. It is sufficient to show this fact for sets B of the form
[z,∞[, that is, we must show that

inf{x > 0 : U(x) < y} ≥ z (6.16)
if and only if y ≤ U(z). (6.17)

Suppose (6.17). Then for all x such that U(x) < y we have U(x) < U(z)
and therefore x ≥ z and (6.16) is satisfied. Conversely, suppose that (6.16)
is satisfied and y > U(z). Then, because U is left-continuous, there exists an
ε > 0 such that y > U(z − ε). Substituting x = z − ε into (6.16) we find that
z − ε ≥ z which is a contradiction.

The integral in (6.15) can now be transformed using the change of variable
formula:

1
τ

∫ τ∧U(0)

0

(
seiuU

(−1)(z) + (h− s)eivU
(−1)(z) − h

)
dz

=
s

τ

∫ ∞

U(−1)(τ)

(eiuz − 1)ν(dz) +
h− s

τ

∫ ∞

U(−1)(τ)

(eivz − 1)ν(dz),

and finally

E
{

exp
(
iuZ̃τs + iv(Z̃τh − Z̃τs )

)}

= exp

{
s

∫ ∞

U(−1)(τ)

(eiuz − 1)ν(dz) + (h− s)
∫ ∞

U(−1)(τ)

(eivz − 1)ν(dz)

}
.
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This computation proves that (Z̃τs ) has independent increments (because we
could have taken any number of increments instead of just two), that it has
stationary increments and that the Lévy measure has correct form. This
means (see [228, Theorem 13.14]) that (Z̃τt ) converges in distribution to (Zt)
as τ → ∞.

Using the same type of computation and the independent increment prop-
erty of the Poisson process one can prove that (Z̃τt ) has independent incre-
ments with respect to index τ . To prove that series (6.13) converges almost
surely, we represent it as follows

∞∑
i=1

U (−1)(Γi)1[0,s](Vi) =
∞∑
k=1

Zk with Zk =
N(k)∑
N(k−1)

U (−1)(Γi)1[0,s](Vi).

From the independent increments property of (Z̃τt ) it follows that Zk are
independent. Since they are also positive, by the 0-1 law (see [228, Corollary
2.14]), their sum may either converge with probability one or tend to infinity
with probability one. On the other hand, the limit cannot be equal to infinity
almost surely, because in this case the distributional convergence would not
hold. Finally the uniform convergence follows from the fact that all terms are
positive and hence the series for all t converge if Z̃1 converges.

Series representations for other types of Lévy processes may be constructed
in a similar way. We now give without proof a general result, due to Rosinski
[338], which allows to construct many such series representations and prove
their convergence.

THEOREM 6.2 Rosinski [338]
Let {Vi}i≥1 be an i.i.d. sequence of random elements in a measurable space
S. Assume that {Vi}i≥1 is independent of the sequence {Γi}i≥1 of jumping
times of a standard Poisson process. Let {Ui}i≥1 be a sequence of independent
random variables, uniformly distributed on [0, 1] and independent from {Vi}i≥1

and {Γi}i≥1. Let

H : (0,∞) × S → R
d

be a measurable function. We define measures on R
d by

σ(r,B) = P (H(r, Vi) ∈ B), r > 0, B ∈ B(Rd), (6.18)

ν(B) =
∫ ∞

0

σ(r,B)dr.

Put

A(s) =
∫ s

0

∫
|x|≤1

xσ(r, dx)dr, s ≥ 0. (6.19)
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(i) If ν is a Lévy measure on R
d, that is,∫

Rd

(|x|2 ∧ 1)ν(dx) <∞

and the limit γ = lims→∞A(s) exists in R
d then the series

∞∑
i=1

H(Γi, Vi)1Ui≤t

converges almost surely and uniformly on t ∈ [0, 1] to a Lévy process with
characteristic triplet (0, γ, ν), that is, with characteristic function

φt(u) = exp t[iuγ +
∫

Rd

(eiux − 1 − iux1|x|≤1)ν(dx)].

(ii) If ν is a Lévy measure on R
d and for each v ∈ S the function

r 
→ |H(r, v)| is nonincreasing

then
∞∑
i=1

(H(Γi, Vi)1Ui≤t − tci) converges almost surely and uniformly on t ∈
[0, 1] to a Lévy process with characteristic triplet (0, 0, ν). Here ci are deter-
ministic constants given by ci = A(i) −A(i− 1).

REMARK 6.6 It can be proven (see [338]) that the process Y τs defined
by

Y τs ≡
∑
i:Γi≤τ

(H(Γi, Vi)1Ui≤t − tA(τ)) (6.20)

is a compound Poisson process (in s) with characteristic triplet (0, 0, νs) where
νs(A) =

∫ s
0
σ(r,A)dr. Hence, series representations of Lévy processes ob-

tained using Theorem 6.2 can be seen as compound Poisson approximations.
However, the transformation applied to the initial Lévy measure to obtain a
finite measure may be more complex than a simple removal of small jumps.

Example 6.13 Series representation for a subordinator, as a corollary of
Theorem 6.2
In this example we obtain the series representation for a subordinator, derived
in Proposition 6.3 as a particular case of Theorem 6.2. We use the notation
of Proposition 6.3. Consider a family (indexed by r) of probability measures
on R+, defined by σ(r,A) = 1U(−1)(r)∈A for all r (each of these measures is a
Dirac measure). Then

∫∞
0
σ(r,A)dr = ν(A) and H(r, Vi) ≡ U (−1)(r). Hence,

the series
∞∑
i=1

H(Γi, Vi)1Ui≤t =
∞∑
i=1

U (−1)(Γi)1Ui≤t converges almost surely and

uniformly on t ∈ [0, 1] to a subordinator with characteristic function

φt(u) = exp t[
∫

Rd

(eiux − 1)ν(dx)].
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Example 6.14 Series representation for subordinated Brownian motion
Let (St) be a subordinator without drift and with continuous Lévy mea-

sure ν and let Xt = W (St), where W is a Brownian motion, be a subor-
dinated Lévy process. The characteristic triplet of (Xt) is (0, 0, νX) with
νX(A) =

∫∞
0
µs(A)ν(ds) where µs is the probability measure of a Gaussian

random variable with mean 0 and variance s. See Chapter 4 for details on
subordination. Putting U(x) =

∫∞
x
ν(dt) we have

νX(A) =
∫ ∞

0

µU
(−1)(r)(B)dr.

Hence, we can put σ(r,A) = µU
(−1)(r)(B) and use Theorem 6.2. Due to the

symmetry of the normal distribution, A(s) ≡ 0. Taking (Vi) to be a series
of independent standard normal variables and H(Γi, Vi) =

√
U (−1)(Γi)Vi we

conclude that
∞∑
i=1

√
U−1(Γi)Vi1Ui≤t

L= Xt.

Example 6.15 Series representation for symmetric stable processes
Now let us obtain a series representation for the symmetric α-stable process.
Representations for skewed stable processes may also be computed using The-
orem 6.2; see also [344]. Consider a symmetric random variable V such that
E|V |α < ∞. Denote the law of V by µ(∗). Then we can write for any
measurable set B ∫ ∞

0

r1/αµ(r1/αB)dr = C

∫
B

dx

|x|1+α ,

where C = α
2E|V |α and the set r1/αB contains all points x such that r−1/αx ∈

B. We can now apply Theorem 6.2 by taking σ(r,B) ≡ r1/αµ(r1/αB) for each
r. Because µ is symmetric, A(s) ≡ 0 and we find that

Xt ≡
∞∑
i=1

Γ−1/α
i Vi1Ui≤t (6.21)

is an α-stable process on the interval [0, 1], where Vi are independent and
distributed with the same law as V and Ui are independent uniform on [0, 1].
For this series representation one can choose any symmetric variable V with
finite moment of order α. For example, a variable taking values 1 and −1 with
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probability 1/2 could be used. Suppose that this is the case and consider the
truncated series

Xτ
t ≡

∑
i:Γi≤τ

Γ−1/α
i Vi1Ui≤t.

By Remark 6.6, for each τ , Xτ
t is a compound Poisson process with Lévy

measure ντ given by

ντ (B) =
∫ τ

0

σ(r,B)dr =
∫ τ

0

r1/α11∈r1/αBdr =
∫
B

dx

|x|1+α 1|x|≥τ−1/α .

Hence, the jumps smaller in magnitude than τ−1/α are truncated.
This series representation can be implemented using the following algo-

rithm. When one only needs to simulate the process at a finite number of
points, it is preferable to use Algorithm 6.6. However, when it is necessary to
control the size of all jumps, series representation is more convenient.

ALGORITHM 6.14 Simulation of a symmetric stable process by
series representation
Fix a number τ depending on the required precision and computational ca-

pacity. This number is proportional to the average number of terms in the
series and it determines the truncation level: jumps smaller in magnitude
than τ−1/α are truncated.

Initialize k := 0

REPEAT WHILE
k∑
i=1

Ti < τ

Set k = k + 1
Simulate Tk: standard exponential.
Simulate Uk: uniform on [0, 1]
Simulate Vk: takes values 1 or −1 with probability 1/2

The trajectory is then given by

X(t) =
k∑
i=1

1Ui≤tViΓ
−1/α
i where Γi =

i∑
j=1

Tj .

Example 6.16 Series representation for the gamma process
As our last example of this section, we give a convenient series representation
for the gamma process, which is both rapidly converging and easy to com-
pute. It is originally due to Bondesson [64] but can also be seen as a simple
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application of Theorem 6.2. Let (Γi) and (Ui) be as above and (Vi) be an
independent sequence of standard exponential random variables. Then

Xt =
∞∑
i=1

λ−1e−Γi/cVi1Ui≤t

is a gamma process with parameters c and λ. Two trajectories of the gamma
process, simulated using this series representation, are shown in Figure 6.4.

It can be seen from Remark 6.6 that simulation using series representation
is similar to direct compound Poisson approximation treated in Section 6.3.
However, series representations are much more general because, as Example
6.15 shows, many different series representations may correspond to the same
Lévy process because there are many different ways to truncate small jumps
of a Lévy process. Some of them, as in Example 6.16, may be a lot easier to
implement and to compute than the direct compound Poisson approximation.
Moreover, series representations are more convenient because one is working
with the same Lévy measure all the time instead of having to work with
different measures of compound Poisson type. Another advantage is that it
is easy to extend series representations to multidimensional dependent Lévy
processes, when the dependence structure is given by a Lévy copula.

6.6 Simulation of multidimensional Lévy processes

In the multidimensional setting, no closed formulae are available for sim-
ulation of increments of Lévy processes, with the exception of multivariate
Brownian motion. Thus, one should use approximate methods like compound
Poisson approximation and series representations. These methods can be
extended to multidimensional framework without significant changes, since
Theorem 6.2 is already stated in multivariate setting. As an application of
this theorem, we now give a method due to LePage [249] for constructing series
representations, which is especially useful for multivariate stable processes.

Example 6.17 LePage’s series representation for multivariate Lévy processes
Consider the following radial decomposition of a Lévy measure ν:

ν(A) =
∫
Sd−1

∫ ∞

0

1A(xv)µ(dx, v)λ(dv),

where λ is a probability measure on the unit sphere Sd−1 of R
d and µ(∗, v)

is a Lévy measure on (0,∞) for each v ∈ Sd−1. Put U(x, v) =
∫∞
x
µ(dξ, v).

Let Γi be a sequence of arrival times of a standard Poisson process, Vi be an
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independent sequence of independent random variables, distributed on Sd−1

with distribution λ and Ui be an independent sequence of independent random
variables, uniformly distributed on the interval [0, 1]. Then

∞∑
i=1

(U (−1)(Γi, Vi)Vi1Ui≤t − tci)

is a series representation for Lévy process with Lévy measure ν, where

U (−1)(z, v) = inf{x > 0 : U([x,∞[, v) < z}.

To prove this representation one can use Theorem 6.2 with measure σ(r, ∗) in
(6.18) given by

σ(r,B) =
∫
Sd−1

λ(dv)1B(U (−1)(r, v)v).

The deterministic constants ci = A(i) − A(i − 1) may be computed using
(6.19).

For stable processes the corresponding radial decomposition is

ν(A) =
∫
Sd−1

∫ ∞

0

1A(xv)
dx

x1+α
λ(dv).

A class of multivariate Lévy models, quite popular in financial applica-
tions, is constructed by subordinating a multivariate Brownian motion with
a univariate subordinator (see Section 5.1). Processes of this type are easy to
simulate because simulating multivariate Brownian motion is straightforward.

When the dependence of components of a multidimensional Lévy process is
specified via a Lévy copula (see Chapter 5), series representations can also be
constructed using Theorem 6.2 and the probabilistic interpretation of Lévy
copulas (Theorem 5.5). To make the method easier to understand we give
a series representation for two-dimensional processes with positive jumps of
finite variation. Generalization to other Lévy processes of finite variation is
straightforward by treating different corners of Lévy measure separately.

THEOREM 6.3

Let (Zs) be an two-dimensional Lévy process with positive jumps with marginal
tail integrals U1 and U2 and Lévy copula F (x, y). If F is continuous on [0,∞]2

then the process Z is representable in law, on the time interval [0, 1], as

{Zs, 0 ≤ s ≤ 1} L= {Z̃s, 0 ≤ s ≤ 1}
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with

Z̃1
s =

∞∑
i=1

U
(−1)
1 (Γ(1)

i )1[0,s](Vi) and

Z̃2
s =

∞∑
i=1

U
(−1)
2 (Γ(2)

i )1[0,s](Vi), (6.22)

where (Vi) are independent and uniformly distributed on [0, 1], (Γ(1)
i ) is an

independent sequence of jump times of a standard Poisson process and for
every i, Γ(2)

i conditionally on Γ(1)
i is independent from all other variables and

has distribution function ∂
∂xF (x, y)|

x=Γ
(1)
i

(viewed as a function of y).

All the series in (6.22) converge almost surely and uniformly on s ∈ [0, 1].

REMARK 6.7 Here we enumerate the jumps of the two-dimensional pro-
cess in such a way that the jump sizes of the first component are in descending
order, and we simulate the jumps in the other component conditionally on the
size of jump in the first one. This explains the special role of the first compo-
nent in the theorem.

REMARK 6.8 F satisfies the Lipschitz condition and is therefore con-
tinuous on [0,∞[2 because it has uniform margins. Therefore the nontrivial
continuity condition imposed in this theorem is “continuity at infinity” which
means for example, that F (x,∞) must be equal to limy→∞ F (x, y). This
means that the Lévy copula of independence F⊥(x, y) = x1y=∞ + y1x=∞
cannot be used. However, this is not a very important restriction since Lévy
processes with independent components may be simulated directly.

PROOF Proof of Theorem 6.3 Let {Wi}i≥1 be a sequence of in-
dependent random variables, uniformly distributed on [0, 1]. Then for each
r ∈ [0,∞[ there exists a function hr(v) : [0, 1] → [0,∞[ such that for each i,
hr(Wi) has distribution function ∂

∂xF (x, y)|x=r (see, e.g., [228, Lemma 2.22]).
We can now define the function H(r, v) : [0,∞[×[0, 1] → [0,∞[2 component
by component as follows:

H(1)(r, v) = U
(−1)
1 (r);

H(2)(r, v) = U
(−1)
2 (hr(v)).

It remains to check that H(r, v), when integrated as in (6.18), yields the Lévy
measure of the process that we want to simulate. It is sufficient to consider the
sets A of the form A = [x,∞[×[y,∞[. Recall that in the proof of Proposition
6.3, we have shown that if U is a tail integral of a Lévy measure on ]0,∞[
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then U (−1) ≥ z if and only if y ≥ U(z).

P [H(r,Wi) ∈ A] = 1
U

(−1)
1 (r)∈[x,∞[

P{U (−1)
2 (hr(Wi)) ∈ [y,∞[}

= 1r∈]0,U1(x)]P{hr(Wi) ∈]0, U2(y)]}.
The second factor in this expression is nothing but the probability distribution
function of hr(Wi), which is known by construction, hence,

P [H(r,Wi) ∈ A] = 1r∈]0,U1(x)]
∂

∂r
F (r, U2(y)).

We now conclude that because F is absolutely continuous with respect to the
first variable in all finite points and continuous on [0,∞]2,∫ ∞

0

P (H(r,Wi) ∈ A)dr =
∫ U1(x)

0

∂

∂r
F (r, U2(y))dr = F (U1(x), U2(y))

yields the tail integral of the Lévy measure of subordinator that we want to
simulate and we can apply Theorem 6.2.

This theorem justifies the following algorithm.

ALGORITHM 6.15 Simulation of two-dimensional subordinator
with dependent components by series representation
Fix a number τ depending on the required precision and computational ca-

pacity. This number is equal to the average number of terms in the series and
it determines the truncation level: jumps in the first component smaller than
U (−1)(τ) are truncated.

Initialize k = 0, Γ(1)
0 = 0

REPEAT WHILE Γ(1)
k < τ

Set k = k + 1
Simulate Tk: standard exponential.
Set Γ(1)

k = Γ(1)
k−1 + Tk (transformed jump in the first component)

Simulate Γ(2)
k from distribution function F1(y) = ∂F (x,y)

∂x

∣∣
x=Γ

(1)
k

(transformed jump in the second component)
Simulate Vk: uniform on [0, 1] (jump time)

The trajectory is then given by

X(t) =
k∑
i=1

1Vi≤tU
(−1)
1 (Γ(1)

i );

Y (t) =
k∑
i=1

1Vi≤tU
(−1)
2 (Γ(2)

i ).
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Example 6.18 Simulation of a two-dimensional subordinator with depen-
dence given by Clayton Lévy copula
When the dependence Lévy copula is in Clayton family (5.18), the conditional
distribution function takes a particularly simple form

F (v|u) =
∂Fθ(u, v)

∂u
=
{

1 +
(u
v

)θ}−1−1/θ

and can be easily inverted:

F−1(y|u) = u
(
y−

θ
1+θ − 1

)−1/θ

, (6.23)

which makes simulation of jumps very simple. The two-dimensional subordi-
nator has the following representation

Xs =
∞∑
i=1

U (−1)(Γi)1[0,s](Vi);

Ys =
∞∑
i=1

U (−1)(F−1(Wi|Γi))1[0,s](Vi),

where (Wi) and (Vi) are independent sequences of independent random vari-
ables, uniformly distributed on [0, 1] and (Γi) is an independent sequence of
jump times of a standard Poisson process.

Figure 6.6 depicts the simulated trajectories of a subordinator with 1
2 -stable

margins and dependence given by Clayton Lévy copula with parameter θ
for different modes of dependence (different values of θ). On the left graph
the dependence is very weak; the shocks in the two components are almost
completely independent. On the right graph the dependence is stronger; here
big shocks in the two components tend to arrive at the same time; however
their exact magnitude may be very different. Finally, on the bottom graph
we have almost complete dependence: the shocks arrive together and have
approximately the same magnitude.

Further reading

Algorithms for simulating random variables with explicit density can be
found in Devroye [113]. Simulation methods for general α-stable random
variables were first published by Chambers, Mallows, and Stuck [87]. The
computer program which implements their method, can also be found in
Samorodnitsky and Taqqu [344]. For details on approximating small jumps
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FIGURE 6.6: Simulated trajectories of a two-dimensional subordinator
under weak (left), medium (right) and strong (bottom) dependence.

of Lévy processes by a Brownian motion, the interested reader should consult
the original article of Asmussen and Rosinski [12] as well as Wiktorsson [381].
Rosinski [338] gives a comprehensive survey of series representations for Lévy
processes. The case of stable processes is also treated in Samorodnitsky and
Taqqu [344]. Details on multivariate Lévy processes can be found in Chapter
5 of this book.

In this chapter we did not discuss Euler schemes for Lévy processes because
we do not use them in this book and the scope of their application in finance
is somewhat limited. Nevertheless it is a rapidly evolving field of research.
Interested readers are referred to Jacod [211, 212] for a survey of recent results
on Euler schemes for Lévy processes. Rubenthaler [340] also discusses Euler
schemes for Lévy processes, treating the more realistic case when increments
of the driving Lévy process cannot be simulated directly.
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Simulating Lévy processes 205

Louis BACHELIER

Louis Bachelier has been called the founder of mathematical finance and
the “father of modern option pricing theory”. Born in Le Havre in 1870, Louis
Bachelier moved to Paris around 1892 and worked for some time in the Paris
Bourse, where he became familiar with the workings of financial markets.
Bachelier then undertook a doctoral thesis in mathematical physics at the
Sorbonne under the supervision of Poincaré. His thesis, published in 1900
under the title Théorie de la Spéculation [18], dealed with the probabilistic
modelling of financial markets and marked the beginning of two scientific
theories: the theory of Brownian motion and the mathematical modelling of
financial markets.

Five years before Einstein’s famous 1905 paper on Brownian Motion, Bache-
lier worked out in his doctoral thesis the distribution function for what is now
known as the Wiener process (the stochastic process that underlies Brownian
Motion), the integral equation verified by the distribution (later called the
Chapman Kolmogorov equation) and linked it mathematically to Fourier’s
heat equation. Bachelier’s work was initially underestimated by the academic
community. It appears that Einstein in 1905 ignored the work of Bachelier,
but Kolmogorov knew of it and brought it to the knowledge of Paul Lévy many
years later. In 1931, Lévy wrote a letter of apology to Bachelier recognizing
his work. Bachelier’s treatment and understanding of the theory of Brownian
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Motion is more mathematical than in Einstein’s 1905 paper, which was more
focused on Brownian motion of physical particles. In his thesis, Bachelier also
derived the distribution of the maximum of Brownian motion on an interval
and uses it to study barrier options. Later, Paul Lévy and William Feller
called the Brownian motion process the Bachelier-Wiener Process.

Bachelier, whose name is frequently quoted today in works of probability
and mathematical finance, was rejected by the mathematical community of
his time. Bachelier’s works are formulated in the language of a physicist and
his mathematics was not rigorous (since many of the mathematical techniques
necessary to formulate it had not been developed at the time) but the results
he obtained were original and basically correct. William Feller writes ([141], p
323):“Credit for discovering the connection between random walks and diffu-
sion is due principally to Louis Bachelier. His work is frequently of a heuristic
nature but he derived many new results. Kolmogorov’s theory of stochastic
processes of the Markov type is based largely on Bachelier’s ideas.”

Bachelier’s work on stochastic modelling of financial markets was unearthed
in the 1950s by L.J. Savage and P. Samuelson in the United States and an
English translation of his thesis subsequently appeared in [100]. Inspired
by his work, Samuelson formulated the log-normal model for stock prices
which formed the basis for the Black-Scholes option pricing model. However,
Bachelier died in 1946 and did not live to see the development of modern
mathematical finance.

Bachelier’s intuitions were ahead of his time and his work was not appre-
ciated in his lifetime. His contribution has by now been amply recognized:
the centenary of his thesis was celebrated in 2000 by a international congress
held in Paris. Interesting material on Bachelier’s life and scientific work may
be found in [375, 101].

© 2004 by CRC Press LLC



Chapter 7

Modelling financial time series with
Lévy processes

Si [. . . ] j’ai comparé les résultats de l’observation à ceux de la théorie,
ce n’était pas pour vérifier des formulaes établies par des méthodes
mathématiques mais pour montrer que le marché, à son insu, obéit à
une loi qui le domine: la loi de la probabilité.

Louis Bachelier Théorie de la spéculation (1900)

The purpose of models is not to fit the data but to sharpen the questions

Samuel Karlin
11th R. A. Fisher Memorial Lecture, Royal Society, April 1983

As mentioned in the introduction, one of the principal motivations for de-
parting from Gaussian models in finance has been to take into account some of
the observed empirical properties of asset returns which disagree with these
models. Lévy processes entered financial econometrics in 1963 when Man-
delbrot [278] proposed α-stable Lévy processes as models for cotton prices.
Since then a variety of models based on Lévy processes have been proposed as
models for asset prices and tested on empirical data. In this chapter we dis-
cuss some of these models and examine how they fare in reproducing stylized
properties of asset prices.

Market prices are observed in the form of time series of prices, trading vol-
umes and other quantities observed at a discrete set of dates. What is then the
motivation for using continuous time model to represent such data? As long
as one considers prices sampled at a single — say daily — frequency, the usual
approach is to represent the time series as a discrete-time stochastic process
where the time step corresponds to the interval between observations: there

© 2004 by CRC Press LLC



208 Financial Modelling with jump processes

is a long tradition of time series modelling using this approach in financial
econometrics [76, 361, 63]. However applications involve different time hori-
zons, ranging from intraday (minutes) to weekly or longer and, as we shall
see below, the statistical properties of asset returns corresponding to different
time intervals can be quite different! Therefore, a model may perform well
based on returns on a given time horizon, say ∆ but fail to do so for another
horizon ∆′. Also, most time series models in popular use are not stable un-
der time aggregation: for example, if returns computed at interval ∆ follow
a GARCH(1,1) process, returns computed at interval 2∆ do not in general
follow a GARCH process [117]. Defining a different time series model for
every sampling frequency is definitely a cumbersome approach. By contrast,
when price dynamics are specified by a continuous time process, the distribu-
tion and properties of log-returns at all sampling intervals are embedded in
the definition of the model. Moreover, all discrete-time quantities will have a
well-defined limit as the sampling interval becomes small.

In this chapter we will review some of the statistical properties of asset
returns and compare them with class of exponential-Lévy models in which the
asset price St is represented as

St = S0 exp(Xt),

where X is a Lévy process, i.e., a process with stationary independent incre-
ments (see Chapters 3 and 4). These models are simple to study and we will
examine to what extent they can accommodate observed features of financial
data.

Section 7.1 presents some commonly observed statistical properties of as-
set returns, known as stylized empirical facts in the financial econometrics
literature. In order to examine the adequacy of a statistical model, first one
estimates model parameters from time series of asset returns and then com-
pares the properties of the estimated model with the statistical properties
observed in the returns. While it is possible to define a variety of models
which can potentially reproduce these empirical properties, estimating these
models from empirical data is not always an obvious task. We will present an
overview of estimation methods and some of their pitfalls in Section 7.2. Dis-
tributional properties of asset returns at a given time horizon are discussed
in Section 7.3. We shall observe that Lévy processes enable flexible mod-
elling of the distribution of returns at a given time horizon, especially when
it comes to modelling the tails of the distribution. Less obvious is to model
the time-aggregation properties of returns: the dependence of their statistical
properties with respect to the time horizon. This issue is discussed in Sec-
tion 7.4: we define in particular the notion of self-similarity and discuss its
relevance to the study of asset returns.

A lot of recent studies have been devoted to the study of realized volatility
of financial assets and its empirical properties. In Section 7.5 we define this
notion and examine what exponential Lévy models have to say about realized
volatility.
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Empirical observations consist of a single trajectory of the price process
and the profit/loss of an investor is actually determined by the behavior of this
single sample path, rather than by properties averaged over paths. Pathwise
properties such as measure of smoothness of sample paths are discussed in
Section 7.6.

In the following, St will denote the price of a financial asset — a stock, an
exchange rate or a market index — and Xt = lnSt its logarithm. Given a
time scale ∆, the log return at scale ∆ is defined as:

rt(∆) = Xt+∆ −Xt. (7.1)

∆ may vary between a minute (or even seconds) for tick data to several
days. We will conserve the variable ∆ to stress the fact that the statistical
properties of the returns depend on ∆ in a nontrivial way. Observations are
sampled at discrete times tn = n∆. Time lags will be denoted by the Greek
letter τ ; typically, τ will be a multiple of ∆ in estimations. For example,
if ∆ =1 day, corr[rt+τ (∆), rt(∆)] denotes the correlation between the daily
return at period s and the daily return τ periods later. When ∆ is small —
for example of the order of minutes — one speaks of “fine” scales whereas if
∆ is large we will speak of “coarse-grained” returns. Given a sample of N
observations (rtn(∆), n = 1 . . . N), the sample average of a function f(.) of
returns is defined as:

< f(r(∆)) > =
1
N

N∑
n=1

f(rtn(∆)). (7.2)

Sample averages are, of course, not to be confused with expectations, which
are denoted in the usual way by E[f(r(∆))].

7.1 Empirical properties of asset returns

The viewpoint of most market analysts in “explaining” market fluctuations,
conveyed by most financial newspapers and journals, has been and remains
an event-based approach in which one attempts to rationalize a given market
movement by relating it to an economic or political event or announcement.
From this point of view, one could easily imagine that, since different assets are
not necessarily influenced by the same events or information sets, price series
obtained from different assets and — a fortiori — from different markets will
exhibit different properties. After all, why should properties of corn futures be
similar to those of IBM shares or the Dollar/Yen exchange rate? Nevertheless,
the result of more than half a century of empirical studies on financial time
series indicates that this is the case if one examines their properties from a
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FIGURE 7.1: BMW daily log-returns.

statistical point of view. The seemingly random variations of asset prices do
share some quite nontrivial statistical properties. Such properties, common
across a wide range of instruments, markets and time periods are called stylized
empirical facts [92].

Stylized facts are thus obtained by taking a common denominator among
the properties observed in studies of different markets and instruments. Ob-
viously by doing so one gains in generality but tends to lose in precision
of the statements one can make about asset returns. Indeed, stylized facts
are usually formulated in terms of qualitative properties of asset returns and
may not be precise enough to distinguish among different parametric models.
Nevertheless, we will see that, albeit qualitative, these stylized facts are so
constraining that it is not even easy to exhibit an ( ad hoc) stochastic process
which possesses the same set of properties and stochastic models have gone
to great lengths to reproduce these stylized facts.

We enumerate here some of these empirical facts; for further details readers
are referred to [92, 76, 313]:

1. Heavy tails: the (unconditional) distribution of returns seems to dis-
play a heavy tail with positive excess kurtosis with a tail index which is
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finite, higher than two and less than five for most data sets studied. In
particular this excludes stable laws with infinite variance and the nor-
mal distribution. Power-law or Pareto tails reproduce such behavior,
but the precise form of the tails is difficult to determine and some au-
thors have suggested models with exponential tails (“semiheavy tails”)
as an alternative.

2. Absence of autocorrelations: (linear) autocorrelations of asset re-
turns are often insignificant, except for very small intraday time scales
(� 20 minutes) for which microstructure effects come into play. Figure
7.3 illustrates this fact for a stock and an exchange rate.

3. Gain/loss asymmetry: one observes large drawdowns in stock prices
and stock index values but not equally large upward movements.1

4. Aggregational normality: as one increases the time scale ∆ over
which returns are calculated, their distribution looks more and more
like a normal distribution. In particular, the shape of the distribution is
not the same at different time scales: the heavy-tailed feature becomes
less pronounced as the time horizon is increased.

5. Volatility clustering: “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small
changes” [278]. A quantitative manifestation of this fact is that, while
returns themselves are uncorrelated, absolute returns |rt(∆)| or their
squares display a positive, significant and slowly decaying autocorrela-
tion function.

6. Conditional heavy tails: even after correcting returns for volatility
clustering (e.g., via GARCH-type models), the residual time series still
exhibit heavy tails. However, the tails are less heavy than in the uncon-
ditional distribution of returns.

7. Slow decay of autocorrelation in absolute returns: the auto-
correlation function of absolute (or squared) returns decays slowly as
a function of the time lag, roughly as a power law with an exponent
β ∈ [0.2, 0.4]. An example is shown in Figure 7.3. This is sometimes
interpreted as a sign of long-range dependence in volatility.

8. “Leverage” effect: most measures of volatility of an asset are nega-
tively correlated with the returns of that asset.

9. Volume/volatility correlation: trading volume is positively corre-
lated with all measures of volatility. The same holds for other measures
of market activity such as the number of trades.

1This property is not true for exchange rates where there is a higher symmetry in up/down
moves.
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10. Asymmetry in time scales: coarse-grained measures of volatility
predict fine-scale volatility better than the other way round [181].
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FIGURE 7.2: Probability density of log-returns compared with the Gaus-
sian distribution. Left: 30 minute returns for S&P500 index. Right: 5 minute
log-returns for Deutschemark-US Dollar exchange rates.

7.2 Statistical estimation methods and their pitfalls

All estimation approaches are based on choosing model parameters in order
to optimize a certain criterion computed using the observed returns (rt, t =
1 . . . N). In the maximum likelihood method, this criterion is the likelihood
function (see 7.2.1). In the (generalized) method of moments, the criterion
is based on the difference of some moments of the distribution and the cor-
responding empirical moments. In most cases of interest, the resulting opti-
mization problem cannot be solved analytically and numerical methods must
be used.

7.2.1 Maximum likelihood estimation

The most common method for estimating a parametric model for the distri-
bution of returns is the maximum likelihood method: given a functional form
f(x; θ) for the density of log-returns and observations (rt, t = 1 . . . N), we
choose the model parameter θ to maximize the likelihood that the observed
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FIGURE 7.3: Left: Autocorrelation function of log-returns, USD/Yen ex-
change rate, ∆ = 5 minutes. Right: Autocorrelation function of squared
log-returns: S&P500 futures, ∆ = 30 minutes.

data have been generated from the model:

max
θ

N∏
t=1

f(rt; θ). (7.3)

This is of course equivalent to maximizing the log-likelihood function

l(θ) =
N∑
t=1

ln f(rt; θ). (7.4)

If the functional form of f(.|θ) is known, one can derive an equation for the
maximizers of l(θ) by differentiating l and try to solve it numerically. Un-
fortunately, for many of the Lévy processes seen in Chapter 4, the likelihood
function (which is here simply the density of the process at time ∆) is not
known in closed form but involves special functions which have to be com-
puted numerically. Therefore even the computation of the likelihood function
must be done numerically. If the log-likelihood function is a concave function
of the parameters, then (7.4) has a unique maximizer which can be com-
puted by a gradient descent algorithm such as Newton-type methods or the
BFGS method. But if the log-likelihood is not concave, then (7.3) may or
may not have a unique maximum: typically, it may have several local max-
ima. Let us stress that numerical optimization of non-convex functions in
several dimensions is far from trivial and is a topic of ongoing research. This
point is often disregarded in many empirical studies, where some black-box
optimization software (often gradient based) is used to compute maximum
likelihood estimators. Even if the likelihood does have a unique global max-
imum, such algorithms may not converge to it: indeed, depending on how it
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is initialized, a gradient-based optimization algorithm will typically converge
to a local maximum.

In many of the models described in Chapter 4, while the density or likeli-
hood function of the process is not known in closed form, the Lévy measure
of the process has a simple parametric form. Using the relation between the
probability density and the Lévy density given in Chapter 3, one can approxi-
mate the likelihood function of increments on a small time interval ∆. Denote
by ρt(.) the density of Xt. The following result is shown in [341, Theorem 1]:

PROPOSITION 7.1 Small time expansion of densities [341]
Assume that the Lévy process Xt has a C∞ density ρt(x), the density ν(x)

of the Lévy measure is C∞ and verifies:

∀ε > 0,
∫
|x|≥ε

|ν′(x)|2
ν(x)

dx <∞ and

∃h ∈ C∞ with h(x) ≤ c|x|2 and h(x) > 0 if ν(x) > 0

such that
∫
|x|≤1

∣∣∣∣ ddxh(x)ν(x)
∣∣∣∣
2
dx

ν(x)
<∞. (7.5)

Denote by νε(x) = ν(x)1|x|≥ε the truncated Lévy density. Then for any N ≥ 1
and any x0 > 0 there exist ε0 > 0 and t0 > 0 such that for 0 < ε ≤ ε0 and
any t < t0:

|x| > x0 > 0 : ρt(x) = e−t
∫
νε(y)dy

N−1∑
i=1

ti

i!
ν∗iε (x) +O(tN ). (7.6)

A condition which ensures that a Lévy process has a C∞ density was given
in Proposition 3.12: this is the case for example if σ > 0 or if σ = 0 and X is
a tempered stable process with α± > 0. νε is explicitly known in most cases,
but its higher convolution powers ν

∗i
ε are not easy to compute so in practice

one uses a first order expansion to approximate the density ρt. In the case of
finite intensity, one does not need the truncation and ε = 0.

When the log-price is a compound Poisson process [320] with intensity λ
and jump size density ν0 the first order expansion above leads to the following
approximation for the likelihood/density of increments:

ρ∆(x) � λ∆ν0(x) + (1 − λ∆)δ0. (7.7)

In this case the “likelihood function” is actually singular (it is a distribution)
so the above equation must be interpreted in the following way: Xt+∆−Xt = 0
with probability � 1−λ∆ and, conditionally on Xt+∆−Xt �= 0, the distribu-
tion of (nonzero) returns is the jump size distribution ν0 whose parameters can
be estimated by a maximum likelihood procedure. The maximum likelihood
estimate of λ using the approximation (7.7) is then simply the proportion of
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zeroes in the log-returns: if N0 is the number of zeroes observed in the series
(rt(∆)) then

λ̂ =
1 − N0

N

∆
.

However this approximation is valid only if λ∆ << 1 which means that a large
fraction of the returns are zero! This is not the case in empirical data, even
at very high frequencies, pointing to an inadequacy of the compound Poisson
model. In fact, since the proportion of zero returns remains finite even at the
tick level, λ̂ is typically of order 1/∆ and tends to increase without bound
as ∆ → 0 (see for examples the empirical study in [199]), indicating that
either the continuous time limit has an infinite number of jumps per unit
time (infinite activity, in the sense defined in Chapter 3) or that a diffusion
component has been left out.2

The jump intensity λ can also be estimated from the time between trades:
in the compound Poisson model the interval between price changes should
follow an exponential distribution. Figure 7.4 compares the distribution of
time intervals between trades for KLM tick data (NYSE:KLM) from 1993
to 1998 with an exponential distribution estimated by a maximum likelihood
method. In the case of the exponential distribution the maximum likelihood
estimate λ̂ of the parameter corresponds to the sample mean: λ̂ is simply
the average time between two trades, in this case 859 seconds. Therefore the
estimated exponential model and the empirical distribution have the same
mean. However the sample has a kurtosis of 24.6, much higher than the
kurtosis of an exponential distribution which is equal to 9.

The log-log plot clearly illustrates that the distribution of time intervals
between trades does not resemble an exponential; this is further confirmed by
the quantile-quantile plot in Figure 7.4 which shows that their tails behave
very differently. All these remarks point to the fact that a compound Poisson
process with drift is not a good representation of price dynamics: either a
diffusion component must be added or the process should be allowed to have
infinite activity.

In jump-diffusion models, the diffusion components are supposed to repre-
sent “normal” market returns and the jump component serves to capture rare
events, i.e., abnormally large returns of either sign. In the case of a jump-
diffusion model Xt = σWt +

∑Nt

j=1 Yj , Yj ∼ ν0 with finite jump intensity λ
the small time approximation becomes:

ρ∆(x;λ, θ) � λ∆f1(x; θ) + (1 − λ∆)f0(x; θ), (7.8)

where f0 is the normal N(µ∆, σ2∆) density and f1 = f0 ∗ ν0 is the transition
density given that one jump has occurred during [t, t+∆], that is, the density
of W∆ +Y1, given by the convolution of f0 with the jump size distribution ν0.

2Note that this problem can go unnoticed if one estimates the model at a single sampling
interval.
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FIGURE 7.4: Left: The distribution of time intervals between trades, com-
pared with an exponential distribution estimated by maximum likelihood.
KLM tick data, NYSE, 1993–1998. Right: Quantiles of the exponential dis-
tribution plotted against the quantiles of the empirical distribution of trading
intervals (durations). KLM tick data, NYSE, 1993–1998.

In order for this approximation to be useful one needs to know in closed form
the density f0 ∗ ν0. This is the case of course if the jump size is Gaussian (the
Merton model) or constant (Brownian motion with Poisson jumps) but there
are not many other cases where f1 is known. Here θ denotes the vector of
parameters in f0, f1; these do not depend on the intensity λ. The likelihood
function therefore takes the form

l(λ, θ) =
N∏
i=1

[ρ∆(x;λ, θ)] �
N∏
i=1

[f0(xi; θ) + λ∆(f1(xi; θ) − f0(xi; θ))]. (7.9)

We notice that the dependence in λ is a polynomial of degree N whose coef-
ficients depend on the sample data. Since the above approximation is valid
for λ∆ << 1, λ̂ is obtained by minimizing (7.9) over λ ∈]0, 1/∆[. In a finite
sample this frequently leads to a “overestimated” jump rate λ̂ which increase
as ∆ becomes smaller [224, 199]. The interpretation of jumps as rare events
is then not clear: to maintain a coherent vision as ∆ varies one is naturally
led to formulate a model allowing infinite jump rates.

In the case of infinite activity Lévy processes we must rely either on the
knowledge of the analytical expression of the density as a function of the pa-
rameters or use expansions such as (7.6). If the derivatives of the likelihood
function with respect to parameters are known, a gradient based algorithm
can be used to numerically compute the maximum likelihood estimator. This
is the case for the five parameter class of generalized hyperbolic models intro-
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duced in Section 4.6, for which the log-likelihood function is given by:

l(λ, α, β, δ) = lnC(λ, α, β, δ) + (
λ

2
− 1

4
)
N∑
t=1

ln(δ2 + (rt − µ)2)

+
N∑
t=1

[lnKλ− 1
2
(α
√
δ2 + (rt − µ)2) + β(rt − µ)], (7.10)

where C(λ, α, β, δ) is given in (4.38). Computing (7.10) involves N numerical
evaluations of the modified Bessel function Kλ−1/2. For this model Prause
[319] gives analytical expressions (again involving special functions) of the
derivatives of l with respect to the parameters ([319], p. 10–11). Unfortu-
nately the corresponding first order conditions cannot be solved analytically
and a numerical optimization procedure must be used. Let us emphasize
again that log-likelihood functions are not necessarily concave functions of
parameters in these models, leading to multiple maxima which are not easy
to locate by gradient-based numerical methods, a point overlooked in most
empirical studies. Barndorff-Nielsen and Blaesild [34] point out the flatness
of the likelihood function for the case of the hyperbolic distribution. Blaesild
and Sørensen [61] provide a gradient-based algorithm for maximum likelihood
estimation of hyperbolic distributions but due to this lack of concavity their
algorithm often fails to converge or gives a δ very close to zero [319, 329].

Given the possibility of nesting various models in larger and larger para-
metric families, it is tempting to nest everything into a huge family (such as
generalized hyperbolic) and estimate parameters for this hyper-family. The
point is that by increasing the dimension of parameter space the maximization
problem becomes less and less easy. For example, [319] points out that the
likelihood landscape of the generalized hyperbolic distribution is even flatter
than the subfamily of hyperbolic distributions. Consequently, using the full
generalized hyperbolic family leads to imprecise parameter estimates, unless
some ad hoc parametric restrictions are made [319, 329]) which amounts to
choosing a subfamily of models.

7.2.2 Generalized method of moments

While there are few Lévy processes for which the likelihood functions are
available in closed form, expression for moments and cumulants are almost
always available in closed form as a function of model parameters: they are
easily obtained by differentiating the characteristic function (see Equation
2.21). This enables to construct method of moments estimators by matching
empirical moments with theoretical moments and solving for the parameters.
The generalized method of moments (GMM) [187] consists in choosing the

parameter θ to match — in a least squares sense — a given set of sample
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averages:

θ∗ = arg min
θ

tV (θ)WV (θ), (7.11)

V (θ) = (< fj(rt) > −E[fj(rt)|θ] )j=1...m, (7.12)

where the fj(.) are a set of quantities chosen to generate the moment condi-
tions and W is a symmetric positive definite weighting matrix.

The “generalized moments” < fj(rt) > can represent the sample average of
any quantity. This includes the usual moments and cumulants — sample mo-
ments of any order for returns, sample autocovariances of returns, absolute
returns — but also empirical probabilities (fj = 1[a,b]) and quantiles, rep-
resented by the empirical distribution (histogram) of returns. Thus, “curve
fitting” methods where model parameters are estimated by performing least
squares fit on a histogram or empirical autocorrelation function are particular
cases of the GMM method and therefore the asymptotic theory developed for
GMM applies to them.

Since sample moments are not independent from each other, we should
expect that the errors on the various moments are correlated so it might not
be desirable to used a diagonal weighting matrix W : ideally, W should be
a data dependent matrix. An “optimal” choice of the weighting matrix is
discussed in [187], see also [175].

The choice of moment conditions for a GMM estimator can have very pro-
nounced effects upon the efficiency of the estimator. A poor choice of moment
conditions may lead to very inefficient estimators and can even cause iden-
tification problems. The uniqueness of the minimizer in (7.11) is also an
issue: choosing moment conditions fj(.) that ensure identification may be a
nontrivial problem.

In the case of a model specified by a Lévy process for the log-prices, the
simplest moment conditions could be the first four moments of the returns
rt(∆) (in order for mean, variance, skewness and kurtosis to be correctly re-
produced), but these may not be enough to identify the model. In particular,
if the moment conditions are specified only in terms of returns at a given fre-
quency ∆ — say, daily — then this may result in overfitting of the distribution
of daily returns while the model gives a poor representation of distributions
at other time scales. It is thus better to use moment conditions involving
returns from several time horizons, in order to ensure the coherence of the
model across different time resolutions.

An issue important for applications is capturing the behavior of the tails.
Including tail-sensitive quantities such as probabilities to exceed a certain
value (fj = 1[b,∞[) prevents from overfitting the center of the distribution
while poorly fitting the tails. Most four parameter families of Lévy processes
such as the ones presented in Chapter 4 allow flexible tail behavior. Of course
the number of parameters (four or more) is not the right criterion here: the
parameterization should allow different types of tail decay as well as asym-
metry in the left and right tail. The generalized hyperbolic family, presented
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in Section 4.6 allows such freedom. Another flexible parametric family is that
of tempered stable processes, presented in Section 4.5.

Since Lévy processes have independent increments, there is no point in
including autocovariances of returns, absolute returns or their squares as mo-
ment conditions: if they are not zero, the corresponding moment conditions
cannot be satisfied. This is of course a limitation of Lévy processes and not
of GMM.

7.2.3 Discussion

In some cases the density of returns is completely characterized by (all of)
its moments (mn, n ≥ 1). One may then interpret this by saying that the
maximum likelihood estimate is a GMM estimator which uses as moment
condition all moments of the distribution, weighted in a particular way. The
question is then: why do we use moment conditions instead of maximizing the
likelihood? The answer is that there are several advantages to using GMM:

• Robustness: GMM is based upon a limited set of moment conditions.
For consistency, only these moment conditions need to be correctly spec-
ified, whereas MLE in effect requires correct specification of every con-
ceivable moment condition. In this sense, GMM is robust with respect
to distributional misspecification. The price for robustness is loss of ef-
ficiency with respect to the MLE estimator. Keep in mind that the
true distribution is not known so if we erroneously specify a distribution
and estimate by MLE, the estimator will be inconsistent in general (not
always).

• Feasibility: in many models based on Lévy processes the MLE estimator
is not available, because we are not able to compute the likelihood func-
tion while GMM estimation is still feasible since characteristic functions
(therefore moments) are often known in closed form.

A large part of the econometrics literature is concerned with convergence
properties of the estimators such as the ones described above when the sample
size N is large. Two kinds of properties of estimators are of interest here:
consistency — whether the estimators θN converge to their true value θ0
when the sample becomes large — and the distribution of the error θN − θ0.
Consistency is usually obtained by applying a law of large numbers and in
some cases, the estimation error θN − θ0 can be shown to be asymptotically
normal, i.e., verify a central limit theorem when N → ∞ which then enables
to derive confidence intervals by approximating its distribution by a normal
distribution.

Convergence of maximum likelihood estimators is a classical topic and Lévy
processes do not introduce any new issue here. Large sample properties of
GMM estimators have been studied in [187]. Contrarily to maximum likeli-
hood methods that require the data to be generated from i.i.d. noise, GMM
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is only based on the convergence of the (generalized) sample moments which
is valid under weaker conditions. While for Lévy processes increments are in-
deed i.i.d., as mentioned in Section 7.1 there is ample evidence for non-linear
dependence in asset returns so robustness to departure from the i.i.d. case
is clearly an advantage with GMM. However the consistency and asymptotic
normality of the GMM estimator clearly require the chosen moments to be
finite. In the presence of heavy tails, this is far from being obvious: as we
will see in the next section, empirical studies indicate that even the fourth
moment of returns is not finite for most data sets which have been studied so
even the second sample moment may not give an asymptotically normal esti-
mator of the second moment of the distribution of returns [267, 268]. In this
case higher order sample moments n ≥ 4 are not even consistent estimators:
they diverge when N → ∞.

7.3 The distribution of returns: a tale of heavy tails

Empirical research in financial econometrics in the 1970s mainly concen-
trated on modelling the unconditional distribution of returns, defined as:

F∆(u) = P (rt(∆) ≤ u). (7.13)

The probability density function (PDF) is then defined as its derivative f∆ =
F ′

∆. As early as the 1960s, Mandelbrot [278] pointed out the insufficiency
of the normal distribution for modelling the marginal distribution of asset
returns and their heavy tails. Since then, the non-Gaussian character of the
distribution of price changes has been repeatedly observed in various market
data. One way to quantify the deviation from the normal distribution is by
using the kurtosis of the distribution F∆ defined as

κ̂(∆) =
〈(rt(∆) − 〈rt(∆)〉)4〉

ˆσ(∆)
4 − 3, (7.14)

where σ̂(∆)2 is the sample variance of the log-returns rt(∆) = X(t+∆)−X(t).
The kurtosis is defined such that κ = 0 for a Gaussian distribution, a positive
value of κ indicating a “fat tail,” that is, a slow asymptotic decay of the PDF.
The kurtosis of the increments of asset prices is far from its Gaussian value:
typical values for T = 5 minutes are [76, 92, 93, 313]: κ � 74 (USD/DM
exchange rate futures), κ � 60 (US$/Swiss Franc exchange rate futures),
κ � 16 (S&P500 index futures) . One can summarize the empirical results by
saying that the distribution f∆ tends to be non-Gaussian, sharp peaked and
heavy tailed, these properties being more pronounced for intraday time scales
(∆ < 1 day). This feature is consistent with a description of the log-price as a
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Lévy process: all Lévy processes generate distributions with positive kurtosis
and the Lévy measure can be chosen to generate heavy tails such as to fit
the tails of return for any given horizon ∆. Once the kurtosis is fixed for a
given ∆, the kurtosis for other maturities decays as 1/∆ (see remarks after
Proposition 3.13). However in empirical data the kurtosis κ(∆) decays much
more slowly [93], indicating an inconsistency of the Lévy model across time
scales.

These features are not sufficient for identifying the distribution of returns
and leave a considerable margin for the choice of the distribution. Fitting
various functional forms to the distribution of stock returns and stock price
changes has become a popular pastime. Dozens of parametric models have
been proposed in the literature: α-stable distributions [278], the Student t
distribution [62], hyperbolic distributions [125], normal inverse Gaussian dis-
tributions [30], exponentially tempered stable distributions [67, 93, 80] are
some of them. All of these distributions are infinitely divisible and are there-
fore compatible with a Lévy process for the log-price X. In coherence with the
empirical facts mentioned above, these studies show that in order for a para-
metric model to successfully reproduce all the above properties of the marginal
distributions it must have at least four degrees of freedom governed by differ-
ent model parameters: a location parameter, a scale (volatility) parameter,
a parameter describing the decay of the tails and eventually an asymmetry
parameter allowing the left and right tails to have different behavior. Nor-
mal inverse Gaussian distributions [30], generalized hyperbolic distributions
[125] and tempered stable distributions [67, 93, 80] meet these requirements.
The choice among these classes is then a matter of analytical and numeri-
cal tractability. However a quantitative assessment of the adequacy of these
models requires a closer examination of the tails of returns.

7.3.1 How heavy tailed is the distribution of returns?

One of the important characteristics of financial time series is their high
variability, as revealed by the heavy tailed distributions of their increments
and the non-negligible probability of occurrence of violent market movements.
These large market movements, far from being discardable as simple outliers,
focus the attention of market participants since their magnitude may be such
that they account for an important fraction of the total return over a long
period. Not only are such studies relevant for risk measurement but they are
rendered necessary for the calculation of the quantiles of the profit-and-loss
distribution, baptized Value-at-Risk, which is required to determine regula-
tory capital. Value-at-Risk (VaR) is defined as a high quantile of the loss
distribution of a portfolio over a certain time horizon ∆:

P (W0(rt(∆) − 1) ≤ VaR(p, t,∆)) = p, (7.15)

where W0 is the present market value of the portfolio, rt(∆) its (random)
return between t and t + ∆. ∆ is typically taken to be one day or ten days
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and p = 1% or 5%. VaR can be computed by estimating a stochastic model
for the returns and then computing or simulating the VaR of a portfolio within
the model. Calculating VaR implies a knowledge of the tail behavior of the
distribution of returns.

The non-Gaussian character of the distribution makes it necessary to use
other measures of dispersion than the standard deviation in order to cap-
ture the variability of returns. One can consider, for example, higher order
moments or cumulants as measures of dispersion and variability. However,
given the heavy tailed nature of the distribution, one has to know beforehand
whether such moments are well defined otherwise the corresponding sample
moments may be meaningless. The tail index k of a distribution may be
defined as the order of the highest absolute moment which is finite. The
higher the tail index, the thinner is the tail; for a Gaussian or exponential
tail, k = +∞ (all moments are finite) while for a power-law distribution with
density

f(x) ∼
|x|→∞

C

|x|1+α (7.16)

the tail index is equal to α. However a distribution may have a finite tail
index α without having a power-law tail as in (7.16): in fact any function f
verifying

f(x) ∼
|x|→∞

L(|x|)
|x|1+α where ∀u > 0,

L(ux)
L(x)

x→∞→ 1 (7.17)

has tail index α. Such functions are said to be regularly varying with index α.
A function L such as the one in (7.17) is said to be slowly varying: examples
are L(x) = ln(x) or any function with a finite limit at ∞. Knowing the tail
index of a distribution gives an idea of how heavy the tail is but specifies tail
behavior only up to a “slowly varying” function L. This may be good enough
to get an idea of the qualitative behavior but L(x) definitely does influence
finite sample behavior and thus makes estimation of tail behavior very tricky.

A simple method is to represent the sample moments (or cumulants) as
a function of the sample size n. If the theoretical moment is finite then
the sample moment will eventually settle down to a region defined around
its theoretical limit and fluctuate around that value. In the case where the
true value is infinite, the sample moment will either diverge as a function of
sample size or exhibit erratic behavior and large fluctuations. Applying this
method to time series of cotton prices, Mandelbrot [278] conjectured that the
theoretical variance of returns may be infinite since the sample variance did
not converge to a particular value as the sample size increased and continued
to fluctuate incessantly.

Figure 7.5 indicates an example of the behavior of the sample variance as
a function of sample size. The behavior of sample variance suggests that the
variance of the distribution is indeed finite: the sample variance settles down
to a limit value after a transitory phase of wild oscillations.
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FIGURE 7.5: Empirical second moment of log-returns as a function of
sample size: S&P500.

One way to go beyond the graphical analysis described above, is to use the
tools of extreme value theory, a branch of probability theory dealing precisely
with the probabilities of extreme events. Given a time series of n nonoverlap-
ping returns rt(∆), t = 0,∆, 2∆, . . . , n∆, the extremal (minimal and maximal)
returns are defined as:

mn(∆) = min{rt+k∆(∆), k ∈ [1 . . . n]}, (7.18)
Mn(∆) = max{rt+k∆(∆), k ∈ [1 . . . n]}. (7.19)

In economic terms, mn(∆) represents the worst relative loss over a time hori-
zon ∆ of an investor holding the portfolio P (t). A relevant question is to
know the properties of these extremal returns, for example the distribution of
mn(∆) and Mn(∆). In this approach, one looks for a distributional limit of
mn(∆) and Mn(∆) as the sample size n increases. If such a limit exists, then
it is described by the Fisher–Tippett theorem in the case where the returns
are i.i.d:

THEOREM 7.1 Extreme value theorem for i.i.d. sequences [142]
Assume the log-returns (rt(∆))t=0,∆t,2∆t,.. form an i.i.d. sequence with distri-
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bution F∆. If there exist normalizing constants (λn, σn) and a non-degenerate
limit distribution H for the normalized maximum return:

P

(
Mn − λn

σn
≤ x

)
→
x→∞H(x) (7.20)

then the limit distribution H is either a Gumbel distribution

G(x) = exp[exp(−x− λ

γ
)], x ∈ R, (7.21)

a Weibull distribution

Wα(x) = exp[−(
x

γ
)α], x < 0, α > 0, (7.22)

or a Fréchet distribution:

H(x) = exp[−(
x

γ
)−α], x > 0, α > 0. (7.23)

The three distributional forms can be parameterized in the following unified
form, called the Cramer–von Mises parameterization:

Hξ(x) = exp[−(1 + ξx)−1/ξ], (7.24)

where the sign of the shape parameter ξ determines the extremal type: ξ > 0
for Fréchet, ξ < 0 for Weibull and ξ = 0 for Gumbel. Obviously if one
knew the stochastic process generating the returns, one could also evaluate
the distribution of the extremes, but the extreme value theorem implies that
one need not know the exact parametric form of the marginal distribution
of returns F∆ to evaluate the distribution of extremal returns. The value of
ξ only depends on the tail behavior of the distribution F∆ of the returns: a
distribution F∆ with finite support gives ξ < 0 (Weibull) while a distribution
F∆ with a power-law tail with exponent α falls in the Fréchet class with
ξ = 1/α > 0. The Fréchet class therefore contains all regularly varying
distributions, which correspond to heavy tails. All other distributions fall in
the Gumbel class ξ = 0 which plays a role for extreme values analogous to
that of the normal distribution for sums of random variables: it is the typical
limit for the distribution of i.i.d. extremes. For example, the normal, log-
normal and exponential distribution fall in the Gumbel class, as well as most
distributions with an infinite tail index (see Table 7.1).

This theorem also provides a theoretical justification for using a simple
parametric family of distributions for estimating the extremal behavior of
asset returns. The estimation may be done as follows: one interprets the
asymptotic result above as

P (Mn ≤ u) = Hξ

(
u− λn
σn

)
= Hξ,λn,σn

(x). (7.25)
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TABLE 7.1: Tail properties of some Lévy processes

Lévy process Tail index Tail decay

α-stable α ∈]0, 2[ ∼ |x|−(1+α)

Variance gamma ∞ Exponential

NIG ∞ ∼ |x|−3/2 exp(−α|x| + βx)

Hyperbolic ∞ ∼ exp(−a|x|)

Student t (see Equation (7.44)) β > 0 ∼ A|x|−1−β

The estimation of the distribution of maximal returns then is reduced to a
parameter estimation problem for the three-parameter family Hξ,λ,σ. One
can estimate these parameters by the so-called block method [331, 265]: one
divides the data into N subperiods of length n and takes the extremal re-
turns in each subperiod, obtaining a series of N extremal returns (xi)i=1,...,N ,
which is then assumed to be an i.i.d. sequence with distribution Hξ,λ,σ. A
maximum likelihood estimator of (ξ, λ, σ) can be obtained by maximizing the
log-likelihood function:

L(λ, σ, ξ) =
N∑
i=1

l(λ, σ, ξ, xi), (7.26)

where l is the log density obtained by differentiating Equation (7.24) and
taking logarithms:

l(λ, σ, ξ, xi) = − lnσ −
(

1 +
1
ξ

)
ln
[
1 + ξ

(
xi − λ

σ

)]

−
[
1 + ξ

(
xi − λ

σ

)]1/ξ
. (7.27)

If ξ > −1 (which covers the Gumbel and Fréchet cases), the maximum likeli-
hood estimator is consistent and asymptotically normal [131].

To our knowledge, the first application of extreme value theory to financial
time series was given by Jansen and de Vries [221], followed by Longin [265],
Dacorogna et al [301], Lux [268] and others. Applying the techniques above
to daily returns of stocks, market indices and exchange rates these empirical
studies yield a positive value of ξ between 0.2 and 0.4, which means a tail
index 2 < α(T ) ≤ 5. In all cases, ξ is bounded away from zero, indicating
heavy tails belonging to the Fréchet domain of attraction but the tail index
is often found to be larger than two [221, 265, 92] — which means that the
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variance is finite and the tails lighter than those of stable Lévy distributions
[139], but compatible with a power-law (Pareto) tail with (the same) exponent
α(T ) = 1/ξ. These studies seem to validate the power-law nature of the
distribution of returns, with an exponent around three. Similar results are
obtained using a direct log-log regression on the histogram of returns [174] or
using semi-parametric methods [232]. Note however that these studies do not
allow us to pinpoint the tail index with more than a single significant digit.
Also, a positive value of ξ does not imply power-law tails but is compatible
with any regularly varying tail with exponent α = 1/ξ :

F∆(x) ∼
x→∞

L(x)
xα

, (7.28)

where L(.) is a slowly-varying function as in Equation(7.17). Any choice
of L will give a different distribution F∆ of returns but the same extremal
type ξ = 1/α, meaning that, in the Fréchet class, the extremal behavior
only identifies the tail behavior up to a (unknown!) slowly-varying function
which may in turn considerably influence the results of log-log fits on the
histogram! A more detailed study on high-frequency data using different
methods [301, 105] indicates that the tail index slightly increases when the
time resolution moves from intraday (30 minutes) to a daily scale. However,
the i.i.d. hypothesis underlying these estimation procedures has to be treated
with caution given the dependence present in asset returns [92]: dependence
in returns can cause large biases in estimates of the tail index [275].

7.4 Time aggregation and scaling

Although most empirical studies on the distribution of asset returns have
been done on daily returns, applications in trading and risk management
involve various time scales from a few minutes for intraday traders to several
months for portfolio managers. It is therefore of interest to see how the
statistical properties of returns rt(∆) vary as ∆ varies. Moving from small
time scales (say, intraday) to larger time scales (say, daily or weekly) — an
operation known as time aggregation — corresponds to adding up returns
at high frequency to obtain those at a lower frequency: the series rt(k∆) is
obtained by taking partial sums of blocks of k consecutive elements in the
series rt(∆). We describe in this section how time aggregation affects the
statistical properties of returns.

7.4.1 Self-similarity

The ideas of self-similarity and scaling correspond to the quest for statistical
quantities which remain unchanged under time aggregation. Since the pio-
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TABLE 7.2: A comparison of stylized empirical properties of asset
returns with statistical properties of Lévy processes

Log-prices Lévy processes

Absence of autocorrelation in
increments

True for all Lévy processes.

Heavy/semiheavy tails Possible by choosing Lévy measure
with heavy/semiheavy tails.

Finite variance True for any Lévy process with finite
second moment.

Aggregational normality True for any Lévy process with finite
second moment.

Jumps in price trajectories Always true.

Asymmetric distribution of
increments

Possible by choosing asymmetric Lévy
measure/distribution.

Volatility clustering: clustering
of large increments

Not true: large events occur at inde-
pendent random intervals.

Positive autocorrelation in
absolute returns

Not true: increments are independent.

“Leverage” effect:
Cov(r2t rt+∆t) < 0

Not true: increments are independent.
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neering work of Mandelbrot on cotton prices [278], a large body of literature
has emerged on self-similarity and fractal properties of market prices. The
1990s witnessed a regain of interest in this topic with the availability of high-
frequency data and a large number of empirical studies on asset prices have
investigated self-similarity properties of asset returns and various generaliza-
tions of them, under the names of scale invariance, fractality and multiscaling.
We attempt here to define some of the concepts involved and summarize the
evidence found in empirical studies.

Given a random process (Xt)t≥0, the fundamental idea behind the notion
of scaling is that an observer looking at the process at various time resolutions
will observe the same statistical properties, up to a rescaling of units. This is
formalized in the concept of self-similarity:

DEFINITION 7.1 Self-similarity A stochastic process is said to be
self-similar if there exists H > 0 such that for any scaling factor c > 0, the
processes (Xct)t≥0 and (cHXt)t≥0 have the same law:

(Xct)t≥0
d=(cHXt)t≥0. (7.29)

H is called the self-similarity exponent of the process X.
X is said to be self-affine if there exists H > 0 such that for any c > 0 the

processes (Xct)t≥0 and (cHXt)t≥0 have the same law up to centering:

∃bc : [0,∞[→ R, (Xct)t≥0
d=(bc(t) + cHXt)t≥0. (7.30)

In particular Xt must be defined for t ∈ [0,∞[ in order for the definition
to make sense. It is easy to see that a self-similar process cannot be station-
ary. Note that we require that the two processes (Xct)t≥0 and (cHXt)t≥0 are
identical in distribution: their sample paths are not equal but their statistical
properties (not just their marginal distributions!) are the same. Brownian mo-
tion (without drift!) is an example of a self-similar process with self-similarity
exponent H = 1/2. Brownian motion with drift is self-affine but not self-
similar. In the sequel we will focus on self-similar processes since self-affine
processes are obtained from self-similar ones by centering.

A consequence of Definition 7.1 is that for any c, t > 0, Xct and cHXt have
the same distribution. Choosing c = 1/t yields

∀t > 0, Xt
d= tHX1, (7.31)

so the distribution of Xt, for any t, is completely determined by the distribu-
tion of X1:

Ft(x) = P(tHX1 ≤ x) = F1(
x

tH
). (7.32)
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In particular if the tail of F1 decays as a power of x, then the tail of Ft decays
in the same way:

P(X1 ≥ x) ∼
x→∞

C

xα
⇒ [∀t > 0, P(X1 ≥ x) ∼

x→∞C
tαH

xα
=
C(t)
xα

]. (7.33)

If Ft has a density ρt we obtain, by differentiating (7.32), the following relation
for the densities:

ρt(x) =
1
tH
ρ1

( x
tH

)
. (7.34)

Substituting x = 0 in (7.34) yields the following scaling relation:

∀t > 0, ρt(0) =
ρ1(0)
tH

. (7.35)

Let us now consider the moments of Xt. From (7.31) it is obvious that
E[|Xt|k] <∞ if and only if E[|X1|k] <∞ in which case

E[Xt] = tHE[X1], Var(Xt) = t2H Var(X1), (7.36)
E[|Xt|k] = tkHE[|X1|k]. (7.37)

Can a Lévy process be self-similar? First note that for a Lévy process with
finite second moment, independence and stationarity of increments implies
Var(Xt) = tVar(X1), which contradicts (7.36) unless H = 1/2, which is the
case of Brownian motion. So a self-similar Lévy process is either a Brownian
motion (H = 1/2) or must have infinite variance. As observed in Chapter
3, if X is a Lévy process the characteristic function of Xt is expressed as:
Φt(z) = exp[−tψ(z)] where ψ(.) is the characteristic exponent of the Lévy
process. The self-similarity of X then implies following scaling relation for φ:

∀t > 0, Xt
d= tHX1 ⇐⇒ ∀t > 0,∀z ∈ R, ψ(tHz) = tψ(z). (7.38)

The only solutions of (7.38) are of the form ψ(z) = C|z|1/H where C is a
constant; in turn, this defines a characteristic function iff H ≥ 1/2. For
H = 1/2 we recover Brownian motion and forH > 1/2 we recover a symmetric
α-stable Lévy process with α = 1/H:

Φt(z) = exp[−σα|z|α], α =
1
H

∈]0, 2[.

Therefore the only self-similar Lévy processes are the symmetric α-stable
Lévy processes (also called Lévy flights): an α-stable Lévy process has self-
similarity exponentH = 1/α ∈ [0.5,+∞[. Note that we have assumed station-
ary of increments here: there are other self-similar processes with independent
but not stationary increments, see [346]. However stationarity of returns is a
crucial working hypothesis in statistical estimation.
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Let us emphasize that self-similarity has nothing to do with independent
increments. An important class of self-similar processes are fractional Brow-
nian motions [283, 344]: a fractional Brownian motion with self-similarity
exponent H ∈]0, 1[ is a real centered Gaussian process with stationary incre-
ments (BHt )t≥0 with covariance function:

cov(BHt , B
H
s ) =

1
2
(|t|2H + |s|2H − |t+ s|2H). (7.39)

For H = 1/2 we recover Brownian motion. For H �= 1/2, the covariance of
the increments decays very slowly, as a power of the lag; for H > 1/2 this
leads to long-range dependence in the increments [283, 344].

Comparing fractional Brownian motions and α-stable Lévy processes shows
that self-similarity can have very different origins: it can arise from high vari-
ability, in situations where increments are independent and heavy-tailed (sta-
ble Lévy processes) or it can arise from strong dependence between increments
even in absence of high variability, as illustrated by the example of fractional
Brownian motion. These two mechanisms for self-similarity have been called
the “Noah effect” and the “Joseph effect” by Mandelbrot [279]. By mixing
these effects, one can construct self-similar processes where both long range
dependence and heavy tails are present: fractional stable processes [344] offer
such examples. The relation between self-similar processes, Lévy processes
and Gaussian processes is summarized in Figure 7.4.1: the only self-similar
Lévy processes are the (symmetric) α-stable Lévy processes (also called Lévy
flights, see Chapter 3) for which H = 1/α ∈ [0.5,∞[. In particular Brownian
motion is self-similar with exponent H = 1/2.

7.4.2 Are financial returns self-similar?

Let us now briefly explain how the properties above can be tested empir-
ically in the case of asset prices. One should distinguish general tests for
self-similarity from tests of particular parametric models (such as α-stable
Lévy processes).

Assume that the log-price Xt = lnSt is a process with stationary incre-
ments. Since Xt+∆ −Xt has the same law as X∆, the density and moments
of X∆ can be estimated from a sample of increments.

The relation (7.35) has been used by several authors to test for self-similarity
and estimate H from the behavior of the density of returns at zero: first one
estimates ρt(0) using the empirical histogram or a kernel estimator and then
obtains an estimate of H as the regression coefficient of ln ρt(0) on ln t:

ln ρ̂t(0) = H ln
t

∆
+ ln ρ̂∆(0) + ε. (7.40)

Applying this method to S&P 500 returns, Mantegna and Stanley [285] ob-
tained H � 0.55 and concluded towards evidence for an α-stable model with

© 2004 by CRC Press LLC



Modelling financial time series with Lévy processes 231
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FIGURE 7.6: Self-similar processes and their relation to Lévy processes
and Gaussian processes.

α = 1/H � 1.75. However, the scaling relation (7.35) holds for any self-similar
process with exponent H and does not imply in any way that the process is a
(stable) Lévy process. For example, (7.35) also holds for a fractional Brownian
motion with exponent H — a Gaussian process with correlated increments
having long range dependence! Scaling behavior of ρt(0) is simply a necessary
but not a sufficient condition for self-similarity: even if (7.35) is verified, one
cannot conclude that the data generating process is self-similar and even less
that it is an α-stable process.

Another method which has often been used in the empirical literature to test
self-similarity is the “curve collapsing” method: one compares the aggregation
properties of empirical densities with (7.34). Using asset prices sampled at
interval ∆, one computes returns at various time horizons n∆, n = 1 . . .M
and estimates the marginal density of these returns (via a histogram or a
smooth kernel estimator). The scaling relation (7.34) then implies that the
densities ρ̂n∆(x) and 1

nH ρ̂∆( x
nH ) should coincide, a hypothesis which can be

tested graphically and also more formally using a Kolmogorov–Smirnov test.
Although self-similarity is not limited to α-stable Lévy processes, rejecting

self-similarity also leads to reject the α-stable Lévy process as a model for
log-returns. If the log-price follows an α-stable Lévy process, daily, weekly
and monthly returns should also be α-stable (with the same α). Empirical
estimates [3, 62] show a value of α which increases with the time horizon.
Finally, as noted in Section 7.3.1, various estimates of tail indices for most
stocks and exchange rates [3, 105, 221, 267, 198, 265, 268] are often found to
be larger than 2, which rules out infinite variance and stable distributions.

© 2004 by CRC Press LLC



232 Financial Modelling with jump processes

McCulloch ([289], page 417) argues against this point, claiming that such
estimators are highly biased in samples of realistic size generated from α-
stable distributions with α close to 2, see also [387].

7.5 Realized variance and “stochastic volatility”

One of the objectives of econometric models is to quantify the notion of
“market volatility.” It should be understood from the outset that “volatility”
is not a model-free notion: in a parametric model, various measures of risk and
variability of prices can be computed from model parameters. However given
the vast choice of models and the availability of large databases of returns,
many authors have recently turned to using the model-free notion of quadratic
variation — known in the financial literature as “realized volatility” — as a
measure of market volatility [63, 38, 10, 9].

Given a sample of N returns (rt(∆), t = 0,∆, . . . , N∆) observed at intervals
∆ over the period [0, T = N∆], the realized variance on [0, T ] is defined as

v∆(T ) =
N∑
t=1

|rt(∆)|2 =
N∑
t=1

|Xt+∆ −Xt|2. (7.41)

Note that the realized volatility is different from the sample variance of the
returns, defined by:

σ̂2(∆) =
1
N

N∑
t=1

|rt(∆)|2 − [
1
N

N∑
t=1

|rt(∆)|]2. (7.42)

Since returns are serially uncorrelated the sample variance scales linearly with
time: σ̂2(∆) = σ̂2(1)∆ and does not display a particularly interesting behav-
ior. This is of course also the case for the (theoretical) variance of log-returns
in exponential-Lévy models: σ2(∆) = var[rt(∆)] = σ2(1)∆ because of the in-
dependence of log-returns. On the other hand, the realized variance v∆(T ) is
not an average but a cumulative measure of volatility and does contain inter-
esting information when computed at fine scales (∆ → 0), even when returns
are independent: we will see in Chapter 8 that the process (v∆(t))t∈[0,T ] con-
verges in probability to a (nontrivial) stochastic process ([X,X]t)t∈[0,T ] called
the quadratic variation3 of X. In a model where X is a Lévy process with
characteristic triplet (σ2, ν, γ) the quadratic variation process is given by

[X]t = σ2t+
∑

0≤s≤t
|∆Xs|2, (7.43)

3This notion is studied in more detail in Section 8.2.
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where the sum runs over the jumps of X between 0 and t. Note that [X]t is a
random variable: it is deterministic only if there are no jumps, i.e., in the case
where the log-price is a Brownian motion with drift. Thus, in a model where
log-prices follow a (non-Gaussian) Lévy process, realized volatility is always
stochastic: one does not need to insert an additional source of randomness
in the form of a volatility variable in order to obtain such effects. In fact,
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FIGURE 7.7: Left: Daily returns simulated from the Student t random
walk model described in Section 7.5. Right: Distribution of daily returns:
parameters have been chosen such that this distribution has heavy tails with
finite variance and a tail index α = 3.8.

even when the (conditional / unconditional) variance of returns is constant,
the realized variance can display very high variability when returns have rea-
sonably heavy tails, as illustrated by the example below. Consider a random
walk model where the daily returns are i.i.d. random variables with a Student
t distribution with parameter β, whose density is given by:

rt
i.i.d.∼ fβ(x) =

Γ((β + 1)/2)√
βπΓ(β/2)

(1 +
x2

β
)−(β+1)/2. (7.44)

The Student t distribution has heavy tails with tail index equal to β and has
been advocated as a model for daily returns [62]. In the discussion below we
will take β = 3.8, which is coherent with the estimation results presented in
Section 7.3, but our arguments will apply for any 2 < β < 4. Thus, the daily
increments have finite variance but infinite fourth moments. In fact as noted
in Section 4.6, the Student t distribution is infinitely divisible [177] so there
exists an exponential-Lévy model (belonging to the generalized hyperbolic
class) whose daily increments follow the Student t distribution: the Student t
random walk can also be seen as an exponential-Lévy model for the log-price.
Since the Student t law has a known density, this model is easy to simulate.
A simulation of daily returns from this model is shown in Figure 7.7. From
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these returns we compute “realized variance” using a moving average over
N = 1000 days and annualizing (normalizing) to obtain numbers comparable
to annual volatilities:

σ̂2
t =

Nyear

N

N∑
j=1

|rt−j∆(∆)|2.

The evolution of the estimated “realized volatility” σ̂t is shown in Figure 7.8
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FIGURE 7.8: Left: Realized (1000-day moving average) volatility as a
function of time in the Student random walk model. The true standard de-
viation of returns is indicated by a horizontal line. Notice the high degree of
variability. Right: Histogram of realized 1000-day volatility. Notice the high
dispersion around the theoretical value of 32%.

(left). Since β > 2, the squared returns are i.i.d. variables with E[|rt|2] < ∞
and the law of large numbers applies to σ̂2 :

∀t, P(σ̂2
t

∆→0→ σ2) = 1.

Thus the realized volatility σ̂ is a consistent estimator of the “true volatility”
σ. However, due to the heavy tails of the returns, the estimation error σ̂2−σ2

has infinite variance: the quadratic estimation error involves the fourth power
of the returns. Therefore, instead of verifying a central limit theorem leading
to asymptotic normality, the estimator σ̂2 − σ2 verifies the infinite variance
version of the central limit theorem:

PROPOSITION 7.2 Stable central limit theorem [252, 344]

Let (Yn)n≥1 be an i.i.d. sequence of centered random variables with a regularly
varying distribution of index α ∈]0, 2[. In particular E[Y 2

n ] = ∞. Then the
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partial sum, normalized by N1/α, converged in distribution to an α-stable
random variable with infinite variance:

1
N1/α−1

N∑
n=1

Yn → Sα, α = β − 2. (7.45)

In this case, the squared returns have a distribution which is regularly
varying (with power law tails) with exponent α = β − 2, which implies that
for large sample size N , σ̂2 − σ2 behaves like N1/αSα where Sα is a standard
α-stable random variable. In particular, even though the returns have finite
variance and well-defined “volatility,” the volatility estimation error has heavy
tails and infinite variance. Figure 7.9 illustrates a quantile-quantile plot of the
realized volatility σ̂ computed over 1000 days (4 years); the quantiles of this
estimator are compared to those of a normal distribution with same mean
and variance using a Monte Carlo simulation. While the sample median is
32.5, the 95% confidence interval obtained with 10 000 Monte Carlo trials is
[27.9%, 41.0%]; the 99% confidence interval is [26.3%,51.4%]. In simple terms,
it means that even though the returns have a true standard deviation of σ =
32%, if we try to estimate this value by using realized variance we have a 5%
chance of getting something either lower than 28% (not bad) or higher than
41% (serious overestimation).

This heavy tailed asymptotic distribution has drastic consequences for the
interpretation of “realized variance”: large or highly fluctuating values of
realized volatility do not imply that the variance of returns in the underlying
process is large or time varying, nor does it constitute evidence for “stochastic
volatility.” It simply indicates that when faced with heavy tails in returns,
one should not be using “realized volatility” as a measure of volatility. Figure
7.8 (right) shows the sample distribution of the “realized volatility” σ̂ which
is shown to display a considerable dispersion (“volatility of volatility”), as
expected from the results above. In fact the histogram of realized volatility
is quite similar to the one observed in exchange rate data [10]! Observing
these figures, it is tempting to model these observations with a “stochastic
volatility model,” introducing the “volatility of volatility” to reproduce the
observations in Figure 7.8. In fact, the realized volatility in Figure 7.8 (left)
even displays a “mean reverting” behavior: σ̂t oscillates around the true value
σ!

Figure 7.9 compares the quantiles of “realized volatility” σ̂ to those of a
normal distribution: the heavy tails in the distribution of σ̂ indicate that
the “realized volatility” σ̂ in a given sample can be very different from σ
and will be itself quite variable, but the strong variation in realized volatility
does not reflect any information on the actual volatility of the returns process
but arises for purely statistical reasons, because of the heavy tails in the
returns. In particular Figure 7.9 shows that “confidence intervals” derived
using asymptotic normality of σ̂2 and often used in testing for the presence
of stochastic volatility can be meaningless.

© 2004 by CRC Press LLC



236 Financial Modelling with jump processes

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Gaussian Quantiles 

Q
ua

nt
ile

s 
of

 r
ea

liz
ed

 v
ar

ia
nc

e

FIGURE 7.9: Quantile of 1000-day realized volatility compared to quan-
tiles of the normal distribution.

This simple example shows that in the presence of heavy tails in the re-
turns (and we know that they are present!), common estimators for volatility
can lead to erroneous conclusions on the nature of market volatility. These
conclusions hold when the tail index is less than 4, which has been suggested
by many empirical studies [174, 221, 268, 265]. In particular, one can easily
attribute to heteroscedasticity, nonstationarity or “stochastic volatility” what
is in fact due to heavy tails in returns. These issues will be discussed in the
framework of stochastic volatility models in Chapter 15.

7.6 Pathwise properties of price trajectories (*)

Although Lévy processes can easily accommodate the heavy tails, skewness
and in fact any other distributional feature of asset returns, distributional
properties alone are not sufficient to distinguish them from (nonlinear) dif-
fusion models. In fact, (Brownian) diffusion processes with nonlinear depen-
dence of the local volatility can also generate heavy tails and skewness [54]. In
fact any infinitely divisible distribution satisfying a weak regularity condition
can be obtained as the marginal distribution of a stationary diffusion process
with linear drift and the diffusion coefficients corresponding to many common
probability distributions are found explicitly in [367].
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The most important feature which distinguishes jump processes from dif-
fusion processes and more generally, processes with continuous sample paths
is, of course, the presence of discontinuities in price behavior. No matter
what ingredient one puts into a diffusion model — time and state dependent
local volatility, stochastic volatility — it will generate, with probability 1,
prices which are continuous functions of time. This argument alone should be
sufficient to rule out diffusion models as realistic models for price dynamics.
Indeed, even after correcting for intraday effects, formal tests on intraday data
reject the diffusion hypothesis.

But the importance of the issue of (dis)continuity also suggests that statis-
tical averages such as the variance of returns or even quantiles of returns are
not the only relevant quantities for representing risk: after all, an investor will
only be exposed to a single sample path of the price and even if her portfolio
minimizes some the variance averaged across sample paths it may have a high
variability in practice. The risky character of a financial asset is therefore di-
rectly related to the lack of smoothness of its sample path t �→ St and this is
one crucial aspect of empirical data that one would like a mathematical model
to reproduce. But how can we quantify the smoothness of sample paths?

7.6.1 Hölder regularity and singularity spectra

The usual definitions of smoothness for functions are based on the number
of times a function can be differentiated: if f : [0, T ] → R admits k continuous
derivatives at a point t, it is said to be Ck. A more refined notion is that of
Hölder regularity: the local regularity of a function may be characterized by
its local Hölder exponents. A function f is h-Hölder continuous at point t0 iff
there exists a polynomial of degree < h such that

|f(t) − P (t− t0)| ≤ Kt0 |t− t0|h (7.46)

in a neighborhood of t0, where Kt0 is a constant. Let Ch(t0) be the space
of (real-valued) functions which verify the above property at t0. A function
f is said to have local Hölder exponent α if for h < α, f ∈ Ch(t0) and for
h > α, f /∈ Ch(t0). Let hf (t) denote the local Hölder exponent of f at point
t. If hf (t0) ≥ 1 then f is differentiable at point t0, whereas a discontinuity of
f at t0 implies hf (t0) = 0. More generally, the higher the value of hf (t0), the
greater is the local regularity of f at t0.

In the case of a sample path Xt(ω) of a stochastic process Xt, hX(ω)(t) =
hω(t) depends on the particular sample path considered, i.e., on ω. There
are however some famous exceptions: for example for fractional Brownian
motion with self-similarity parameter H, hB(t) = 1/H almost everywhere
with probability one, i.e., for almost all sample paths. Note however that
no such results hold for sample paths of Lévy processes or even stable Lévy
motion.

Given that the local Hölder exponent may vary from sample path to sample
path in the case of a stochastic process, it is not a robust statistical tool for
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characterizing the roughness of a function: the notion of singularity spectrum
of a function was introduced to give a less detailed but more stable charac-
terization of the local smoothness of a function in a “statistical” sense.

DEFINITION 7.2 Singularity spectrum Let f : R → R be a real-
valued function and for each α > 0 define the set of points at which f has
local Hölder exponent h:

Ω(α) = {t, hf (t) = α}. (7.47)

The singularity spectrum of f is the function D : R+ → R which associates
to each α > 0 the Hausdorff–Besicovich dimension4 of Ω(α):

Df (α) = dimHBΩ(α). (7.48)

Using the above definition, one may associate to each sample path Xt(ω)
of a stochastic process Xt its singularity spectrum dω(α). If dω depends on
ω then the empirical estimation of the singularity spectrum is not likely to
give much information about the properties of the process Xt. Fortunately,
this turns out not to be the case: it has been shown that, for large classes of
stochastic processes, the singularity spectrum is the same for almost all sample
paths. A result due to Jaffard [218] shows that a large class of Lévy processes
verify this property: their singularity spectrum is the same for almost all
sample paths and depends only on the behavior of the Lévy measure near the
origin, as measured by the Blumenthal-Getoor index:

β = inf{γ > 0,
∫
|x|≤1

xγν(dx) <∞}. (7.49)

PROPOSITION 7.3 Singularity spectrum of Lévy processes[218]
Let X be a Lévy process with Lévy triplet (σ2, ν, b) and Blumenthal-Getoor

index β.

• If 2 > β > 0 and σ = 0 then for almost every sample path

dim Ω(α) = βα for α ≤ 1
β

(7.50)

and Ω(α) = ∅ for α > 1/β.

• If 2 > β > 0 and σ �= 0 then for almost every sample path

dim Ω(α) = βα for α <
1
2

dim Ω
(

1
2

)
= 1 (7.51)

4The Hausdorff–Besicovich dimension is one of the numerous mathematical notions corre-
sponding to the general concept of “fractal” dimension, see [138, 277].
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and Ω(α) = ∅ for α > 1/2.

• If β = 0 then for each α > 0 with probability 1, dim Ω(α) = 0.

Notice that since ν a Lévy measure 2 ≥ β ≥ 0 so Jaffard’s result covers all
cases of interest, the other cases being already known. This result shows in
particular that the smoothness/roughness of paths is measured by the behav-
ior of the Lévy measure near 0, i.e., the small jumps: is is not influenced by
the tails. In particular, α-stable Lévy processes and tempered stable processes
have the same singularity spectra.

7.6.2 Estimating singularity spectra

As defined above, the singularity spectrum of a function does not appear
to be of any practical use since its definition involves first the continuous time
(∆ → 0) limit for determining the local Hölder exponents and second the de-
termination of the Hausdorff dimension of the sets Ω(α) which, as remarked
already by Halsey et al. [185], may be intertwined fractal sets with complex
structures and impossible to separate on a point by point basis. The interest
of physicists and empirical researchers in singularity spectra was ignited by
the work of Parisi and Frisch [152] who, in the context or fluid turbulence,
proposed a formalism for empirically computing the singularity spectrum from
sample paths of the process. This formalism, called the multi-fractal formal-
ism [152, 185, 216, 217, 279], enables the singularity spectrum to be computed
from sample moments (called “structure functions” in the turbulence litera-
ture) of the increments: if the sample moments of the returns verify a scaling
property

< |rt(∆)|q >= Kq∆ζ(q) (7.52)

then the singularity spectrum D(α) is given by the Legendre transform of the
scaling exponent ζ(q):

ζ(q) = 1 + inf(qα−D(α)). (7.53)

ζ(q) may be obtained by regressing log < |rt(T )|q > against log T . When
the scaling in Equation (7.52) holds exactly, the Legendre transform (7.53)
may be inverted to obtain D(α) from ζ(q). This technique was subsequently
refined using the wavelet transform leading to an algorithm (WTMM method)
for determining the singularity spectrum from the modulus of its wavelet
transform [20, 11].

These methods provide a framework to investigate pathwise regularity of
price trajectories. Figure 7.10 shows the singularity spectrum estimated us-
ing the wavelet (WTMM) method [20] from S&P500 futures tick data. Re-
markable points are the intercept — the lowest Hölder exponent — and the
maximum at α � 0.57, which represents the almost everywhere Hölder ex-
ponent. Global estimators (as opposed to wavelet estimators which are local
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FIGURE 7.10: Singularity spectrum estimated for S&P500 tick data using
the wavelet transform (WTMM) method (circles) compared to the singularity
spectrum of a Lévy process with same (almost-everywhere) Hölder regularity
α � 0.57.

in time) are only sensitive to the almost-everywhere Hölder exponent which
explains the often reported values of the “Hurst exponent” in the range 0.55
- 0.6. Various empirical studies on time series of market indices and exchange
rates [282, 302] report a similar inverted parabola shape for other data sets.
It should be noted that this non-trivial spectrum is very different from what
one would expect from diffusion processes, Lévy processes or jump-diffusion
processes used in continuous-time finance, for which the singularity spectrum
is theoretically known (see, e.g., Proposition 7.3). In particular, the empir-
ical spectrum in Figure 7.10 indicates a less smooth behavior than diffusion
processes but no discontinuous (“jump”) component in the signal since the
Hölder exponent does not extend down to zero. The rare examples of stochas-
tic processes for which the singularity spectrum resembles the one observed
in financial data are stochastic cascades [279, 282] or their causal versions,
the multi-fractal random walks [302, 19]. One drawback of these estima-
tion methods is that their finite sample properties are not well known. The
only currently feasible approach is, as in [282], to supplement such studies by
Monte Carlo simulations of various stochastic models used in finance in order
to check whether the peculiar shape of the spectra obtained are not artifacts
due either to small sample size or discretization.
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7.7 Summary: advantages and shortcomings of Lévy pro-
cesses

Let us now summarize the advantages and shortcomings of representing log-
prices as Lévy processes: how far can they go in capturing empirical features
of asset returns?

The first category of properties we examined were related to the distribution
of returns at a given horizon (Section 7.3). Given that in building a Lévy
process we have the freedom of choosing the distribution of the process at
a given time resolution, the distributional properties of returns for a given
time horizon can always be perfectly matched by a Lévy process. Closer
examination of the shape of the distribution and its tail properties enables to
choose a suitable class of Lévy processes for this purpose using the methods
described in Section 7.2.

The second category of properties concerned the time-aggregation proper-
ties of returns, namely how the distribution of returns varies with the horizon
on which returns are computed. As observed in Section 7.4, the marginal
distribution of a Lévy process has a shape which does vary with time in a
qualitatively similar way to the log-price, reproducing the main features of
the flow of marginal distributions in empirical data. However the stationarity
of increments leads to rigid scaling properties for cumulants of Lévy processes
which are not observed in log-prices. These discrepancies can be overcome by
considering processes with independent but time-inhomogeneous increments,
discussed in Chapter 14.

We also observed that, unlike the Brownian model where “realized volatil-
ity” has a deterministic continuous-time limit, models based on Lévy processes
lead to a realized volatility which remains stochastic when computed on fine
time grids. In particular, Lévy processes with heavy tailed increments —
with a finite tail index — can lead to high variability of realized volatility: we
get “stochastic volatility” effects for free, even in absence of any additional
random factors.

However when it comes to dependence properties of returns across time —
especially “volatility clustering” effects — exponential-Lévy models have noth-
ing to say: having independent increments, they are not capable of mimicking
volatility clustering and similar phenomena linked to nonlinear dependence in
(absolute) returns. In particular, since the time aggregation properties of as-
set returns are related to their (nonlinear dependence) structure, models with
independent increments, even if they do reproduce some time series properties
of returns in a certain range of time scales, cannot give a “structural” expla-
nation for the time aggregation properties of returns. A summary of these
points is given in Table 7.2.

The shortcomings pointed out here have prompted the development of more
sophisticated models, incorporating time inhomogeneity and/or extra sources
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of randomness to represent the volatility clustering effect. Some of these
models will be discussed in Chapters 14 and 15.

Further reading

A vast literature dealing with the statistical properties of financial time se-
ries has developed during the last fifty years. Surveys of stylized facts of finan-
cial time series are given in [180] for foreign exchange rates, [140, 313, 76, 92]
for stocks and indices. Lévy processes were first introduced in financial econo-
metrics by Mandelbrot [278, 139, 100] and regained popularity in the 1990s
with the advent of high frequency data and computer tools for data processing
[93, 285, 36, 123, 123, 125]. The α-stable Lévy process was introduced as a
model for cotton prices by Mandelbrot in [278]. Empirical tests on α-stable
models include [3, 62], a review is given in [289]; see also [39, 236]. While
empirical evidence has consistently rejected this model for most data sets of
indices, exchange rates and major stocks, some applications may be found in
commodity markets and volatile emerging markets [387]. A parallel literature
on α-stable models in finance continues to flourish, see [328, 327]. Jorion
[224] performs a maximum likelihood estimation of jump-diffusion models on
the US/DEM exchange rate and a US equity index, see also [222]. Ait Sa-
halia [2] develops a nonasymptotic test for the presence of jumps based on the
knowledge of transition densities of a Markov process at discrete time inter-
vals; applying this test to option-implied densities he concludes towards the
presence of jumps. The empirical performance of hyperbolic and generalized
hyperbolic models are discussed in [123, 125, 319]; normal inverse Gaussian
processes are discussed in [30, 342]. Empirical performance of tempered stable
models is studied in [93, 67, 80].

Scaling and time aggregation properties for high frequency data were stud-
ied in [180, 301, 181] for foreign exchange rates. Numerous empirical studies
on scaling properties of returns can also be found in the physics literature, see
[67] for a review on this literature. An alternative view is given in [35] where
scaling is claimed to be a spurious effect due to heavy tails.

A good reference on self-similarity is [374] (see also Chapter 7 in [344]). The
hypothesis of self-similarity of market prices was first proposed by Mandelbrot
[278] (see also [279]). The α-stable model for the distribution of returns was
subsequently investigated for many data sets [139, 62, 184, 285, 268, 93, 328].
Empirical studies on self-similarity of prices include [278, 280, 281, 279, 285,
93, 388].

The statistical estimation methods discussed in Section 7.2 are reviewed
in [175]. The generalized method of moments is discussed in detail in [187];
see also Chapter 14 in [186]. An interesting discussion on the way to specify
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moment conditions is given in [155]. A more advanced discussion of estimation
methods for financial time series can be found in [361], [274] and [186]. These
references deal with parametric approaches: with the availability of computers
and large data sets, the recent tendency in financial econometrics has been to
shift to nonparametric methods [188, 189].
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Chapter 8

Stochastic calculus for jump
processes

If one disqualifies the Pythagorean Theorem from contention, it is hard
to think of a mathematical result which is better known and more widely
applied in the world today than “Ito’s Lemma.” This result holds the
same position in stochastic analysis that Newton’s fundamental theorem
holds in classical analysis. That is, it is the sine qua non of the subject.

Description of Kiyosi Ito’s scientific work by the US National Academy of Sciences.

Given a financial asset whose price is represented by a stochastic process
S = (St)t∈[0,T ], there are two types of objects related to S that naturally arise
in a financial modelling context: trading strategies involving S and derivatives
written on the underlying asset S.

To describe trading strategies, one needs to consider dynamic portfolios
resulting from buying and selling the assets. If an investor trades at times
T0 = 0 < T1 < · · · < Tn < Tn+1 = T , detaining a quantity φi of the asset
during the period ]Ti, Ti+1] then the capital gain resulting from fluctuations
in the market price is given by

n∑
i=0

φi(STi+1 − STi
).

This quantity, which represents the capital gain of the investor following the
strategy φ, is called the stochastic integral of φ with respect to S and denoted
by
∫ T
0
φtdSt. Stochastic integrals with respect to processes with jumps are

discussed in Section 8.1. We have followed the approach proposed in [324];
other references are given at the end of the chapter.

If St is built from a Lévy process, the positions and the amplitudes of its
jumps are described by a Poisson random measure and various quantities
involving the jump times and jump sizes can be expressed as integrals with
respect to this measure. Stochastic integrals with respect to Poisson random
measures are discussed in Section 8.1.4.
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The second fundamental problem is to describe the time evolution of a
derivative instrument whose value Vt = f(t, St) depends on St. The key tool
here is the change of variable formula — the Itô formula — which relates the
local behavior of Vt to the behavior of St. This formula forms the basis of the
stochastic calculus for processes with jumps and we will give several forms of
it which are useful in various applications.

In the preceding chapters we have worked with Lévy processes, which pro-
vide analytically tractable examples of jump processes. However, as we will
see below, if X is a Lévy process or a diffusion process, quantities such as∫ t
0
φdX or f(t,Xt) are, in general, not Lévy processes or diffusions any more:

the class of Lévy processes is not stable under stochastic integration or non-
linear transformations. Similarly, starting from a Markov process X these
transformations will not give us Markov processes anymore. Therefore, even
if we are only interested in Markovian models or models based on Lévy pro-
cesses, we are naturally led to consider a larger class of stochastic processes,
which contains our objects of interest and is stable under the operations con-
sidered above. The class of semimartingales provides such a framework: not
only this class is stable under stochastic integration and (smooth) nonlinear
transformations, it is also stable under other operations such as change of
measure, change of filtration and “time change,” which we will encounter in
the following chapters. Although we will not present the results in their most
general form, most of them hold in a general semimartingale setting.

The main goal of this chapter is to present some useful results on stochastic
integration and stochastic calculus, using an elementary approach accessible
to the nonspecialist. Stochastic calculus for processes with jumps is usually
presented in the general framework of semimartingales, which can be quite
difficult for the beginner. Instead of following this path we propose a pedes-
trian approach, starting from the simple case of the Poisson process in Section
8.3.1 and progressively increasing the complexity of the processes involved. In
fact, we will try to convince the reader that stochastic calculus for (pure) jump
processes is more intuitive and easy to understand than for diffusion processes!

This chapter could have been entitled “A beginner’s guide to stochastic
calculus for processes with jumps.” We refer to [215, 324, 323] for complements
and to [194] or [110] for more detailed material concerning stochastic integrals
and their properties. If Dellacherie and Meyer [110] is your favorite bedtime
reading, you might as well skip this chapter and go quickly to the next one!

8.1 Trading strategies and stochastic integrals

Consider a market with d assets whose prices are modelled by a (vector)
stochastic process St = (S1

t , . . . , S
d
t ), which is supposed to be cadlag. A
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portfolio is a vector describing the amount of each asset held by the investor:
φ = (φ1, . . . , φd). The value of a such a portfolio at time t is then given by

Vt(φ) =
d∑
k=1

φkSkt ≡ φ.St. (8.1)

A trading strategy consists of maintaining a dynamic portfolio φt by buying
and selling assets at different dates. Let us denote the transaction dates by
T0 = 0 < T1 < T2 < · · · < Tn < Tn+1 = T . Between two transaction dates Ti
and Ti+1 the portfolio remains unchanged and we will denote its composition
by φi. The portfolio φt held at date t may then be expressed as:

φt = φ01t=0 +
n∑
i=0

φi1]Ti,Ti+1](t). (8.2)

The transaction dates (Ti) can be fixed but, more realistically, they are not
known in advance and an investor will decide to buy or sell at Ti depending on
the information revealed before Ti. For example, in the case of a limit order
Ti is the first time when St crosses a certain value (the limit price). Therefore,
the transaction times (Ti) should be defined as nonanticipating random times
(also called stopping times, see Section 2.4.3): they are said to form a random
partition of [0, T ]. Since the new portfolio φi is chosen based on information
available at Ti, φi is FTi

-measurable. When the broker decides to transact at
t = Ti, the portfolio is still described by φi−1; it takes its new value φi right
after the transaction, i.e., for t > Ti. Therefore, the indicator function in
(8.2) is of the form 1]Ti,Ti+1] (left-continuous) as opposed to 1[Ti,Ti+1[ (right-
continuous): φt− = φt. Being left-continuous (caglad, in fact), (φt)t∈[0,T ] is
therefore a predictable process.1 Stochastic processes of the form (8.2) are
called simple predictable processes:

DEFINITION 8.1 Simple predictable process A stochastic process
(φt)t∈[0,T ] is called a simple predictable process if it can be represented as

φt = φ01t=0 +
n∑
i=0

φi1]Ti,Ti+1](t),

where T0 = 0 < T1 < T2 < · · · < Tn < Tn+1 = T are nonanticipating random
times and each φi is bounded random variable whose value is revealed at Ti
(it is FTi

-measurable).

The set of simple predictable processes on [0, T ] will be denoted by S([0, T ]).
Any realistic and implementable strategy should be given by a simple pre-
dictable process or, at least, one should be able to approximate it by strategies

1See Section 2.4.5 for a definition.
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of the form (8.2). One of the reasons of this is that in a market with jumps
strategies that are not predictable can generate arbitrage opportunities, as
emphasized by the following example.

Example 8.1 Trading strategies have to be predictable.
Let St = λt − Nt, where Nt denotes a Poisson process with intensity λ. −S
is a compensated Poisson process thus S is a martingale (see Section 2.5.4).
Denote by T1 the time of its first jump: ST1 = ST1− − 1. T1 is an exponential
random variable with parameter λ. Consider now the strategy which consists
in buying one unit of the asset S at t = 0 (at zero price!) and selling it right
before the price falls down (“selling right before the crash”): φt = 1[0,T1[.
Contrarily to the strategies defined in (8.2), t �→ φt is not left-continuous but
right-continuous (cadlag). The capital gain associated to this strategy is then
given by

Gt(φ) =
∫ t

0

φudSu = λt for t < T1,

= λT1 for t ≥ T1.

Therefore this strategy requires zero initial investment and has an almost
surely nonnegative gain, which is strictly positive with nonzero probability.
Hence, it is an arbitrage opportunity. Such strategies should therefore should
be ruled out in an arbitrage-free model.

Obviously, the “strategy” φ proposed in this example is impossible to im-
plement unless one knows beforehand that the price is going to fall: φt
is not a predictable process. This example motivates us to restrict inte-
grands/strategies to predictable processes. Note also that in this example
we have used in an essential way the fact that the process S is discontinuous:
if S is continuous then changing the strategy at one point does not have any
effect on the resulting gain of the investor, so one could allow in that case for
right-continuous strategies.

Between Ti and Ti+1, the quantity of asset in the portfolio is φi and the
asset moves by (STi+1 − STi

) so the capital gain of the portfolio is given by
φi.(STi+1 −STi

). Hence an investor starting with a portfolio φ0 and following
the strategy φ will have accumulated at time t > 0 a capital equal to:

Gt(φ) = φ0.S0 +
j−1∑
i=0

φi.(STi+1 − STi
) + φj .(St − STj

) for Tj < t ≤ Tj+1.

The stochastic process (Gt(φ))t∈[0,T ] thus defined is called the gain process of
the strategy φ. Using the stopping time notation defined in (2.50), the gain
process can be rewritten as:

Gt(φ) = φ0.S0 +
n∑
i=0

φi.(STi+1∧t − STi∧t). (8.3)
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For the stochastic integral to be interpreted as the gain process of the strategy
φ, the portfolio φi should be constituted at the beginning of the period, Ti
(therefore φi is revealed at Ti while the variation of the assets STi+1 − STi

is
only revealed at the end of the period, Ti+1). The stochastic process defined
by (8.3) is called the stochastic integral2 of the predictable process φ with
respect to S and denoted by:

∫ t

0

φudSu := φ0.S0 +
n∑
i=0

φi.(STi+1∧t − STi∧t). (8.4)

Thus, the stochastic integral
∫ t
0
φdS represents the capital accumulated be-

tween 0 and t by following the strategy φ. On the other hand, the portfolio
is worth Vt(φ) = φt.St at time t. The difference between these two quantities
represents the cost of the strategy up to time t:

Ct(φ) = Vt(φ) −Gt(φ) = φt.St −
∫ t

0

φudSu. (8.5)

Ct(φ) is called the cost process associated to the strategy φ. A strategy
(φt)t∈[0,T ] is said to be self-financing if the cost is (almost surely) equal to
zero: the value Vt(φ) of the portfolio is then equal to the initial value plus the
capital gain between 0 and t:

Vt(φ) =
∫ t

0

φudSu = φ0S0 +
∫ t

0+
φudSu. (8.6)

Equation (8.6) simply means that the only source of variation of the portfolio’s
value is the variation of the asset values: all trading operations are financed
by capital gains, all capital gains are reinvested into the portfolio and no cash
is added to or withdrawn from the account.

The gain process/stochastic integral associated to a strategy has the fol-
lowing fundamental property: if St is a martingale then the gain process
associated to any strategy is also a martingale:

PROPOSITION 8.1 Martingale-preserving property
If (St)t∈[0,T ] is a martingale then for any simple predictable process φ the

stochastic integral Gt =
∫ t
0
φdS is also a martingale.

PROOF Consider a simple predictable process φ as in 8.2. By construction
its stochastic integral Gt is a cadlag nonanticipating process. Since the φi are

2Since the stochastic integral of a vector process is defined as the sum of integrals of its com-
ponents, in the sequel we will mostly discuss the one-dimensional case. Multidimensional
extensions are, in most cases, straightforward.
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bounded and E|STi
| < ∞, it is easy to show that E|Gt| < ∞. We will

now prove that E[GT |Fs] = Gt. It is sufficient to show that for each i,
E[φi(STi+1 − STi

)|Ft] = φi(STi+1∧t − STi∧t).

E[φi(STi+1 − STi
)|Ft] = E[1t>Ti+1φi(STi+1 − STi

)|Ft]
+ E[1]Ti,Ti+1](t)φi(STi+1 − STi

)|Ft]
+ E[1t≤Ti

φi(STi+1 − STi
)|Ft].

Since Ti, Ti+1 are stopping times, 1t>Ti+1 , 1t≤Ti
and 1]Ti,Ti+1](t) are Ft-measu-

rable and can be taken out of the conditional expectation. The first two terms
are simple to compute:

E[1t>Ti+1φi(STi+1 − STi
)|Ft] = 1t>Ti+1φi(STi+1 − STi

)
E[1]Ti,Ti+1](t)φi(STi+1 − STi

)|Ft] = 1]Ti,Ti+1](t)φiE[STi+1 − STi
|Ft]

= 1]Ti,Ti+1](t)φi(St − STi
).

For the last term we use the law of iterated expectations and the fact that φi
is FTi

-measurable:

E[1t≤Ti
φi(STi+1 − STi

)|Ft] = 1t≤Ti
E[E[φi(STi+1 − STi

)|FTi
]|Ft]

= 1t≤Ti
E[φiE[STi+1 − STi

|FTi
]|Ft] = 0,

the last equality resulting from the sampling theorem (Theorem 2.7) applied
to S. So:

E[φi(STi+1 − STi
)|Ft] = 1t>Ti+1φi(STi+1 − STi

) + 1]Ti,Ti+1](t)φi(St − STi
)

= φi(STi+1∧t − STi∧t).

Since for a self-financing strategy Vt(φ) = Gt(φ), we conclude that if the
underlying asset follows a martingale (St)t∈[0,T ] then the value of any self-
financing strategy is a martingale.

Apart from computing the gain associated to a strategy, stochastic inte-
grals can also be used as a means of building new stochastic processes (in
particular, new martingales) from old ones: given a nonanticipating cadlag
process (Xt)t∈[0,T ] one can build new processes

∫ t
0
σudXu by choosing various

(simple) predictable processes (σt)t∈[0,T ]. Here Xt is interpreted as a “source
of randomness” and σt as a “volatility coefficient.” Starting with a simple
stochastic process X such as a Lévy process, this procedure can be used to
build stochastic models with desired properties. The following result shows
that if the asset price is modelled as a stochastic integral St =

∫ t
0
σdX with

respect to a “source of randomness” then the gain process of any strategy
involving S can also be expressed as a stochastic integral with respect to X.
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PROPOSITION 8.2 Associativity
Let (Xt)t∈[0,T ] be a real-valued nonanticipating cadlag process and (σt)t≥0

and (φt)t≥0 be real-valued simple predictable processes. Then St =
∫ t
0
σdX is

a nonanticipating cadlag process and∫ t

0

φudSu =
∫ t

0

φuσudXu.

The relation St =
∫ t
0
σtdXt is often abbreviated to a “differential” notation

dSt = σtdXt, which should be understood as a shorthand for the integral nota-
tion. The associativity property then leads to a composition rule for “stochas-
tic differentials”: if dSt = σtdXt and dGt = φtdSt then dGt = φtσtdXt.

8.1.1 Semimartingales

For the moment we have not required any specific property for the process
S in order to define gain processes/stochastic integrals for simple predictable
processes: in fact, (8.3) makes sense for any cadlag process S. A reasonable
requirement is a stability property: a small change in the portfolio should
lead to a small change in the gain process. A mathematical formulation of
this idea is to require that, if φn → φ in S([0, T ]) (for example, in the sense
of uniform convergence) then

∫ t
0
φndS → ∫ t

0
φdS in some appropriate sense

(for example, convergence in probability). Unfortunately, this (reasonable)
stability property does not hold for any stochastic process (St) and those who
verify it deserve a special name.

DEFINITION 8.2 Semimartingale A nonanticipating cadlag process
S is called a semimartingale3 if the stochastic integral of simple predictable
processes with respect to S:

φ = φ01t=0 +
n∑
i=0

φi1]Ti,Ti+1] �→
∫ T

0

φdS = φ0S0 +
n∑
i=0

φi(STi+1 − STi
),

verifies the following continuity property: for every φn, φ ∈ S([0, T ]) if

sup
(t,ω)∈[0,T ]×Ω

|φnt (ω) − φt(ω)| →
n→∞ 0 then

∫ T

0

φndS
P→

n→∞

∫ T

0

φdS. (8.7)

If the continuity property above does not hold, it means that, if an asset
is modelled by (St), a very small error in the composition of a strategy can

3While mathematicians have no lack of imagination when it comes to proving theorems,
finding names for new concepts seems to be a problem: martingales, supermartingales,
submartingales, semimartingales, quasimartingales, local martingales, sigma-martingales,
etc., are neither exciting nor very explanatory!
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bring about a large change in the portfolio value! It is therefore preferable,
in models of continuous time trading, to use stochastic processes which are
semimartingales, otherwise our model may produce results which are difficult
to use or interpret.

The continuity property (8.7) involves the convergence of the random vari-
ables

∫ T
0
φndS (for T fixed). The following technical result [324, Theorem

11] shows that a stability property also holds for the process defined by the
stochastic integral:

PROPOSITION 8.3

If (St)t∈[0,T ] is a semimartingale then for every φn, φ ∈ S([0, T ])

if sup
(t,ω)∈[0,T ]×Ω

|φnt (ω) − φt(ω)| →
n→∞ 0 (8.8)

then sup
t∈[0,T ]

∣∣∣∣
∫ t

0

φndS −
∫ t

0

φ dS

∣∣∣∣ P→
n→∞ 0. (8.9)

The convergence in (8.8) is uniform convergence on [0, T ] × Ω; the con-
vergence in (8.9) is uniform convergence in probability on [0, T ] (sometimes
called ucp convergence, meaning “uniformly on compacts in probability”).

Definition 8.2 may appear very difficult to apply in practice — indeed, how
do we know that a given process satisfies the stability property mentioned
above? However, we will give two simple examples which will allow us to see
that almost all processes that we encounter in this book are semimartingales.

Example 8.2 Every finite variation process is a semimartingale

For a finite variation process S, denoting by TV (S) its total variation on
[0, T ], we always have:

sup
t∈[0,T ]

∫ t

0

φdS ≤ TV (S) sup
(t,ω)∈[0,T ]×Ω

|φt(ω)|, (8.10)

from which the property (8.8)–(8.9) can be deduced.
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Example 8.3 Every square integrable martingale is a semimartingale
For a square integrable martingale M we can write:

E

[(∫ t

0

φdM

)2
]

= E

⎡
⎣
(
φ0M0 +

n∑
i=0

φi(MTi+1∧t −MTi∧t)

)2
⎤
⎦

= E

[
φ2

0M
2
0 +

n∑
i=0

φ2
i (MTi+1∧t −MTi∧t)

2

]

≤ sup
s,ω

|φs(ω)|E
[
M2

0 +
n∑
i=0

(MTi+1∧t −MTi∧t)
2

]

≤ sup
s,ω

|φs(ω)|E
[
M2

0 +
n∑
i=0

(M2
Ti+1∧t −M2

Ti∧t)

]

≤ sup
s,ω

|φs(ω)| sup
s
E[M2

s ],

where we have used Doob’s sampling theorem (Theorem 2.7) several times.
The above inequality implies that when the strategies converge uniformly, the
stochastic integrals converge in L2, uniformly in t. But the L2 convergence
implies convergence in probability hence the result.

In addition, it is clear from Definition 8.2 that the semimartingales form a
vector space: any linear combination of a finite number of semimartingales is
a semimartingale. This remark and the two simple but important examples
above allow to conclude that the following familiar processes are semimartin-
gales:

• The Wiener process (because it is a square integrable martingale).

• The Poisson process (because it is a finite variation process).

• All Lévy processes are semimartingales because a Lévy process can be
split into a sum of a square integrable martingale and a finite variation
process : this is the Lévy-Itô decomposition (Proposition 3.7).

It is also possible (but by no means straightforward) to show that every (local)
martingale is a semimartingale in the sense of Definition 8.2 (see [324]). On
the other hand, a deterministic process is a semimartingale if and only if it
is of finite variation (see [215]) so all infinite variation deterministic processes
are examples of processes that are not semimartingales. More interesting
examples of processes that are not semimartingales are provided by fractional
Brownian motions (“1/f noise”) discussed in Section 7.4.1.

More generally any semimartingale can be represented as a (local) martin-
gale plus a finite variation process but this is a difficult result, see [55, 110] or
[324, Chapter 4].
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The associativity property (Proposition 8.2) allows to show that a stochas-
tic integral (with respect to a semimartingale) is again a semimartingale.
Therefore all new processes constructed from semimartingales using stochas-
tic integration will again be semimartingales. The class of semimartingales is
quite large and convenient to work with, because it is stable with respect to
many operations (stochastic integration is not the only example).

8.1.2 Stochastic integrals for caglad processes

Realistic trading strategies are always of the form (8.2) so it might seem that
defining stochastic integrals for simple predictable processes is sufficient for
our purpose. But as we will see later, hedging strategies for options cannot in
general be expressed in the form (8.2) but can only be approximated in some
sense by simple predictable processes. Also, if X is interpreted not as an asset
price but as a source of randomness, one can be interested in defining asset
price processes St =

∫ t
0
σudXu where the instantaneous volatility σt does not

necessarily move in a stepwise manner as in (8.2). These remarks motivate
the extension of stochastic integrals beyond the setting of simple predictable
processes.

Example 8.1 showed that when S has jumps we cannot hope to define
stochastic integrals with respect to S for right-continuous integrands while
still conserving the martingale property (as in Proposition 8.1). We therefore
have to content ourselves with left-continuous (caglad) integrands.

It turns out that any caglad process φ ∈ L([0, T ]) can be uniformly approx-
imated by a sequence (φn) ∈ S([0, T ]) of simple predictable process ([324],
Theorem 10) in the sense of (8.9). Using the continuity property (8.8)–(8.9)
of the stochastic integral then allows to define the stochastic integral

∫
φdS

as the limit — in the sense of (8.9) — of
∫
φndS. In particular, one may

choose the usual “Riemann sums” as discrete approximations, as shown by
the following result [324, Theorem 21].

PROPOSITION 8.4 Stochastic integrals via Riemann sums
Let S be a semimartingale, φ be a caglad process and πn = (Tn0 = 0 <
Tn1 < · · · < Tnn+1 = T ) a sequence of random partitions of [0, T ] such that
|πn| = supk |Tnk − Tnk−1| → 0 a.s. when n→ ∞. Then

φ0S0 +
n∑
k=0

φTk
(STk+1∧t − STk∧t)

P→
n→∞

∫ t

0

φu−dSu (8.11)

uniformly in t on [0, T ].

While this looks very much like the definition of a Riemann integral, one
important difference should be noted: in the sum (8.11) the variation of S is
multiplied by the value of φt at the left endpoint of the interval, otherwise
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the sum (and the limit) is not a nonanticipating process anymore and, even
if it does converge, will define a process with different properties. This phe-
nomenon has no equivalent in the case of ordinary (Riemann) integrals: one
can compute φ at any point in the interval [Ti, Ti+1] including both endpoints
or the midpoint, without changing the limit. The key idea, due to K. Itô, is
thus to use nonanticipating Riemann sums.

Proposition 8.4 shows that using trading strategies given by a caglad process
makes sense since the gain process of such a strategy may be approximated
by a simple predictable (therefore realistic) strategy. No such result holds
for more general (not caglad) processes so their interpretation as “trading
strategies” is not necessarily meaningful.

By approximating a caglad process by a sequence of simple predictable pro-
cesses, one can show that the properties described above for simple predictable
integrands continue to hold for caglad integrands. If S is a semimartingale
then for any nonanticipating caglad process (σt)t∈[0,T ] on (Ω,F , (Ft),P) the
following properties hold:

• Semimartingale property: St :=
∫ t
0
σdX is also a semimartingale.

• Associativity: if φt is another nonanticipating caglad process then∫ t

0

φdS =
∫ t

0

(φσ)dX.

• Martingale preservation property: if (Xt)t∈[0,T ] is a square integrable
martingale and φ is bounded then the stochastic integral Mt =

∫ t
0
φdX

is a square integrable martingale.

These properties were shown in Section 8.1 for simple predictable integrands;
their proof for caglad integrands is based on limit arguments.4

8.1.3 Stochastic integrals with respect to Brownian motion

Since the Wiener process is a semimartingale, stochastic integrals with re-
spect to the Wiener process may be defined as above: given a simple pre-
dictable process φ:

φt = φ01t=0 +
n∑
i=0

φi1]Ti,Ti+1](t),

the Brownian stochastic integral
∫
φdW is defined as

∫ T

0

φt dWt =
n∑
i=0

φi (WTi+1−WTi
).

4See [324, Chapter 2].
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Since Wt is a martingale,
∫ t
0
φdW is also a martingale and E[

∫ T
0
φtdWt] = 0.

Due to the independent increments property of W , we can also compute the
second moment:

E

[∣∣∣∣
∫ T

0

φt dWt

∣∣∣∣
2
]

= Var

[
n∑
i=0

φi (WTi
−WTi+1)

]

=
n∑
i=0

E[φ2
i (WTi

−WTi+1)
2]

+ 2
∑
i>j

Cov(φi(WTi+1 −WTi
), φj(WTj+1 −WTj

))

=
n∑
i=0

E[E[φ2
i (WTi+1 −WTi

)2|FTi
] ]

+
∑
i>j

E[E[φiφj(WTi+1 −WTi
)(WTj+1 −WTj

)|FTj
] ]

=
n∑
i=0

E[φ2
iE[(WTi+1 −WTi

)2|FTi
] ] + 0

=
n∑
i=0

E[φ2
i ](Ti+1 − Ti) = E

∫ t

0

φ2
tdt.

This relation is very useful in computations and is called the isometry formula.

PROPOSITION 8.5 Isometry formula: simple integrands
Let (φt)0≤t≤T be a simple predictable process and (Wt)0≤t≤T be a Wiener

process. Then

E

[∫ T

0

φt dWt

]
= 0, (8.12)

E

⎡
⎣
∣∣∣∣∣
∫ T

0

φt dWt

∣∣∣∣∣
2
⎤
⎦ = E

[∫ T

0

|φt|2dt
]
. (8.13)

Using this isometry, one can construct stochastic integrals with respect to
the Wiener process for predictable processes (φt)t∈[0,T ] verifying

E

[∫ T

0

|φt|2dt
]
<∞ (8.14)

by approximating ϕ with a sequence of simple predictable processes (φn) in
the L2 sense:

E

[∫ T

0

|φnt − φt|2dt
]
n→∞→ 0.
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Using the isometry relation (8.13) one can then show that
∫ T
0
φnt dWt converges

in L2(P) towards a limit denoted as
∫ T
0
φdWt. The martingale and isometry

properties are conserved in this procedure [205].

PROPOSITION 8.6 Isometry formula for Brownian integrals
Let φ be a predictable process verifying

E

[∫ T

0

|φt|2dt
]
<∞. (8.15)

Then
∫ t
0
φ dW is a square integrable martingale and

E

[∫ T

0

φt dWt

]
= 0, (8.16)

E

⎡
⎣
∣∣∣∣∣
∫ T

0

φt dWt

∣∣∣∣∣
2
⎤
⎦ = E

[ ∫ T

0

|φt|2dt
]
. (8.17)

Note that, although this construction gives a well-defined random variable∫ T
0
φdW , φ cannot be interpreted as a “trading strategy”: it is not necessarily

caglad and its integral cannot necessarily be represented as a limit of Riemann
sums.

8.1.4 Stochastic integrals with respect to Poisson random
measures

Poisson random measures were defined in Section 2.6.1 and we have already
encountered integrals of deterministic functions with respect to a Poisson ran-
dom measure: this notion was used to study path properties of Lévy processes
in Chapter 3. We now define the notion of stochastic integral of a random
predictable function with respect to a Poisson random measure, following
[242, 205].

Let M be a Poisson random measure on [0, T ]×R
d with intensity µ(dt dx).

The compensated random measure M̃ is defined as the centered version of M :
M̃(A) = M(A)−µ(A) = M(A)−E[M(A)]. Recall from Section 2.6.1 that for
each measurable set A ⊂ R

d with µ([0, T ] × A) < ∞, Mt(A) = M([0, t] × A)
defines a counting process, M̃t(A) = M([0, t]×A)−µ([0, t]×A) is a martingale
and if A ∩B = ∅ then Mt(A) and Mt(B) are independent.

By analogy with simple predictable processes defined in (8.2), we consider
simple predictable functions φ : Ω × [0, T ] × R

d → R:

φ(t, y) =
n∑
i=1

m∑
j=1

φij1]Ti,Ti+1](t)1Aj
(y), (8.18)
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where T1 ≤ T2 ≤ · · · ≤ Tn are nonanticipating random times, (φij)j=1...m are
bounded FTi

-measurable random variables and (Aj)i=1...m are disjoint subsets
of R

d with µ([0, T ]×Aj) <∞. The stochastic integral
∫
[0,T ]×Rd φ(t, y)M(dt dy)

is then defined as the random variable∫ T

0

∫
Rd

φ(t, y)M(dt dy) =
n,m∑
i,j=1

φijM( ]Ti, Ti+1] ×Aj)

=
n∑
i=1

m∑
j=1

φij [MTi+1(Aj) −MTi
(Aj)]. (8.19)

Similarly, one can define the process t �→ ∫ t
0

∫
Rd φ(t, y)M(dt dy) by

∫ t

0

∫
Rd

φ(s, y)M(ds dy) =
n,m∑
i,j=1

φij [MTi+1∧t(Aj) −MTi∧t(Aj)]. (8.20)

The stochastic integral t �→ ∫ t
0

∫
Rd φ(s, y)M(ds dy) is a cadlag, nonanticipat-

ing process. Similarly, the compensated integral
∫
[0,T ]×Rd φ(t, y)M̃(dt dy) is

defined as the random variable:∫ T

0

∫
Rd

φ(s, y)M̃(ds dy) =
n,m∑
i,j=1

φijM̃( ]Ti, Ti+1] ×Aj) (8.21)

=
n,m∑
i,j=1

φij [M(]Ti, Ti+1] ×Aj) − µ(]Ti, Ti+1] ×Aj)].

By restricting to terms with Ti ≤ t (i.e., stopping at t), we obtain a stochastic
process: ∫ t

0

∫
Rd

φ(s, y)M̃(ds dy) =
n∑
i=1

φi[M̃Ti+1∧t(Aj) − M̃Ti∧t(Aj)]. (8.22)

The notion of compensated integral is justified by the following result:

PROPOSITION 8.7 Martingale preserving property
For any simple predictable function φ : Ω × [0, T ] × R

d → R the process
(Xt)t∈[0,T ] defined by the compensated integral

Xt =
∫ t

0

∫
Rd

φ(s, y)M̃(ds dy)

is a square integrable martingale and verifies the isometry formula:

E[ |Xt|2] = E

[∫ t

0

∫
Rd

|φ(s, y)|2µ(ds dy)
]
. (8.23)
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PROOF For j = 1 . . .m define Y jt = M̃(]0, t] × Aj) = M̃t(Aj). From
Proposition 2.16, (Y jt )t∈[0,T ] is a martingale with independent increments.
Since the Aj are disjoint, the processes Y j are mutually independent.

Writing M̃(]Ti∧t, Ti+1∧t]×Aj) = Y jTi+1∧t−Y
j
Ti∧t, the compensated integral

Xt can be expressed as a sum of stochastic integrals:

Xt =
m∑
j=1

n∑
i=1

φij(Y
j
Ti+1∧t − Y jTi∧t)

=
m∑
j=1

∫ t

0

φjdY j where φj =
n∑
i=1

φij1]Ti,Ti+1].

Since φj are simple predictable processes, by Proposition 8.1,
∫ t
0
φjdY j are

martingales, which entails that X is a martingale. By conditioning each term
on FTi

and applying the sampling theorem to Y j , we obtain that all terms
in the sum have expectation zero, hence EXt = 0. Finally, since Y j are
independent, their variance adds up:

E|XT |2 = Var

[∫ T

0

∫
Rd

φ(s, y)M̃(ds dy)

]
=
∑
i,j

E
[
|φij |2(Y jTi+1∧t − Y jTi∧t)

2
]

=
∑
i,j

E
[
E
{
|φij |2(Y jTi+1

− Y jTi
)2|FTi

}]
=
∑
i,j

E
[
|φij |2E[(Y jTi+1

− Y jTi
)2|FTi

]
]

=
∑
i,j

E
[|φij |2µ(]Ti, Ti+1] ×Aj)

]
,

which yields (8.23). Since E|Xt|2 ≤ E|XT |2 < ∞, X is a square integrable
martingale.

The isometry formula (8.23) can be used to extend the compensated in-
tegral to square integrable predictable functions [48, Section 5.4]. Given a
predictable random function verifying

E

∫ T

0

∫
Rd

|φ(t, y)|2µ(dt dy) <∞,

there exists a sequence (φn) of simple predictable functions of the form (8.18)
such that

E

[∫ T

0

∫
Rd

|φn(t, y) − φ(t, y)|2µ(dt dy)

]
n→∞→ 0.

Using the isometry relation (8.23), one can then show that
∫ T
0

∫
Rd φ

ndM̃ con-
verges in L2(P) towards a limit denoted as

∫ T
0

∫
Rd φdM̃ . The martingale and

isometry properties are conserved in this procedure [205].
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PROPOSITION 8.8 Compensated Poisson integrals
For any predictable random function φ : Ω × [0, T ] × R

d → R verifying

E

[∫ T

0

∫
Rd

|φ(t, y)|2µ(dt dy)

]
<∞,

the following properties hold:

t �→
∫ t

0

∫
Rd

φ(s, y)M̃(ds dy) is a square integrable martingale,

E

[∣∣∣∣
∫ t

0

∫
Rd

φ(s, y)M̃(ds dy)
∣∣∣∣
2
]

= E

[∫ t

0

∫
Rd

|φ(s, y)|2µ(ds dy)
]
. (8.24)

An important case for our purpose is the case where the Poisson random
measure M describes the jump times and jump sizes of a stochastic process
(St)t≥0, that is, M is the jump measure defined by Equation (2.97):

M = JS(ω, .) =
∆St �=0∑
t∈[0,T ]

δ(t,∆St).

An example is given by Lévy processes: if S is a Lévy process with Lévy
measure ν then the jump measure JS is a Poisson random measure with
intensity µ(dt dx) = dtν(dx). Then for a predictable random function φ the
integral in (8.19) is a sum of terms involving jumps times and jump sizes of
St:

∫ T

0

∫
Rd

φ(s, y)M(ds dy) =
∆St �=0∑
t∈[0,T ]

φ(t,∆St). (8.25)

REMARK 8.1 Integration with respect to the jump measure of a
jump process In the special case where S is a pure jump process with
jump times T1 < T2 < . . . and φ(ω, s, y) = ψs(ω)y where ψ =

∑
ψi1]Ti,Ti+1] is

constant between two jumps, the integral with respect to JS is just a stochastic
integral with respect to S:

∫ T

0

∫
Rd

φ(s, y)M(ds dy) =
∫ T

0

∫
Rd

ψsyM(ds dy) =
∆St �=0∑
t∈[0,T ]

ψt∆St =
∫ T

0

ψtdSt

and can then be interpreted as the capital gain resulting from a strategy ψ
with transactions taking place at the jump times (Ti) of S, the investor holding
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a portfolio ψi between the jump times Ti and Ti+1. But this is a special case:
for a general integrand φ, the Poisson integral (8.19) with respect to the jump
measure JS cannot be expressed as a stochastic integral5 with respect to S.
This example shows that, when X is a jump process whose jump measure JX
is a Poisson random measure, integration with respect to JX and integration
with respect to X are two different concepts. This remark will play a role in
Chapter 10 during the discussion of hedging strategies in markets with jumps.

8.2 Quadratic variation

8.2.1 Realized volatility and quadratic variation

The concept of realized volatility was defined in Section 7.5 in the context
of volatility measurement. Given a process observed on a time grid π = {t0 =
0 < t1 < · · · < tn+1 = T}, the “realized variance” was defined as:

VX(π) =
∑
ti∈π

(Xti+1 −Xti)
2. (8.26)

Rewriting each term in the sum as

(Xti+1 −Xti)
2 = X2

ti+1
−X2

ti − 2Xti(Xti+1 −Xti),

the realized volatility can be rewritten as a Riemann sum:

X2
T −X2

0 − 2
∑
ti∈π

Xti(Xti+1 −Xti). (8.27)

Consider now the case where X is a semimartingale with X0 = 0. By defini-
tion it is a nonanticipating right-continuous process with left limits (cadlag)
and one may define the process X− = (Xt−)t∈[0,T ] which is caglad. Proposi-
tion (8.4) then shows that the Riemann sums in (8.27) uniformly converge in
probability to the random variable:

[X,X]t := |XT |2 − 2
∫ T

0

Xu−dXu, (8.28)

called the quadratic variation ofX on [0, T ]. Note that the quadratic variation
is a random variable, not a number. Repeating the same procedure over [0, t],
one can define the quadratic variation process:

5It can, however, be expressed as a sum of integrals with respect to the martingales M̃j
t

defined above.
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DEFINITION 8.3 Quadratic variation The quadratic variation pro-
cess of a semimartingale X is the nonanticipating cadlag process defined by:

[X,X]t = |Xt|2 − 2
∫ t

0

Xu−dXu. (8.29)

If πn = (tn0 = 0 < tn1 < · · · < tnn+1 = T ) is a sequence of partitions of [0, T ]
such that |πn| = supk |tnk − tnk−1| → 0 as n→ ∞ then

0≤ti<t∑
ti∈πn

(Xti+1 −Xti)
2 P→
n→∞[X,X]t,

where the convergence is uniform in t. Since [X,X] is defined as a limit of
positive sums, [X,X]t ≥ 0, and for t > s, since [X,X]t − [X,X]s is again a
limit of positive sums, [X,X]t ≥ [X,X]s, and we conclude that [X,X] is an
increasing process. This allows to define integrals

∫ t
0
φd[X,X].

IfX is continuous and has paths of finite variation then, denoting by TV (X)
the total variation of X on [0, T ], we obtain:∑

ti∈πn

(Xti+1 −Xti)
2 ≤ sup

i
|Xti+1 −Xti |

∑
ti∈π

|Xti+1 −Xti |

≤ sup
i

|Xti+1 −Xti | TV (X) →
|π|→0

0,

therefore, [X,X] = 0. In particular, for a smooth (C1) function, [f, f ] = 0.
This result is no longer true for processes with discontinuous sample paths
since in this case |Xti+1 −Xti | will not go to zero when |ti+1 − ti| → 0. The
following proposition summarizes important properties of quadratic variation.

PROPOSITION 8.9 Properties of quadratic variation

• ([X,X]t)t∈[0,T ] is an increasing process.

• The jumps of [X,X] are related to the jumps of X by: ∆[X,X]t =
|∆Xt|2. In particular, [X,X] has continuous sample paths if and only
if X does.

• If X is continuous and has paths of finite variation then [X,X] = 0.

• If X is a martingale and [X,X] = 0 then X = X0 almost surely.

For a proof of the last point see, e.g., Propositions 4.13 and 4.50 in [215] or
Chapter II in [324].

REMARK 8.2 Martingales vs. drifts The last point of the preceding
proposition has an important consequence: if X is a continuous martingale
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with paths of finite variation then [X,X] = 0, so X = X0 almost surely.
Thus a continuous square-integrable martingale with paths of finite variation
is constant with probability 1. This remark draws a distinction between two
classes of processes: martingales (such as Brownian motion or the compen-
sated Poisson process), which are typical examples of “noise processes” and
continuous processes of finite variation, which may be interpreted as “drifts.”
There is no nontrivial process which belongs to both classes:

Martingales
⋂

Continuous processes of finite variation = constants.

This point will be very useful in the sequel: it allows to assert that if a process
is decomposed into as the sum of a square-integrable martingale term and a
continuous process with finite variation

Xt = Mt +
∫ t

0

a(t)dt,

then this decomposition is unique (up to a constant). In fact, this remark can
be generalized to the case where M is a local martingale [215, Proposition
14.50].

Note that the quadratic variation, contrarily to the variance, is not defined
by taking expectations: it is a “sample path” property. The quadratic vari-
ation is a well-defined quantity for all semimartingales, including those with
infinite variance. We now turn to some fundamental examples of processes
for which the quadratic variation can be explicitly computed.

PROPOSITION 8.10 Quadratic variation of Brownian motion
If Bt = σWt where W is a standard Wiener process then [B,B]t = σ2t.

PROOF Let πn = (tn0 = 0 < tn1 < · · · < tnn+1 = T ) be a sequence of
partitions of [0, T ] such that |πn| = supk |tnk − tnk−1| → 0. First observe that
VB(πn) − σ2T =

∑
πn(Bti+1 − Bti)

2 − σ2(ti+1 − ti) is a sum of independent
terms with mean zero. Therefore

E
∣∣VB(πn) − σ2T

∣∣2 =
∑
πn

E
[
(Bti+1 −Bti)

2 − σ2(ti+1 − ti)
]2

=
∑
πn

σ4|ti+1 − ti|2E
[
(
(Bti+1 −Bti)

2

σ2(ti+1 − ti)
− 1)2

]

= σ4
∑
πn

|ti+1 − ti|2E
[
(Z2 − 1)2

]
where Z ∼ N(0, 1)

≤ E
[
(Z2 − 1)2

]
σ4T |πn| → 0.

Thus E|VB(πn) − σ2T |2 → 0 which implies convergence in probability of
VB(πn) to σ2T .
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Therefore, when X is a Brownian motion, [X,X]t is indeed equal to the
variance of Xt, which explains the origin of the term “realized volatility.”
However, the Brownian case is very special. In general [X,X]t is a random
process, as is shown by the following examples:

Example 8.4 Quadratic variation of a Poisson process
If N is a Poisson process then it is easy to see by definition that [N,N ]t = Nt.
More generally, if Nt is a counting process with jump times Ti and Zi are
random variables revealed at Ti, denoting the jump sizes:

Xt =
Nt∑
i=1

Zi ⇒ [X,X]t =
Nt∑
i=1

|Zi|2 =
∑

0≤s≤t
|∆Xs|2.

Even more generally, it is easy to show that the same formula holds for every
finite variation process X:

[X,X]t =
∑

0≤s≤t
|∆Xs|2. (8.30)

Example 8.5 Quadratic variation of a Lévy process
If X is a Lévy process with characteristic triplet (σ2, ν, γ), its quadratic

variation process is given by

[X,X]t = σ2t+
∑

s∈[0,t]
∆Xs �=0

|∆Xs|2 = σ2t+
∫

[0,t]

∫
R

y2JX(ds dy). (8.31)

In particular, if X is a symmetric α-stable Lévy process, which has infinite
variance, the quadratic variation is a well-defined process, even though the
variance is not defined. The quadratic variation of a Lévy process again a
Lévy process: it is a subordinator (see Proposition 3.11).

Example 8.6 Quadratic variation of Brownian stochastic integrals
Consider the process defined by Xt =

∫ t
0
σtdWt, where (σt)t∈[0,T ] is a caglad

process. Then

[X,X]t =
∫ t

0

σ2
sds. (8.32)

In particular if a Brownian stochastic integral has zero quadratic variation, it
is almost surely equal to zero: [X,X] = 0 a.s.⇒ X = 0 a.s. This implication
is a special case of the last point in Proposition 8.9.
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Example 8.7 Quadratic variation of a Poisson integral
Consider a Poisson random measure M on [0, T ]×R

d with intensity µ(ds dy)
and a simple predictable random function ψ : [0, T ] × R

d �→ R. Define the
process X as the integral of ψ with respect to M as in (8.20):

Xt =
∫ t

0

∫
Rd

ψ(s, y)M(ds dy).

The quadratic variation of X is then given by:

[X,X]t =
∫ t

0

∫
Rd

|ψ(s, y)|2M(ds dy). (8.33)

8.2.2 Quadratic covariation

The concept of “realized volatility” has a multidimensional counterpart
which one can define as follows: given two processes X,Y and a time grid
π = {t0 = 0 < t1 < · · · < tn+1 = T} we can define the “realized covariance”
by: ∑

ti∈π
(Xti+1 −Xti)(Yti+1 − Yti). (8.34)

Rewriting each term above as

Xti+1Yti+1 −XtiYti − Yti(Xti+1 −Xti) −Xti(Yti+1 − Yti),

the sum in (8.34) can be rewritten as a Riemann sum:

XTYT −X0Y0 −
∑
ti∈π

{
Yti(Xti+1 −Xti) +Xti(Yti+1 − Yti)

}
.

When X,Y are semimartingales, by Proposition 8.4, the expression above
converges in probability to the random variable:

XTYT −X0Y0 −
∫ T

0

Xt−dYt −
∫ T

0

Yt−dXt,

called the quadratic covariation of X and Y on [0, T ].

DEFINITION 8.4 Quadratic covariation Given two semimartingales
X,Y , the quadratic covariation process [X,Y ] is the semimartingale defined
by

[X,Y ]t = XtYt −X0Y0 −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs. (8.35)

The quadratic covariation has the following important properties [324]:
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• [X,Y ] is a nonanticipating cadlag process with paths of finite variation.

• Polarization identity:

[X,Y ] =
1
4
([X + Y,X + Y ] − [X − Y,X − Y ]). (8.36)

• The discrete approximations (8.34) converge in probability to [X,Y ]
uniformly on [0, T ]:

ti<t∑
ti∈π

(Xti+1 −Xti)(Yti+1 − Yti)
P→

|π|→0
[X,Y ]t. (8.37)

• The covariation [X,Y ] is not modified if we add to X or Y continuous
processes with finite variation (“random drift terms”): it is only sensitive
to the martingale parts (“noise terms”) or jumps in X and Y . It is
thus more relevant in a financial modelling context than measures of
correlation between increments.

• If X,Y are semimartingales and φ, ψ integrable predictable processes
then [∫

φdX,

∫
ψdY

]
t

=
∫ t

0

φψ d[X,Y ]. (8.38)

The following result is simply a restatement of the definition of [X,Y ].

PROPOSITION 8.11 Product differentiation rule
If X,Y are semimartingales then

XtYt = X0Y0 +
∫ t

0

Xs−dYs +
∫ t

0

Ys−dXs + [X,Y ]t. (8.39)

In the following example the quadratic covariation may be computed using
the polarization identity (8.36).

Example 8.8 Quadratic covariation of correlated Brownian motions
If B1

t = σ1W 1
t and B2

t = σ2W 2
t where W 1,W 2 are standard Wiener processes

with correlation ρ then [B1, B2]t = ρσ1σ2t.

The next example uses Property (8.38) of quadratic covariation.

Example 8.9 Brownian stochastic integrals
Let Xt =

∫ t
0
σ1
sdW

1
s and Yt =

∫ t
0
σ2
sdW

2
s where (σit)t∈[0,T ] are predictable

processes and W 1,W 2 are correlated Wiener processes with Cov(W 1
t ,W

2
t ) =
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ρt. Then

[X,Y ]t =
∫ t

0

σ1
sσ

2
sρds. (8.40)

The above examples show that, for Brownian stochastic integrals, quadratic
covariation is a kind of “integrated instantaneous covariance”: however, it is
a more general concept. Here is another case where quadratic covariation can
be computed:

Example 8.10
Let M be a Poisson random measure on [0, T ] × R and (Wt)t∈[0,T ] a Wiener
process, independent from M . If

Xi
t = Xi

0 +
∫ t

0

φisdWs +
∫ t

0

∫
Rd

ψi(s, y)M̃(ds dy) i = 1, 2,

then the quadratic covariation [X1,X2] is equal to

[X1,X2]t =
∫ t

0

φ1
sφ

2
sds+

∫ t

0

∫
Rd

ψ1(s, y)ψ2(s, y)M(ds dy). (8.41)

8.3 The Itô formula

If f : R → R, g : [0, T ] → R are smooth (say, C1) functions then from the
change of variables formula for smooth functions we know that

f(g(t)) − f(g(0)) =
∫ t

0

f ′(g(s))g′(s)ds =
∫ t

0

f ′(g(s))dg(s). (8.42)

Applying this to f(x) = x2 we get:

g(t)2 − g(0)2 = 2
∫ t

0

g(s)dg(s).

However, when X is a semimartingale we observed in Section 8.2 that

X2
t −X2

0 = 2
∫ t

0

Xs−dXs + [X,X]t,
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where, in general, [X,X] �= 0. Therefore, stochastic integrals with respect to
semimartingales do not seem to obey the usual change of variable formulae
for smooth functions. The goal of this section is to give formulae analogous
to (8.42) for f(t,Xt) when f is a smooth function and X a semimartingale
with jumps.

The reader is probably familiar with the Itô formula for Brownian integrals,
which states that if f is a C2 function and Xt =

∫ t
0
σsdWs then

f(Xt) = f(0) +
∫ t

0

f ′(Xs)σsdWs +
∫ t

0

1
2
σ2
sf

′′(Xs)ds. (8.43)

We will discuss such representations when the Wiener process is replaced by
a process with jumps.

8.3.1 Pathwise calculus for finite activity jump processes

Let us begin with some simple remarks which have nothing to do with
probability or stochastic processes. Consider a function x : [0, T ] → R which
has (a finite number of) discontinuities at T1 ≤ T2 ≤ · · · ≤ Tn ≤ Tn+1 = T ,
but is smooth on each interval ]Ti, Ti+1[. We can choose x to be cadlag at
the discontinuity points by defining x(Ti) := x(Ti+). Such a function may be
represented as:

x(t) =
∫ t

0

b(s)ds+
∑

{i,Ti≤t}
∆xi where ∆xi = x(Ti) − x(Ti−), (8.44)

where the sum takes into account the discontinuities occurring between 0 and
t. For instance, if b is continuous then x is piecewise C1. Consider now a C1

function f : R → R. Since on each interval ]Ti, Ti+1[, x is smooth, f(x(t))
is also smooth. Therefore we can apply the change of variable formula for
smooth functions and write for i = 0 . . . n with the convention T0 = 0:

f(x(Ti+1−)) − f(x(Ti)) =
∫ Ti+1−

Ti

f ′(x(t))x′(t)dt =
∫ Ti+1−

Ti

f ′(x(t))b(t)dt.

At each discontinuity point, f(x(t)) has a jump equal to

f(x(Ti)) − f(x(Ti−)) = f(x(Ti−) + ∆xi) − f(x(Ti−)).
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Adding these two contributions together, the overall variation of f between 0
and t can be written as:

f(x(T )) − f(x(0)) =
n∑
i=0

{
f(x(Ti+1)) − f(x(Ti))

}

=
n∑
i=0

{
f(x(Ti+1)) − f(x(Ti+1−)) + f(x(Ti+1−)) − f(x(Ti))

}

=
n+1∑
i=1

{
f(x(Ti−) + ∆Xi) − f(x(Ti−))

}
+

n∑
i=0

∫ Ti+1−

Ti

b(t)f ′(x(t))dt.

The integrals in the last sum can be grouped together provided that we replace
f(x(t)) by f(x(t−)), so we finally obtain:

PROPOSITION 8.12 Change of variable formula for piecewise
smooth functions
If x is a piecewise C1 function given by:

x(t) =
∫ t

0

b(s)ds+
∑

{i=1...n+1,Ti≤t}
∆xi where ∆xi = x(Ti) − x(Ti−),

then for every C1 function f : R → R:

f(x(T )) − f(x(0)) =
∫ T

0

b(t)f ′(x(t−))dt

+
n+1∑
i=1

f(x(Ti−) + ∆xi) − f(x(Ti−)).

Note also that, if b = 0 (i.e., x is piecewise constant) then the integral term
is equal to zero and the formula becomes valid for a continuous (or even a
measurable) function with no further smoothness requirement.

Of course, this formula has nothing to do with stochastic processes. But
consider a stochastic process (Xt)t∈[0,T ] whose sample paths t �→ Xt(ω) are
(almost surely) of the form (8.44):

Xt(ω) = X0 +
∫ t

0

bs(ω)ds+
NT (ω)∑
i=1

∆Xi(ω), (8.45)

where ∆Xi = X(Ti)−X(Ti−) are the jump sizes and Nt(ω) is the (random)
number of jumps that can be represented as the value at t of a counting
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process. We have included ω to emphasize that we are looking at a given
sample path. Then by Proposition 8.12, the following change of variable
formula holds almost surely:

f(XT ) − f(X0) =
∫ T

0

b(t)f ′(Xt)dt+
∑

{i,Ti≤t}
f(XTi− + ∆xi) − f(XTi−)

=
∫ T

0

b(t−)f ′(Xt−)dt+
∆Xt �=0∑
0≤t≤T

f(Xt− + ∆Xt) − f(Xt−), (8.46)

where the sum now runs over the (random) jump times (Ti) of X. This change
of variable formula is valid independently of the probabilistic structure of the
process X: the jump times and jump sizes may have dependence between
them and with respect to the past, possess or not possess finite moments,
etc. It is a pathwise formula. However, if we are interested in computing
expectations, then we should introduce some structure in the process. In the
special case where Ti+1 − Ti are i.i.d. exponential random variables (which
means that the counting process Nt is a Poisson process) and ∆Xi are i.i.d.
random variables with distribution F , the jumps are described by a compound
Poisson process. In this case, of course, the above formula is still valid but
now we can decompose f(Xt) into a “martingale” part and a “drift” part as
follows. First, we introduce the random measure on [0, T ]×R which describes
the locations and sizes of jumps of X:

JX =
∑
n≥1

δ(Tn,∆XTn ).

JX is a Poisson random measure with intensity µ(dt dy) = λdtF (dy). The
jump term in (8.46) may now be rewritten as:∫ t

0

∫
R

[f(Xs− + y) − f(Xs−)] JX(ds dy).

Using the compensated jump measure J̃X(dt dy) = JX(dt dy)−λdtF (dy), the
jump term above can be rewritten as:

∫ t

0

∫
R

[f(Xs− + y) − f(Xs−)] J̃X(ds dy)

+
∫ t

0

λds

∫
R

F (dy)[f(Xs− + y) − f(Xs−)].

The first term above can be interpreted as the martingale or “noise” compo-
nent and the second one, which is an ordinary Lebesgue integral, represents
the “signal” or drift part. These results are summarized in the following
proposition:
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PROPOSITION 8.13 Itô formula for finite activity jump processes

Let X be a jump process with values in R defined by:

Xt =
∫ t

0

bsds+
Nt∑
i=1

Zi,

where bs is a nonanticipating cadlag process, (Nt) is a counting process rep-
resenting the number of jumps between 0 and t and Zi is the size of the i-th
jump. Denote by (Tn)n≥1 the jump times of Xt and JX the random measure
on [0, T ] × R associated to the jumps of X:

JX =
∑

{n≥1,Tn≤T}
δ(Tn,Zn).

Then for any measurable function f : [0, T ] × R → R:

f(t,Xt) − f(0,X0) =
∫ t

0

[
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)]ds

+
∑

{n≥1,Tn≤t}
[f(s,Xs− + ∆Xs) − f(s,Xs−)]

=
∫ t

0

[
∂f

∂s
(s,Xs−) + b

∂f

∂x
(s,Xs−)]ds

+
∫ t

0

∫ ∞

−∞
[f(s,Xs− + y) − f(s,Xs−)]JX(ds dy).

Furthermore, if Nt is a Poisson process with ENt = λt, Zi ∼ F are i.i.d. and
f is bounded then Yt = f(t, Yt) = Vt +Mt where M is the martingale part:

Mt =
∫ t

0

∫ ∞

−∞
[f(s,Xs− + y) − f(s,Xs−)]J̃X(ds dy), (8.47)

where J̃X denotes the compensated Poisson random measure:

J̃X(dt dy) = JX(dt dy) − λF (dy)dt,

and V is a continuous finite variation drift:

Vt =
∫ t

0

[
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)]ds

+
∫ t

0

ds

∫
Rd

F (dy)[f(s,Xs− + y) − f(s,Xs−)]. (8.48)
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8.3.2 Itô formula for diffusions with jumps

Consider now a jump-diffusion process

Xt = σWt + µt+ Jt = Xc(t) + Jt, (8.49)

where J is a compound Poisson process and Xc is the continuous part of X:

Jt =
Nt∑
i=1

∆Xi, Xc
t = µt+ σWt.

Define Yt = f(Xt) where f ∈ C2(R) and denote by Ti, i = 1 . . . NT the jump
times of X. On ]Ti, Ti+1[, X evolves according to

dXt = dXc
t = σdWt + µdt,

so by applying the Itô formula in the Brownian case we obtain

YTi+1− − YTi
=
∫ Ti+1−

Ti

σ2

2
f ′′(Xt)dt+

∫ Ti+1−

Ti

f ′(Xt)dXt

=
∫ Ti+1−

Ti

{
σ2

2
f ′′(Xt)dt+ f ′(Xt)dXc

t

}

since dXt = dXc(t) on this interval. If a jump of size ∆Xt occurs then the
resulting change in Yt is given by f(Xt− + ∆Xt)− f(Xt−). The total change
in Yt can therefore be written as the sum of these two contributions:

f(Xt) − f(X0) =
∫ t

0

f ′(Xs)dXc
s +

∫ t

0

σ2

2
f ′′(Xs)ds

+
∑

0≤s≤t, ∆Xs �=0

[f(Xs− + ∆Xs) − f(Xs−)]. (8.50)

REMARK 8.3 Replacing dXc
s by dXs − ∆Xs one obtains an equivalent

expression:

f(Xt) − f(X0) =
∫ t

0

f ′(Xs−)dXs +
∫ t

0

σ2

2
f ′′(Xs)ds

+
∑

0≤s≤t, ∆Xs �=0

[f(Xs− + ∆Xs) − f(Xs−) − ∆Xsf
′(Xs−)]. (8.51)

When the number of jumps is finite, this form is equivalent to (8.50). How-
ever, as we will see below, the form (8.51) is more general: both the stochastic
integral and the sum over the jumps in (8.51) are well-defined for any semi-
martingale, even if the number of jumps is infinite, while the sum in Equation
(8.50) may not converge if jumps have infinite variation.
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Here we have only used the Itô formula for diffusions, which is of course still
valid if σ is replaced by a nonanticipating square-integrable process (σt)t∈[0,T ].

PROPOSITION 8.14 Itô formula for jump-diffusion processes
Let X be a diffusion process with jumps, defined as the sum of a drift term,

a Brownian stochastic integral and a compound Poisson process:

Xt = X0 +
∫ t

0

bsds+
∫ t

0

σsdWs +
Nt∑
i=1

∆Xi,

where bt and σt are continuous nonanticipating processes with

E[
∫ T

0

σ2
t dt] <∞.

Then, for any C1,2 function. f : [0, T ]×R → R, the process Yt = f(t,Xt) can
be represented as:

f(t,Xt) − f(0,X0) =
∫ t

0

[
∂f

∂s
(s,Xs) +

∂f

∂x
(s,Xs)bs

]
ds

+
1
2

∫ t

0

σ2
s

∂2f

∂x2
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)σsdWs

+
∑

{i≥1,Ti≤t}
[f(XTi− + ∆Xi) − f(XTi−)].

In differential notation:

dYt =
∂f

∂t
(t,Xt)dt+ bt

∂f

∂x
(t,Xt)dt+

σ2
t

2
∂2f

∂x2
(t,Xt)dt

+
∂f

∂x
(t,Xt)σtdWt + [f(Xt− + ∆Xt) − f(Xt−)].

8.3.3 Itô formula for Lévy processes

Let us now turn to the case of a general Lévy process X. The difficulty
which prevents us from applying the above results directly is that, in the
infinite activity case, an infinite number of jumps may occur in each interval.
In this case, the number of jump terms in the sum∑

0≤s≤t, ∆Xs �=0

[f(Xs− + ∆Xs) − f(Xs−) − ∆Xsf
′(Xs−)]

becomes infinite and one should investigate the conditions, under which the
series converges. Furthermore, the jump times form a dense subset of [0, T ]
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and one cannot separate the evolution due to jumps from the one that is due
to the Brownian component so the reasoning used in Section 8.3.2 does not
apply anymore. However, albeit with more sophisticated methods, the same
result as before can be shown for general Lévy processes and even, as we will
see later, for general semimartingales.

PROPOSITION 8.15 Itô formula for scalar Lévy processes
Let (Xt)t≥0 be a Lévy process with Lévy triplet (σ2, ν, γ) and f : R → R a
C2 function. Then

f(Xt) = f(0) +
∫ t

0

σ2

2
f ′′(Xs)ds+

∫ t

0

f ′(Xs−)dXs

+
∑

0≤s≤t
∆Xs �=0

[f(Xs− + ∆Xs) − f(Xs−) − ∆Xsf
′(Xs−)]. (8.52)

PROOF The proof of the Itô formula for a general semimartingale X (see
Proposition 8.19) consists in rewriting the difference f(Xt)− f(X0) as a sum
of small increments of f :

f(Xt) − f(X0) =
n∑
i=1

(f(Xti+1) − f(Xti)),

then expanding each small increment using a Taylor formula and proving the
convergence of resulting Riemann sums to (8.52). For Lévy processes however,
a simpler approach can be used. Suppose that f and its two derivatives are
bounded by a constant C. Then∣∣f(Xs− + ∆Xs) − f(Xs−) − ∆Xsf

′(Xs−)
∣∣ ≤ C∆X2

s .

This means that the sum in (8.52) is finite (see Proposition 3.11). Now recall
that every Lévy process may be represented as Xt = Xε

t +Rεt such that Xε
t is

a jump-diffusion process and Rεt is a mean-zero square integrable martingale
and VarRεt → 0 as ε → 0 (see the proof of Proposition 3.7). Since the first
derivative of f is bounded,

∣∣f(Xt) − f(Xε
t )
∣∣2 ≤ C2(Rεt )

2.

This estimate implies that f(Xt) = limε→0 f(Xε
t ) in L2(P). But Xε

t is a
jump-diffusion process, so we can use the formula (8.51) and taking the limits
in this formula we obtain exactly the expression (8.52).
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When computing expectations, it is useful to decompose the semimartingale
Yt = f(Xt) into a martingale part and a drift term. This can be done by
plugging the Lévy-Itô decomposition for X into the stochastic integral part
of (8.52) and rearranging the terms.

PROPOSITION 8.16 Martingale-drift decomposition of functions
of a Lévy process
Let (Xt)t≥0 be a Lévy process with Lévy triplet (σ2, ν, γ) and f : R → R a
C2 function such that f and its two derivatives are bounded by a constant
C. Then Yt = f(Xt) = Mt + Vt where M is the martingale part given by

Mt = f(X0) +
∫ t

0

f ′(Xs)σdWs +
∫

[0,t]×Rd

J̃X(ds dy)[f(Xs− + y) − f(Xs−)],

and Vt a continuous finite variation process:

Vt =
∫ t

0

σ2

2
f ′′(Xs)ds+

∫ t

0

γ f ′(Xs)ds

+
∫

[0,t]×R

ds ν(dy)[f(Xs− + y) − f(Xs−) − yf ′(Xs−)1|y|≤1]. (8.53)

In differential form, Formula (8.52) can be expressed as follows:

df(Xt) =
σ2

2
f ′′(Xt)dt+ f ′(Xt−)dXt + f(Xt) − f(Xt−) − ∆Xtf

′(Xt−).

In applications it is often useful to generalize formula (8.52) to the case where
f explicitly depends on time. Suppose once again that (Xt)t∈[0,T ] is a Lévy
process with Lévy triplet (σ2, ν, γ) and that f ∈ C1,2([0, T ] × R,R). Then

f(t,Xt) − f(0,X0) =
∫ t

0

∂f

∂x
(s,Xs−)dXs

+
∫ t

0

[
∂f

∂s
(s,Xs) +

σ2

2
∂2f

∂x2
(s,Xs)]ds

+
∑

0≤s≤t
∆Xs �=0

[f(s,Xs− + ∆Xs) − f(s,Xs−) − ∆Xs
∂f

∂x
(s,Xs−)]. (8.54)

The reader can easily derive the generalization of martingale-drift represen-
tation in this case.

If the Lévy process is of finite variation, there is no need to subtract
∆Xsf

′(Xs−) from each term of the sum in (8.52). In this case the Itô formula
can be simplified and is valid under weaker regularity assumptions on f .
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PROPOSITION 8.17 Itô formula for Lévy processes: finite varia-
tion jumps

Let X be a finite variation Lévy process with characteristic exponent

ψX(u) = ibu+
∫ ∞

∞
(eiuy − 1)ν(dy), (8.55)

where the Lévy measure ν verifies
∫ |y|ν(dy) <∞. Then for any C1,1 function

f : [0, T ] × R → R,

f(t,Xt) − f(0,X0) =
∫ t

0

[
∂f

∂s
(s,Xs−) + b

∂f

∂x
(s,Xs−)]ds

+
∆Xs �=0∑
0≤s≤t

[f(Xs− + ∆Xs) − f(Xs−)].

If f and its first derivative in x are bounded, then Yt = f(t, Yt) is the sum of
a martingale part given by

∫ t

0

∫ ∞

−∞
[f(s,Xs− + y) − f(s,Xs−)]J̃X(ds dy) (8.56)

and a “drift” part given by:

∫ t

0

[
∂f

∂s
(s,Xs−) + b

∂f

∂x
(s,Xs−)

]
ds

+
∫ t

0

ds

∫
R

ν(dy)[f(s,Xs− + y) − f(s,Xs−)]. (8.57)

The next step in generalizing the Itô formula is to allow f to depend on a
multidimensional Lévy process.
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PROPOSITION 8.18 Itô formula for multidimensional Lévy pro-
cesses
Let Xt = (X1

t , . . . , X
d
t ) be a multidimensional Lévy process with character-

istic triplet (A, ν, γ). Then for any C1,2 function f : [0, T ] × R
d → R,

f(t,Xt) − f(0, 0) =
∫ t

0

d∑
i=1

∂f

∂xi
(s,Xs−)dXi

s +
∫ t

0

∂f

∂s
(s,Xs)ds

+
1
2

∫ t

0

d∑
i,j=1

Aij
∂2f

∂xi∂xj
(s,Xs)ds

+
∆Xs �=0∑
0≤s≤t

[
f(s,Xs− + ∆Xs) − f(s,Xs−) −

d∑
i=1

∆Xi
s

∂f

∂xi
(s,Xs−)

]
.

8.3.4 Itô formula for semimartingales

If X is a Lévy process then Yt = f(t,Xt) is not a Lévy process anymore;
however, it can be expressed in terms of stochastic integrals so it is still a
semimartingale. Therefore, if (Yt) is a random process driven by the Lévy
process (Xt), in order to consider quantities like f(t, Yt), we need to have a
change of variable formula for discontinuous semimartingales such as (Yt).

On the other hand, as already mentioned, the formulae presented above
are pathwise in nature: they do not exploit the probabilistic properties of
the processes involved but only the local structure of their sample paths. In
particular, the formulae for functions of Lévy processes have nothing to do
with the independence and stationarity of their increments! This implies that
these results remain valid for functions of more general semimartingales, with
time inhomogeneities and complex dependence structures in their increments.

Let X be a semimartingale with quadratic variation process [X,X]. Since
the quadratic variation is an increasing process, it can be decomposed into
jump part and continuous part. The continuous part will be denoted by
[X,X]c.
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PROPOSITION 8.19 Itô formula for semimartingales
Let (Xt)t≥0 be a semimartingale. For any C1,2 function f : [0, T ]× R → R,

f(t,Xt) − f(0,X0) =
∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs

+
1
2

∫ t

0

∂2f

∂x2
(s,Xs−)d[X,X]cs

+
∑

0≤s≤t
∆Xs �=0

[f(s,Xs) − f(s,Xs−) − ∆Xs
∂f

∂x
(s,Xs−)].

PROOF For simplicity, we will give a proof in the case where f has no
time dependence. Our proof follows the one given in [323]. Consider a random
partition T0 = 0 < T1 < · · · < Tn+1 = t. The idea is to write f(Xt) as the
sum of its increments, then use a second order Taylor expansion:

f(y) = f(x) + f ′(x)(y − x) + f ′′(x)(y − x)2/2 + r(x, y)

and let sup |Ti − Ti−1| go to zero almost surely.

f(Xt) − f(X0) =
n∑
i=0

{f(XTi+1) − f(XTi
)} =

n∑
i=0

f ′(XTi
)(XTi+1 −XTi

)

+
1
2

n∑
i=0

f ′′(XTi
)(XTi+1 −XTi

)2 +
n∑
i=0

r(XTi+1 ,XTi
).

The difficulty is to control the influence of jumps in each term. The key obser-
vation is that X has a well defined quadratic variation so

∑
∆X2

s converges
almost surely. For ε > 0, let A ⊂ [0, T ]×Ω such that

∑
0≤s≤T ∆X2

s < ε on A
and B = {(s, ω) /∈ A,∆Xs �= 0}. The sum above can be rewritten as:

f(Xt) − f(X0) =
n∑
i=0

f ′(XTi
)(XTi+1 −XTi

) +
1
2

n∑
i=0

f ′′(XTi
)(XTi+1 −XTi

)2

+
∑

B∩]Ti,Ti+1] �=∅

{
f(XTi+1) − f(XTi

) − f ′(XTi
)(XTi+1 −XTi

)

− 1
2
f ′′(XTi

)(XTi+1 −XTi
)2
}

+
∑

B∩]Ti,Ti+1]=∅
r(XTi

,XTi+1).

When sup |Ti+1 − Ti| → 0 a.s. the first two terms are Riemann sums which,
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by Proposition 8.4, converge to the following expressions:

n∑
i=0

f ′(XTi
)(XTi+1 −XTi

) →
∫ t

0

f ′(Xs)dXs,

1
2

n∑
i=0

f ′′(XTi
)(XTi+1 −XTi

)2 → 1
2

∫ t

0

f ′′(Xs)d[X,X]s.

The third term converges to:∑
B

{
f(Xs) − f(Xs−) − ∆Xsf

′(Xs−) − f ′′(Xs−)|∆Xs|2
}
. (8.58)

The remainder term verifies: r(x, y) ≤ (y − x)2α(|x − y|) with α(u) → 0 as
u → 0. Since the fourth sum only contains terms with B∩]Ti, Ti+1] = ∅,
|XTi+1 −XTi

| ≤ ε for |Ti+1 − Ti| small enough, so when sup |Ti+1 − Ti| → 0,
each term is smaller than α(2ε):

∑
B∩]Ti,Ti+1]=∅

|r(XTi
,XTi+1)| ≤ α(2ε)

∑
i

(XTi+1 −XTi
)2

≤ α(2ε)[X,X]t → 0 as sup |Ti+1 − Ti| → 0.

Let us now show that (8.58) converges absolutely when ε → 0. Assume first
that X is a bounded process: |X| ≤ K. Since f ′′ is continuous on [−K,K],
there exists a constant c such that |f ′′(x)| ≤ c for |x| ≤ K. Therefore,

∑
0≤s≤t
∆Xs �=0

|f(Xs) − f(Xs−) − ∆Xsf
′(Xs−)| ≤ c

∑
0≤s≤t
∆Xs �=0

|∆Xs|2 ≤ c[X,X]t <∞,

∑
0≤s≤t
∆Xs �=0

|f ′′(Xs−)∆X2
s | ≤ c[X,X]t <∞.

If X is not bounded, we can replace X by X1[0,TK [ where TK = inf{t >
0, |Xt| ≥ K} and repeat the same analysis for any K > 0. Therefore, (8.58)
converges to∑

0≤s≤t

{
f(Xs) − f(Xs−) − ∆Xsf

′(Xs−) − f ′′(Xs−)|∆Xs|2
}
.

Summing up all the terms we get:

f(Xt) − f(X0) =
∫ t

0

f ′(Xs−)dXs +
1
2

∫ t

0

f ′′(Xs)d[X,X]s

+
∑

0≤s≤t

{
f(Xs) − f(Xs−) − ∆Xsf

′(Xs−) − f ′′(Xs−)|∆Xs|2
}
.
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Since∫ t

0

f ′′(Xs−)d[X,X]s =
∫ t

0

f ′′(Xs−)d[X,X]cs +
∑

0≤s≤t
f ′′(Xs−)|∆Xs|2,

we obtain (8.58).

Martingale — drift decompositions similar to Proposition 8.16 can also be
obtained for general semimartingales, but these results involve some new no-
tions (predictable characteristics of semimartingales) that we do not discuss
here; curious readers are referred to [215]. In Chapter 14, we discuss such
decompositions for additive processes, which are generalizations of Lévy pro-
cesses allowing for time dependent (but deterministic) characteristics.

REMARK 8.4 The Itô formula can be extended to convex functions
which are continuous but not differentiable, a typical example being the call
option payoff function f(x) = (x −K)+. Such a convex function always has
a left derivative which we denote by f ′ but its second derivative f ′′ is given
by a Radon measure ρ, not necessarily a function (in the example above it
is a Dirac measure δK). The extended change of variable formula, called the
Tanaka-Meyer formula, then reads:

f(Xt) − f(X0) =
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

Lxt ρ(dx)

+
∑

0≤s≤t
{f(Xs) − f(Xs−) − ∆Xsf

′(Xs−)} ,

(8.59)

where Lxt is a continuous, nonanticipating, increasing process called the local
time of X at x [194, Theorem 9.46].

8.4 Stochastic exponentials vs. ordinary exponentials

In the Black-Scholes model, the evolution of an asset price was described
by the exponential of a Brownian motion with drift:

St = S0 exp(B0
t ), (8.60)

where B0
t = µt + σWt is a Brownian motion with drift. Applying the Itô

formula we obtain:

dSt
St

= (µ+
σ2

2
)dt+ σdWt = dB1

t or St = S0 +
∫ t

0

SudB
1
u, (8.61)
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where B1
t = (µ+σ2/2)t+σWt is another Brownian motion with drift. We will

now study these two ways of constructing “exponential processes” in the case
where the Brownian motions B0, B1 are replaced by a Lévy process. Replacing
B0
t by a Lévy process in (8.60) we obtain the class of exponential-Lévy models:

St = S0 expXt where X is Lévy process. Replacing B1
t by a Lévy process

in (8.61) we obtain the stochastic exponential, introduced by Doléans-Dade
[115]. This process satisfies a stochastic differential equation of the same form
as the classical ordinary differential equation for the exponential function:

St = S0 +
∫ t

0

Su−dXu.

8.4.1 Exponential of a Lévy process

Let (Xt)t≥0 be a Lévy process with jump measure JX . Applying the Itô
formula to Yt = expXt yields:

Yt = 1 +
∫ t

0

Ys−dXs +
σ2

2

∫ t

0

Ys−ds

+
∑

0≤s≤t;∆Xs �=0

(eXs−+∆Xs − eXs− − ∆Xse
Xs−)

= 1 +
∫ t

0

Ys−dXs +
σ2

2

∫ t

0

Ys−ds+
∫

[0,t]×R

Ys−(ez − 1 − z)JX(ds dz)

or, in differential notation:

dYt
Yt−

= dXt +
σ2

2
dt+ (e∆Xt − 1 − ∆Xt). (8.62)

Making an additional assumption that E[|Yt|] = E[exp(Xt)] < ∞, which is
by Proposition 3.14 equivalent to saying that

∫
|y|≥1

eyν(dy) < ∞, we can
decompose Yt into a martingale part and a drift part, where the martingale
part is the sum of an integral with respect to the Brownian component of X
and a compensated sum of jump terms:

Mt = 1 +
∫ t

0

Ys−σdWs +
∫

[0,t]×R

Ys−(ez − 1)J̃X(ds dz), (8.63)

while the drift term is given by:∫ t

0

Ys−

[
γ +

σ2

2
+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)ν(dz)

]
ds. (8.64)

Therefore, Yt = exp(Xt) is a martingale if and only if the drift term vanishes,
that is,

γ +
σ2

2
+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)ν(dz) = 0. (8.65)
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This result can of course be retrieved in a simpler way: by Proposition 3.17,
Y is a martingale if and only if E[expXt] = E[Yt] = 1. But E[expXt] =
exp[tψX(−i)], where ψX is the characteristic exponent of X. Therefore, we
obtain once again:

ψX(−i) = γ +
σ2

2
+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)ν(dz) = 0.

These properties are summarized in the following proposition:

PROPOSITION 8.20 Exponential of a Lévy process
Let (X)t≥0 be a Lévy process with Lévy triplet (σ2, ν, γ) verifying∫

|y|≥1

eyν(dy) <∞.

Then Yt = expXt is a semimartingale with decomposition Yt = Mt + At
where the martingale part is given by

Mt = 1 +
∫ t

0

Ys−σdWs +
∫

[0,t]×R

Ys−(ez − 1)J̃X(ds dz), (8.66)

and the continuous finite variation drift part is given by

At =
∫ t

0

Ys−

[
γ +

σ2

2
+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)ν(dz)

]
ds. (8.67)

(Yt) is a martingale if and only if

γ +
σ2

2
+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)ν(dz) = 0. (8.68)

8.4.2 The stochastic (Doléans-Dade) exponential

PROPOSITION 8.21 Doléans-Dade exponential

Let (X)t≥0 be a Lévy process with Lévy triplet (σ2, ν, γ). There exists a
unique cadlag process (Z)t≥0 such that

dZt = Zt−dXt Z0 = 1. (8.69)
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Z is given by:

Zt = eXt−σ2t
2

∏
0≤s≤t

(1 + ∆Xs)e−∆Xs . (8.70)

If
∫ 1

−1
|x|ν(dx) <∞ then the jumps of X have finite variation and the stochas-

tic exponential of X can be expressed as

Zt = eσWt+γ0t−σ2t
2

∏
0≤s≤t

(1 + ∆Xs) where γ0 = γ −
∫ 1

−1

xν(dx) (8.71)

PROOF Our proof partly follows [215]. Let

Vt =
∏

0≤s≤t;∆Xs �=0

(1 + ∆Xs)e−∆Xs .

The first step is to show that this process exists and is of finite variation. We
decompose V into a product of two terms: Vt = V ′

t V
′′
t , where

V ′
t =

∏
0≤s≤t

|∆Xs|≤1/2

(1 + ∆Xs)e−∆Xs and V ′′
t =

∏
0≤s≤t

|∆Xs|>1/2

(1 + ∆Xs)e−∆Xs .

V ′′ for every t is a product of finite number of factors, so it is clearly of finite
variation and there are no existence problems. V ′ is positive and we can
consider its logarithm.

lnV ′
t =

∑
0≤s≤t;|∆Xs|≤1/2

(ln(1 + ∆Xs) − ∆Xs).

Note that each term of this sum satisfies

0 > ln(1 + ∆Xs) − ∆Xs > −∆X2
s .

Therefore, the series is decreasing and bounded from below by −∑0≤s≤t ∆X
2
s ,

which is finite for every Lévy process (see Proposition 3.11). Hence, (lnV ′
t )

exists and is a decreasing process. This entails that (Vt) exists and has tra-
jectories of finite variation.

The second step is to apply the Itô formula for semimartingales to the
function Zt ≡ f(t,Xt, Vt) ≡ eXt−σ2t/2Vt. This yields (in differential form)

dZt = −σ
2

2
eXt−−σ2t

2 Vt−dt+ eXt−−σ2t
2 Vt−dXt + eXt−−σ2t

2 dVt

+
σ2

2
eXt−−σ2t

2 Vt−dt+ eXt−σ2t
2 Vt − eXt−−σ2t

2 Vt−

− eXt−−σ2t
2 Vt−∆Xt − eXt−−σ2t

2 ∆Vt.
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Now observe that since Vt is a pure jump process,

dVt ≡ ∆Vt = Vt−(e∆Xt(1 + ∆Xt) − 1).

Substituting this into the above equality and making all the cancellations
yields the Equation (8.69).

To understand why the solution is unique, observe that if (Z(1)
t ) and (Z(2)

t )
satisfy the Equation (8.69), then their difference Z̃t = Z

(1)
t −Z(2)

t satisfies the
same equation with initial condition Z̃0 = 0. From the form of this equation,
it is clear that if the solution is equal to zero at some point, it will remain
zero.

Z is called the stochastic exponential or the Doléans-Dade exponential of
X and is denoted by Z = E(X). Notice that we could have defined it for an
arbitrary semimartingale and not only for a Lévy process: the proof does not
use the independence or stationarity of increments.

8.4.3 Relation between ordinary and stochastic exponential

It is clear from the above results that the ordinary exponential and the
stochastic exponential of a Lévy process are two different notions: they do not
correspond to the same stochastic process. In fact, contrarily to the ordinary
exponential exp(Xt), which is obviously a positive process, the stochastic
exponential Z = E(X) is not necessarily positive. It is easy to see from the
explicit solution (8.70) that the stochastic exponential is always nonnegative
if all jumps of X are greater than −1, or, equivalently, ν((−∞,−1]) = 0.

It is therefore natural to ask, which of the two processes is more suitable
for building models for price dynamics. However the following result, due
to Goll and Kallsen [170], shows that the two approaches are equivalent: if
Z > 0 is the stochastic exponential of a Lévy process then it is also the
ordinary exponential of another Lévy process and vice versa. Therefore, the
two operations, although they produce different objects when applied to the
same Lévy process, end up by giving us the same class of positive processes. In
the continuous case this result is very simple to understand: if Xt = σWt is a
Wiener process then the ordinary and stochastic exponential are respectively
given by

Yt = eσWt and Zt = eσWt−σ2t
2 , (8.72)

therefore the stochastic exponential of a Brownian motion is also the ordinary
exponential of another Lévy process L, that is in this case a Brownian motion
with drift: Lt = σWt − σ2t

2 .
The following result generalizes this remark to Lévy processes with jumps.
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PROPOSITION 8.22 Relation between ordinary and stochastic
exponentials

1. Let (Xt)t≥0 be a real valued Lévy process with Lévy triplet (σ2, ν, γ) and
Z = E(X) its stochastic exponential. If Z > 0 a.s. then there exists
another Lévy process (Lt)t≥0 triplet (σ2

L, νL, γL) such that Zt = eLt

where

Lt = lnZt = Xt − σ2t

2
+
∑

0≤s≤t

{
ln(1 + ∆Xs) − ∆Xs

}
. (8.73)

σL = σ,

νL(A) = ν({x : ln(1 + x) ∈ A}) =
∫

1A(ln(1 + x))ν(dx), (8.74)

γL = γ − σ2

2
+
∫
ν(dx)

{
ln(1 + x)1[−1,1](ln(1 + x)) − x1[−1,1](x)

}
.

2. Let (Lt)t≥0 be a real valued Lévy process with Lévy triplet (σ2
L, νL, γL)

and St = expLt its exponential. Then there exists a Lévy process
(Xt)t≥0 such that St is the stochastic exponential of X: S = E(X)
where

Xt = Lt +
σ2t

2
+
∑

0≤s≤t

{
e∆Ls − 1 − ∆Ls

}
. (8.75)

The Lévy triplet (σ2, ν, γ) of X is given by:

σ = σL,

ν(A) = νL({x : ex − 1 ∈ A}) =
∫

1A(ex − 1)νL(dx), (8.76)

γ = γL +
σ2
L

2
+
∫
νL(dx)

{
(ex − 1)1[−1,1](ex − 1) − x1[−1,1](x)

}
.

PROOF 1. The condition Z > 0 a.s. is equivalent to ∆Xs > −1 for all s
a.s., so taking the logarithm is justified here. In the proof of Proposition 8.21
we have seen that the sum

∑
0≤s≤t

{
ln(1 + ∆Xs) − ∆Xs

}
converges and is

a finite variation process. Then it is clear that L is a Lévy process and that
σL = σ. Moreover, ∆Ls = ln(1 + ∆Xs) for all s. This entails that

JL([0, t] ×A) =
∫

[0,t]×R

1A(ln(1 + x))JX(ds dx)

and also νL(A) =
∫

1A(ln(1 + x))ν(dx). It remains to compute γL. Substi-
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tuting the Lévy-Itô decomposition for (Lt) and (Xt) into (8.73), we obtain

γLt− γt+
σ2t

2
+
∫
s∈[0,t],|x|≤1

xJ̃L(ds dx) +
∫
s∈[0,t],|x|>1

xJL(ds dx)

−
∫

s∈[0,t],|x|≤1

xJ̃X(ds dx) −
∫

s∈[0,t],|x|>1

xJX(ds dx)

−
∑

0≤s≤t

{
ln(1 + ∆Xs) − ∆Xs

}
= 0.

Observing that

∫
s∈[0,t],|x|≤1

x(JL(ds dx) − JX(ds dx))

=
∑

0≤s≤t

(
∆Xs1[−1,1](∆Xs) − ln(1 + ∆Xs)1[−1,1](ln(1 + ∆Xs))

)

converges, we can split the above expression into jump part and drift part,
both of which must be equal to zero. For the drift part we obtain:

γL − γ +
σ2

2
−
∫ 1

−1

{xνL(dx) − xν(dx)} = 0,

which yields the correct formula for γL after a change of variable.
2. The jumps of St are given by ∆St = St− exp(∆Lt) − 1). If X is a Lévy

process such that S = E(X) then since dSt = St−dXt then ∆St = St−∆Xt

so ∆Xt = exp(∆Lt) − 1 so ν is given by (8.76). In particular ∆Xt > −1
a.s. and it is easily verified that ln E(X) is a Lévy process with characteristics
matching those of L only if X has characteristics given by (8.76). Conversely
if X is a Lévy process with characteristics given by (8.76), using (8.70) we
can verify as above that E(X) = expLt.

As a corollary of this result, we will now derive an important property of
stochastic exponentials, shown here in the case of Lévy processes:

PROPOSITION 8.23 Martingale preserving property

If (X)t≥0 is a Lévy process and a martingale, then its stochastic exponential
Z = E(X) is also a martingale.

PROOF Let (Xt)t≥0 be a Lévy process with characteristic triplet (σ2, ν, γ)
such that γ +

∫
|x|≥1

xν(dx) = 0 (this is the martingale condition). First,
suppose that |∆Xs| ≤ ε < 1 a.s. Then by Proposition 8.22 there exists a
Lévy process Lt such that eLt = Zt. Moreover, this process has bounded
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jumps and therefore admits all exponential moments. Again, by Proposition
8.22, we can write:

γL +
σ2
L

2
+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)νL(dz) = γ +

∫ 1

−1

{zνL(dz) − zν(dz)}

+
∫ ∞

−∞
(ez − 1 − z1|z|≤1)νL(dz) =

∫ ∞

−∞
{(ez − 1)νL(dz) − zν(dz)} = 0

because ∆Xs = e∆Ls − 1 for all s. Therefore, by Proposition 8.20, Zt = eLt

is a martingale.
The second step is to prove the proposition when X is a compensated

compound Poisson process. In this case, the stochastic exponential has a very
simple form:

Zt = ebt
∏

0≤s≤t
(1 + ∆Xs),

where b = − ∫∞
−∞ xν(dx). Denoting the intensity of X by λ, we obtain

E[Zt] = e−λt+bt
∞∑
n=0

(λt)n

n!
(1 + E[∆X])n = 1.

Together with the independent increments property of X this proves that Z
is a martingale.

Now let X be an arbitrary martingale Lévy process. It can be decomposed
into a sum of a compensated compound Poisson process X ′ and an indepen-
dent martingale Lévy process with jumps smaller than ε, denoted by X ′′.
Since these two processes never jump together, E(X ′ + X ′′) = E(X ′)E(X ′′).
Moreover, each of the factors is a martingale and they are independent, there-
fore we conclude that E(X ′ +X ′′) is a martingale.

E(X) is an example of an “exponential martingale” associated to X. One
can use this correspondence to define the notion of stochastic logarithm of a
Lévy process [229], i.e., a process L(X) such that E(L(X)) = X.

Further reading

The relation between the theory of stochastic integrals and continuous time
trading strategies was pointed out by Harrison and Pliska in [191] and [192],
which remain one of the most readable accounts on this topic. These papers
also contain examples of market models driven by Poisson processes.
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Most introductory (and less introductory) texts on stochastic calculus al-
most exclusively deal with Brownian motion and continuous semimartingales,
see, e.g., [335]. Stochastic integration for discontinuous processes is presented
in [55, 110, 210, 215, 324, 194, 205]. In the “classical” approach to stochas-
tic integration, semimartingales are defined as processes which can be ex-
pressed as the sum of a (local) martingale and a process with finite variation
and the integration theory is subsequently developed. While Dellacherie and
Meyer[110] remains the classical reference on this approach, a detailed ac-
count can be found in [194] and the main results are summarized in [215].
This approach is less intuitive for our purpose since there is no a priori rea-
son to model an asset price as the sum of a martingale and a finite variation
process.

The approach we have adopted here is due to Protter [324, 323]: semi-
martingales are first defined as processes with good integration properties
(Definition 8.2) and then one proceeds to show that usual stochastic pro-
cesses are semimartingales. A very readable account of this approach is given
in [323].

Stroock [370] discusses in detail the construction of stochastic integrals in
the framework of Markov processes using Itô’s original approach. The dif-
ference between componentwise and vector stochastic integration is carefully
discussed in [89] and [90]. Stochastic integration with respect to Poisson ran-
dom measures is discussed in [205], see also [242, 306]. Stochastic integration
with respect to more general random measures is discussed in [215].

Stochastic integrals can be extended to integrands which are more general
than caglad, but as pointed out before, in order to interpret the stochastic
integral of a trading strategy as the gain process, we need to be able to
approximate the stochastic integral pathwise by Riemann sums, hence we
have limited integrands to caglad processes. This point is further discussed
in [382].

There exist alternative approaches to stochastic integration, some of them
having pathwise interpretations, the most well known being the Stratonovich
integral, so one may wonder whether alternative models for continuous trading
could be built from these constructions. But these approaches do not neces-
sarily yield nonanticipating gain processes when applied to a trading strategy,
which makes it difficult to give them a financial interpretation. The relation
between Itô and Stratonovich integrals is discussed in [207].

Stochastic exponentials were introduced in [115] and are linked to “Wick”
exponentials used in theoretical physics. They are important for constructing
various exponential martingales and studying transformations of probability
measures on path space, as will be pointed out in the next chapter. A discus-
sion of stochastic exponentials can be found in [215, Chapter II].
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Chapter 9

Measure transformations for Lévy
processes

It might be possible to prove certain theorems [about probability], but
they might not be of any interest since, in practice, it would be impossible
to verify whether the assumptions are fulfilled.

Emile Borel

As noted in Chapter 3, a Lévy process (Xt)t∈[0,T ] can be considered as a
random variable on the space Ω = D([0, T ]) of discontinuous (cadlag) paths,
equipped with its σ-algebra F telling us which events are measurable or, in
other words, which statements can be made about these paths. The probabil-
ity distribution of X then defines a probability measure P

X on this space of
paths. Now consider another Lévy process (Yt)t∈[0,T ] and P

Y its distribution
on the path space Ω. We will discuss in this chapter conditions under which
P
X and P

Y are equivalent probability measures, in the sense that they define
the same set of possible scenarios:

P
X(A) = 1 ⇐⇒ P

Y (A) = 1.

If P
X and P

Y are equivalent, then the stochastic models X and Y define the
same set of possible evolutions. The construction of a new process on the
same set of paths by assigning new probabilities to events (i.e., reweighting
the probabilities) is called a change of measure. To emphasize the fact that
we are working under a specified measure, in this chapter we will often write
(X,P) to denote the process X and the corresponding distribution it defines
over scenarios.

Given a probability measure P on the path space Ω = D([0, T ]), equiva-
lent measures may be generated in many ways: given any (path-dependent)
random variable Z > 0 on Ω with EP[Z] = 1, the new probability measure
defined by adjusting the probability each path ω ∈ Ω by Z(ω):

dQ

dP
= Z, i.e., ∀A ∈ F , Q(A) = EP[Z1A],
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is equivalent to P. If we restrict our attention to events occurring between 0
and t then each path between 0 and t is reweighted by Zt(ω) = E[Z|Ft]:

dQFt

dPFt

= Zt ∀A ∈ Ft, Q(A) = EP[Zt1A]. (9.1)

By construction, (Zt) is a strictly positive martingale verifying E[Zt] = 1.
Conversely, any strictly positive martingale (Zt)t∈[0,T ] with E[Zt] = 1 defines
a new measure on path space given by (9.1). Though the processes defined
by P and Q share the same paths, they can have quite different analytical and
statistical properties. For example, if P defines a Lévy process X, the process
Y defined by Q is not necessarily a Lévy process: it may have increments which
are neither independent nor stationary. Given a class of processes, such as
Lévy processes, it is investigate to investigate structure-preserving changes of
measure which leave a given process within the class after a change of measure.

When X and Y are both Lévy processes, the equivalence of their measures
gives relations between their parameters. As an example, take a Poisson
process X with jump size equal to 1 and intensity λ. Then, with probability
1, the paths of X are piecewise constant with jumps equal to 1. Let Y be
another Poisson process on the same path space, with intensity λ and jump
size equal to 2. The measures corresponding to X and Y are clearly not
equivalent since all the trajectories of Y that have jumps have zero probability
of being trajectories of X and vice versa. However, if Y has the same jump
size as X but a different intensity λ̃ then every trajectory of X on [0, T ] can
also be a possible trajectory of Y and vice versa, so the two measures have a
chance of being equivalent (we will see later that this is indeed the case).

This example also shows that two stochastic processes can define equivalent
measures on scenarios while having different statistical properties. We will
distinguish properties that are invariant under equivalent change of measure
from those that are not. This will allow us to differentiate between “pathwise”
or “almost sure” properties — properties of the process that can be deduced
from the observation of a typical sample path — and the “statistical” prop-
erties, which are not preserved by an equivalent change of measure. This
distinction is particularly important in financial modelling since when dealing
with empirical data we observe a single trajectory of the price; considering the
price history to be a typical sample path of a stochastic model we can infer
its pathwise properties but its statistical properties may be harder to detect
unless stronger hypotheses are made. In the above example, a Poisson process
X is transformed into another Poisson process with a different intensity. This
is an example of a structure-preserving transformation. Structure preserv-
ing changes of measure are interesting since they enable us to stay within an
analytically tractable family of models. We will see more examples of such
structure-preserving changes of measure for various types of Lévy processes
in this chapter.

Equivalent changes of measure play an important role in arbitrage pricing
theory. Two important concepts in the mathematical theory of contingent
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claim pricing are the absence of arbitrage, which imposes constraints on the
way instruments are priced in a market and the notion of risk-neutral pricing,
which represents the price of any instrument in an arbitrage-free market as its
discounted expected payoff under an appropriate probability measure called
the “risk-neutral” measure. Both of these notions are expressed in mathemat-
ical terms using the notion of equivalent change of measure: we will see that
in a market model defined by a probability measure P on market scenarios
there is one-to-one correspondence between arbitrage-free valuation rules and
risk-neutral probability measures Q equivalent to P verifying a martingale
property.

In this chapter, we will discuss equivalent changes of measure, their relation
to arbitrage pricing and market completeness and give examples in the case
of Lévy processes. Section 9.1 discusses the notions of risk-neutral pricing,
absence of arbitrage and equivalent martingale measures in a general setting.
In the following sections, these notions are examined in the context of models
where randomness is generated by a Lévy process: Section 9.3 considers the
simple cases of Poisson processes, compound Poisson processes and Brownian
motion with drift and Section 9.4 gives the results for general Lévy processes.
Section 9.5 gives an example of structure-preserving change of measure for
Lévy processes, the Esscher transform.

Equivalent probability measures are defined on the same set of scenarios
and are comparable. The notion of relative entropy, discussed in Section 9.6,
defines a “distance” between two equivalent probability measures. It turns
out that relative entropy can in fact be explicitly computed in the case of
Lévy processes; this fact will be used in Chapter 13 when we will discuss
model calibration.

9.1 Pricing rules and martingale measures

In this section we will attempt to explain the fundamental concepts behind
risk-neutral pricing, absence of arbitrage and equivalent martingale measures
using a minimum of jargon and technicality. Readers thirsty for more technical
expositions are referred to [190, 191, 226, 109].

Consider a market whose possible evolutions between 0 and T are described
by a scenario space (Ω,F): F contains all statements which can be made about
behavior of prices between 0 and T . Underlying assets may then be described
by a nonanticipating (cadlag) process:

S : [0, T ] × Ω �→ R
d+1

(t, ω) �→ (S0
t (ω), S1

t (ω), . . . , Sdt (ω)), (9.2)

where Sit(ω) represents the value of asset i at time t in the market scenario
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ω and S0
t is a numeraire. A typical example of numeraire is a cash account

with interest rate r: S0
t = exp(rt). Discounting is done using the numeraire

S0
t : for any portfolio with value Vt, the discounted value is defined by

V̂t =
Vt
S0
t

and B(t, T ) = S0
t /S

0
T is called the discount factor. In the case where the

numeraire is S0
t = exp(rt), the discount factor is simply given by B(t, T ) =

exp[−r(T − t)]. We denote by (Ft)t∈[0,T ] the information generated by the
history of assets up to t. F0 contains no information and FT = F is the
history of all assets up to T . One could include other sources of information
than just price histories but this is the framework assumed in the majority of
pricing models. A contingent claim with maturity T may be represented by
specifying its terminal payoff H(ω) in each scenario: since H is revealed at
T it is a FT -measurable map H : Ω → R. In practice, one does not consider
all such contingent claims but a subclass of payoffs with some properties and
various choices are possible. We will denote the set of contingent claims of
interest by H. Of course, the underlying assets themselves can be viewed as
particular contingent claims whose payoff is given by the terminal value SiT : it
is therefore natural to assume SiT ∈ H. Other examples are European calls and
puts: H = (K−SiT )+, H = (K−SiT )+ and path dependent options, where H
can depend on the whole path of the underlying H(ω) = h(St(ω), t ∈ [0, T ]).

A central problem in this context is the valuation problem: how can we
attribute a notion of “value” to each contingent claim H ∈ H? A pricing
rule (also called a valuation operator) is a procedure which attributes to each
contingent claim H ∈ H a value Πt(H) at each point in time. There are
some minimal requirements that Πt(H) should verify to qualify as a pricing
rule. First, if the pricing rule is to be of any use, one should be able to
compute the value Πt(H) using the information given at t: Πt(H) should be
a nonanticipating process. A second requirement is positiveness: a claim with
a positive payoff should naturally have a positive value:

∀ω ∈ Ω,H(ω) ≥ 0 ⇒ ∀t ∈ [0, T ],Πt(H) ≥ 0. (9.3)

Another requirement is linearity: the value of a portfolio is given by the sum
of the values of its components:

Πt(
J∑
j=1

Hj) =
J∑
j=1

Πt(Hj). (9.4)

Linearity may actually fail to hold for large portfolios: large block trades
may be given discount prices on the market. We will encounter below some
examples of pricing rules which are in fact nonlinear. But let us focus for the
moment on linear pricing rules.
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For any event A ∈ F , the random variable 1A represents the payoff of a
contingent claim which pays 1 at T if A occurs and zero otherwise: it is a bet
on A (also called a lottery). We will assume that 1A ∈ H: such contingent
claims are priced on the market. In particular 1Ω = 1 is just a zero-coupon
bond paying 1 at T . Its value Πt(1) represents the present value of 1 unit of
currency paid at T , i.e., the discount factor:

Πt(1) = e−r(T−t).

Define now Q : F �→ R by

Q(A) =
Π0(1A)
Π0(1)

= erTΠ0(1A). (9.5)

Q(A) is thus the value of a bet of nominal exp(rT ) on the event A. Then, the
linearity and positiveness of Π entail the following properties for Q:

• 1 ≥ Q(A) ≥ 0, since 1 ≥ 1A ≤ 0.

• If A,B are disjoint events 1A∪B = 1A+1B so by linearity of the valuation
operator: Q(A ∪B) = Q(A) + Q(B).

If one extends the linearity (9.4) to infinite sums, then Q defined by (9.5) is
nothing else but a probability measure over the scenario space (Ω,F)! So,
starting from a valuation rule Π, we have constructed a probability measure
Q over scenarios. Conversely, Π can be retrieved from Q in the following way:
for random payoffs of the form H =

∑
ci1Ai

which means, in financial terms,
portfolios of cash-or-nothing options, by linearity of Π we have Π0(H) =
EQ[H]. Now if Π verifies an additional continuity property (i.e., if a dominated
convergence theorem holds on H) then we can conclude that for any random
payoff H ∈ H,

Π0(H) = e−rTEQ[H]. (9.6)

Therefore there is a one-to-one correspondence between linear valuation rules
Π verifying the properties above and probability measures Q on scenarios:
they are related by

Π0(H) = e−r(T−t)EQ[H] and Q(A) = er(T−t)Π0(1A). (9.7)

The relation (9.6) is sometimes called a risk-neutral pricing formula: the value
of a random payoff is given by its discounted expectation under Q. We have
shown above that any linear valuation rule Π verifying the properties above is
given by a “risk-neutral” pricing rule: there are no others! It is important to
understand that Q has nothing to do with the actual/objective probability of
occurrence of scenarios: in fact, we have not defined any objective probability
measure on the scenarios yet! Q is called a risk-neutral measure or a pricing
measure. Although it is, mathematically speaking, a probability measure on
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the set of scenarios, Q(A) should not be interpreted as the probability that
A happens in the real world but as the value of a bet on A. A risk-neutral
measure is just a convenient representation of the pricing rule Π: it is not
obtained by an econometric analysis of time series or anything of the sort,
but by looking at prices of contingent claims at t = 0.

Similarly for each t, A �→ A = ertΠt(1A) defines a probability measure over
scenarios between 0 and t, i.e., a probability measure Qt on (Ω,Ft). If we
require that the pricing rule Π is time consistent, i.e., the value at 0 of the
payoff H at T is the same as the value at 0 of the payoff Πt(H) at t then Qt

should be given by the restriction of Q, defined above, to Ft and Πt(H) is
given by the discounted conditional expectation with respect to Q:

Πt(H) = e−r(T−t)EQ[H|Ft]. (9.8)

Therefore we have argued that any time consistent linear pricing rule Π verify-
ing some continuity property is given by a discounted conditional expectation
with respect to some probability measure Q. We will now consider such a
pricing rule given by a probability measure Q and examine what restrictions
are imposed on Q by the requirement of absence of arbitrage.

9.1.1 Arbitrage-free pricing rules and martingale measures

Assume now that, in addition to the market scenarios (Ω,F) and the in-
formation flow Ft, we know something about the probability of occurrence
of these scenarios, represented by a probability measure P. P represents here
either the “objective” probability of future scenarios or the subjective view
of an investor. What additional constraints should a pricing rule given by
(9.8) verify in order to be compatible with this statistical view of the future
evolution of the market?

A fundamental requirement for a pricing rule is that it does not generate
arbitrage opportunities. An arbitrage opportunity is a self-financing strat-
egy φ which can lead to a positive terminal gain, without any probability of
intermediate loss:

P(∀t ∈ [0, T ], Vt(φ) ≥ 0) = 1, P(VT (φ) > V0(φ)) 
= 0.

Of course such strategies have to be realistic, i.e., of the form (8.2) to be of
any use. Note that the definition of an arbitrage opportunity involves P but
P is only used to specify whether the profit is possible or impossible, not to
compute its probability of occurring: only events with probability 0 or 1 are
involved in this definition. Thus the reasoning in the sequel will not require
a precise knowledge of probabilities of scenarios. The self-financing property
is important: it is trivial to exhibit strategies which are not self-financing
verifying the property above, by injecting cash into the portfolio right before
maturity. A consequence of absence of arbitrage is the law of one price: two
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self-financing strategies with the same terminal payoff must have the same
value at all times, otherwise the difference would generate an arbitrage.

Consider now a market where prices are given by a pricing rule as in (9.8)
represented by some probability measure Q. Consider an event A such that
P(A) = 0 and an option which pays the holder 1 (unit of currency) if the
event A occurs. Since the event A is considered to be impossible, this option
is worthless to the investor. But the pricing rule defined by Q attributes to
this option a value at t = 0 equal to

Π0(1A) = e−rTEQ[1A] = e−rTQ(A).

So the pricing rule Q is coherent with the views of the investor only if Q(A) =
0. Conversely if Q(A) = 0 then the option with payoff 1A ≥ 0 is deemed
worthless; if P(A) 
= 0 then purchasing this option (for free) would lead to
an arbitrage. So the compatibility of the pricing rule Q with the stochastic
model P means that Q and P are equivalent probability measures: they define
the same set of (im)possible events

P ∼ Q : ∀A ∈ F Q(A) = 0 ⇐⇒ P(A) = 0. (9.9)

Consider now an asset Si traded at price Sit . This asset can be held until T ,
generating a terminal payoff SiT , or be sold for St: the resulting sum invested
at the interest rate r will then generate a terminal wealth of er(T−t)Sit . These
two buy-and-hold strategies are self-financing and have the same terminal
payoff so they should have the same value at t:

EQ[SiT |Ft] = EQ[er(T−t)Sit |Ft] = er(T−t)Sit . (9.10)

Dividing by S0
T = erT we obtain:

EQ[
SiT
S0
T

|Ft] =
Sit
S0
t

, i.e., EQ[ŜiT |Ft] = Ŝit . (9.11)

Therefore absence of arbitrage implies that discounted values Ŝit = e−rtSit
of all traded assets are martingales with respect to the probability measure
Q. A probability measure verifying (9.9) and (9.11) is called an equivalent
martingale measure. We have thus shown that any arbitrage-free pricing rule
is given by an equivalent martingale measure.

Conversely, it is easy to see that any equivalent martingale measure Q

defines an arbitrage-free pricing rule via (9.8). Consider a self-financing strat-
egy (φt)t∈[0,T ]. Of course a realistic strategy must be represented by a simple
(piecewise constant) predictable process as in (8.2). Since Q is a martin-
gale measure Ŝt is a martingale under Q so, as observed in Chapter 8, the
value of the portfolio Vt(φ) = V0 +

∫ t
0
φdS is a martingale so in particular

EQ[
∫ t
0
φdS] = 0. The random variable

∫ t
0
φdS must therefore take both pos-
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itive and negative values: Q(VT (φ) − V0 =
∫ T
0
φtdSt ≥ 0) 
= 1. Since P ∼ Q

this entails P(
∫ T
0
φtdSt ≥ 0) 
= 1: φ cannot be an arbitrage strategy1.

There is hence a one-to-one correspondence between arbitrage-free pricing
rules and equivalent martingale measures:

Specifying an arbitrage-free pricing rule on (Ω,F , (Ft),P)
�

Specifying a probability measure Q ∼ P on market scenarios such that the
prices of traded assets are martingales.

Let us now summarize these results:

PROPOSITION 9.1 Risk-neutral pricing

In a market described by a probability measure P on scenarios, any arbitrage-
free linear pricing rule Π can be represented as

Πt(H) = e−r(T−t) EQ[H|Ft], (9.12)

where Q is an equivalent martingale measure: a probability measure on the
market scenarios such that

P ∼ Q : ∀A ∈ F Q(A) = 0 ⇐⇒ P(A) = 0
and ∀i = 1 . . . d, EQ[ŜiT |Ft] = Ŝit .

Up to now we have assumed that such an arbitrage-free pricing rule/equi-
valent martingale measures does indeed exist, which is not obvious in a given
model. The above arguments show that if an equivalent martingale measure
exists, then the market is arbitrage-free. The converse result [190, 191, 109],
more difficult to show, is sometimes called the Fundamental theorem of asset
pricing:

PROPOSITION 9.2 Fundamental theorem of asset pricing

The market model defined by (Ω,F , (Ft),P)and asset prices (St)t∈[0,T ] is
arbitrage-free if and only if there exists a probability measure Q ∼ P such that
the discounted assets (Ŝt)t∈[0,T ] are martingales with respect to Q.

1This argument can be extended to strategies which are not piecewise constant but more
complex, as long as the corresponding value process

∫ t
0 φdS is a martingale, e.g., by requiring

boundedness, square-integrability, etc.
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A proper mathematical statement requires a careful specification of the set
of admissible strategies and in fact it is quite hard to give a precise version
of this theorem: in fact for a general, unbounded semimartingale (such as
an exponential-Lévy models with unbounded jumps) “martingale measure”
should be replaced by the notion of “σ-martingale measure,” the definition
of arbitrage opportunity should be slightly modified to “no free lunch with
vanishing risk,” etc. We refer the reader to the academic literature on this
topic [109, 90, 191, 190, 349]. This theorem establishes an equivalence between
the financial concept of absence of arbitrage and the mathematical notion of
equivalent martingale measure.

9.2 Market completeness

Besides the idea of absence of arbitrage, another important concept originat-
ing in the Black-Scholes model is the concept of perfect hedge: a self-financing
strategy (φ0

t , φt) is said to be a perfect hedge (or a replication strategy) for a
contingent claim H if

H = V0 +
∫ T

0

φtdSt +
∫ T

0

φ0
tdS

0
t P − a.s. (9.13)

By absence of arbitrage, if a replicating strategy exists, then V0 is unique
since two replicating strategies with different initial capital could lead to an
arbitrage.

A market is said to be complete if any contingent claim admits a replicating
portfolio: for any H ∈ H there exists a self-financing strategy (φ0

t , φt) such
that (9.13) holds with probability 1 under P. As usual, φt should either be a
simple predictable strategy as in (8.2) or be approximated by such strategies.

If (9.13) holds with probability 1, it also holds with probability 1 under any
equivalent martingale measure Q ∼ P. The discounted values then verify

Ĥ = V0 +
∫ T

0

φtdŜt Q − a.s. (9.14)

Taking expectations with respect to Q and assuming that the strategy (φt) ver-
ifies conditions such that

∫ t
0
φdS is a martingale (for example, it is bounded)

we obtain EQ[Ĥ] = V0: the value attributed by the pricing rule Q is given by
the initial capital of the hedging strategy. Since this is true for any equivalent
martingale measure Q we conclude (up to the boundedness assumptions we
have made on the replicating strategies) that in a complete market there is
only one way to define the value of a contingent claim: the value of any con-
tingent claim is given by the initial capital needed to set up a perfect hedge
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for H. In particular, all equivalent martingale measures give the same pric-
ing rules: they are the same! Therefore market completeness seems to imply
the uniqueness of pricing rules/equivalent martingale measures. In fact, the
converse result also holds but it much more difficult to show:

PROPOSITION 9.3 Second Fundamental Theorem of Asset Pricing

A market defined by the assets (S0
t , S

1
t , . . . , S

d)t∈[0,T ], described as stochastic
processes on (Ω,F , (Ft),P)is complete if and only if there is a unique martin-
gale measure Q equivalent to P.

This theorem establishes the equivalence between the financial notion of
market completeness — the possibility to perfectly hedge any contingent claim
— and the uniqueness of equivalent martingale measure, which is a mathe-
matical property of the underlying stochastic model. The theorem holds as
stated above in discrete time models. In continuous time models one has
to carefully define the set of admissible strategies, contingent claims and the
notion of “martingale measure.” Unfortunately in the case where S has un-
bounded jumps, which is the case of most exponential-Lévy models, a rigorous
formulation is quite difficult and requires to use the notion of “σ-martingale”
[109]. Cherny and Shiryaev [90, Example 5.3.] present an example (albeit not
a very realistic one) of a complete model for which an equivalent martingale
measure (or local martingale measure) does not exist. We will not make use
of these subtleties in the sequel; the curious reader is referred to [226] or [90]
for a review. This suggests the following “equivalence,” to be understood in
a loose sense:

Market completeness:
any contingent claim H ∈ H can be represented as the final

value of a self-financing strategy: H = E[H] +
∫ T
0
φtdSt

�
Uniqueness of equivalent martingale measure:

There exists a unique probability measure Q ∼ P

such that discounted assets are Q-martingales.

While most stochastic models used in option pricing are arbitrage-free, only
a few of these models are complete: stochastic volatility models and as we
will see shortly, exponential-Lévy models, jump-diffusion models fall into the
category of incomplete models. By contrast, one dimensional diffusion models
(in particular, the Black-Scholes model) define complete markets.

REMARK 9.1 Martingale representation property In mathematical
terms, (9.14) means that for any random variable H ∈ H depending on the
history of St between 0 and T , Ĥ can be represented as the sum of a constant
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and a stochastic integral of a predictable process with respect to Ŝ. If this
property holds for all terminal payoffs with finite variance, i.e., any H ∈
L2(FT ,Q) can be represented as

Ĥ = E[H] +
∫ T

0

φs dŜt (9.15)

for some predictable process φ, the martingale (Ŝt)t∈[0,T ] is said to have the
predictable representation property. Thus market completeness is often identi-
fied with the predictable representation property, which has been studied for
many classical martingales. The predictable representation property can be
shown to hold when Ŝ is (geometric) Brownian motion or a Brownian stochas-
tic integral [335], but it fails to hold for most discontinuous models used in
finance. For example, it is known to fail for all non-Gaussian Lévy processes
except the (compensated) Poisson process: Chou and Meyer [91] show that if
the jump size of a process with independent increments can take more than
a single value then the predictable representation property fails. Yor and de
Lazaro [385] generalize this result by showing that a martingale Ŝ with sta-
tionary increments has the predictable representation property (with respect
to its own history) if and only if X is either a Brownian motion or a com-
pensated Poisson process. We will show in Chapter 10 that this property also
fails in exponential-Lévy models by a direct computation. Nevertheless one
can construct price models with jumps where the predictable representation
property holds: an example is the Azéma martingale, see [326].

Even if the predictable representation property holds it does not automati-
cally lead to “market completeness”: as argued in Chapter 8, any predictable
process φt cannot be interpreted as a trading strategy. For this interpretation
to hold we must be able, in some way, to approximate its value process using
an implementable (piecewise constant in time) portfolio of the form (8.2) so
predictable processes which can be reasonably interpreted as “trading strate-
gies” are simple predictable processes as in (8.2) or caglad processes. Ma et al.
[269] give conditions on the random variableH under which the representation
involves a process with regular (caglad) paths.

Finally let us note that we are looking for a representation of Ĥ in terms
of a stochastic integral with respect to Ŝ. In fact the following theorem [205,
Chapter 2] shows that when the source of randomness is a Brownian motion
and a Poisson random measure, a random variable with finite variance can be
always represented as a stochastic integral:

PROPOSITION 9.4

Let (Wt)t∈[0,T ] be a d-dimensional Wiener process and M a Poisson random
measure on [0, T ] × R

d, independent from W . Then any random variable Ĥ
with finite variance depending on the history (Ft)t∈[0,T ] of W and M between
0 and T can be represented as the sum of a constant, a stochastic integral
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with respect to W and a compensated Poisson integral with respect to M :
there exists a predictable process φ : Ω× [0, T ] �→ R and a predictable random
function ψ : Ω × [0, T ] × R

d �→ R such that

Ĥ = E[Ĥ] +
∫ t

0

φsdWs +
∫ t

0

∫
Rd

ψ(s, y)M̃(ds dy). (9.16)

This property is also called a predictable representation property2 by many
authors but has nothing to do with market completeness. As noted in Remark
8.1, even when S is driven by the same sources of randomness W and M
and M = JS represents the jump measure of the process S, the expression
(9.16) cannot be represented as a stochastic integral with respect to S. Such
representations are nevertheless useful for discussing hedging strategies, as we
will see in Chapter 10.

Is market completeness a desirable property in an option pricing model?
Unfortunately, perfect hedges do not exist in practice. So if a model asserts
that all options can be perfectly hedged, it is likely to give a distorted view of
the risky nature of option trading, underestimating the risk inherent in writing
an option. Of course, one could always argue that “dynamic hedging” is a
continuous time concept and in a market with frictions, transaction costs, etc.,
perfect hedging is not achievable: these questions have stimulated a literature
on corrections induced by such “market imperfections” in diffusion models:
residual risk, increased hedging costs,. . . However, the real risks induced by
taking positions in options are market risks — gamma risk, vega risk — whose
order of magnitude is much larger than “corrections” induced by transaction
costs and other imperfections. In complete market models, these risks are
simply absent: they are reducible to “delta risk”, which can be hedged away
to zero! This is certainly a much rougher approximation than assuming zero
transaction costs. Thus in our view it makes more sense to use incomplete
market models where the risk of hedging can be quantified rather than sticking
to complete market models where the risk of hedging is by definition zero and
then elaborate on second-order effects such as market frictions. As most
discontinuous price models generically lead to incomplete markets, this is not
really a constraint on the model, while completeness is.

There is thus a one-to-one correspondence between arbitrage-free valuation
methods and equivalent martingale measures: the concept of equivalent mar-
tingale of measure thus plays an important role. The next section will describe
the construction of such equivalent martingale measures and the issue of their
uniqueness in models where the randomness is described by a Lévy process.

2More precisely one should say “predictable representation with respect to W, M” in this
case.
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9.3 Equivalence of measures for Lévy processes: simple
cases

Having seen the role played by equivalent changes of measure in defining
arbitrage-free pricing models, we will now study such changes of measure in
the case where the source of randomness is given by a Lévy process.

Recall that if the P and Q are equivalent probability measures then, as we
have seen in Section 2.1.3, there exists a positive random variable, called the
density of Q with respect to P and denoted dQ

dP
such that for any random

variable Z

EQ[Z] = EP

{
Z
dQ

dP

}
.

Let us start by considering a Poisson process defined by its jump size a and
its jump intensity λ. The following result shows that if one wants two Poisson
processes to define equivalent measures on the set of sample paths, one can
freely change the intensity but the jump size must remain the same:

PROPOSITION 9.5 Equivalence of measure for Poisson processes
Let (N,Pλ1) and (N,Pλ2) be Poisson processes on (Ω,FT ) with intensities
λ1 and λ2 and jump sizes a1 and a2.

1. If a1 = a2 then Pλ1 is equivalent to Pλ2 with Radon-Nikodym density

dPλ1

dPλ2

= exp
[
(λ2 − λ1)T −NT ln

λ2

λ1

]
. (9.17)

2. If a1 
= a2 then the measures Pλ1 and Pλ2 are not equivalent.

The result above means that changing the intensity of jumps amounts to
“reweighting” the probabilities on paths: no new paths are generated by sim-
ply shifting the intensity. However changing the jump size generates different
kind of paths: while the paths of N1 are step functions with step size a1, the
paths of N2 are step functions with step size a2. Therefore the intensity of a
Poisson process can be modified without changing the “support” of the pro-
cess, but changing the size of jumps generates a new measure which assigns
nonzero probability to some events which were impossible under the old one.

PROOF

1. Let B ∈ FT . We must show that

Pλ1{B} = EPλ2{1B dPλ1

dPλ2

}
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holds with the Radon-Nikodym derivative given by (9.17). For the left-
hand side of this equation we have, using the properties of Poisson pro-
cess:

Pλ1{B} =
∞∑
k=0

e−λ1T (λ1T )k

k!
EPλ1 {1B

∣∣NT = k},

and the right-hand side simplifies to

EPλ2{1B dPλ1

dPλ2

}

=
∞∑
k=0

e−λ2T (λ2T )k

k!

(
λ1

λ2

)k
e(λ2−λ1)TEPλ2{1B

∣∣NT = k}

=
∞∑
k=0

e−λ1T (λ1T )k

k!
EPλ2{1B

∣∣NT = k}.

Since conditionally on the number of jumps in the interval, the jump
times of a Poisson process are uniformly distributed on this interval,
EPλ{1B

∣∣NT = k} does not depend on λ, which proves the assertion of
the proposition.

2. This is straightforward since all nonconstant paths possible under P1 are
impossible under P2. Note that these measures are not singular because
they both assign a nonzero probability to the constant function.

REMARK 9.2 Two Poisson processes with different intensities define
equivalent measures only on a finite time interval. If T = ∞, formula (9.17)
shows that when intensities of two Poisson processes are different, the Radon-
Nikodym derivative is either zero or infinity, which means that the measures
are mutually singular. This corresponds to the fact that the intensity cannot
be “read” from a trajectory of finite length but it can be estimated in an
almost sure way from an infinite trajectory.

It is often interesting to restrict the change of measure to a shorter time
interval than the original one. Let us consider the information flow Ft gen-
erated by the history of the process, defined in Section 2.4.2. The restriction
of probability measure P to Ft, denoted by P

∣∣
Ft

, is a probability measure on
Ft which assigns to all events in Ft the same probability as P. The Radon-
Nikodym derivative Dt = dQ|Ft

dP|Ft
is thus an (Ft)-adapted process. Moreover, it

is a P-martingale because for every B ∈ Fs we have

EP{Dt1B} = EQ{1B} = EP{Ds1B}.
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We now turn to the case of compound Poisson processes.

PROPOSITION 9.6 Equivalence of measures for compound Poisson
processes
Let (X,P) and (X,Q) be compound Poisson processes on (Ω,FT ) with Lévy

measures νP and νQ. P and Q are equivalent if and only if νP and νQ are
equivalent. In this case the Radon-Nikodym derivative is

DT =
dQ

dP
= exp

⎛
⎝T (λP − λQ) +

∑
s≤T

φ(∆Xs)

⎞
⎠ , (9.18)

where λP ≡ νP(R) and λQ ≡ νQ(R) are the jump intensities of the two pro-
cesses and φ ≡ ln

(
dνQ

dνP

)
.

PROOF The if part. Suppose that νP and νQ are equivalent. Conditioning
the trajectory of X on the number of jumps in [0, T ] we have:

EP{DT } = EP{eT (λP−λQ)+
∑

s≤T φ(∆Xs)}

= e−λ
QT

∞∑
k=0

(λPT )k

k!
EP{eφ(∆X)}k = 1.

ThereforeDTP is a probability measure. To prove the if part of the proposition
it is now sufficient to show that if X is a compound Poisson process under P

with Lévy measure νP then it is a compound Poisson process under Q with
Lévy measure νQ. To show this we will first check that X has Q-independent
increments and second that the law of XT under Q is that of a compound
Poisson random variable with Lévy measure TνQ. Let f and g be two bounded
measurable functions and let s < t ≤ T . Using the fact that X and lnD are
P-Lévy processes, and that D is a P-martingale we have:

EQ{f(Xs)g(Xt −Xs)} = EP{f(Xs)g(Xt −Xs)Dt}
= EP{f(Xs)Ds}EP{g(Xt −Xs)

Dt

Ds
} = EP{f(Xs)Ds}EP{g(Xt −Xs)Dt}

= EQ{f(Xs)}EQ{g(Xt −Xs)},
which proves Q-independence of increments. Furthermore, by conditioning
the trajectory of X as above, we find

EP{eiuXT eT (λP−λQ)+
∑

s≤T φ(∆Xs)}

= e−λ
QT

∞∑
k=0

(λPT )k

k!
EP{eiu∆X+φ(∆X)}k = exp

(
T

∫
(eiux − 1)νQ(dx)

)
.
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The only if part. Suppose that νP and νQ are not equivalent. Then we can
find either a set B such that νP(B) > 0 and νQ(B) = 0 or a set B′ such that
νP(B) = 0 and νQ(B) > 0. Suppose that we are in the first case. Then the set
of trajectories having at least one jump the size of which is in B has positive
P-probability and zero Q-probability, which shows that these two measures
are not equivalent.

Before discussing measure change for general Lévy processes, we recall the
case of Brownian motion with drift.

PROPOSITION 9.7 Equivalence of measures for Brownian motions
with drift
Let (X,P) and (X,Q) be two Brownian motions on (Ω,FT ) with volatilities
σP > 0 and σQ > 0 and drifts µP and µQ. P and Q are equivalent if σP =
σQ and singular otherwise. When they are equivalent the Radon-Nikodym
derivative is

dQ

dP
= exp

{
µQ − µP

σ2
XT − 1

2
(µQ − µP)2

σ2
T

}
.

The proof of this proposition is similar to the previous ones and is left to
the reader. Note that the Radon-Nikodym derivative can be rewritten as an
exponential martingale:

dQ

dP
= exp

{
µQ − µP

σ
WT − 1

2
(µQ − µP)2

σ2
T

}
,

where Wt = Xt−µPt
σ is a standard Brownian motion under P.

The above result — known as the Cameron-Martin theorem — shows that
the drift and the volatility play very different roles in specifying a diffusion
model. While modifying the drift amounts to reweighting the scenarios (paths
of X), changing the volatility will generate a completely different process,
leading to new scenarios which were initially impossible. Note also that we
have restricted the Brownian paths to [0, T ] as usual: as in the case of Poisson
processes, this result does not hold if T = ∞. A more general version of this
result, valid for diffusion processes with random drift and volatility, is given
by the Girsanov theorem [215, 335].

REMARK 9.3 Up to now we have been exploring conditions under which
two exponential-Lévy models define equivalent probabilities on the space of
paths. However, it is important to note that for a given exponential-Lévy
model the class of equivalent models is very large and includes many models
which are not exponential Lévy models. Consider a compound Poisson process
(X,P) on (Ω,FT ) with Lévy measure νP. Then from Equation (9.18) we know
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that the Radon-Nikodym derivative of the form

DT =
dQ

dP
= exp

⎛
⎝T (λP − λQ) +

∑
s≤T

φ(∆Xs)

⎞
⎠

defines a measure change such that the new process (X,Q) is again a com-
pound Poisson process. Let us now rewrite this formula in a different form:
denoting Ψ(x) = dνQ

dνP (x) − 1, we find that

Dt = E
⎛
⎝t(λP − λQ) +

∑
s≤t

Ψ(∆Xs)

⎞
⎠ = E

(∫
[0,t]×R

Ψ(x)J̃X(ds dx)

)
,

where E stands for the stochastic exponential (defined in Section 8.4) and J̃X
is the compensated jump measure of X. It is this last form of the Radon-
Nikodym derivative Dt that is most interesting for us now. In order to define
a measure change on the path space, D must be a positive martingale. How-
ever, to obtain a positive martingale Ψ need not be a deterministic and time
independent function. If we only take such functions, the class of processes
that can be obtained via measure change is restricted to compound Poisson
processes. More general choices for Ψ lead to other classes of processes which
live on the same set of paths. For example, if Ψ is deterministic but time-
dependent then

dQ

dP

∣∣
t
= E

(∫
[0,t]×R

Ψ(s, x)J̃X(ds dx)

)
(9.19)

defines a measure Q under which the increments of X will still be independent
but will no longer be stationary. If we go even further and allow Ψ to be a
random predictable function of x and s than we can obtain a process with de-
pendent increments. All these processes may be very different from each other
in their statistical properties but they will always have piecewise constant tra-
jectories with a finite number of jumps in every interval, because this is a path-
wise (almost sure) property preserved under equivalent measure changes. In
particular, choosing a risk-neutral pricing rule given by an exponential-Lévy
model can be compatible with dependence and heteroskedasticity of actual
log-returns remarked in Chapter 7.

9.4 Equivalence of measures for Lévy processes: general
results

In this section we present without proof (but with a discussion) a general
result of equivalence of measures for Lévy processes which includes the three
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propositions of the preceding section as particular cases. Proof of the following
statement can be found in [345]. Similar results and generalizations are given
in [215]. An important consequence of this result is that in presence of jumps,
even if we restrict our attention to structure preserving measures, the class of
probabilities equivalent to a given one is surprisingly large.

PROPOSITION 9.8 (see Sato [345], Theorems 33.1 and 33.2)

Let (Xt,P ) and (Xt,P ′) be two Lévy processes on R with characteristic triplets
(σ2, ν, γ) and (σ′2, ν′, γ′). Then P |Ft

and P ′|Ft
are equivalent for all t (or

equivalently for one t > 0) if and only if three following conditions are satisfied:

1. σ = σ′.

2. The Lévy measures are equivalent with∫ ∞

−∞
(eφ(x)/2 − 1)2ν(dx) <∞, (9.20)

where φ(x) = ln
(
dν′
dν

)
.

3. If σ = 0 then we must in addition have

γ′ − γ =
∫ 1

−1

x(ν′ − ν)(dx). (9.21)

When P and Q are equivalent, the Radon-Nikodym derivative is

dP ′|Ft

dP |Ft

= eUt (9.22)

with

Ut = ηXc
t −

η2σ2t

2
− ηγt

+ lim
ε↓0

⎛
⎝ ∑
s≤t, |∆Xs|>ε

φ(∆Xs) − t

∫
|x|>ε

(eφ(x) − 1)ν(dx)

⎞
⎠ .

Here (Xc
t ) is the continuous part of (Xt) and η is such that

γ′ − γ −
∫ 1

−1

x(ν′ − ν)(dx) = σ2η

if σ > 0 and zero if σ = 0.
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Ut is a Lévy process with characteristic triplet (aY , νU , γU ) given by:

aU = σ2η2, (9.23)
νU = νφ−1, (9.24)

γU = −1
2
aη2 −

∫ ∞

−∞
(ey − 1 − y1|y|≤1)(νφ−1)(dy). (9.25)

The above result shows an interesting feature of models with jumps com-
pared to diffusion models: we have considerable freedom in changing the Lévy
measure, while retaining the equivalence of measures, but, unless a diffusion
component is present, we cannot freely change the drift. The following exam-
ple shows, to what extent the Lévy measure can be modified.

Example 9.1 Change of measure for tempered stable process
The tempered stable process defined in Chapter 4 has a Lévy measure of the
following form:

ν(x) =
c+e−λ

+x

x1+α+ 1x≥0 +
c−e−λ

−|x|

|x|1+α− 1x<0, (9.26)

where λ± and c± are positive, and 0 < α± < 2. The measures on the path
space corresponding to two tempered stable processes are mutually absolutely
continuous if and only if their coefficients α± and c±, which describe the
behavior of Lévy measure near zero, coincide. In fact, the left-hand side of
condition (9.20) for Lévy measure on the positive half-axis writes:

c1

∫ ∞

0

⎛
⎝e− 1

2 (β+
2 −β+

1 )x
√
c+2 /c

+
1

x
α
+
2 −α

+
1

2

− 1

⎞
⎠

2

e−β
+
1 x

x1+α+
1

dx.

When α+
2 < α+

1 or when α+
1 = α+

2 but c+1 
= c+2 , the integrand is equivalent to
1

x1+α
+
1

near zero and, hence, is not integrable; the case α+
2 > α+

1 is symmetric.

However, when α+
2 = α+

1 and c+1 = c+2 , the integrand is equivalent to 1

xα
+
1 −1

and is always integrable.

This simple example shows that one can change freely the distribution of
large jumps (as long as the new Lévy measure is absolutely continuous with
respect to the old one) but one should be very careful with the distribution
of small jumps (which is determined by the behavior of the Lévy measure
near zero). This is a good property since large jumps are the ones which are
important from the point of view of option pricing: they affect the tail of the
return distribution and option prices in an important way.
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9.5 The Esscher transform

In the Black-Scholes model, an equivalent martingale measure could be
obtained by changing the drift. In models with jumps, if the Gaussian com-
ponent is absent, we cannot change the drift but we can obtain a much greater
variety of equivalent measures by altering the distribution of jumps. A con-
venient transformation, which is somewhat analogous to the drift change for
geometric Brownian motion is the Esscher transform, that we have already
encountered in Chapter 4.

Let X be a Lévy process with characteristic triplet (σ2, ν, γ), θ a real num-
ber and assume that the Lévy measure ν is such that

∫
|x|≥1

eθxν(dx) < ∞.
Applying a measure transformation with the function φ(x) in Proposition 9.8
given by φ(x) = θx we obtain an equivalent probability under which X is a
Lévy process with zero Gaussian component, Lévy measure ν̃(dx) = eθxν(dx)
and drift γ̃ = γ+

∫ 1

−1
x(eθx−1)ν(dx). This transformation is known in the lit-

erature as the Esscher transform. Using Proposition 9.8, the Radon-Nikodym
derivative corresponding to this measure change is found to be

dQ|Ft

dP|Ft

=
eθXt

E[eθXt ]
= exp(θXt + γ(θ)t), (9.27)

where γ(θ) = − lnE[exp(θX1)] is the log of the moment generating function of
X1 which, up to the change of variable θ ↔ −iθ, is given by the characteristic
exponent of the Lévy process X.

The Esscher transform can be used to construct equivalent martingale mea-
sures in exponential-Lévy models.

PROPOSITION 9.9 Absence of arbitrage in exp-Lévy models
Let (X,P) be a Lévy process. If the trajectories of X are neither almost

surely increasing nor almost surely decreasing, then the exp-Lévy model given
by St = ert+Xt is arbitrage-free: there exists a probability measure Q equivalent
to P such that (e−rtSt)t∈[0,T ] is a Q-martingale, where r is the interest rate.

In other words, the exponential-Lévy model is arbitrage-free in the following
(not mutually exclusive) cases:

• X has a nonzero Gaussian component: σ > 0.

• X has infinite variation
∫ 1

−1
|x|ν(dx) = ∞.

• X has both positive and negative jumps.

• X has positive jumps and negative drift or negative jumps and positive
drift.
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PROOF LetX have characteristic triplet (σ2, ν, γ). If σ > 0, an equivalent
martingale measure can be obtained by changing the drift, as in the Black-
Scholes model, without changing the Lévy measure. Hence, we only need to
consider the case σ = 0. Furthermore, by applying a measure transformation
with the function φ(x) in Proposition 9.8 given by φ(x) = −x2 we obtain an
equivalent probability under which X is a Lévy process with zero Gaussian
component, the same drift coefficient and Lévy measure ν̃(dx) = e−x

2
ν(dx),

which has exponential moments of all orders. Therefore we can suppose that
ν has exponential moments of all orders to begin with.

We will now show that an equivalent martingale measure can be obtained
from P by Esscher transform under the conditions of this theorem. After such
transform with parameter θ the characteristic triplet of X becomes (0, ν̃, γ̃)
with ν̃(dx) = eθxν(dx) and γ̃ = γ +

∫ 1

−1
x(eθx − 1)ν(dx). For exp(X) to be a

martingale under the new probability, the new triplet must satisfy

γ̃ +
∫ ∞

−∞
(ex − 1 − x|x|≤1)ν̃(dx) = 0.

To prove the theorem we must now show that the equation −γ = f(θ) has a
solution under the conditions of the theorem, where

f(θ) =
∫ ∞

−∞
(ex − 1 − x|x|≤1)eθxν(dx) +

∫ 1

−1

x(eθx − 1)ν(dx).

By dominated convergence we have that f is continuous and that f ′(θ) =∫∞
−∞ x(ex − 1)eθxν(dx) ≥ 0, therefore, f(θ) is an increasing function. More-

over, if ν((0,∞)) > 0 and ν((−∞, 0)) > 0 then f ′ is everywhere bounded
from below by a positive number. Therefore in this case f(+∞) = +∞,
f(−∞) = −∞ and we have a solution.

It remains to treat the case when ν is concentrated on one of the half-lines
and by symmetry it is enough to treat the case ν((−∞, 0)) = 0. In this
case we still have f(+∞) = +∞ but the limit of f when θ → −∞ need not
be equal to −∞. Observe that the first term in the definition of f always
converges to zero. As for the second term, if

∫∞
0
xν(dx) = ∞, then it goes to

−∞ as θ → ∞, which means that in this case we have a solution. Otherwise
it converges to − ∫∞

0
xν(dx) which is exactly the difference between γ and the

drift of X (with respect to the zero truncation function) in the finite variation
case. Therefore, in the finite variation case a solution exists if X has negative
drift. To sum everything up, we have proven that a solution exists unless
ν((−∞, 0)) = 0,

∫∞
0
xν(dx) <∞ and the drift is positive. This is exactly the

case when X has almost surely increasing trajectories (Proposition 3.10). By
symmetry we can treat the case of decreasing trajectories and complete the
proof.

© 2004 by CRC Press LLC



312 Financial Modelling with jump processes

9.6 Relative entropy for Lévy processes (*)

The notion of relative entropy or Kullback-Leibler distance is often used as
measure of proximity of two equivalent probability measures. In this section
we recall its definition and properties and compute the relative entropy of
the measures generated by two risk-neutral exp-Lévy models. We will use
this notion in Chapter 13 as a model selection criterion for calibrating an
exponential-Lévy model to a set of option prices.

Define (Ω,F) as the space of real-valued discontinuous cadlag functions
defined on [0, T ], Ft the history of paths up to t and P and Q be two equivalent
probability measures (Ω,F). The relative entropy of Q with respect to P is
defined as

E(Q,P) = EQ

[
ln
dQ

dP

]
= EP

[
dQ

dP
ln
dQ

dP

]
.

If we introduce the strictly convex function f(x) = x lnx, we can write the
relative entropy

E(Q,P) = EP

[
f

(
dQ

dP

)]
.

It is readily observed that the relative entropy is a convex functional of Q.
Jensen’s inequality shows that it is always nonnegative E(Q,P) ≥ 0, with
E(Q,P) = 0 if and only if dQ

dP
= 1 almost surely. The following result shows

that if the measures are generated by exponential-Lévy models, relative en-
tropy can be expressed in terms of the Lévy measures:

PROPOSITION 9.10 Relative entropy of Lévy processes
Let P and Q be equivalent measures on (Ω,F) generated by exponential-Lévy
models with Lévy triplets (σ2, νP , γP ) and (σ2, νQ, γQ). Assume σ > 0. The
relative entropy E(Q,P) is then given by:

E(Q|P) =
T

2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νP )(dx)
}2

+

T

∫ ∞

−∞

(
dνQ

dνP
ln
dνQ

dνP
+ 1 − dνQ

dνP

)
νP (dx). (9.28)

If P and Q correspond to risk-neutral exponential-Lévy models, the relative
entropy reduces to:

E(Q|P) =
T

2σ2

{∫ ∞

−∞
(ex − 1)(νQ − νP )(dx)

}2

+ T

∫ ∞

−∞

(
dνQ

dνP
ln
dνQ

dνP
+ 1 − dνQ

dνP

)
νP (dx). (9.29)
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PROOF Let (Xt) be a Lévy process and St = exp(Xt). From the bijectiv-
ity of the exponential it is clear that the histories generated by (Xt) and (St)
coincide. We can therefore equivalently compute the relative entropy of the
log-price processes (which are Lévy processes). To compute the relative en-
tropy of two Lévy processes we will use expression (9.22) for Radon-Nikodym
derivative:

E =
∫
dQ

dP
ln
dQ

dP
dP = EP [UT eUT ].

where (Ut) is a Lévy process with characteristic triplet given by formulae
(9.23)–(9.25). Let φt(z) denote its characteristic function and ψ(z) its char-
acteristic exponent, that is,

φt(z) = EP [eizUt ] = etψ(z).

Then we can write:

EP [UT eUT ] = −i d
dz
φT (−i) = −iTeTψ(−i)ψ′(−i)

= −iTψ′(−i)EP [eUT ] = −iTψ′(−i).
From the Lévy-Khinchin formula we know that

ψ′(z) = −aUz + iγU +
∫ ∞

−∞
(ixeizx − ix1|x|≤1)νU (dx).

We can now compute the relative entropy as follows:

E = aUT + γUT + T

∫ ∞

−∞
(xex − x1|x|≤1)νU (dx)

=
σ2T

2
η2 + T

∫
(yey − ey + 1)(νPφ−1)(dy)

=
σ2T

2
η2 + T

∫ (
dνQ

dνP
ln
dνQ

dνP
+ 1 − dνQ

dνP

)
νP (dx),

where η is chosen such that

γQ − γP −
∫ 1

−1

x(νQ − νP )(dx) = σ2η.

Since we have assumed σ > 0, we can write

1
2
σ2η2 =

1
2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νP )(dx)
}2

.

which leads to (9.28). If P and Q are martingale measures, we can express
the drift γ using σ and ν:

σ2

2
η2 =

1
2σ2

{∫ ∞

−∞
(ex − 1)(νQ − νP )(dx)

}2

.
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Substituting the above in (9.28) yields (9.29).

Observe that, due to time homogeneity of the processes, the relative entropy
(9.28) or (9.29) is a linear function of T : the relative entropy per unit time is
finite and constant. The first term in the relative entropy (9.28) of the two
Lévy processes penalizes the difference of drifts and the second one penalizes
the difference of Lévy measures.

In the risk-neutral case the relative entropy only depends on the two Lévy
measures νP and νQ. For a given reference measure νP the expression (9.29)
viewed as a function of νQ defines a positive (possibly infinite) functional on
the set of Lévy measures L(R):

H : L(R) → [0,∞]
νQ → H(νQ) = E(Q(νQ, σ)),P(νP , σ)). (9.30)

We shall call H the relative entropy functional. Its expression is given by
(9.29). It is a positive convex functional of νQ, equal to zero only when
νQ ≡ νP .

Example 9.2 Relative entropy for tempered stable processes
Consider two tempered stable processes that are mutually absolutely contin-
uous and have Lévy densities given by:

νQ(x) =
ce(−β1−1)x

x1+α
1x≥0 +

ce(−β1+1)|x|

|x|1+α 1x<0,

νP (x) =
ce(−β2−1)x

x1+α
1x≥0 +

ce(−β2+1)|x|

|x|1+α 1x<0

with β1 > 1 and β2 > 1 imposed by the no-arbitrage property. The relative
entropy of Q with respect to P will always be finite because we can write for
the first term in (9.29) (we consider for definiteness the positive half-axis):∫ ∞

0

(ex − 1)(νQ − νP )(dx) = c

∫ ∞

0

dx
(1 − e−x)(e−β1x − e−β2x)

xα
,

which is finite because for small x the numerator is equivalent to x2 and for
large x it decays exponentially. For the second term in (9.29) on the positive
half-axis we have:∫ ∞

0

(
dνQ

dνP
ln
dνQ

dνP
+ 1 − dνQ

dνP

)
νP (dx)

= c

∫ ∞

0

e−(β2+1)x − e−(β1+1)x − x(β1 − β2)e−(β1+1)x

xα
,

which is again finite because for small x the numerator is equivalent to x2 and
for large x we have exponential decay.
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TABLE 9.1: Preservation of properties under equivalent
changes of measure.

Property Preserved or not?

Continuity/discontinuity of sample
paths

Yes

Cadlag property for sample paths Yes

Quadratic variation of sample paths Yes

Intensity of jumps No

Finite/infinite jump rate Yes

Range of jump sizes Yes

Distribution of returns No

Heavy tails of increments No

Independence of increments No

Finite/infinite variation Yes

Presence and volatility of diffusion
component

Yes

Markov property No

Absence of arbitrage Yes

Example 9.3 Equivalent measure with infinite relative entropy

Suppose now that in the previous example α = 1, β1 = 2 and β2 = 1. In this
case, although Q and P are equivalent, the relative entropy of Q with respect
to P is infinite. Indeed, on the negative half-axis dνQ

dνP = e|x| and the criterion

(9.20) of absolute continuity is satisfied but dνQ

dνP ln
(
dνQ

dνP

)
dνP = c

|x|dx and

the second term in (9.29) diverges at infinity.
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9.7 Summary

We have discussed the notion of equivalent change of measure and its rela-
tion with absence of arbitrage and market completeness: in a given stochastic
model, the existence of an equivalent martingale measure leads to absence of
arbitrage while its uniqueness is related to market completeness. Moreover,
each equivalent martingale measure gives a possible self-consistent pricing rule
for contingent claims.

Using a particular change of measure — the Esscher transform — we showed
that exponential-Lévy models are arbitrage-free: an equivalent martingale
measure always exists. But they are also incomplete market models: the class
of martingale measures equivalent is infinite. This may not seem to be a de-
sirable property at first sight, because it means that after estimating a model
from the time series we have many possible ways to price options. However,
as discussed in the introductory chapter and in Section 9.2, market incom-
pleteness is a realistic property that these models share with real markets.

Moreover as we will see in Chapter 13, the existence of many equivalent
martingale measures leads to a great flexibility of exponential-Lévy models
and their generalizations for fitting — “calibrating” — market prices of op-
tions. In the Black-Scholes model and, more generally, in a complete market
model, once a model is estimated for historical returns, option prices are
uniquely determined — and often they do not coincide with market prices of
traded options. In exponential-Lévy model it is possible to find a martingale
measure which is both equivalent to a given prior (estimated from historical
data) and reproduces available market prices correctly. This is the basis of
the calibration algorithm for Lévy processes, discussed in Chapter 13.

Since a given risk-neutral exponential-Lévy model is equivalent to many
historical models with different parameters, the incompleteness property of
Lévy models can also be interpreted in terms of robustness of option prices
in these models with respect to specification of historical model [270]: agents
with different views of the historical price process may still agree on option
prices, because exponential-Lévy models with very different statistical proper-
ties (e.g., heavy/light tails) can still generate equivalent measures on scenarios.
In the diffusion setting, on the contrary, if agents have different views about
volatility then option prices that appear arbitrage-free to one of them, will
seem arbitrageable to the other. However, even in exponential-Lévy models
agents must agree on some basic qualitative properties of the price process
such as the presence or absence of a diffusion component or the presence of
jumps. Table 9.1 summarizes the distinction between pathwise properties of
a process — which are the same in the historical returns and in a compatible
risk-neutral model — and “statistical” properties, which may be different in
the two models.
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Further reading

The concepts of absence of arbitrage and market completeness and their
characterization in terms of martingale measures were introduced by Harrison
and Kreps [190] in a discrete time setting and by Harrison and Pliska [191,
192] in the continuous time setting. No-arbitrage theorems and relation with
equivalent martingale measures are discussed at length in [109, 226, 90].

Measure transformations for Lévy processes are discussed in [345]. More
general martingale measures for processes with independent increments are
discussed in [176]. A general discussion of measure transformations for stochas-
tic processes and random measures is given by Jacod & Shiryaev [215]. Ab-
sence of arbitrage and completeness for models with jumps is discussed in
[23, 24, 25]. The predictable representation property for processes with jumps
is discussed by Chou and Meyer [91] for Lévy processesand by Yor and de
Lazaro [385] for martingales with stationary increments. The predictable
representation of random variables in terms of Brownian and compensated
Poisson integrals given in Proposition 9.4 is discussed in [205], see also [241].
Other predictable representations for Lévy processes in terms of a sequence
of jump martingales were introduced by Nualart and Schoutens in [310, 311].
A financial interpretation of the result of Nualart and Schoutens in terms of
hedging with vanilla options is given by Balland in [22]. An example of a
complete market model with jumps using the Azéma martingale is given by
Dritschel and Protter [326].

© 2004 by CRC Press LLC



318 Financial Modelling with jump processes

Paul André Meyer

The French mathematician Paul André Meyer (1934–2003) is considered
one of the pioneers of the modern theory of stochastic processes: his work
opened the way for the extension of Itô’s theory of stochastic integration
beyond the Markov setting and laid the foundations of stochastic calculus for
semimartingales.

Born in 1934, Meyer entered the Ecole Normale Supérieure to study mathe-
matics in 1954 and obtained his doctorate in 1960. Apart from a short period
in the Unites States where he met J. Doob, Meyer spent all his scientific career
at Université Louis Pasteur in Strasbourg, where he founded the “Strasbourg
school of probability.” It is also in Strasbourg where he ran the “Séminaire
de Probabilités,” which led to the creation of a famous series of lecture notes
published under the same name, in which many fundamental results on the
theory of stochastic processes have appeared since 1967. These volumes con-
stitute today a reference for researchers in probability and related fields: they
contain, in addition to many research papers, numerous lecture notes by Paul
André Meyer in which he reformulated and expanded recent results in proba-
bility in his personal style. A selection of fundamental articles which appeared
in these lecture notes can be found in [132].

A crucial contribution of Meyer was to extend to a continuous time set-
ting Doob’s decomposition of any supermartingale into a martingale and an
increasing process — today called the Doob-Meyer decomposition — which
allowed to extend many results obtained by Itô in the case of Markov processes
to a more general setting and led Courrège in France and Kunita and Watan-
abe [242] in Japan to extend Itô’s stochastic integration theory to square
integrable martingales. Meyer introduced the notion of predictable processes
and, in his “Cours sur les intégrales stochastiques” [296], opened a new chap-
ter in the theory of stochastic integrals, introducing the notion of semimartin-
gale and extending the Kunita-Watanabe theory of stochastic integration for
square integrable martingales to any semimartingale.

His work with Dellacherie, Doléans and other members of the Strasbourg
school led to the development of the “general theory of stochastic processes,”
which culminated in the monumental multi-volume treatise Probabilities and
potential [110] coauthored with Claude Dellacherie, which has become a ref-
erence for researchers in the theory of stochastic processes.

In addition to his work on stochastic integration and semimartingale theory,
Meyer also authored many research papers on stochastic differential geometry.
After the 1980s, Meyer focused his research efforts on the new field of quan-
tum probability. But Meyer’s curiosity and intellectual activities reached far
beyond mathematics. He mastered several foreign languages, including Chi-
nese and Sanskrit. His nonmathematical works include the translation into
French of an ancient Indian literary classic.
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Chapter 10

Pricing and hedging in incomplete
markets

The pricing of derivatives involves the construction of riskless hedges from
traded securities.

John Hull [202]

The question is [. . . ] whether the LTCM disaster was merely a unique and
isolated event, a bad draw from nature’s urn, or whether such disasters are
the inevitable consequence of the Black-Scholes formula and the illusion
it might give that all market participants can hedge away their risk at
the same time.

Merton Miller

While absence of arbitrage is both a reasonable property to assume in a real
market and a generic property of many stochastic models, market complete-
ness is neither a financially realistic nor a theoretically robust property. From
a financial point of view, market completeness implies that options are redun-
dant assets and the very existence of the options market becomes a mystery,
if not a paradox in such models. From a theoretical viewpoint, market com-
pleteness is not a robust property. Indeed, in Chapter 9 we have seen that,
given a complete market model, the addition of even a small (in statistical
terms) jump risk destroys market completeness. Thus, in models with jumps
market completeness is an exception rather than the rule.

In a complete market, there is only one arbitrage-free way to value an
option: the value is defined as the cost of replicating it. In real markets, as
well as in the models considered in this book, perfect hedges do not exist and
options are not redundant: the notion of pricing by replication falls apart, not
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because continuous time trading is impossible in practice but because there
are risks that one cannot hedge even by continuous time trading. Thus we
are forced to reconsider hedging in the more realistic sense of approximating
a target payoff with a trading strategy: one has to recognize that option
hedging is a risky affair, specify a way to measure this risk and then try to
minimize it. Different ways to measure risk thus lead to different approaches
to hedging: superhedging, utility maximization and mean-variance hedging
are among the approaches discussed in this chapter. Each of these hedging
strategies has a cost, which can be computed in some cases. The value of the
option will thus consist of two parts: the cost of the hedging strategy plus a
risk premium, required by the option seller to cover her residual (unhedgeable)
risk. We will deal here with the first component by studying various methods
for hedging and their associated costs. Arbitrage pricing has nothing to say
about the second component which depends on the preferences of investors
and, in a competitive options market, this risk premium can be driven to zero,
especially for vanilla options.

In this chapter we will discuss various approaches to pricing and hedging
options in incomplete markets. Merton’s approach [291], presented in Section
10.1, proposes to ignore risk premia for jumps; this assumption leads to a spe-
cific choice for pricing and hedging. The notion of superhedging, discussed in
Section 10.2, is a preference-free approach to the hedging problem in incom-
plete markets and leads to bounds for prices. However, in most examples of
models with jumps these bounds turn out to be too wide and the correspond-
ing hedging strategies are buy and hold strategies. The (old) idea of expected
utility maximization, combined with the possibility of dynamic trading, sug-
gests choosing an optimal hedge by minimizing some measure of hedging error
as measured by the expectation of a convex loss function. This leads to the
notion of utility indifference price, discussed in Section 10.3. An important
case, discussed in Section 10.4, is when the loss function is quadratic: the
corresponding quadratic hedging problem has an explicit solution in the case
of jump-diffusion and exponential-Lévy models. If one is simply interested in
arbitrage-free pricing of options, one could also choose any (equivalent) mar-
tingale measure as a self-consistent pricing rule: as shown in Chapter 9, many
choices are possible for this and we discuss some of them, such as the minimal
entropy martingale measure, in Section 10.5. However the price given to an
option in this way does not correspond anymore to the cost of a specific hedg-
ing strategy. From a financial point of view it is more appropriate to start
by discussing hedging strategies and then derive a valuation for the option in
terms of the cost of hedging, plus a risk premium.

All the above approaches deal with hedging options with the underlying
asset. However the availability of liquid markets for “vanilla” options such as
short term calls and puts on major indices, currencies and stocks allows to use
such options as hedging instruments. Indeed, liquid calls and puts are com-
monly used for static hedging strategies of exotic options. This practice has
important consequences for the choice of pricing and hedging methodologies,
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which are discussed in Section 10.6.
In the sequel, we consider a market described by a scenario space (Ω,F),

asset prices (St)t∈[0,T ] and an information flow (Ft)t∈[0,T ], which is the history
of the assets. We take here F = FT : terminal payoffs of all contingent claims
will be expressed in terms of (St, t ∈ [0, T ]). St will be one dimensional
unless otherwise specified. Discounting is done using a numeraire S0

t : for any
portfolio with value Vt the discounted value is defined by V̂t = Vt/S

0
t and

B(t, T ) = S0
t /S

0
T is called the discount factor. In all examples the numeraire

is S0
t = exp(rt); the discount factor is then given by B(t, T ) = exp[−r(T − t)].

Throughout the chapter, M(S) designates the set of probability measures
Q ∼ P such that Ŝt is a Q−martingale, S designates a set of admissible
strategies — which contains all simple predictable strategies (see Definition
8.1) but may be larger — and

A = {V0 +
∫ T

0

φtdSt, V0 ∈ R, φ ∈ S} (10.1)

designates the set of terminal payoffs attainable by such strategies.

10.1 Merton’s approach

The first application of jump processes in option pricing was introduced by
Robert Merton in [291]. Merton considered the jump-diffusion model

P : St = S0 exp[µt+ σWt +
Nt∑
i=1

Yi], (10.2)

where Wt is a standard Wiener process, Nt is a Poisson process with intensity
λ independent from W and Yi ∼ N(m, δ2) are i.i.d. random variables inde-
pendent from W,N . As observed in Chapter 9, such a model is incomplete:
there are many possible choices for a risk-neutral measure, i.e., a measure
Q ∼ P such that the discounted price Ŝt is a martingale. Merton proposed
the following choice, obtained as in the Black-Scholes model by changing the
drift of the Wiener process but leaving the other ingredients unchanged:

QM : St = S0 exp[µM t+ σWM
t +

Nt∑
i=1

Yi], (10.3)

where WM
t is a standard Wiener process, Nt, Yi are as above, independent

from WM and µM is chosen such that Ŝt = Ste
−rt is a martingale under Q

M :

µM = r − σ2

2
− λ E[eYi − 1] = r − σ2

2
− λ[exp(m+

δ2

2
) − 1]. (10.4)
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QM is the equivalent martingale measure obtained by shifting the drift of
the Brownian motion but leaving the jump part unchanged. Merton justified
the choice (10.3) by assuming that “jump risk” is diversifiable, therefore, no
risk premium is attached to it: in mathematical terms, it means that the risk
neutral properties of the jump component of St are (supposed to be) the same
as its statistical properties. In particular, the distribution of jump times and
jump sizes is unchanged. A European option with payoff H(ST ) can then be
priced according to:

CMt = e−r(T−t)EQM [H(ST )|Ft]. (10.5)

Since St is a Markov process under QM , the option price CMt can be expressed
as a deterministic function of t and St:

CMt = CM (t, St) = e−r(T−t)EQM [(ST −K)+|St = S]

= e−r(T−t)E[H(Seµ
M (T−t)+σWM

T−t+
∑NT−t

i=1 Yi)]. (10.6)

By conditioning on the number of jumps Nt, we can express C(t, St) as a
weighted sum of Black-Scholes prices: denoting the time to maturity by τ =
T − t we obtain:

CM (t, S) = e−rτ
∑
n≥0

QM (Nt = n)EQM [H(S exp[µMτ + σWM
τ +

N(nm,nδ2)︷ ︸︸ ︷
n∑
i=1

Yi ]) ]

= e−rτ
∑
n≥0

e−λτ (λτ)n

n!
EQM [H(Senm+ nδ2

2 −λ exp(m+ δ2
2 )+λτerτ−σ

2
nτ/2+σnWτ ))]

= e−rτ
∑
n≥0

e−λτ (λτ)n

n!
CBSH (τ, Sn;σn), (10.7)

where σ2
n = σ2 + nδ2/τ ,

Sn = S exp[nm+
nδ2

2
− λτ exp(m+

δ2

2
) + λτ ]

and
CBSH (τ, S;σ) = e−rτE[H(Se(r−

σ2
2 )τ+σWτ )]

is the value of a European option with time to maturity τ and payoff H
in a Black-Scholes model with volatility σ. This series expansion converges
exponentially and can be used for numerical computation of prices in Merton’s
model. For call and put options CM (t, S) is a smooth, C1,2 function so the
Itô formula (Proposition 8.14) can be applied to e−rtC(t, St) between 0 and
T . Since

ĈMt = e−rtCMt = EQM [e−rT (ST −K)+|Ft] = EQM [ĈMT |Ft],
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the discounted value ĈMt is a martingale under Q
M , so ĈMt is equal to its

martingale component:

ĈMT − ĈM0 = Ĥ(ST ) − EQM [H(ST )]

=
∫ T

0

∂CM

∂S
(u, Su−)Ŝu−σdWM

u (10.8)

+
∫ t

0

∫
R

[CM (u, Su− + z) − CM (u, Su−)]J̃S(du dz),

where J̃S is the compensated jump measure of S, which is the same under
P and Q. The hedging portfolio proposed by Merton is the self-financing
strategy (φ0

t , φt) given by

φt =
∂CM

∂S
(t, St−), φ0

t = φtSt −
∫ t

0

φdS, (10.9)

which means that we choose to hedge only the risk represented by the diffusion
part, i.e., the first term in (10.8). The initial cost of this hedging strategy is
given by CM0 defined above: the value of the option is defined as the cost of
the proposed hedge (10.9). The (discounted) hedging error is equal to:

Ĥ − e−rTVT (φ) = ĈMT − ĈM0 −
∫ T

0

∂CM

∂S
(u, Su−)dŜu

=
∫ t

0

∫
R

[CM (u, Su− + z)−CM (u, Su−)− (1 + z)
∂CM

∂S
(u, Su−)]J̃S(du dz),

(10.10)

so this hedge has the effect of correcting for the average effect of jumps but
leaves us otherwise completely exposed to jump risk.

This approach is justified if we assume that the investor holds a portfolio
with many assets for which the diffusion components may be correlated, i.e.,
contain some common component — which is then identified as a “systemic
risk” of the portfolio — but the jump components are independent (and thus
diversifiable) across assets. Such a hypothesis would imply that in a large
market a diversified portfolio such as the market index would not have jumps.
Unfortunately this is not the case: market indexes such as the S&P 500 or
the NIKKEI do exhibit large downward movements and in fact these large
movements result from jumps highly correlated across index components, a
market crash being the extreme example. We will see that other choices of
hedging achieve a trade-off between jump risk and the risk in the diffusion
part (if there is one). Finally, the assumption of diversifiability of jump risk
is not justifiable if we are pricing index options: a jump in the index is not
diversifiable.

These observations show that in models with jumps, contrarily to diffusion
models, a pricing measure cannot be simply obtained by adjusting the “drift”
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coefficient µ: this choice means that we are not pricing the risk due to jumps
and has implications that are not difficult to justify in terms of risk premia
and hedging. This motivates us to explore other approaches to pricing and
hedging in models with jumps.

10.2 Superhedging

If one cannot replicate a contingent claim H, a conservative approach to
hedging is to look for a self-financing strategy φ such as to remain always on
the safe side:

P( VT (φ) = V0 +
∫ T

0

φdS ≥ H ) = 1. (10.11)

Such a strategy is called a superhedging strategy for the claim H. For a self-
financing superhedging strategy, the cost corresponds to initial capital V0. The
cost of the cheapest superhedging strategy is called the cost of superhedging:

Πsup(H) = inf{V0, ∃φ ∈ S, P(V0 +
∫ T

0

φdS ≥ H) = 1}.

The superhedging cost is interpreted as the cost of eliminating all risk asso-
ciated with the option. For an operator with a short position in the option
— the option writer — it is the cost of hedging the option with probabil-
ity 1. Obviously if the option writer is willing to take on some risk she will
be able to partially hedge the option at a cheaper cost, thus the superhedg-
ing cost represents an upper bound for the selling price. Similarly, the cost
of superhedging a short position in H, given by −Πsup(−H) gives a lower
bound on the buying price. Note that Πsup is not linear therefore in general
−Πsup(−H) �= Πsup(H): the interval [−Πsup(−H),Πsup(H)] therefore defines
a price interval in which all prices must lie.

Computing the superhedging price involves the solution of the nontrivial
optimization problem (10.14) but has the advantage of being preference-free:
its definition does not involve any subjective risk aversion parameter nor does
it involve any ad hoc choice of a martingale measure. The following result
(see [240, Theorem 3.2.] and [145]) shows why: the cost of superhedging in
an incomplete market corresponds to the most conservative risk neutral price,
i.e., the supremum over all pricing rules compatible with P:

PROPOSITION 10.1 Cost of superhedging (see Kramkov[240])

Consider a European option with a positive payoff H on an underlying asset
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described by a semimartingale (St)t∈[0,T ] and assume that

sup
Q∈M(S)

EQ[H]. <∞ (10.12)

Then the following duality relation holds:

inf
φ∈S

{V̂t(φ),P(VT (φ) ≥ H) = 1} = ess sup
Q∈Ma(S)

EQ[Ĥ|Ft]. (10.13)

In particular, the cost of the cheapest superhedging strategy for H is given by

Πsup(H) = ess sup
Q∈Ma(S)

EQ[Ĥ], (10.14)

where Ma(S) the set of martingale measures absolutely continuous with respect
to P.

This result, first obtained in [231] in the context of diffusion models, was
generalized to discontinuous processes in [240, 145]. It means that, in terms of
equivalent martingale measures, superhedging cost corresponds to the value
of the option under the least favorable martingale measure. Kramkov [240]
further shows that the supremum in (10.13) is attained: there exists a least
favorable martingale measure Q

sup which corresponds to concentrating the
probability on the “worst case scenarios” for H. However Πsup defines a
nonlinear valuation method and cannot be described in terms of a single
martingale measure: the “least favorable martingale measure” depends on H.
Proposition 10.1 allows in some cases to compute the cost of superhedging:

PROPOSITION 10.2 Superhedging in exponential-Lévy models
Consider a model defined by St = S0 expXt where X is a Lévy process on

(Ω,F , (Ft),P).

• (Eberlein and Jacod [124]): if X is a Lévy process with infinite varia-
tion, no Brownian component, negative jumps of arbitrary size and Lévy
measure verifying ν verifies:

∫ 1

0
ν(dy) = +∞ and

∫ 0

−1
ν(dy) = +∞ then

the range of prices

[ inf
Q∈M(S)

EQ[(ST −K)+], sup
Q∈M(S)

EQ[(ST −K)+] ]

for a call option is given by

[(S0e
rT −K)+, S0]. (10.15)

• (Bellamy and Jeanblanc [46]): if X is a jump-diffusion process with
diffusion coefficient σ and compound Poisson jumps then the price range
for a call option is given by:

[CBS(0, S0;T,K;σ), S0], (10.16)
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where CBS(t, S, T,K;σ) denotes the value of a call option in a Black-
Scholes model with volatility σ.

Similar bounds hold for the price computed at any date t with the ex-
pectations replaced by conditional expectations and for other convex payoff
structures1 verifying some growth conditions [124, 46]. Models for which the
above results are valid include all jump-diffusion models found in the litera-
ture as well as all exponential-Lévy models with infinite variation presented in
Chapter 4. In fact Bellamy and Jeanblanc [46] show that a result analogous to
(10.16) holds for jump-diffusions with time- and state-dependent coefficients:

dSt
St−

= btdt+ σ(t, St−)dWt + a(t, St−)dNt,

where N is a Poisson process with time-dependent intensity λ(t) and the
coefficients σ, a are bounded Lipschitz functions. In this case, the lower bound
in (10.16) is replaced by the option price computed in the diffusion model with
local volatility function σ(t, St−).

The above result shows that even for call options the superhedging cost is
too high (it is the maximum price allowed by absence of arbitrage) and the cor-
responding hedging strategies are too conservative. For a call option on an as-
set driven by a Wiener process and a Poisson process St = S0 exp(σWt+aNt)
since for any martingale measure Q, EQ[(ST −K)+] ≤ EQ[ST ] ≤ S0 exp(rT )
condition (10.12) is verified so by Proposition 10.1 the superhedging cost is
given by S0. So, however small the jump size, the cheapest superhedging
strategy for a call option is actually a total hedge, requiring to buy one unit
of asset (or forward contract) for each option sold! The same results hold
for the pure jump models discussed in Proposition 10.2. It seems therefore
that superhedging is not a great idea in such models: the option writer has to
take on some risk in order to reduce hedging costs to a realistic level, which is
indeed what happens in real markets! Therefore the hedging problem should
be seen as an approximation problem: approximating — instead of perfectly
hedging — a random payoff by the terminal value of a dynamic portfolio.

Note however that this example is based on stand-alone pricing and hedging
of a derivative (call option, in this case). An options trader typically holds po-
sitions in many derivatives with different exposures in terms of sensitivity to
the underlying. Under a linear pricing rule, a portfolio can be priced/hedged
by computing prices/hedge ratios for each of its components. This is not true
anymore for superhedging or other nonlinear hedging schemes: in this case
nonlinearity saves the day and in fact superhedging a portfolio of derivatives is
much less expensive than individually superhedging the options in the portfo-
lio [16]. This remark suggests that superhedging is not as hopeless as it seems,
provided it is applied to the aggregate position of a portfolio of derivatives.

1Note however that (10.14) was shown without any convexity hypothesis on the payoff in
[240].
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10.3 Utility maximization

The unrealistic results of the superhedging approach stem from the fact
that it gives equal importance to hedging in all scenarios which can occur
with nonzero probability, regardless of the actual loss in a given scenario. A
more flexible approach involves weighting scenarios according to the losses
incurred and minimizing this weighted average loss. This idea, which has a
long tradition in the theory of choice under uncertainty, is formalized using
the notion of expected utility2: an agent faced with an uncertain environment
will choose among random future payoffs Z according to the criterion

max
Z

EP[U(Z)], (10.17)

where U : R → R is a concave, increasing function called the utility function
of the investor and P is a probability distribution which can be seen either as
an “objective” description of future events [380] or as a subjective view held
by the investor [347]. The concavity of U is related to the risk aversion of
the agent. A typical example is the logarithmic utility function U(x) = lnαx.
Another example is is the exponential utility function Uα(x) = 1− exp(−αx)
where α > 0 determines the degree of risk aversion: a large α corresponds
to a high degree of risk aversion. Exponential utilities are sometimes called
“CARA” utilities.3

10.3.1 Certainty equivalent

Consider now an investor with a utility function U and an initial wealth x.
In economic theory, a classical concept of value for an uncertain payoff H is
the notion of certainty equivalent c(x,H) defined as the sum of cash which,
added to the initial wealth, results in the same level of expected utility:

U(x+ c(x,H)) = E[U(x+H)] ⇒ c(x,H) = U−1(E[U(x+H)]) − x.

The function c(x,H) is interpreted as the compensation that a risk averse
investor with utility U requires in order to assume the risk incurred by holding
H. An investor who uses expected utility as a criterion is then indifferent
between receiving the random payoff H or the lump sum c(x,H).

The certainty equivalent is an example of a nonlinear valuation: in general,
the certainty equivalent of λ > 0 units of the contract H is not obtained by
multiplying by λ the value of one unit: c(x, λH) �= λc(x,H). Also, in general
c(x,H) depends on the initial wealth x held by the investor. In the case of
an exponential utility, this dependence disappears.

2We refer to [147] for an introduction to this subject in relation with mathematical finance.
3“CARA” stands for “Constant Absolute Risk Aversion”: that is four words instead of
“exponential”.
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10.3.2 Utility indifference price

When H represents the payoff of an option, the certainty equivalent c(x,H)
corresponds to the (expected) utility obtained from holding a position in the
option. But in a financial market where (dynamic) trading in the underlying
is possible, an investor with a position in the option will not in general follow
a buy and hold strategy: she will have the possibility to increase her utility/
reduce losses by trading in the underlying asset.

If the investor follows a self-financing strategy (φt)t∈[0,T ] during [0, T ] then
her final wealth is given by

VT = x+
∫ T

0

φtdSt. (10.18)

A utility maximizing investor will therefore attempt to choose a trading strat-
egy φ to optimize the utility of her final wealth:

u(x, 0) = sup
φ∈S

EP[U(x+
∫ T

0

φtdSt)]. (10.19)

If the investor buys an option with terminal payoff H at price p and holds it
until maturity T then the maximal utility obtained by trading in the under-
lying is

u(x− p,H) = sup
φ∈S

EP[U(x− p+H +
∫ T

0

φtdSt)]. (10.20)

The utility indifference price, introduced by Hodges and Neuberger [197], is
defined as the price πU (x,H) which equalizes these two quantities:

u(x, 0) = u(x− πU (x,H),H). (10.21)

Equation (10.21) is interpreted in the following way: an investor with initial
wealth x and utility function U , trading in the underlying, will be indifferent
between buying or not buying the option at price πU (x,H). The notion of
utility indifference price extends the notion of certainty equivalent to a setting
where uncertainty is taken into account.

Several remarks are noteworthy here. First, notice that indifference price
is not linear:

πU (x, λH) �= λπU (x,H) πU (x,H1 +H2) �= πU (x,H1) + πU (x,H2).

Second, the utility indifference price depends in general on the initial wealth
(more generally, on the initial portfolio) of the investor except for special
utility functions such as Uα(x) = 1− e−αx. Third, buying and selling are not
symmetric operations since the utility function weighs gains and losses in an
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asymmetric way: the utility indifference selling price defined as the price p
which solves:

u(x, 0) = u(x+ p,−H), (10.22)

which means that the selling price is given by −πU (x,−H) which, in general,
is different from the buying price πU (x,H): this approach naturally leads to a
pair of prices {πU (x,H),−πU (x,−H)}, which one is tempted to identify with
bid/ask prices (see however the discussion in Section 10.3.4).

10.3.3 The case of exponential utility

The utility indifference price of an option depends in general on the initial
wealth x of the investor. This means that two investors with the same utility
functions but different initial wealths may not agree on the value of the option.
However in the case of exponential utility functions the initial wealth cancels
out in Equation (10.21) and one obtains an indifference price independent
of initial wealth, which can then be used to define a (nonlinear) pricing rule
Πα(H). Indifference pricing with exponential utilities has been extensively
studied and we summarize here some of its properties [44, 130, 107]:

PROPOSITION 10.3 Indifference prices for exponential utility
Let Πα(H) be the utility indifference price for an exponential utility function
Uα(x) = 1 − exp(−αx). Then:

1. When the risk aversion parameter α tends to infinity the utility indif-
ference price converges to the superhedging cost:

lim
α→∞Πα(H) = sup

Q∈Me(S)

EQ[H]. (10.23)

2. When α → 0 the utility indifference price defines a linear pricing rule
given by

lim
α→0

Πα(H) = EQ
∗
[H], (10.24)

where Q
∗ is a martingale measure equivalent to P which minimizes the

relative entropy with respect to P:

E(Q∗|P) = inf
Q∈Ma(S)

E(Q|P). (10.25)

These results show that in the case of exponential utility the indifference
price interpolates between the superhedging price (which is the maximal pos-
sible price in any model) and a linear pricing rule based on a martingale
measure Q

∗ which minimizes the relative entropy with respect to P. Q
∗ is
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called the minimal entropy martingale measure [154] and will be further dis-
cussed in Section 10.5.1

These results also show that the indifference price πα(H) is not robust to
changes in the risk aversion parameter α: since this parameter is a subjective,
unobservable quantity, this should raise some doubts on the applicability of
this method for pricing.

10.3.4 On the applicability of indifference pricing

Is utility maximization a realistic valuation method for pricing and hedging
options?

Advocates of the use of utility functions in pricing and risk management
often refer to the classic works of Von Neumann and Morgenstern [380] and
Savage [347] to justify this approach. Von Neumann and Morgenstern [380]
showed that, when facing uncertainty described by a probability distribution
P, a decision maker whose behavior obeys a set of axioms will behave as if
she were maximizing expected utility EP[U(X)] over possible portfolios X for
some utility function U . Under additional axioms and without postulating
the prior knowledge of any probability distribution, Savage showed that the
decision maker behaves as if she were maximizing EP[U(X)] over possible
portfolios X for some utility function U and some (subjective) probability P.
The point is that, even if the “rational” decision maker fulfills these behavioral
axioms, she does not necessarily know her (own) utility function U (nor, in
the case of Savage, the probabilities P).

One can sweep these questions aside by considering expected utility as a
practical (normative) way to optimize portfolios. But then pricing and hedg-
ing by utility functions requires specifying U and P. What is the “utility
function” of an investment bank or an exotic derivatives trading desk? If the
results of this analysis were robust to changes in U , one would not worry
too much but as the example of exponential utility showed, even within a
parametric class one can sweep a wide range of prices by changing the risk
aversion parameter. As to P, it requires the full specification of a joint sta-
tistical model for future market movements of all relevant assets, up to the
maturity of the option. In fact a subtle point which may go unnoticed at first
sight is that, given the formulation of the hedging problem as a portfolio opti-
mization problem, even if one is concerned with pricing/hedging an option on
as asset S1, including or not including a second asset S2 will affect in general
the result of the optimization [350]: adding a newly listed stock to the uni-
verse of assets described by the joint statistical model P can potentially affect
prices of options on blue-chip stocks such as IBM! In this respect, pricing by
utility maximization is more similar to an portfolio allocation problem than
to arbitrage pricing models.

Finally, as noted earlier, utility maximization leads to a nonlinear pric-
ing rule. Nonlinear pricing may be acceptable for over the counter (OTC)
structured products but for “vanilla” instruments, linear pricing is implicitly
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assumed by market participants. The only “utility” function which yields a
linear pricing rule is U(x) = −x2: the corresponding hedging approach is
called quadratic hedging.

10.4 Quadratic hedging

Quadratic hedging can be defined as the choice of a hedging strategy which
minimizes the hedging error in a mean square sense. Contrarily to the case of
utility maximization, losses and gains are treated in a symmetric manner. This
corresponds to the market practice of measuring risk in terms of “variance”
and, as we will see, leads in some cases to explicitly computable hedging
strategies.

The criterion to be minimized in a least squares sense can be either the
hedging error at maturity or the “one step ahead hedging error,” i.e., the
hedging error, measured locally in time. The first notion leads to mean-
variance hedging [69, 318] and the second notion leads to local risk minimiza-
tion [149, 148, 355, 356]. In order to take expectations, a probability measure
has to be specified. We will see that the two approaches — mean variance
hedging and local risk minimization — are equivalent when the (discounted)
price is a martingale measure but different otherwise.

10.4.1 Mean-variance hedging: martingale case

In mean variance hedging, we look for a self-financing strategy given by an
initial capital V0 and a portfolio (φ0

t , φt) over the lifetime of the option which
minimizes the terminal hedging error in a mean-square sense:

inf
φ
E[ |VT (φ) −H|2] where VT (φ) = V0 +

∫ T

0

rφ0
tdt+

∫ T

0

φtdSt. (10.26)

The expectation is taken with respect to some probability which we have to
specify. To begin, let us assume that we have chosen a pricing rule given by
a risk neutral measure Q and the expectation in (10.26) is taken with respect
to Q. In particular, Ŝt is a martingale under Q and after discounting the
problem above simplifies to:

inf
V0,φ

EQ|ε(V0, φ)|2, where ε(V0, φ) = Ĥ − V̂T = Ĥ − V0 −
∫ T

0

φtdŜt.

Assume now that H has finite variance — H ∈ L2(Ω,F ,Q) — and (Ŝt)t∈[0,T ]

is a square-integrable Q-martingale. If we consider portfolios whose terminal

© 2004 by CRC Press LLC



332 Financial Modelling with jump processes

values have finite variance:

S = {φ caglad predictable and E|
∫ T

0

φtdŜt|2 <∞ } (10.27)

then the set A of attainable payoffs defined by (10.1) is a closed subspace of
the space of random variables with finite variance, denoted by L2(Ω,F ,Q).
Defining a scalar product between random variable as (X,Y )L2 := E[XY ],
this space becomes a Hilbert space: two random variables X,Y with finite
variance are then said to be orthogonal if E[XY ] = 0.

Rewriting the mean-variance hedging problem as

inf
V0,φ

EQ|ε(V0, φ)|2 = inf
A∈A

||Ĥ −A||2L2(Q), (10.28)

we see that the problem of minimizing the mean-square hedging error (10.26)
can be interpreted as the problem of finding the orthogonal projection in
L2(Q) of the (discounted) payoff Ĥ on the set of attainable claims A. This
orthogonal decomposition of a random variable with finite variance into a
stochastic integral and an “orthogonal” component [242, 156] is called the
Galtchouk-Kunita-Watanabe decomposition:

PROPOSITION 10.4 Galtchouk-Kunita-Watanabe decomposition
Let (Ŝt)t∈[0,T ] be a square-integrable martingale with respect to Q. Any ran-

dom variable Ĥ with finite variance depending on the history (FS
t )t∈[0,T ] of Ŝ

can be represented as the sum of a stochastic integral with respect to Ŝ and a
random variable N orthogonal to A: there exists a square integrable predictable
strategy (φHt )t∈[0,T ] such that, with probability 1

Ĥ = EQ[Ĥ] +
∫ T

0

φHt dŜt +NH , (10.29)

where NH is orthogonal to all stochastic integrals with respect to Ŝ. Moreover,
the martingale defined by NH

t = EQ[NH |Ft] is strongly orthogonal to A:
for any square integrable predictable process (θt)t∈[0,T ], Nt

∫ t
0
θdS is again a

martingale.

The integral
∫ T
0
φHt dSt is the orthogonal projection of the random variable

HT on the space of all stochastic integrals with respect to S. If a strategy that
minimizes quadratic hedging error exists, it is given by φH : however as noted
in Chapter 8, any predictable process φH cannot be interpreted as a trading
strategy unless it is either a simple predictable process (piecewise constant in
time) or can be approximated by such strategies (e.g., is caglad). In the next
section we will compute φH in exponential-Lévy models and observe that it is
indeed a caglad process. The random variable NH represents the residual risk
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of the payoff H that cannot be hedged. Note that we started by looking for
the orthogonal projection of the final payoff H on A but the decomposition
(10.29) actually gives more: because of the martingale property of Ŝ, for every
t, the random variable NH

t = EQ[NH |Ft] is still orthogonal to payoffs of self-
financing portfolios on [0, t] so by optimizing the global hedging error (10.26)
we obtain a strategy which is also locally risk minimizing. As we shall see
below, this will not be true anymore if Ŝ is not a martingale.

In a complete market model NH = 0 almost surely but we will now study
an example where NH �= 0, resulting in a nonzero residual risk.

10.4.2 Mean-variance hedging in exponential-Lévy models

Although the quadratic hedging problem is “solved” by the Galtchouk-
Kunita-Watanabe decomposition, from a practical point of view the problem
is of course to compute the risk minimizing hedge φHt which, in general, is not
an easy task. Interesting models in this context are therefore models where
an explicit expression (or an efficient computational procedure) is available
for φHt . We will now show that exponential-Lévy models introduced earlier
fall into this category and give the explicit form for the risk minimizing hedge
in this case.

Consider a risk-neutral model (St)t∈[0,T ] given by St = exp(rt+Xt) where
Xt is a Lévy process on (Ω,F ,Ft,Q). Here Ft = FS

t = FX
t is the price history

(Su, 0 ≤ u ≤ t). Using Proposition (3.13) S is a square integrable martingale
if and only if ∫

|y|≥1

e2yν(dy) <∞. (10.30)

We will assume that this condition is verified; in particular Xt has finite
variance. The characteristic function of X can then be expressed as:

E[exp(iuXt)] = exp t[−σ
2u2

2
+ bXt+

∫
νX(dy)(eiuy − 1 − iuy)]

with bX chosen such that Ŝ = expX is a martingale. As explained in Section
8.4, Ŝt can also be written as a stochastic exponential of another Lévy process
(Zt):

dŜt = Ŝt−dZt,

where Z is a martingale with jumps > −1 and also a Lévy process with Lévy
measure given by Proposition 8.22. Consider now a self-financing strategy
(φ0
t , φt)t∈[0,T ]. In order for quadratic hedging criteria to make sense, we must

restrict ourselves to portfolios verifying (10.27) for which the terminal value
has a well-defined variance. Using the isometry formulas (8.23) and (8.13) for
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stochastic integrals, (10.27) is equivalent to

E[
∫ T

0

|φtŜt|2dt+
∫ T

0

∫
R

dt ν(dz)z2|φtŜt|2] <∞. (10.31)

Denote by L2(S) the set of processes φ verifying (10.31). The terminal payoff
of such a strategy is given by

GT (φ) =
∫ T

0

rφ0
tdt+

∫ T

0

φtSt−dZu.

Since Ŝt is a martingale under Q and φ ∈ L2(Ŝ) the discounted gain process,
Ĝt(φ) =

∫ t
0
φdŜ is also a square integrable martingale given by the martingale

part of the above expression:

ĜT (φ) =
∫ T

0

φtSt−σdWt +
∫ T

0

∫
R

J̃X(dt dx)xφtSt−

=
∫ T

0

φtSt−σdWt +
∫ T

0

∫
R

J̃Z(dt dz)φtSt−(ez − 1)

using Proposition 8.22. The quadratic hedging problem can now be written
as:

inf
φ∈L2(Ŝ)

EQ|ĜT (φ) + V0 − Ĥ|2. (10.32)

First note that the expectation of the hedging error is equal to V0 − EQ[Ĥ].
Decomposing the above expression into

EQ|V0 − EQ[Ĥ]|2 + VarQ[ĜT (φ) − Ĥ],

we see that the optimal value for the initial capital is

V0 = EQ[H(ST )].

PROPOSITION 10.5 Quadratic hedge in exponential-Lévy models

Consider the risk neutral dynamics

Q : dŜt = Ŝt−dZt, (10.33)

where Z is a Lévy process with Lévy measure νZ and diffusion coefficient
σ > 0. For a European option with payoff H(ST ) where H : R

+ → R verifies

∃K > 0, |H(x) −H(y)| ≤ K|x− y|, (10.34)
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the risk minimizing hedge, solution of (10.32) amounts to holding a position
in the underlying equal to φt = ∆(t, St−) where:

∆(t, S) =
σ2 ∂C

∂S (t, S) + 1
S

∫
νZ(dy)z[C(t, S(1 + z)) − C(t, S)]
σ2 +

∫
z2νZ(dy)

(10.35)

with C(t, S) = e−r(T−t)EQ[H(ST )|St = S].

This result can be retrieved using the formalism for quadratic hedging in
Markov models discussed in [69] or using stochastic flows and their derivatives
as in [144]. We give here a direct proof using martingale properties of the
stochastic integral.

PROOF Under the risk-neutral measure Q, the discounted price Ŝt is a
martingale. Consider now a self-financing trading strategy given by a nonan-
ticipating caglad process (φ0

t , φt) with φ ∈ L2(Ŝ): the discounted value (V̂t)
of the portfolio is then a martingale whose terminal value is given by

V̂T =
∫ T

0

φtdŜt =
∫ T

0

φtŜt−dZt

=
∫ T

0

φtŜtσdWt +
∫ T

0

∫
R

φtŜtzJ̃Z(dt dz). (10.36)

Define now the function

C(t, S) = e−r(T−t)EQ[H(ST )|FS
t ] = e−r(T−t)EQ[H(ST )|St = S]

and its discounted value by Ĉ(t, S) = e−rtC(t, S). Note that C(0, S0) =
EQ[H(ST )] is the value of the option under the pricing rule Q while C(T, S) =
H(ST ) is the payoff of the option at maturity. By construction Ĉ(t, St) =
e−rTEQ[H(ST )|FS

t ] is a (square integrable) martingale. In Chapter 12 we
will show that when σ > 0 (but this is not the only case), C is a smooth,
C1,2 function. Thus, the Itô formula can be applied to Ĉ(t, St) = e−rtC(t, St)
between 0 and t:

Ĉ(t, St) − Ĉ(0, S0) =
∫ t

0

∂C

∂S
(u, Su−)Ŝu−σdWu

+
∫ t

0

∫
R

[C(u, Su−(1 + z)) − C(u, Su−)]J̃Z(du dz)

=
∫ t

0

∂C

∂S
(u, Su−)Ŝu−σdWu

+
∫ t

0

∫
R

[C(u, Su−ex) − C(u, Su−)]J̃X(du dx), (10.37)
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where (Xt) is a Lévy process such that Ŝt = exp(Xt) for all t (see Proposition
8.22). Since the payoff function H is Lipschitz, C is also Lipschitz with respect
to the second variable:

C(t, x) − C(t, y) = e−r(T−t)E[H(xer(T−t)+XT−t) −H(yer(T−t)+XT−t)]
≤ K|x− y|E[eXT−t ] = K|x− y|

since eXt is a martingale. Therefore the predictable random function ψ(t, z) =
[C(t, St−(1 + z)) − C(t, St−)] verifies

E

[∫ T

0

dt

∫
R

νZ(dz)|ψ(t, z)|2
]

= E

[∫ T

0

dt

∫
R

νZ(dz)|C(t, St−(1 + z)) − C(t, St−)|2
]

≤ E

[∫ T

0

dt

∫
R

z2S2
t−ν(dz)

]
<∞

so from Proposition 8.7, the compensated Poisson integral in (10.37) is a
square integrable martingale. Subtracting (10.36) from (10.37) we obtain the
hedging error:

ε(V0, φ) =
∫ T

0

[φtSt− − St−
∂C

∂S
(t, St−)]σdWt

+
∫ T

0

dt

∫
R

J̃Z(dt dz)[φtSt−z − (C(t, St−(1 + z)) − C(t, St−))],

where each stochastic integral is a well-defined, zero-mean random variable
with finite variance. The isometry formulas (8.23) and (8.13) allow to compute
the variance of the hedging error:

E|ε(φ)|2 = E[
∫ T

0

dt

∫
R

νZ(dz)|C(t, St−(1 + z)) − C(t, St−) − Ŝt−φtz|2]

+ E[
∫ T

0

Ŝ2
t−(φt − ∂C

∂S
(t, St−) )2σ2dt]. (10.38)

Notice now that the term under the integral in (10.38) is a positive process
which is a quadratic function of φt with coefficients depending on (t, St−).
The optimal (risk-minimizing) hedge is obtained by minimizing this expression
with respect to φt: differentiating the quadratic expression we obtain the first
order condition:

Ŝ2
t−σ

2(φt − ∂C

∂S
(t, St−)) +∫

R

νZ(dz)Ŝt−z[Ŝt−φtz − C(t, St−(1 + z)) − C(t, St−)] = 0,
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whose solution is given by (10.35).

REMARK 10.1 Since the functions H(S) = (S − K)+ and H(S) =
(K − S)+ verify the Lipschitz property |H(x) −H(y)| ≤ |x− y| these results
hold in particular for call options, put options and any combination of these:
straddles, strangles, butterfly spreads, etc.

REMARK 10.2 In Chapter 12, we will see that the function C(t, S)
solves a partial integro-differential equation which can be solved using efficient
numerical methods. The hedging strategy in (10.35) can thus be computed
and used in order to set up a risk minimizing hedge.

REMARK 10.3 In the exponential-Lévy formulation St = S0 exp(rt +
Xt), the optimal quadratic hedge can be expressed in terms of the Lévy mea-
sure νX of X as

∆(t, S) =
σ2 ∂C

∂S (t, S) + 1
S

∫
νX(dx)(ex − 1)[C(t, Sex) − C(t, S)]

σ2 +
∫

(ex − 1)2νX(dx)
. (10.39)

Proposition 10.5 gives an example where the Galtchouk-Kunita-Watanabe
decomposition (10.29) can be computed explicitly. A similar formula is given
for C2 payoffs in the case of Markov processes with jumps in [144]; the more
general case of convex/concave payoffs is treated in [213] but the formulas
obtained are less explicit.

As a by-product of this computation we have obtained an expression for
the residual risk of a hedging strategy (φ0

t , φt):

RT (φ) = E[
∫ T

0

|φt − ∂C

∂S
(t, St−)|2S2

t−dt

+
∫ T

0

dt

∫
R

ν(dz)|C(t, St−(1 + z)) − C(t, St−) − z St−φt|2].

This allows us to examine whether there are any cases where the hedging
error can be reduced to zero, i.e., where one can achieve a perfect hedge. A
well-known case is when there are no jumps ν = 0: the residual risk then
reduces to

ε(φ) = E[
∫ T

0

(φtSt− − St−
∂C

∂S
(t, St−))2dt ]

and we retrieve the Black-Scholes delta hedge

φt = ∆BS(t, St) =
∂C

∂S
(t, St),
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which gives ε(φ) = 0 a.s. Another case is when σ = 0 and there is a single
jump size ν = δa: Xt = aNt where N is a Poisson process. In this case

RT (φ) = E[
∫ T

0

dtS2
t−|C(t, St−(1 + a)) − C(t, St−) − φt|2]

so by choosing

φt =
C(t, St−(1 + a)) − C(t, St−)

St−a
and

φ0
t = ertStφt − ert

∫ t

0

φtdSt, (10.40)

we obtain a self-financing strategy (φ, φ0) which is a replication strategy:

H(ST ) = V0 +
∫ T

0

C(t, St−(1 + a)) − C(t, St−)
St−a

dSt +
∫ T

0

rφ0
tdt.

These two cases are are the only cases where perfect hedging is possible: if
there are at least two jump sizes a1, a2 then a perfect hedge should verify

φt =
C(t, St−(1 + a1)) − C(t, St−)

St−a1
=
C(t, St−(1 + a2)) − C(t, St−)

St−a2
,

which is impossible unless C is affine in S, i.e., for a forward contract. Also,
if both jumps and the diffusion component are present, that is, ν �= 0 and
σ �= 0, then a perfect hedge should verify

φt =
C(t, St−(1 + z)) − C(t, St−)

St−a
=
∂C

∂S
(t, S) ν(dz) − a.e. (10.41)

almost surely, which implies

∀S > 0,
C(t, S(1 + z)) − C(t, S)

Sz
=
∂C

∂S
(t, S) ν − a.e. (10.42)

For convex functions C — calls and puts — this is not possible so calls and
puts cannot be replicated. This gives a direct proof of the incompleteness
of exponential-Lévy models: the only exponential-Lévy models which are
complete are the Black-Scholes model and the exponential Poisson model
St = S0 exp(−µt+Nt), none of which are very realistic!

Note that in the case where jumps are present the risk minimizing hedge
ratio is not given by the Merton strategy ∂C/∂S(t, St−) discussed in Section
10.1: such a strategy is suboptimal and corresponds to minimizing only the
diffusion term in (10.38), leaving the portfolio completely exposed to jump
risk. In fact in the case where σ = 0 and Z is a compensated Poisson process,
there exists a perfect hedge as observed above but it is not equal to the Merton
hedge φMt = ∂C/∂S(t, St−). This point is neglected in several papers (see,
e.g., [57]) where, by analogy to the Black-Scholes delta hedge it is simply
assumed that the hedge ratio is given by the derivative with respect to the
underlying. The quadratic hedge achieves a mean-variance trade-off between
the risk due to the diffusion part and the jump risk.
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10.4.3 Global vs. local risk minimization (*)

In the quadratic hedging approach described above, we used as a starting
point a risk-neutral measure Q and chose a hedging strategy φ in order to
minimize the mean square hedging error EQ|H − VT (φ)|2. However using
the risk-neutral variance EQ|ε(φ)|2 of the hedging error as a criterion for
measuring risk is not very natural: Q represents a pricing rule and not a
statistical description of market events, so the profit and loss (P&L) of a
portfolio may have a large variance while its “risk neutral” variance can be
small.

A natural generalization is therefore to try to repeat the same analysis
under a statistical model P: choose a self-financing strategy φ with initial
capital V0 such as to minimize

EP

[
(V0 +

∫ T

0

φdS −H)2
]
.

This approach is called mean-variance hedging [69, 318, 357, 53]. The solution
defines a linear pricing rule H �→ V0 which, as any linear arbitrage-free pricing
rule, can be represented as:

V0 = EQMV [Ĥ]

for some martingale measure QMV ∼ P, called the variance optimal martin-
gale measure. Unfortunately the analysis is not as easy as in the martingale
case and explicit solutions are difficult to obtain for models with jumps, see
[318, 53, 200]. Furthermore, as in the case of utility maximization, this ap-
proach requires estimating a statistical model for the historical evolution of
the underlying and in particular, estimating its expected return, which turns
out to be quite difficult.

Another solution is to choose first a risk neutral measure Q ∼ P and then
proceed as in (10.29), by decomposing the claim into a hedgeable part, rep-
resented by a self-financing strategy, and a residual risk, orthogonal to (the
martingale) Ŝ under Q. But this decomposition depends on the choice of Q:
different choices will lead to different pricing rules and hedging strategies. In
particular the notion of orthogonality is not invariant under change of mea-
sure: this is unpleasant because when we interpret variables orthogonal to Ŝ
as unhedgeable risks, of course we mean objectively unhedgeable and not with
respect to some ad hoc choice of martingale measure Q.

A solution proposed by Föllmer and Schweizer [148] was precisely to look
for a martingale measure Q

FS ∼ P which respects orthogonality under P.
If Ŝt = Mt + At where M is the martingale component of S under P, any
martingale (Nt) which is strongly orthogonal to (Mt) under P should remain
a martingale orthogonal to Ŝ under Q

FS . Such a choice of Q
FS is called a

“minimal martingale measure”. It is minimal in the sense that it changes Ŝt
into a martingale while perturbing other statistical quantities in a minimal
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manner and in particular preserving orthogonality relations. If such a measure
exists then, writing the Galtchouk-Kunita-Watanabe decomposition (10.29)
of Ĥ under Q

FS we obtain

Ĥ = EFS [Ŝ] +
∫ T

0

φFSt dŜt +NH a.s., (10.43)

where ΠFS [H] ∈ R and NH is orthogonal to the gains
∫ T
0
θdS of all portfolios

θ ∈ L2(Ŝ). Since Q
FS preserves orthogonality, NH is also orthogonal to the

martingale component of Ŝ under P. So (10.43) provides now a decomposition
under the real-world probability P of the payoff into the sum of

• an initial capital ΠFS [H] = EQ
F S

[H].

• the gain
∫ t
0
φdS of a strategy φFS .

• a martingale Nt = EP[NH |Ft] which is orthogonal to the risk (martin-
gale component) of St under P.

The decomposition (10.43), when it exists, is called the Föllmer-Schweizer
decomposition and is discussed in [148, 355, 356, 357, 200] and the hedging
strategy φHt is called a “locally risk minimizing” strategy for H.4 Note how-
ever that it is not a self-financing strategy in general: while for a self-financing
strategy the cost process is a constant, this strategy has a cost process given
by

Nt = EP[NH |Ft].
However Nt is a martingale with mean zero: the locally risk minimizing strat-
egy φHt is self-financing on average. A procedure for finding the locally risk
minimizing hedge is therefore the following:

• Find the (dynamics of St under the) minimal martingale measure Q
FS .

• Perform an orthogonal decomposition (10.29) of H into a stochastic
integral with respect to Ŝt and a component orthogonal to Ŝt:

H = EQ
F S

[H] +
∫ T

0

φHt dSt +NT .

The process φH is then the locally risk minimizing hedging strategy for
H with a cost process given by Nt = EP[NT |Ft].

• The initial capital of the quadratic hedging strategy is given byEQ
F S

[H].

4This terminology is justified in [355, 336] where φH is characterized as minimizing a
quantity which is interpreted as local quadratic risk.
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If Ŝt is an exponential-Lévy process under Q
FS , Proposition 10.5 can be

used to compute the hedge ratio φH . Unfortunately, the Föllmer-Schweizer
decomposition and the minimal martingale measure Q

FS do not always exist
when S is a process with jumps [357].

Let us see how this machinery works in the case of the jump-diffusion model:

dSt
St−

= dZt, Zt = µt+ σWt +
Nt∑
i=1

Yi,

E[Nt] = λt, Yi
i.i.d.∼ F, E[Yi] = m, Var(Yi) = δ2.

In this case, Zhang [390] shows that a minimal martingale measure exists if
and only if

−1 ≤ η =
µ+ λm− r

σ2 + λ (δ2 +m2)
≤ 0.

This assumption means that the risk premium in the asset returns should be
negative.5 When this condition is verified, the minimal martingale measure
Q
FS is given by

dQFS

dP
= exp[−σηWT + ληmT − σ2η2

2
T ]

Nt∏
j=1

(1 − ηUj)NT . (10.44)

From the results of Chapter 9, the risk-neutral dynamics of the asset under
Q
FS can be expressed as

dSt
St−

= rdt+ dUt,

Ut = λ[η(m2 + δ2) −m]t+ σW
′
t +

N ′
t∑

i=1

∆Ui, (10.45)

where under Q
FS

• W ′
t is a standard Wiener process.

• N ′
t is a Poisson process with intensity λ′ = λ(1 − ηm).

• The jump sizes (∆Ui) are i.i.d. with distribution FU where

dFU =
1 − ηx

1 − ηm
dF (x).

5At the time of the publication of this book, this may seem a realistic assumption!
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Thus the minimal martingale model is still a jump-diffusion of exponential-
Lévy type. Combining this with the results of the preceding section, we obtain
an expression for the locally risk minimizing hedge:

PROPOSITION 10.6 Locally risk minimizing hedge in a jump-
diffusion model
Consider the jump-diffusion model

dSt
St−

= dZt, where Zt = µt+ σWt +
Nt∑
i=1

Yi

with Yi ∼ F i.i.d. and N a Poisson process with intensity λ. Then the lo-
cally risk minimizing hedge for a European option with payoff H(ST ) verifying
(10.34) is given by φt = ∆(t, St−) where:

∆(t, S) =
σ2 ∂C

∂S (t, S) + λ
S

∫
F (dy)y(1 − ηy)[C(t, S(1 + y)) − C(t, S)]
σ2 + λ

∫
y2(1 − ηy)F (dy)

with C(t, S) = e−r(T−t)EFS [H(ST )|St = S] is the expected discounted payoff
taken with respect to (10.45).

When Ŝt is a martingale (η = 0) local risk minimization and mean-variance
hedging lead to the same result, given by the Galtchouk-Kunita-Watanabe
decomposition described above. In general, they are not equivalent and lead
to different hedging strategies and hedging costs: they correspond to different
choices QMV �= QFS for the risk-neutral probabilities. Mean-variance hedging
is more intuitive: the hedging strategies are self-financing so the initial capital
really corresponds to the cost of the hedge and the objective function is the
mean-square fluctuation of the P&L. Local risk minimization is mathemati-
cally more tractable but does not have a neatly expressible objective function
and involves strategies which are not self financing; thus the interpretation of
the initial capital as a “cost” of hedging is not justified. Also, as shown by
the jump-diffusion example above, the existence of the minimal martingale
measure only holds under restrictive assumptions on model parameters. A
numerical comparison of these two approaches has been done in the case of
diffusion-based stochastic volatility models in [225, Chapter 14]; for the case
of models with jumps a systematic study remains to be done.

Both approaches require a good knowledge of the objective probabilities P

of future market scenarios. In particular, we need to specify the drift part,
i.e., the expected (future) rate of return on the asset St, which is a difficult
task from an econometric point of view. On the other hand, as we will see in
Chapter 13, a lot of cross-sectional data is available which gives information
on the risk-neutral probabilities Q in the form of option prices: a feasible
way to use quadratic hedging (though not the way originally proposed in
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[148, 355]) is then to infer a pricing measure Q by “calibrating” an exp-Lévy
model to market prices of options6 and then perform a quadratic hedge under
the martingale measure Q, which can then be done explicitly using Proposition
10.5.

10.5 “Optimal” martingale measures

By the fundamental theorem of asset pricing, choosing an arbitrage-free
pricing method is basically equivalent to choosing a martingale measure Q ∼
P. In the literature, this is typically done by solving an optimization prob-
lem. A widely studied family of objective functions for choosing probability
measures consists of criteria which can be expressed in the form

Jf (Q) = EP

[
f(
dQ

dP
)
]
, (10.46)

where f : [0,∞[→ R is some strictly convex function. Jf (Q) can be seen as
measuring a deviation from the prior P. Examples are the Kullback-Leibler
distance, also called relative entropy:

H(Q,P) = EP

[
dQ

dP
ln
dQ

dP

]
(10.47)

or the quadratic distance:

E

[(
dQ

dP

)2
]
. (10.48)

In some cases, the minimal martingale measure and the variance optimal
martingale measure introduced in the quadratic hedging problem can also be
expressed as “optimal” with respect to some f [357]. We discuss here an
example, the minimal entropy martingale measure, already encountered in
Section 10.3.

10.5.1 Minimal entropy martingale measure

An important example of the deviation measures described above is the
relative entropy, previously introduced in Section 9.6, which corresponds to
choosing f(x) = x lnx in (10.46):

E(Q,P) = EQ

[
ln
dQ

dP

]
= EP

[
dQ

dP
ln
dQ

dP

]
.

6See Chapter 13.
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Given a stochastic model (St)t∈[0,T ] the minimal entropy martingale model
is defined as a martingale (S∗

t )t∈[0,T ] such that the law Q
∗ of S∗ minimizes

the relative entropy with respect to P
S among all martingale processes on

(Ω,F , (Ft),P): it minimizes the relative entropy under the constraint of be-
ing a martingale. Or, in the “change of measure” language, one can fix the
reference probability measure P and define the minimal entropy martingale
measure as the measure on the path space D([0, T ]) which is the solution of

inf
Q∈Ma(S)

E(Q|P). (10.49)

The minimal entropy martingale model has an information theoretic inter-
pretation: minimizing relative entropy corresponds to choosing a martingale
measure by adding the least amount of information to the prior model. Finally,
we observed in Section 10.3 that option prices computed with the minimal en-
tropy martingale measure are related to the utility indifference price Πα(H)
for exponential utility functions [299, 44, 107, 130]:

Πα(H) →
α→0

EQ
∗
[H].

Given a stochastic model, the corresponding minimal entropy martingale does
not always exist. But in exponential-Lévy models one is able to give an
analytic criterion for the existence of the minimal entropy martingale measure
and compute it explicitly in cases where it exists. Furthermore, the minimal
entropy martingale is also given by an exponential-Lévy model. The following
result is given in [299] (see also [88, 170, 298, 136]):

PROPOSITION 10.7 Minimal entropy measure in exp-Lévy model

If St = S0 exp(rt+Xt) where (Xt)t∈[0,T ] is a Lévy process with Lévy triplet
(σ2, ν, b). If there exists a solution β ∈ R to the equation:

b+ (β +
1
2
)σ2 +

∫ +1

−1

ν(dx)[(ex − 1)eβ(ex−1) − x]

+
∫
|x|>1

ex − 1)eβ(ex−1)ν(dx) = 0 (10.50)

then the minimal entropy martingale S∗
t is also an exponential-Lévy process

S∗
t = S0 exp(rt + X∗

t ) where (Zt)t∈[0,T ] is a Lévy process with Lévy triplet
(σ2, ν∗, b∗) given by:

b∗ = b+ βσ2 +
∫ +1

−1

ν(dx)[eβ(ex−1)x], (10.51)

ν∗(dx) = exp[β(ex − 1)]ν(dx). (10.52)

A general feature of the minimal entropy martingale is that its statistical
properties closely resemble the original process (the prior) so the specification
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FIGURE 10.1: Left: Lévy density ν∗(x) (dotted lower curve) of minimal
entropy martingale in the Merton model described in Example 10.2, compared
with the initial Lévy density ν(x) (solid line). Right: Jump size densities
corresponding to these Lévy densities.

of the prior is quite important. We now give two examples where the minimal
entropy martingale model is computed from an exponential-Lévy model and
its properties are compared to the initial model:

Example 10.1 Black-Scholes with Poisson jumps
Consider a jump-diffusion model where St = S0 exp[bt+σWt+aNt] where N is
a Poisson process with intensity λ = 1, b = +10%, σ = 30% and the jump size
can take the single, negative value of a = −10%. Equation (10.50) then has
a unique solution, numerically found to be β � −1.5. The minimal entropy
martingale model is again of the same type: S∗

t = S0 exp[b∗t + σWt + aN∗
t ]

where the risk neutral jump intensity is now λ∗ = exp[β(ea − 1)] � 1.15.

Example 10.2 Merton model
Assume the underlying asset follows Merton’s jump-diffusion model with log-
normal price jumps St = S0 exp[bt + σWt +

∑Nt

j=1 Yi] where N is a Poisson
process with intensity λ = 1, b = +10%, σ = 30% and the jump sizes Yi ∼
N(−0.1, δ2) with δ = 0.1. Equation (10.50) is numerically solved to obtain
β � −2.73. The minimal entropy martingale model is again a jump-diffusion
model with compound Poisson jumps: S∗

t = S0 exp[b∗t + σWt +
∑N∗

t
j=1 Y

∗
i ]

where a (risk neutral) Lévy density, now given by

ν∗(x) =
λ∗√
2πδ

exp[− (x− a)2

2
+ β(ex − 1)].

The initial (historical) Lévy measure and the minimal entropy risk-neutral
Lévy measure are depicted in Figure 10.1: the minimal entropy Lévy measure
lies below the initial one but, as observed on the right hand figure, the jump
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size densities are similar and the main effect is a decrease in the jump intensity:
λ∗ = exp[β(ex − 1)] � 0.4 < λ = 1. Since for small x, ex − 1 � x the main
change in the center of the distribution is a negative shift. However since
β < 0 the term exp[β(ex − 1)] strongly damps the right tail of the Lévy
density.

These examples and others studied in [299] show that for many models
of interest, the parameter β is found to be negative so the right tail of the
Lévy measure is strongly damped by a factor exp[β(ex − 1)]: the risk neutral
process given by the minimal entropy martingale has. Also, this damping is
asymmetric: if β < 0 then large positive jumps will be nearly irrelevant for
pricing options, while large negative jumps will still contribute. This is of
course, quite reasonable from a financial point of view and it is interesting
that such a property stems from the abstract principle of relative entropy
minimization.

REMARK 10.4 Relation with the Esscher transform The minimal
entropy martingale may also be characterized as the Esscher transform of the
Lévy process Zt where dSt = St−(rdt + dZt), see [88, 299]. This remark
lends some justification to the (otherwise ad hoc) use of Esscher transforms
for pricing.

10.5.2 Other martingale measures

Obviously relative entropy is not the only criterion one can minimize to
choose a martingale measure and the same exercise can be done with other
criteria, as in (10.46). But are these “optimal” martingale measures of any
relevance? Unless the martingale measure is a by-product of a hedging ap-
proach, the price given by such martingale measures is not related to the cost
of a hedging strategy therefore the meaning of such “prices” is not clear. In
the minimal entropy case, we do have an interpretation in terms of exponen-
tial hedging in the limit of small risk aversion but the procedure does not
allow to compute any hedging strategy associated to the price.

10.6 Hedging with options and model calibration

In incomplete markets, options are not redundant assets; therefore, if op-
tions are available as hedging instruments they can and should be used to
improve hedging performance. Thirty years after the opening of the first orga-
nized options market, options have become liquidly traded securities in their
own right and “vanilla” call and put options on indices, exchange rates and
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major stocks are traded in a way similar to their underlying stocks. Thus,
liquidly traded options are available as instruments for hedging more complex,
exotic or illiquid options and are commonly used as such by risk managers.
While the lack of liquidity in the options market prevents in practice from
using dynamic hedges involving options, options are commonly used for static
hedging: call options are frequently used for dealing with “vega” (volatility)
or “gamma” (convexity) exposures and for hedging barrier options [78, 5]. In
fact as shown by Dupire [122] any European option can be perfectly hedged
by an (infinite) static portfolio of European calls so the notions of market
completeness and attainable claims must be revised when options are allowed
as hedging instruments. More realistically, it is well known that even in dif-
fusion models many exotic options such as binary or lookback options cannot
be delta hedged in practice because of the large deltas implied by these op-
tions: hedging with options is the only feasible alternative in these cases. In
the context of jump-diffusion models, Andersen and Andreasen [8] show that
adding static positions in a few vanilla options can considerably decrease the
dispersion of hedging error for a sample portfolio of derivatives.

While hedging with options is a common practice in risk management and
was considered as early as 1976 by Ross [339], this point seems to be largely
ignored in the recent literature on pricing and hedging in incomplete markets
which is focused on a detailed formal analysis of utility-based hedging using
only the underlying asset, a topic of secondary interest when options are
available; see however [201, 16].

What are the implications of hedging with options for the choice of a pricing
rule? Consider a contingent claim H and assume that we have as hedging
instruments a set of benchmark options with prices C∗

i , i = 1 . . . n and terminal
payoffs Hi, i = 1 . . . n. A static hedge of H is a portfolio composed from the
options Hi, i = 1 . . . n and the numeraire, in order to match as closely as
possible the terminal payoff of H:

H = V0 +
n∑
i=1

xiHi +
∫ T

0

φdS + ε, (10.53)

where ε is an hedging error representing the nonhedgeable risk. Typically
Hi are payoffs of call or put options and are not possible to replicate using
the underlying so adding them to the hedge portfolio increases the span of
hedgeable claims and reduces residual risk.

Consider now a pricing rule Q. Assume that EQ[ε] = 0 (otherwise EQ[ε]
can be added to V0). Then the claim H is valued under Q as:

e−rTEQ[H] = V0 +
n∑
i=1

xie
−rTEQ[Hi] (10.54)

since the stochastic integral term, being a Q-martingale, has zero expectation.
On the other hand, the cost of setting up the hedging portfolio (10.53) is given
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by

V0 +
n∑
i=1

xiC
∗
i . (10.55)

So the value of the claim given by the pricing rule Q corresponds to the cost
the hedging portfolio (10.53) if the model prices of the benchmark options Hi

correspond to their market prices C∗
i :

∀i = 1 . . . n, e−rTEQ[Hi] = C∗
i . (10.56)

Condition (10.56) is called a calibration condition: a pricing rule verifying
(10.56) is said to be calibrated to the option prices C∗

i , i = 1 . . . n. This con-
dition is necessary to guarantee the coherence between model prices and the
cost of hedging with portfolios such as (10.53): if the model is not calibrated
then the model price for a claim H may have no relation with the effective
cost of hedging it using the available options Hi.

If a pricing rule Q is specified in an ad hoc way, the calibration conditions
(10.56) will not be verified: one way to ensure them is to incorporate it as
a constraint in the choice of the pricing measure Q. We will return to this
point in Chapter 13 where we will present some methods for incorporating
calibration constraints into the choice of a pricing model.

All the hedging methods above can be reconsidered by allowing hedging
strategies of the form (10.53). The superhedging approach to this problem
was examined by Avellaneda and Paras [16] in the framework of uncertain
volatility models: unlike superhedging with the underlying alone, the incor-
poration of calibration constraints leads to much more realistic results. A
utility maximization approach to this problem has been recently considered
by Hugonnier and Kramkov [201]. We delay further discussion of these issues
to Chapter 13 where model calibration is discussed in more detail.

10.7 Summary

In complete market models such as the Black-Scholes model, probability
does not really matter: the “objective” evolution of the asset is only there
to define the set of “impossible” events and serves to specify the class of
equivalent measures. Thus, two statistical models P1 ∼ P2 with equivalent
measures lead to the same option prices in a complete market setting.

This is not true anymore in incomplete markets: probabilities matter and
model specification has to be taken seriously since it will affect hedging de-
cisions. This situation is more realistic but also more challenging and calls
for an integrated approach between option pricing methods and statistical
modelling.
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In incomplete markets, not only does probability matter but attitudes to
risk also matter: utility based methods explicitly incorporate these into the
hedging problem via utility functions. The difficulty of specifying firmwide
utility functions and the lack of robustness of the result with respect to this
specification has prompted research into preference-free methods for pricing
and hedging: superhedging and quadratic hedging are among them.

While these methods are focused on hedging with the underlying asset,
common practice is to use liquid call/put options to hedge exotic options. The
introduction of options as hedging instruments improves hedging performance
and can be conjugated with the hedging approaches described above. At the
pricing level, hedging with options leads to calibration constraints on pricing
models which have to be respected in order to keep consistency between model
prices and the cost of hedging.

Table 10.1 summarizes the different valuation methods and their associated
hedging strategies. Among the different valuation methods, (local or global)
quadratic hedging and minimal entropy martingale measures yield linear pric-
ing rules, which are therefore representable by a risk-neutral pricing rule. As
noted above, the associated risk-neutral process is still an exponential-Lévy
process. Thus, the class of exponential Lévy models can also provide suitable
candidates for risk-neutral dynamics.

Further reading

Option pricing in incomplete markets has been an active research topic
in mathematical finance in the last decade. An exposition of these ideas in a
discrete time setting may be found in [147]. Incomplete markets in continuous
time, where uncertainty is represented by Brownian motion, are discussed in
[230].

Superhedging was introduced by El Karoui and Quenez [231] and has ini-
tiated new mathematical results on optional decompositions [231, 240, 145].
The price ranges given in Proposition 10.2 are computed in [124, 46].

Utility indifference pricing was introduced by Hodges and Neuberger [197].
The case of exponential utility has been studied by many authors; see [230]
and [130] for the Brownian case and [107, 369, 44] for more general processes
allowing for jumps.

Quadratic hedging under a risk neutral measure was introduced by Föllmer
and Sondermann [149] using the Kunita-Watanabe decomposition [242]. Mean-
variance hedging for Markov models was introduced in [69]. Explicit compu-
tations of minimal variance hedging strategies in the case of Markov pro-
cesses are given in [144, 213]. The Föllmer-Schweizer decomposition was in-
troduced in [148] for continuous processes; generalizations can be found in
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TABLE 10.1: Comparison of different pricing methods in incomplete
markets

Pricing method Hedging method Risk criterion

Maximize over
EMMs:

sup
Q∈M(S)

EQ[H]

Superhedging Perfect hedge:

P(VT (φ) ≥ H) = 1

Utility indifference
price

Utility maximization Expected utility of terminal
wealth:

−EP[U(V0 +
∫ T

0

φdS −H)]

Minimal martingale
measure:

EQ
F S

[H]

Leads to non self-
financing hedges

Local quadratic risk mini-
mization

Mean-variance opti-
mal measure:

EQ
MV

[H]

Mean-variance hedg-
ing

Mean square hedging error:

EP|V0 +
∫ T

0

φdS −H|2

Minimal entropy
martingale measure

EQ
∗
[H]

Exponential hedging
with risk aversion → 0

Limit α→ 0 of:

EP[exp−α(V0+
∫ T

0

φdS−H)]

Risk-neutral model
calibrated to op-
tions Hi: EQ[H]
with EQ[Hi] = C∗

i

Static hedging with
benchmark options Hi

Mean square static hedging
error:

EQ|V0−H+
∑
i

φi(Hi−C∗
i )|2
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[356] and [108]. Local risk minimization in jump-diffusion models was studied
in [390, 179, 178]. Formulas involving Fourier integrals in the case of exp-
Lévy models are given in [200], see also [67]. A review of quadratic hedging
approaches is given in [357].

Minimal entropy martingale measures are discussed in [154] in an abstract
setting and studied in [130] in the case of a model driven by Brownian motion
and by [299, 298, 88, 170, 136] in the case of exponential-Lévy models. Other
criteria of “optimality” for martingale measures have been discussed in the
literature: Hellinger distance [204], general f -distance [171].

Static hedging with options is discussed in [78, 5]. Optimal martingale
measures consistent with a set of observed option prices are discussed in an
abstract framework in [172] and in the framework of exp-Lévy models in [96].
Other references to model calibration are given in Chapter 13.

Another approach to hedging in incomplete markets, not discussed here, is
based on the minimization of expected shortfall: this approach was introduced
by Föllmer and Leukert [146] and has been applied to jump-diffusion models
in [304].

Some confusion surrounds the notion of dynamic hedging and market com-
pleteness in the academic literature, where market completeness is sometimes
considered to be a “desirable” feature of a model and incompleteness is as-
sumed to result only from transaction costs or trading constraints. An inter-
esting discussion of the dynamic hedging paradigm from the point of view of
an option trader is given by Taleb [372].
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Chapter 11

Risk-neutral modelling with
exponential Lévy processes

Consider an arbitrage-free market where asset prices are modelled by a sto-
chastic process (St)t∈[0,T ], Ft represents the history of the asset S and Ŝt =
e−rtSt the discounted value of the asset. In Chapter 9 we saw that in such a
market, the prices of all instruments may be computed as discounted expec-
tations of their terminal payoffs with respect to some martingale measure Q

such that:

Ŝt = EQ[ŜT |Ft].

Under the pricing rule given by Q the value Πt(HT ) of an option with payoff
HT on an underlying asset St is given by:

Πt(HT ) = e−r(T−t)EQ[HT |Ft]. (11.1)

Specifying an option pricing model is therefore equivalent to specifying the law
of (St)t≥0 under Q, also called the “risk-neutral” or “risk-adjusted” dynamics
of S.

In the Black-Scholes model, the risk-neutral dynamics of an asset price was
described by the exponential of a Brownian motion with drift:

St = S0 exp(B0
t ), where B0

t = (r − σ2/2)t+ σWt. (11.2)

Applying the Itô formula we obtain:

dSt
St

= rdt+ σdWt = dB1
t , where B1

t = rt+ σWt. (11.3)

Therefore there are two ways to define the risk neutral dynamics in the Black-
Scholes model using a Brownian motion with drift: by taking the exponential
as in (11.2) or by taking the stochastic exponential as in (11.3).

A tractable class of risk neutral models with jumps generalizing the Black-
Scholes model can be obtained by replacing the Brownian motion with drift
by a Lévy process. One way to do this is to make the replacement in (11.2):

St = S0 exp (rt+Xt). (11.4)
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We will call such a model an exponential-Lévy model. By Propositions 3.18
and 8.20, in order to guarantee that e−rtSt is indeed a martingale we have to
impose the additional restrictions on the characteristic triplet (σ2, ν, γ) of X:∫

|x|≥1

exν(dx) < +∞ and

γ +
σ2

2
+
∫

(ey − 1 − y1|y|≤1)ν(dy) = 0. (11.5)

(Xt)t≥0 is then a Lévy process such that EQ[eXt ] = 1 for all t.
Another approach is to replace B1

t by a Lévy process Zt in (11.3):

dSt = rSt−dt+ St−dZt. (11.6)

St then corresponds to the stochastic exponential of Z, defined in Section
8.4. Then by Proposition 8.23, e−rtSt is a martingale if and only if the Lévy
process Zt is a martingale which is verified in turn if E[Z1] = 0.

As shown in Proposition 8.22, these two constructions lead to the same class
of processes — any risk-neutral exponential Lévy model can also be expressed
as a stochastic exponential of another Lévy process Z — so we will use the
first approach (ordinary exponentials), pointing out equivalent formulations
in terms of Z when necessary.

Exponential-Lévy models offer analytically tractable examples of positive
jump processes. The availability of closed-form expressions for characteristic
function of Lévy processes allows to use Fourier transform methods for option
pricing. Also, the Markov property of the price enables us to express option
prices as solutions of partial integro-differential equations. Finally, the flexi-
bility of being able to choose the Lévy measure makes calibrating the model
to market prices of options and reproducing implied volatility skews/smiles
possible.

As shown in Chapter 9, the equivalence class of a Lévy process contains
a wide range of jump processes with various types of dependence and non-
stationarity in their increments. This means that many econometric models
with complex properties are compatible with the use of an exponential Lévy
model as a pricing rule.

Let us stress that specifying risk-neutral dynamics does not mean that we
are working under the hypothesis that “investors are risk neutral” or anything
of the sort. It simply means that all contingent claims are priced in a coherent,
arbitrage-free way and that the pricing rule is linear: we are specifying a model
for the pricing rule Q.

Examples of risk-neutral exponential-Lévy models can be constructed from
the Lévy processes from Chapter 4 by exponentiating them and imposing the
martingale condition (11.5) on the triplet. We will use the name of a Lévy
process to denote the corresponding exponential-Lévy model, e.g., variance
gamma model stands for the risk-neutral exponential-Lévy model obtained
by exponentiating the variance gamma process.
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Having specified the risk neutral dynamics, we can now proceed to price
different types of options using (11.1). The analytic properties of Lévy pro-
cesses combined with those of the exponential function will allow us to derive
efficient pricing procedures for various types of options. Section 11.1 discusses
European options and Fourier transform methods for their valuation. Section
11.2 addresses the pricing of forward start options. Section 11.3 discusses
barrier options and American options are treated in Section 11.4. Finally,
Section 11.5 discusses multi-asset contracts.

11.1 European options in exp-Lévy models

A European call option on an asset S with maturity date T and strike price
K is defined as a contingent claim that gives its holder the right (but not the
obligation) to buy the asset at date T for a fixed price K. Since the holder
can immediately sell the asset at its prevailing price recovering the positive
part of the difference ST −K, the option can be seen as an asset that pays
to its holder the payoff H(ST ) = (ST −K)+ at date T . In the same way a
put option is defined as an option with payoff (K − ST )+. These two types
of options are called vanilla options because of their popularity in financial
markets.

More generally a European option with maturity T and payoff function
H(.) is an option which pays the holder H(ST ) at the maturity date T . If H
is convex, denoting its left derivative by H ′ and its second derivative in the
sense of distributions (which, by the way, is a positive Radon measure) by
ρ(.), we have

H(S) = H(0) +H ′(0)S +
∫ ∞

0

ρ(dK)(S −K)+ (11.7)

so any European payoff can be represents as a (possibly infinite) superposition
of call payoffs:

H(ST ) = H(0) +H ′(0)ST +
∫ ∞

0

ρ(dK)(ST −K)+. (11.8)

This fact is due to the particular payoff structure of the call option and shows
that, aside from being popular, call options can be regarded as fundamental
building blocks for synthesizing more complex payoffs. Moreover, most pop-
ular European payoff structures (straddles, butterfly spreads, etc.) are linear
combinations of a finite number of call/put payoffs.

The price of a call option may be expressed as the risk-neutral conditional
expectation of the payoff:

Ct(T,K) = e−r(T−t)EQ[(ST −K)+|Ft] (11.9)
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and, due to the Markov property of St, it is a function of the characteristics of
the option and the current value of the underlying: Ct(T,K) = C(t, St;T,K).
The quantity (St−K)+ is usually called the intrinsic value of the option and
Ct(T,K) − (St − K)+ its time value. A call option is said to be “at the
money” if St = K, “at the money forward” if St = Ker(T−t), “out of the
money” if St < K, “out of the money forward” if St < Ker(T−t). For out of
the money options, the intrinsic value is zero so Ct is equal to the time value.

If the price of a put option is denoted by Pt(T,K), static arbitrage argu-
ments lead to the call-put parity relation:

Ct(T,K) − Pt(T,K) = St − e−r(T−t)K.

11.1.1 Call options

In an exponential-Lévy model, the expression (11.9) may be simplified fur-
ther. By stationarity and independence of increments, the conditional ex-
pectation in (11.9) may be written as an expectation of the process at time
τ = T − t:

C(t, S, T = t+ τ,K) = e−rτE[(ST −K)+|St = S]

= e−rτE[(Serτ+Xτ −K)+] = Ke−rτE(ex+Xτ − 1)+, (11.10)

where x is the log forward moneyness defined by x = ln(S/K) + rτ . For
options that are at the money forward x = 0. We see that similarly to the
Black-Scholes model, in all exp-Lévy models call option price depends on the
time remaining until maturity but not on the actual date and the maturity
date and is a homogeneous function of order 1 of S and K. Defining the
relative forward option price in terms of the relative variables (x, τ):

u(τ, x) =
erτC(t, S;T = t+ τ,K)

K
, (11.11)

we conclude that the entire structure of option prices in exponential-Lévy
models — which a priori has four degrees of freedom — is parametrized by
only two variables:

u(τ, x) = E[(ex+Xτ − 1)+].

This is a consequence of temporal and spatial homogeneity of Lévy processes.
u(τ, .) can also be written as a convolution product: u(τ, .) = ρτ ∗h, where ρτ
is the transition density of the Lévy process. Thus, if the process has smooth
transition densities, u(τ, .) will be smooth, even if the payoff function h is not.
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11.1.2 Implied volatility

In the Black-Scholes model ν = 0 and call option prices are uniquely given
by the Black-Scholes formula:

CBS(St,K, τ, σ) = StN(d1) −Ke−rτN(d2) (11.12)

with d1 =
x+ τσ2/2
σ
√
τ

and d2 =
x− τσ2/2
σ
√
τ

,

where x is the log forward moneyness defined above, τ = T − t and

N(u) ≡ (2π)−1/2
∫ u

−∞
exp(−z

2

2
)dz

is the Gaussian CDF. If all other parameters are fixed, (11.12) is an increasing
continuous function of σ, mapping ]0,∞[ into ](St−Ke−rτ )+, St[. The latter
interval is the maximal interval allowed by arbitrage bounds on call option
prices. Therefore given the market price C∗

t (T,K) of a call option one can
always invert (11.12) and find the value of volatility parameter which, when
substituted into the Black-Scholes formula, gives the correct option price:

∃! Σt(T,K) > 0, CBS(St,K, τ,Σt(T,K)) = C∗
t (K,T ). (11.13)

This value is called the (Black-Scholes) implied volatility of the option. For
fixed (T,K), the implied volatility Σt(T,K) is in general a stochastic process
and, for fixed t, its value depends on the characteristics of the option such as
the maturity T and the strike level K: the function Σt : (T,K) → Σt(T,K)
is called the implied volatility surface at date t. As noted in the introductory
chapter, the implied volatility surface is the representation adopted by the
market for prices of call/put options. Using the moneyness m = K/St of the
option, one can also represent the implied volatility surface as a function of
moneyness and time to maturity: It(τ,m) = Σt(t + τ,mS(t)). This repre-
sentation is convenient since there is usually a range of moneyness around
m = 1 for which the options are most liquid and therefore the empirical data
are most readily available. Typical examples of implied volatility surfaces ob-
served in the market were shown in Figures 1.6 and 1.7 and their properties
are described in Section 1.2: implied volatility patterns are typically skewed :
out of the money calls have lower implied volatilities than in the money ones.
This effect becomes less important as the time to maturity grows. As be-
comes clear from Figures 11.1, 11.2 and 11.3, exponential-Lévy models can
easily accommodate this feature.

In general, the implied volatility surface It(τ,m) computed from a model
varies in time: it may depend not only on the maturity of options but also
on the current date or the spot price, making the simulation of the P&L of
option portfolios tedious. However in exponential-Levy models the evolution
in time of implied volatilities is particularly simple, as shown by the following
proposition:
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FIGURE 11.1: Profile of the implied volatility surface as a function of
time to maturity and moneyness for a jump diffusion model with σ = 20%
and Poisson jumps with size η = −10% (left) and η = +10% (right) and
annual intensity λ = 1.

PROPOSITION 11.1 Floating smile property
When the risk neutral dynamics is given by an exponential-Lévy process, the
implied volatility for a given moneyness level m = K/St and time to maturity
τ does not depend on time

∀t ≥ 0, It(τ,m) = I0(τ,m). (11.14)

PROOF Equation (11.10) entails that in an exponential Lévy model

Ct(St,K, T )
St

= me−rτE(m−1erτ+Xτ − 1)+ = g(τ,m),

that is, the ratio of option price to the underlying only depends on the mon-
eyness and time to maturity. The same is true for the Black-Scholes model
because it is a particular case of the above:

CBS(t, St, T,K, σ)
St

= gBS(τ,m, σ).

The implied volatility It(τ,m) is defined by solving the equation

CBS(t, St, T,K, σ) = Stg(τ,m) ⇐⇒ gBS(τ,m, It(τ,m)) = g(τ,m).

Since each side depends only on (τ,m) and not on t one concludes that the
implied volatility for a given moneyness m and time to maturity τ does not
evolve in time:

∀t ≥ 0, It(τ,m) = I0(τ,m).
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Exponential-Lévy models are therefore “sticky moneyness” models in the
vocabulary introduced by E. Derman [111]. Note however that the implied
volatility for a given strike level is not constant in time: it evolves stochasti-
cally according to the rule:

Σt(T,K) = I0(
K

St
, T − t).

Since the implied volatility surface It does not vary with t, it is enough to
study it for t = 0. This has been done for various models in the literature;
here are some salient features of implied volatility surfaces in exponential-Lévy
models:

1. Skew/smile features: a negatively skewed jump distribution gives rise
to a skew (decreasing feature with respect to moneyness) in implied
volatility. Similarly, a strong variance of jumps leads to a curvature
(smile pattern) in the implied volatility: Figure 11.2 shows the implied
volatility patterns observed in the Merton jump diffusion model with an
annual variance of jumps δ = 1.

2. Short term skew: contrarily to diffusion models which produce little
skew for short maturities, exponential-Lévy models (and more generally,
models with jumps in the price) lead to a strong short term skew. Figure
11.1 shows that the addition of Poisson jumps to Black-Scholes model
creates a strong skew for short maturities.

3. Flattening of the skew/smile with maturity: for a Lévy process with
finite variance, the central limit theorem shows that when the maturity
T is large, the distribution of (XT−E[XT )])/

√
T becomes approximately

Gaussian. The result of this so-called aggregational normality is that for
long maturities prices of options will be closer to Black-Scholes prices
and the implied volatility smile will become flat as T → ∞. While
this phenomenon is also observed in actual market prices, the effect
is more pronounced in exponential-Lévy models. Figure 11.3 clearly
illustrates this feature for the variance gamma model. This shortcoming
and solutions for it will be discussed in more detail in Chapters 13, 14
and 15.
However, there are exceptions to this rule: Carr and Wu [84] give an
example of an exponential-Lévy models where the risk neutral dynam-
ics of an asset is modelled as the stochastic exponential of an α-stable
Lévy process with maximum negative skewness. In this model the re-
turn distribution of the underlying index has infinite second moment:
as a result, the central limit theorem no longer applies and the volatility
smile does not flatten out as in finite variance exp-Lévy models. Never-
theless, the extreme asymmetry of the Lévy measure guarantees that all
moments of the index level itself and thus option prices at all maturities
are well defined: in particular, (11.5) continues to hold.
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FIGURE 11.2: Profile of the implied volatility surface as a function of
time to maturity and moneyness for the Merton jump-diffusion model with
σ = 15%, δ = 1 and λ = 0.1. Option prices were computed using the series
expansion in Section 10.1.
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[271]. Option prices were computed using the Carr-Madan Fourier transform.
Note the flattening of the skew with maturity.
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11.1.3 Fourier transform methods for option pricing

Contrary to the classical Black-Scholes case, in exponential-Lévy models
there are no explicit formulae for call option prices, because the probability
density of a Lévy process is typically not known in closed form. However, the
characteristic function of this density can be expressed in terms of elemen-
tary functions for the majority of Lévy processes discussed in the literature.
This has led to the development of Fourier-based option pricing methods for
exponential-Lévy models. In these methods, one needs to evaluate one Fourier
transform numerically but since they simultaneously give option prices for a
range of strikes and the Fourier transform can be efficiently computed using
the FFT algorithm, the overall complexity of the algorithm per option price
is comparable to that of evaluating the Black-Scholes formula.

We will describe two Fourier-based methods for option pricing in exp-Lévy
models. The first method, due to Carr and Madan [83] is somewhat easier
to implement but has lower convergence rates. The second one, described by
Lewis [262] converges faster but requires one intelligent decision which makes
it more delicate to produce a robust automatic implementation. Recall the
definition of the Fourier transform of a function f :

Ff(v) =
∫ ∞

−∞
eixvf(x)dx

Usually v is real but it can also be taken to be a complex number. The inverse
Fourier transform is given by:

F−1f(x) =
1
2π

∫ ∞

−∞
e−ixvf(v)dx

For f ∈ L2(R), F−1Ff = f , but this inversion formula holds in other cases
as well. In what follows we denote by k = lnK the log strike and assume
without loss of generality that t = 0.

Method of Carr and Madan [83] In this section we set S0 = 1, i.e.,
at time 0 all prices are expressed in units of the underlying. An assumption
necessary in this method is that the stock price have a moment of order 1+α
for some α > 0:

(H1) ∃ α > 0 :
∫∞
−∞ ρT (s)e(1+α)sds <∞,

where ρT is the risk-neutral density of XT . In terms of the Lévy density it is
equivalent to the condition

∃ α > 0
∫
|y|≥1

ν(dy)e(1+α)y <∞. (11.15)

This hypothesis can be satisfied in all models discussed in Chapter 4 by putting
a constraint on the exponential decay parameter for positive jumps (negative
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jumps do not affect it). In order to compute the price of a call option

C(k) = e−rTE[(erT+XT − ek)+]

we would like to express its Fourier transform in strike in terms of the char-
acteristic function ΦT (v) of XT and then find the prices for a range of strikes
by Fourier inversion. However we cannot do this directly because C(k) is not
integrable (it tends to a positive constant as k → −∞). The key idea of the
method is to instead compute the Fourier transform of the (modified) time
value of the option, that is, the function

zT (k) = e−rTE[(erT+XT − ek)+] − (1 − ek−rT )+. (11.17)

Let ζT (v) denote the Fourier transform of the time value:

ζT (v) = FzT (v) =
∫ +∞

−∞
eivkzT (k)dk. (11.18)

It can be expressed in terms of characteristic function of XT in the following
way. First, we note that since the discounted price process is a martingale,
we can write

zT (k) = e−rT
∫ ∞

−∞
ρT (x)dx(erT+x − ek)(1k≤x+rT − 1k≤rT ).

Condition (H1) enables us to compute ζT (v) by interchanging integrals:

ζT (v) = e−rT
∫ ∞

−∞
dk

∫ ∞

−∞
dxeivkρT (x)(erT+x − ek)(1k≤x+rT − 1k≤rT )

= e−rT
∫ ∞

−∞
ρT (x)dx

∫ rT

x+rT

eivk(ek − erT+x)dk

=
∫ ∞

−∞
ρT (x)dx

{
eivrT (1 − ex)

iv + 1
− ex+ivrT

iv(iv + 1)
+
e(iv+1)x+ivrT

iv(iv + 1)

}

The first term in braces disappears due to martingale condition and, after
computing the other two, we conclude that

ζT (v) = eivrT
ΦT (v − i) − 1
iv(1 + iv)

(11.19)

The martingale condition guarantees that the numerator is equal to zero for
v = 0. Under the condition (H1), we see that the numerator becomes an
analytic function and the fraction has a finite limit for v → 0. Option prices
can now be found by inverting the Fourier transform:

zT (k) =
1
2π

∫ +∞

−∞
e−ivkζT (v)dv (11.20)

© 2004 by CRC Press LLC



Note that in this method we need the condition (H1) to derive the formulae
but we do not need the exact value of α to do the computations, which
makes the method easier to implement. The price to pay for this is a slower
convergence of the algorithm: since typically ΦT (z) → 0 as �z → ∞, ζT (v)
will behave like |v|−2 at infinity which means that the truncation error in the
numerical evaluation of integral (11.20) will be large. The reason of such a
slow convergence is that the time value (11.17) is not smooth; therefore its
Fourier transform does not decay sufficiently fast at infinity. For most models
of Chapter 4 the convergence can be dramatically improved by replacing the
time value with a smooth function of strike. Namely, instead of subtracting
the intrinsic value of the option (which is non-differentiable) from its price, we
suggest to subtract the Black-Scholes call price with suitable volatility (which
is a smooth function). The resulting function will be both integrable and
smooth. Denote

z̃T (k) = e−rTE[(erT+XT − ek)+] − CσBS(k),

where CσBS(k) is the Black-Scholes price of a call option with volatility σ and
log-strike k for the same underlying value and the same interest rate. By a
reasoning similar to the one used above, it can be shown that the Fourier
transform of z̃T (k), denoted by ζ̃T (v), satisfies

ζ̃T (v) = eivrT
ΦT (v − i) − ΦσT (v − i)

iv(1 + iv)
, (11.21)

where ΦσT (v) = exp(−σ2T
2 (v2+iv)). Since for most models of Chapter 4 (more

precisely, for all models except variance gamma) the characteristic function
decays faster than every power of its argument at infinity, this means that the
expression (11.21) will also decay faster than every power of v as �v → ∞,
and the integral in the inverse Fourier transform will converge very fast. This
is true for every σ > 0 but some choices, or course, are better than others.
Figure 11.4 shows the behavior of |ζ̃T | for different values of σ compared to
the behavior of |ζT | in the framework of Merton jump-diffusion model with
volatility 0.2, jump intensity equal to 5 and jump parameters µ = −0.1 and
δ = 0.1 for the time horizon T = 0.5. The convergence of ζ̃T to zero is clearly
very fast (faster than exponential) for all values of σ and it is particularly
good for σ = 0.3575, the value of σ for which ζ̃(0) = 0.

Method of Lewis [262] We present this method from a different angle
than the previous one, in order to show how arbitrary payoff structures (and
not just vanilla calls) can be priced. Since for an arbitrary payoff the notion of
strike is not defined, we will show how to price options for a range of different
initial values of the underlying. Let s = lnS0 denote the logarithm of current
stock value and f be the payoff function of the option. The price of this option
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FIGURE 11.4: Convergence of Fourier transform of option’s time value to
zero in Merton model — see page 363. Left graph: linear scale; right graph:
logarithmic scale.

is

C(s) = e−rT
∫ ∞

−∞
f(es+x+rT )ρT (x)dx.

In this method, instead of subtracting something from the call price to obtain
an integrable function, one computes the Fourier transform for complex values
of the argument: the Fourier transform is defined, as usual, by

Fg(z) =
∫ ∞

−∞
eiuzg(u)du

but z may now be a complex number.
For a, b ∈ R we say that g(u) is Fourier integrable in a strip (a, b) if∫∞

−∞ e−au|g(u)|du <∞ and
∫∞
−∞ e−bu|g(u)|du <∞. In this case Fg(z) exists

and is analytic for all z such that a < 
z < b. Moreover, within this strip the
generalized Fourier transform may be inverted by integrating along a straight
line parallel to the real axis (see [262]):

g(x) =
1
2π

∫ iw+∞

iw−∞
e−izxFg(z)dz (11.22)

with a < w < b. To proceed, we need an additional hypothesis (S̄ denotes
the complex conjugate set of S):

ρT (x) is Fourier integrable in some strip S1,
(H2) f∗(x) ≡ f(ex+rT ) is Fourier integrable in some strip S2 and

the intersection of S̄1 with S2 is nonempty: S = S̄1 ∩ S2 �= ∅.
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Using this hypothesis we can now compute the generalized Fourier trans-
form of C(s) by interchanging integrals: for every z ∈ S∫ ∞

−∞
eizsC(s)ds = e−rT

∫ ∞

−∞
ρT (x)dx

∫ ∞

−∞
eizsf(es+x+rT )ds

= e−rT
∫ ∞

−∞
e−izxρT (x)dx

∫ ∞

−∞
f(ey+rT )eizydy.

Finally we obtain

FC(z) = e−rTΦT (−z)Ff∗(z) ∀z ∈ S.

Option prices can now be computed from (11.22) for a range of initial values
using the FFT algorithm (see below).

Application to call options The payoff function of a European call op-
tion is Fourier integrable in the region 
z > 1, where its generalized Fourier
transform can be computed explicitly:

Ff∗(z) =
∫ ∞

−∞
eiyz(ey+rT − ek)+dy =

ek+iz(k−rT )

iz(iz + 1)
.

The hypothesis (H2) now requires that ρT (x) be integrable in a strip (a, b)
with a < −1. Since ρT (x) is a probability density, 0 belongs to its strip of
integrability which means that b ≥ 0. Therefore, in this setting the hypothesis
(H2) is equivalent to (H1).

Finally, the generalized Fourier transform of call option price takes the form

FC(z) =
ΦT (−z)e(1+iz)(k−rT )

iz(iz + 1)
, 1 < 
z < 1 + α.

The option price can be computed using the inversion formula (11.22), which
simplifies to

C(x) =
exp(wx+ (1 − w)(k − rT ))

2π

∫ ∞

−∞

eiu(k−rT−x)ΦT (−iw − u)du
(iu− w)(1 + iu− w)

for some w ∈ (1, 1 + α). The integral in this formula is much easier to ap-
proximate at infinity than the one in (11.20) because the integrand decays
exponentially (due to the presence of characteristic function). However, the
price to pay for this is having to choose w. This choice is a delicate issue
because choosing big w leads to slower decay rates at infinity and bigger trun-
cation errors and when w is close to one, the denominator diverges and the
discretization error becomes large. For models with exponentially decaying
tails of Lévy measure, w cannot be chosen a priori and must be adjusted
depending on the model parameters.
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Computing Fourier transforms In order to implement the algorithms
above, one needs to numerically compute Fourier transform in an efficient
manner. This can be done using the discrete Fourier transform

Fn =
N−1∑
k=0

fke
−2πink/N , n = 0 . . . N − 1.

To compute F0, . . . , FN−1, one needs a priori N2 operations, but when N is
a power of 2, an algorithm due to Cooley and Tukey and known as the fast
Fourier transform (FFT) reduces the computational complexity to O(N lnN)
operations, see [321]. Subroutines implementing the FFT algorithm are avail-
able in most high-level scientific computation environments. A C language li-
brary called FFTW can be downloaded (under GPL license) from www.fftw.org.

Suppose that we would like to approximate the inverse Fourier transform
of a function f(x) with a discrete Fourier transform. The integral must then
be truncated and discretized as follows:∫ ∞

−∞
e−iuxf(x)dx ≈

∫ A/2

−A/2
e−iuxf(x)dx ≈ A

N

N−1∑
k=0

wkf(xk)e−iuxk ,

where xk = −A/2 + k∆, ∆ = A/(N − 1) is the discretization step and wk
are weights corresponding to the chosen integration rule (for instance, for
the trapezoidal rule w0 = wN−1 = 1/2 and all other weights are equal to
1). Now, setting un = 2πn

N∆ we see that the sum in the last term becomes a
discrete Fourier transform:

Ff(un) ≈ A

N
eiuA/2

N−1∑
k=0

wkf(xk)e−2πink/N

Therefore, the FFT algorithm allows to compute Ff(u) at the points un =
2πn
N∆ . Notice that the grid step d in the Fourier space is related to the initial
grid step ∆:

d∆ =
2π
N

This means that if we want to compute option prices on a fine grid of strikes,
and at the same time keep the discretization error low, we must use a large
number of points. Another limitation of the FFT method is that the grid must
always be uniform and the grid size a power of 2. The functions that one has
to integrate are typically irregular at the money and smooth elsewhere but
increasing the resolution close to the money without doing so in other regions
is not possible. These remarks show that the use of FFT is only justified
when one needs to price a large number of options with the same maturity
(let us say, more than 10) — for pricing a single option adaptive variable-step
integration algorithms perform much better.
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When one only needs to price a single option, Boyarchenko and Levendorskĭı
[71] suggest to transform the contour of integration in the complex plane
(using Cauchy theorem) to achieve a better convergence. Their method, called
“integration along cut” is applicable to tempered stable model with α ≤ 1 and
in many other cases and performs especially well for options close to maturity.
However, when one only needs to price a single option, the speed is not really
an issue since on modern computers all methods can do this computation
quickly. Speed becomes an issue when one repeatedly needs to price a large
number of options (as in calibration or in scenario simulation for portfolios).
If one is interested in pricing several options with the same maturity, FFT is
hard to beat.

11.2 Forward start options

A forward start (or delayed) option is an option with some contractual
feature, typically the strike price, that will be determined at some future date
before expiration, called the fixing date. A typical example of forward start
option is a stock option. When an employee begins to work, the company
may promise that he or she will receive call options on the company’s stock
at some future date. The strike of these options will be such that the options
are at the money or, for instance, 10% out of the money at the fixing date
of the strike. Due to the homogeneous nature of exponential-Lévy models,
forward start options are easy to price in this framework.

The simplest type of a forward start option is a forward start call, starting
at T1 and expiring at T2, with strike equal to a fixed proportion m of the
stock price at T1 (often m = 1: the option is at the money on the date of
issue). The payoff of such an option at T2 is therefore

H = (ST2 −mST1)
+. (11.23)

At date T1 the value of this option is equal to that of a European call with
maturity T2 and strike mST1 . Denoting the price of a forward start option by
Pt we obtain

PT1 = ST1e
−r(T2−T1)E{(er(T2−T1)+XT2−T1 −m)+}.

Notice that the expectation is not conditional: the result is deterministic.
Therefore the value of option at T1 is equal to ST1 times a constant. This
option is then simply equivalent to a certain number of forward contracts and
its price at t is given by

Pt = e−r(T1−t)E{ST1 |Ft}e−r(T2−T1)E{(er(T2−T1)+XT2−T1 −m)+}
= Ste

−r(T2−T1)E{(er(T2−T1)+XT2−T1 −m)+}. (11.24)
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Hence, the price of a forward start call starting at T1 and expiring at T2 is
equal to the price of a regular call with time to maturity T2 − T1 and strike
mSt. The implied volatility of a forward start call, or the forward implied
volatility, is defined as the volatility σ such that the Black-Scholes price of a
call with moneyness m, time to maturity T2 − T1 and volatility σ is equal to
the price of this forward start call. The pricing formula for forward start calls
(11.24) leads to the following result.

PROPOSITION 11.2 Forward smiles in exp-Lévy models
In an exponential-Lévy model, the forward smile is stationary: the implied

volatility of a forward start call IFT1
(T2 − T1,m) only depends on T2 − T1 and

not on the fixing date T1. In particular, it is equal to today’s implied volatility
for the maturity T2 − T1.

IFT1
(T2 − T1,m) = I0(T2 − T1,m)

Therefore in an exponential-Lévy model, the implied volatility smile for for-
ward start options can be deduced from the current implied volatility surfaces.
By contrast in a stochastic volatility or local volatility model the forward smile
has to computed numerically.

11.3 Barrier options

Barrier options are options in which the right of the holder to buy or sell
the stock at a specific price at the end of the contract is conditioned on the
stock crossing (or not crossing) a certain barrier before the expiry date. For
example, the up-and-out call option has the following payoff at maturity

(ST −K)+1 max
0≤t≤T

St<B .

If the stock price crosses the barrier B, this option becomes worthless (some-
times the holder may receive a fixed amount of money called rebate). For an
up-and-out option without rebate to have a nonzero value, the strike K must
be lower than H. An up-and-out call may be interesting for the buyer because
while offering the same guarantees in normal market conditions (if the barrier
is not crossed), it can be purchased at a considerably lower price.

The payoff of a barrier option may be written using the notion of exit time,
introduced in Section 2.4.3. Define the exit time TB of the barrier by

TB = inf{t > 0, St > B}. (11.25)

TB is a nonanticipating random time: it is the hitting time of an open interval.
If St is continuous, then STB

= B: the barrier cannot be crossed without being
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hit. But for a jump process this may no longer be true: St can jump over the
barrier and the value STB

− B is a random variable called the overshoot. If
St has a nonzero probability of hitting the barrier, i.e., if

Q(T{B} <∞) �= 0 where T{B} = inf{t > 0, St = B},

the random time associated to crossing or hitting the barrier1

τB = inf{t > 0, St ≥ B} (11.26)

is not necessarily the same as TB : the process may jump up to B and then
jump down again without crossing the barrier so τB can be strictly smaller
than TB! However, the probability of such an event is zero if there is a non-
trivial diffusion component [48]: for jump-diffusion processes τB = TB almost
surely. Points which can never be reached, i.e., for which T{B} = ∞ a.s. for
any starting point S0, are called regular points. The difference between the
two random times TB and τB depends on the regularity of B and is related
to the local time of the process at B. The regularity of B is also linked
to the smoothness at the barrier of the barrier option value as a function
of the underlying. These properties may be quite delicate to study for a
jump process and this is just the tip of an iceberg called potential theory,
see [49], [345, Chapter 8] for the case of Lévy processes. In the case of pure
jump processes, Kesten [234] (see also [345, Theorems 43.13 and 43.21]) gives
sufficient conditions on the Lévy process X such that TB = τB a.s. These
conditions are verified in particular for all Lévy processes with a non-zero
diffusion component and tempered stable processes (see [70]). In the sequel
we will limit ourselves to the case where TB = τB .

Three different approaches are available for pricing barrier options in expo-
nential-Lévy models. The first one is based on Wiener-Hopf factorization
identities. In principle it applies to all Lévy processes and allows to treat
barrier and lookback options. However, in most cases of practical interest
the Wiener-Hopf factors are not known in closed form and computing option
prices requires integration in several dimensions. We present nevertheless the
principles behind this approach.

Wiener-Hopf factorization The term Wiener-Hopf factorization refers to
a number of identities (see [345, Chapter 9] for an overview) that are helpful
in evaluating Fourier transforms of quantities related to maximum and mini-
mum of a Lévy process, which explains why they are useful for barrier option
pricing. Here we only give the necessary definitions. In the following (Xt)t≥0

denotes a Lévy process on R with Lévy triplet (σ, ν, γ) and characteristic ex-
ponent ψ(u). Denote by ρt the distribution of Xt. We also introduce the

1Although this is not obvious, τB can also shown to be a nonanticipating random time
(stopping time), see [345, Theorem 40.13].
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maximum and minimum processes associated with (Xt):

Mt = max
0≤s≤t

Xs Nt = min
0≤s≤t

Xs

The next proposition defines the Wiener-Hopf factors, associated to the pro-
cess Xt. The proof can be found in [345, Theorem 45.2].

PROPOSITION 11.3
Let q > 0. There exists a unique pair of characteristic functions Φ+

q (z) and
Φ−
q (z) of infinitely divisible distributions having drift 0 and supported on [0,∞)

and (−∞, 0] respectively such that

q

q − ψ(z)
= Φ+

q (z)Φ−
q (z), z ∈ R.

These functions have the following representations

Φ+
q (z) = exp

{∫ ∞

0

t−1e−qtdt
∫ ∞

0

(eizx − 1)ρt(dx)
}
, (11.27)

Φ−
q (z) = exp

{∫ ∞

0

t−1e−qtdt
∫ 0

−∞
(eizx − 1)ρt(dx)

}
. (11.28)

The function Φ+
q (z) can be continuously extended to a bounded analytic

function without zeros on the upper half plane and Φ−
q (z) can be similarly

extended to the lower half plane.

Example 11.1 Wiener-Hopf factors for Brownian motion with drift
If (Xt)t≥0 is a Brownian motion with drift, ψ(u) = − 1

2σ
2z2 + iγz and the

Wiener-Hopf factors can be computed explicitly:

q

q − ψ(z)
=

q

q + σ2z2/2 − iγz
=

λ+

λ+ + iz

λ−
λ− − iz

, (11.29)

where λ+ = γ
σ2 +

√
γ2+2σ2q

σ2 and λ− = − γ
σ2 +

√
γ2+2σ2q

σ2 . The first factor in
(11.29) is the characteristic function of exponential distribution with param-
eter λ+ and the second factor is the characteristic function of the dual of the
exponential distribution (exponential distribution on the negative half axis)
with parameter λ−.

This example can be generalized to Lévy processes having only negative (or
only positive) jumps. If (Xt) has only negative jumps,

Φ+
q (ξ) =

λq
λq − iξ

(11.30)
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where −iλq is the (unique) root of q + ψ(z) (see [71, Section 2.2]).
However, in the general case these factors are not known explicitly and must

be evaluated numerically. Computations using Equations (11.27) and (11.28)
are not very efficient because they involve the probability distribution of Xt

which is usually not available in closed form. Boyarchenko and Levendorskĭı
[71, Section 3.6] give a more efficient expression which is valid for tempered
stable, normal inverse Gaussian and several other examples of Chapter 4):

Φ+
q (z) = exp

{
z

2πi

∫ +∞+iw

−∞+iw

ln(q + ψ(ξ))
ξ(z − ξ)

dξ

}

with some w < 0 such that Φ+
q (z) is analytic in the half plane 
z > w. Note

however that this integral must be computed for all values of z and q and it
cannot be approximated using the FFT method.

The next theorem [345, Theorem 45.7] shows how Wiener-Hopf factors may
be used for computing quantities related to the maximum of a Lévy process.

THEOREM 11.1 Wiener-Hopf factorization
The Laplace transform in t of the joint characteristic function of (Xt,Mt−Xt)
is given by:

q

∫ +∞

0

e−qtE[eixMt+iy(Xt−Mt)]dt = Φ+
q (x)Φ−

q (y) (11.31)

for any q > 0, x, y ∈ R.

In probabilistic terms, this result can be interpreted as follows: the distri-
bution of M evaluated at an independent exponential random time is inde-
pendent of of M −X evaluated at the same exponential random time.

Application to barrier option pricing Suppose for simplicity that S = 1
and the interest rate is zero. Then the price of an up-and-out call option is

C(T, k, b) = E{(eXT − ek)+1Mt<b} =
∫

R2
(ex − ek)+1y<bpT (x, y)dxdy,

where b is the log-barrier, k the log strike and pT (x, y) denotes the joint density
of XT and MT . For sufficiently regular Lévy processes we can compute by
interchanging integrals the generalized Fourier transform in log-strike and log-
barrier of this option price:∫

R2
eiuk+ivbC(T, k, b)dkdb =

FpT (u− i, v)
uv(1 + iu)

, 
u < 0, 
v > 0,

where Fp is the characteristic function of (XT ,MT ). The last step is to apply
the Laplace transform to both sides and use the factorization identity (11.31):

q

∫
R2
eiuk+ivbdkdb

∫ ∞

0

e−qTC(T, k, b)dT =
Φ+
q (v + u− i)Φ−

q (u− i)
uv(1 + iu)

.
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Computing barrier option prices for a range of strikes, barrier values and
maturities requires inverting the Fourier transform (using Equation (11.22))
and the Laplace transform. If Fourier inversion cannot be done analytically,
it may be performed using the FFT algorithm. However, the inversion of
a Laplace transform is a well-known ill-posed problem: although numerical
methods exist, they are known to be unstable. This pricing method is more or
less feasible if Wiener-Hopf factors are known in closed form, like in the case of
Lévy processes with no positive jumps; in other cases it is too computationally
expensive and we recommend using the two other methods available: Monte
Carlo simulation or numerical solution of partial integro-differential equations.

A special case where closed form expressions can be obtained for the Laplace
transform of barrier, double barrier and lookback options is the Kou jump
diffusion model described in Section 4.3, see [239, 360, 359]. However, the
pricing formulae for European options given in [238] involve special functions
whose computation is delicate, so we recommend using numerical methods
such as FFT.

Monte Carlo methods for barrier options Monte Carlo methods per-
form well for pricing barrier options in a jump-diffusion framework because
one can control the behavior of the Lévy process between the jump times:
between two jumps the log-price follows a Brownian bridge process. This
remark can be used to devise efficient pricing algorithms for barrier options
[292]. We refer the reader to Example 6.1 and Algorithm 6.4 in Chapter 6,
which explain in detail how to price an up-and-out call in a jump-diffusion
model by the Monte Carlo method. Moreover, in this case the price of vanilla
call or put (computed using Fourier transform methods of this chapter) may
be used as control variate to reduce the error of Monte Carlo method.

In infinite activity setting the Monte Carlo methods for barrier options are
less precise and more time consuming because, in order to see if the underlying
has crossed the barrier or not, one has to simulate the entire trajectory of the
process.

PIDE methods for barrier options The third and maybe the most gen-
eral method to price barrier options in exponential-Lévy models is by solving
corresponding partial integro-differential equations. In this framework, bar-
rier options are easier to price than European ones, because to price European
options one must impose artificial boundary conditions whereas for barrier op-
tions the boundary condition is natural: the price is either zero or equal to
the rebate on the barrier and beyond. PIDE methods for barrier options are
discussed in Chapter 12.
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11.4 American options

American options differ from their European counterparts by giving their
holder the right to exercise at any date prior to maturity and not only at
the expiry date. The holder is thus free to adopt any strategy that binds the
exercise decision to the past values of stock price: the exercise date may be
any nonanticipating random time τ . The value of an American put at date
t is therefore given by the highest value obtained by optimizing over exercise
strategies:

Pt = ess supτ∈T (t,T )E[e−r(τ−t)(K − Sτ )+|Ft],
where and T (t, T ) denotes the set of nonanticipating exercise times τ satisfy-
ing t ≤ τ ≤ T . The essential supremum over an uncountable set of random
variables is defined as the smallest random variable dominating all those in
the set. As T also belongs to T , it is clear that the price of an American
put is always greater or equal to the price of its European counterpart: the
difference between the price of an American option and the European option
with the same characteristics is called the early exercise premium. The price
of an American call may be computed using a similar formula, however, as
shown by Merton [290] using arbitrage arguments, it is not optimal to exercise
an American call before maturity if the underlying stock pays no dividends:
the value of an American call on an asset paying no dividends is equal to the
value of the European call with same strike and maturity.

General properties of American option values have been studied by [47] in
the framework of optimal stopping problems. American options in models
with jumps have been studied in [316, 390] in the finite activity case and in
[250] for some infinite activity models. In an exponential-Lévy model, using
the strong Markov property of St one can show that

Pt = ess supτ∈T (t,T )E[e−r(τ−t)(K − Sτ )+|St = S] = P (t, St),

where P (t, S) = ess supτ∈T (t,T )E[(Ke−r(τ−t) − SeXτ−t)+]. (11.32)

The following properties are shown in [317, Proposition 2.1.] in the case of a
jump-diffusion model:

• P (t, S) is decreasing and convex with respect to the underlying S for
every t ∈ [0, T ].

• P (t, S) is increasing with respect to t.

As in the Black-Scholes model, exponential-Lévy models do not give closed-
form expressions for American options. Also, evaluation of (11.32) by Monte
Carlo simulation is not straightforward: it involves the computation of a con-
ditional expectation. The least squares Monte Carlo method [266, 86] allows
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to approximate conditional expectations in a Monte Carlo framework. An
overview of this and other Monte Carlo based methods for American option
pricing can be found in [165, Chapter 8]

Boyarchenko and Levendorskĭı [71] give methods using Wiener-Hopf factor-
ization for computing prices of perpetual American options, i.e., for T = ∞.
See also [250] and the discussion in Section 12.5. Alternative characterizations
of American options using partial integro-differential equations are discussed
in Chapter 12.

11.5 Multi-asset options

A basket option is an option whose payoff depends on the value of several
underlying assets. The simplest example is a call on a portfolio of assets
S(1) . . . S(d), whose value is given by

Ct(T,K) = e−r(T−t)E

(
d∑
i=1

αiS
(i)
T −K

)+

. (11.33)

If the stocks are modelled by the exponentials of Lévy processes, the sum∑d
i=1 αiS

(i)
t will no longer be a Lévy process, and the Fourier methods of

Section 11.1.3 cannot be used directly. Since the complexity of PIDE methods
grows exponentially with dimension, the only remaining solution is the Monte
Carlo method. Fortunately, for multivariate models of Chapter 5, efficient
simulation methods are available (see Section 6.6). Moreover, in exponential-
Lévy models one can construct efficient variance reduction algorithms that
allow to achieve acceptable precision already with several hundred trajectories
of Monte Carlo. In this section we discuss these variance reduction methods
and illustrate their application on a numerical example.

We consider the following problem:

C(K) = e−rTE

(
d∑
i=1

αie
rT+X

(i)
T −K

)+

,

where (X(1) . . . X(d)) is a d-dimensional Lévy process and α1, . . . , αd are posi-
tive weights that sum up to one. Problem (11.33) can be reduced to this form
by renormalizing the strike. At first glance, this problem seems difficult to
solve by Monte Carlo methods because the payoff function is unbounded and
may have very high variance. However, on one hand, due to the convexity of
payoff we always have

e−rTE

(
d∑
i=1

αie
rT+X

(i)
T −K

)+

≤
d∑
i=1

αie
−rTE

(
erT+X

(i)
T −K

)+

≡ C+(K)
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On the other hand, using the well-known identity ta+ (1− t)b ≥ atb1−t for a
and b positive and 0 ≤ t ≤ 1, we can write:

e−rTE

(
d∑
i=1

αie
rT+X

(i)
T −K

)+

≥ e−rTE

(
exp

{
rT +

d∑
i=1

αiX
(i)
T

}
−K

)+

≡ C−(K)

We have found two bounds for basket option price: C−(K) ≤ C(K) ≤ C+(K).
Notice that C+(K) is a linear combination of calls on individual assets of the
basket and C−(K) is a call on a fictitious asset (which is by the way not a
martingale), described by the Lévy process

∑d
i=1 αiX

(i) whose characteristics
can often be computed from those of the d-dimensional process. Therefore,
both C+(K) and C−(K) can be evaluated either analytically or by Fourier
methods and used as control variates for the computation of C(K).

Variance reduction with control variates Suppose that we need to com-
pute the expectation of a random variable Y by Monte Carlo method. Find
another random variable X (called control variate) whose expectation may be
computed analytically and which is highly correlated with Y . Denote the sam-
ple means over N i.i.d. realizations of X and Y by X̄ and Ȳ : X̄ ≡ 1

N

∑N
i=1Xi.

The control variate estimator of Y is then given by

Ŷ (b) = Ȳi + b(EXi − X̄i) (11.34)

for any fixed b. It is now straightforward to see that the variance of Ŷ (b) is
minimal at b∗ = Cov(Y,X)

VarX where it is equal to 1
N VarY (1 − ρ2

XY ), with ρXY
denoting the correlation coefficient between X and Y . The variance reduction
factor compared to plain Monte Carlo is equal to 1−ρ2

XY which means that a
strong reduction of variance may be achieved if X and Y are highly correlated.
The optimal value of b cannot typically be computed explicitly (if we knew
how to compute Cov(Y,X) we would probably also be able to compute EY
without simulation). However, in most cases it can safely be estimated from
the same sample:

b̂∗ =
∑N
i=1(Yi − Ȳ )(Xi − X̄)∑N

i=1(Xi − X̄)2
(11.35)

Using the estimated value of b∗ introduces some bias into the estimator of
Y but for sufficiently large samples this bias is small compared to the Monte
Carlo error (see [165, Chapter 4] for a detailed discussion of small sample
issues).
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Equation (11.34) can be generalized to the case when several control variates
X(1), . . . , X(m) are available. Now

Ŷ (b) = Ȳi +
m∑
k=1

bk(EX
(k)
i − X̄

(k)
i ) (11.36)

and the optimal vector b∗ is given by

b∗ = Σ−1
X ΣXY ,

where ΣX is the covariance matrix of control variates X(1), . . . , X(m) and
[ΣXY ]k = Cov(Y,X(k)). For details on the use of control variates and other
methods of variance reduction in Monte Carlo simulations we refer the reader
to [165].

Let us now return to the problem of basket option pricing in Lévy models.
Let (X(1)

j . . . X
(d)
j ) with j = 1 . . . N be independent random vectors having

the distribution of (X(1)
T . . . X

(d)
T ). We write

Cj(K) = e−rT
(

d∑
i=1

αie
rT+X

(i)
j −K

)+

C+
j (K) =

d∑
i=1

αie
−rT

(
erT+X

(i)
j −K

)+

C−
j (K) = e−rT

(
exp

{
rT +

d∑
i=1

αiX
(i)
j

}
−K

)+

Clearly, both C+
j (K) and C−

j (K) are highly correlated with Cj(K) and can
be used to construct efficient Monte Carlo estimators, based either on one of
the control variates or on both of them:

Ĉ1(K) = C̄(K) + b̂1(C+(K) − C̄+(K)), (11.37)

Ĉ2(K) = C̄(K) + b̂2(C−(K) − C̄−(K)),

Ĉ3(K) = C̄(K) + b̂31(C+(K) − C̄+(K)) + b̂32(C−(K) − C̄−(K)).

Here, b1, b2 and (b31, b32) are the in-sample approximations of optimal pa-
rameters for the corresponding estimators — see Equation (11.35).

Example 11.2 Basket call in Merton’s model
Consider the problem of pricing a basket call (11.33) on two equally weighted
assets with maturity 1 year and strike equal to 1. Suppose that the first asset
X(1) is described by Merton’s jump-diffusion model (see Chapter 4) with
volatility σ1 = 0.3, jump intensity λ1 = 5, mean jump size µ = −0.1 and
jump size dispersion ∆ = 0.1 and that the second asset has σ2 = 0.2, λ2 = 3
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TABLE 11.1: Control variate estimators of a basket option price
under the Merton jump-diffusion model; see Example 11.2.

Estimator Ĉ1 Ĉ2 Ĉ3 Plain MC

Price 0.1396 0.1371 0.1378 0.1436
Std. dev. (of price) 1.6 × 10−3 9.4 × 10−4 5.9 × 10−4 6.6 × 10−3

Implied vol. 0.2928 0.2863 0.2881 0.3035

Optimal param. b̂∗ 0.9826 1.0442 0.3364
0.7145 —

and the same jump size distribution. Assume further that the jump parts
of the assets are independent, their Gaussian parts have correlation ρ = 0.5,
S = 1 for both assets and the interest rate is r = 0.05.

In this case 1
2 (X(1) + X(2)) also follows the same model with σ = 0.218,

λ = 8, µ = 0.05 and ∆ = −0.05. Analytic computations yield the bounds:
C+ = 0.1677 and C− = 0.1234. These bounds correspond to implied volatility
bounds of 36.7% and 25%: they already give us some information about the
price of basket.

Table 11.1 shows the price of the basket option and its Black-Scholes implied
volatility computed using the three estimators (11.37) and the plain Monte
Carlo estimator along with corresponding standard deviations. The prices
were evaluated using 1000 Monte Carlo runs. It is clear that the estimator
that uses both control variates outperforms both Ĉ1 and Ĉ2 and achieves
a reduction of standard deviation by a factor greater than ten compared to
the plain Monte Carlo. This means that to compute the price with the same
precision with plain MC one needs one hundred times more runs than with the
control variate estimator. The “true” price, computed with a great number
of Monte Carlo runs, is equal to 0.1377, which means that the bias in Ĉ3,
produced by the in-sample estimation of optimal parameter b3, is insignificant.

Figure 11.5 further compares the behavior of the four estimators for different
number of Monte Carlo runs. Notice that with only 100 evaluations the
implied volatility error is already less than one per cent for the estimator Ĉ3

and that at 500 runs this estimator practically attains its limiting value.

Efficient Monte Carlo simulation of American basket options (with a rea-
sonable number of underlyings) has become possible in the recent years using
the Carrière-Longstaff-Schwartz least squares algorithm [266, 86], which can
also be applied to exponential-Lévy models using the simulation methods de-
scribed in Chapter 6.
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FIGURE 11.5: Comparison of the three improved Monte Carlo estimators
of the basket call price to the plain Monte Carlo estimator. The price interval
between 0.135 and 0.14 corresponds roughly to one and a half per cent of
implied volatility difference.

Further reading

Various examples of risk neutral exponential-Lévy models have been studied
in the literature: Merton’s jump-diffusion model [291], the variance gamma
model [271, 270, 272], the normal inverse Gaussian model [30, 342], the hyper-
bolic model [125, 319, 123], generalized hyperbolic models [123], the tempered
stable model [288, 71, 81], the Kou model [238] and the Meixner model [352].

Fourier transform methods for European option pricing were introduced
by Carr and Madan [83], see also [261, 393]. The recent book [71] con-
tains an in-depth discussion of the Fourier approach to the pricing of options
in exponential-Lévy models using tools from complex analysis and pseudo-
differential operators for a class of exp-Lévy models including tempered stable,
normal inverse Gaussian and some others.

Kou and Wang [239] obtain closed formulas for barrier options and Sepp
[360, 359] obtains expressions for double barrier and lookback options in the
Kou jump-diffusion model [238] using special functions. Barrier options in
exponential-Lévy models are discussed in [70, 386]. The Wiener-Hopf factor-
ization is simpler to understand in the case of random walks: a good discussion
is given in [334, Chapter 7]. Wiener-Hopf factorization for Lévy processes is
discussed in [345, Chapter 9] and [49, Chapter VI]. For Lévy processeswith
positive jumps a summary of results is given in [244]. The use of Wiener-Hopf
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factorizations for pricing exotic options in exp-Lévy models is discussed in
[386] using probabilistic methods.

Pricing of American options on infinite-activity Lévy-driven assets is a cur-
rent research topic. American options on underlying assets with jumps of
finite activity have been studied in [317, 316, 390, 391]. Pham [316] discusses
the relation between the optimal stopping problem and the integro-differential
free boundary problem. Zhang [390] and Gukhal [182] give a decomposition
of the American option price into the corresponding European option price
and the early exercise premium and discusses the structure of early exercise
premium. Gerber and Shiu [163] discuss perpetual American options in com-
pound Poisson models; perpetual American options in exp-Lévy models are
discussed in [72] using Wiener-Hopf techniques. A popular Monte Carlo pro-
cedure for pricing American options is the least-squares Monte Carlo method
described in [266, 86]. A survey of Monte Carlo methods for American options
may be found in [165]. Pricing methods based on the numerical solution of
partial integro-differential equations will be presented in Chapter 12.
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Chapter 12

Integro-differential equations and
numerical methods

An approximate answer to the right problem is worth a good deal more
than an exact answer to an approximate problem.

John Tukey

At that time, the notion of partial differential equations was very, very
strange on Wall Street.

Robert C. Merton, Derivative Strategies, March 1998, p. 32.

In the Black-Scholes model and, more generally, in option pricing models
where the risk neutral dynamics can be described by a diffusion process:

dSt
St

= rdt+ σ(t, St)dWt,

the value C(t, St) of a European or barrier option can be computed by solving
a parabolic partial differential equation:

∂C

∂t
(t, S) + rS

∂C

∂S
+
σ2(t, S)S2

2
∂2C

∂S2
− rC(t, S) = 0

with boundary conditions depending on the type of option considered. Many
numerical methods exist for solving such partial differential equations and
have given rise to efficient methods for option pricing in diffusion models.

A similar result holds when the risk-neutral dynamics is given by an exp-
Lévy model or a jump-diffusion model: the value of a European or barrier
option is given by C(t, St) where C solves a second-order partial integro-
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382 Financial Modelling with jump processes

differential equation (PIDE):

∂C

∂t
(t, S) + rS

∂C

∂S
+
σ2S2

2
∂2C

∂S2
− rC(t, S)

+
∫
ν(dy)[C(t, Sey) − C(t, S) − S(ey − 1)

∂C

∂S
(t, S)] = 0

with boundary conditions depending on the payoff structure of the option.
The new element is the integral term in the equation, due to the presence of
jumps. This is a nonlocal term: it depends on the whole solution C(t, .) and
not only on its behavior at the point S. Its presence leads to new theoretical
and numerical issues making PIDE less easy to solve than partial differential
equations. In the recent years, option pricing in models with jumps has pro-
vided an impetus for the study of numerical methods for parabolic equations
and free boundary problems for such integro-differential operators.

While parabolic integro-differential equations have been repeatedly used in
the literature on option pricing in models with jumps, their derivation and
the discussion of their properties are often omitted. This chapter serves as an
introduction to this topic: we will show how to derive the integro-differential
equations verified by various types of options (Section 12.1), discuss some
properties of these equations and different concepts of solution (Section 12.2)
and present various numerical methods for solving them: multinomial trees
(Section 12.3), finite difference schemes (Section 12.4), the analytic method
of lines (Section 12.5) and Galerkin schemes (Section 12.6). The advantages
and drawbacks of these methods are summarized in Section 12.7.

Most statements are given for the time-homogeneous case but similar re-
sults hold when coefficients depend on time: this case is discussed further in
Chapter 14.

12.1 Partial integro-differential equations for computing
option prices

Consider a market where the risk-neutral dynamics of the asset is given by
an exponential-Lévy model:

St = S0 exp(rt+Xt), (12.1)

where X is a Lévy process with characteristic triplet (σ2, ν, γ) under some
risk-neutral measure Q such that Ŝt = e−rtSt = eXt is a martingale. We will
assume that ∫

|y|≥1

e2yν(dy) <∞. (12.2)
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This condition is equivalent to the existence of a second moment of the price
process and allows to use L2 methods in the proofs below. The risk-neutral
dynamics of St is then given by

St = S0 +
∫ t

0

rSu−du+
∫ t

0

Su−σdWu

+
∫ t

0

∫ ∞

−∞
(ex − 1)Su−J̃X(du dx), (12.3)

where J̃X denotes the compensated jump measure of the Lévy process X (see
Proposition 8.20) and Ŝt = expXt is a square-integrable martingale:

dŜt

Ŝt−
= σdWt +

∫ ∞

−∞
(ex − 1)J̃X(dt dx), sup

t∈[0,T ]

E[Ŝ2
t ] <∞.

The value of a European option with terminal payoff H(ST ) is defined as
a discounted conditional expectation of its terminal payoff under risk-neutral
probability Q: Ct = E[e−r(T−t)H(ST )|Ft]. From the Markov property, Ct =
C(t, S) where

C(t, S) = E[e−r(T−t)H(ST )|St = S]. (12.4)

Introducing the change of variable τ = T − t , x = ln(S/K) + rτ where
K is an arbitrary constant and defining: h(x) = H(Kex)/K and u(τ, x) =
er(T−t)C(t, S)/K, we can rewrite the above equation as

u(τ, x) = E[h(x+Xτ )]. (12.5)

If h is in the domain of the infinitesimal generator then we can differentiate
with respect to τ to obtain the following integro-differential equation:

∂u

∂τ
= LXu on ]0, T ] × R, u(0, x) = h(x), x ∈ R, (12.6)

where L is the infinitesimal generator1 of X:

LXf(x) = γ
∂f

∂x
+
σ2

2
∂2f

∂x2
+
∫
ν(dy)[f(x+ y) − f(x) − y1{|y|<1}

∂f

∂x
(x)].

Similarly, if u is smooth then using a change of variable we obtain a similar
equation for C(t, S):

∂C

∂t
(t, S) + rS

∂C

∂S
+
σ2S2

2
∂2C

∂S2
− rC(t, S)

+
∫
ν(dy)[C(t, Sey) − C(t, S) − S(ey − 1)

∂C

∂S
(t, S)] = 0. (12.7)

1See Proposition (3.16) for a definition of the infinitesimal generator.
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These equations are similar to the Black-Scholes partial differential equation,
except that a new integral term appears in the equation.

However, the above reasoning is heuristic: the payoff function h is usually
not in the domain of LX and in fact it is usually not even differentiable. For
example h(x) = (1 − ex)+ for a put option and h(x) = 1x≥x0 for a binary
option. For barrier options, the presence of boundary conditions may lead to
additional complications.

We will nevertheless show now that under some conditions, the value of
European options, barrier options and American options in this model can
be expressed as solutions of second order partial integro-differential equations
(PIDEs) such as the one above, with appropriate boundary conditions. When
these conditions are not always verified, it will lead us to consider, in Section
12.2.4, the notion of viscosity solution; we will then show that under more
general conditions, values of European or barrier options can be expressed as
viscosity solutions of appropriate PIDEs.

12.1.1 European options

Consider a European option with maturity T and payoff H(ST ). The payoff
function H is assumed to verify:

|H(x) −H(y)| ≤ c|x− y| (12.8)

for some c > 0. This condition is of course verified by call and put options
with c = 1. The value Ct of such an option is given by Ct = C(t, St) where

C(t, S) = e−r(T−t)E[H(ST )|St = S] = e−r(T−t)E[H(Ser(T−t)+XT−t)].

PROPOSITION 12.1 Backward PIDE for European options
Consider the exponential-Lévy model St = S0 exp(rt+Xt) where X is a Lévy
process verifying (12.2). If either σ > 0 or

∃β ∈]0, 2[, lim inf
ε↓0

ε−β
∫ ε

−ε
|x|2dν(x) > 0 (12.9)

then the value of a European option with terminal payoff H(ST ) is given by
C(t, S) where:

C : [0, T ]×]0,∞[→ R,

(t, S) �→ C(t, S) = E[H(ST )|St = S]

is continuous on [0, T ] × [0,∞[, C1,2 on ]0, T [×]0,∞[ and verifies the partial
integro-differential equation:

∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2
∂2C

∂S2
(t, S) − rC(t, S)

+
∫
ν(dy)[C(t, Sey) − C(t, S) − S(ey − 1)

∂C

∂S
(t, S)] = 0 (12.10)
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on [0, T [×]0,∞[ with the terminal condition:

∀S > 0 C(T, S) = H(S). (12.11)

REMARK 12.1 The regularity condition (12.9) will be used to show
smoothness with respect to the underlying, which is needed to derive the
PIDE. Conditions (12.8) and (12.2) simplify the proof but can be weakened.

PROOF The proof involves, as in the Black-Scholes case, applying the
Itô formula to the martingale Ĉ(t, St) = e−rtC(t, St), identifying the drift
component and setting it to zero.

First we need to show that Ĉ(t, S) is a smooth function. Let us start by
showing that it is a differentiable function of t. To simplify the notation
suppose for the moment that interest rates are zero. The option price is a
differentiable function of time if and only if its time value is differentiable.
The Fourier transform of the time value is given by formula (11.19):

ζτ (v) =
φτ (v − i) − 1
iv(1 + iv)

.

Its derivative can be easily computed via the Lévy-Khinchin formula:

∂ζτ (v)
∂τ

=
ψ(v − i)φτ (v − i)

iv(1 + iv)
.

Under the martingale condition for expXt, ψ(−i) = ψ′(−i) = 0 so ψ(v− i) =
O(|v|2). Therefore at infinity the denominator compensates the growth of
ψ(v− i) and ∂ζτ (v)

∂τ is integrable if φτ (v− i) is. Under the condition (12.9) Re
ψτ (v) ≤ −|u|2−β and also, under the martingale condition, Re ψτ (v − i) ≤
−|u|2−β . Therefore φτ (v − i) decays faster than any negative power of |v| at
infinity and is in any case integrable. Finally using the dominated convergence
theorem it follows that Ĉ(t, St) is a differentiable function of t.

The condition (12.9) also allows to conclude that Xt has a C∞ density with
all derivatives vanishing at infinity (see Proposition 3.12 or [345, Proposition
28.3]) and as we observed in Chapter 11, C(t, S) is then a smooth function of
S.

By construction, Ĉt = E[e−rTH|Ft] is a martingale. Applying the Itô
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formula to Ĉt = e−rtC(t, St) and using Equation (12.3) we obtain:

dĈt = e−rt[−rCt +
∂C

∂t
(t, St−) +

σ2S2
t

2
∂2C

∂S2
(t, St−)dt+

∂C

∂S
(t, St−)dSt ]

+ e−rt[C(t, St−e∆Xt) − C(t, St−) − St−(e∆Xt − 1)
∂C

∂S
(t, St−)]

= a(t)dt+ dMt, where (12.12)

a(t) = e−rt
[
−rC +

∂C

∂t
+
σ2S2

t−
2

∂2C

∂S2
+ rSt−

∂C

∂S

]
(t, St−)

+
∫ ∞

−∞
ν(dx)e−rt[C(t, St−ex) − C(t, St−) − St−(ex − 1)

∂C

∂S
(t, St−)],

dMt = e−rt
{
∂C

∂S
(t, St−)σSt−dWt +

∫
R

[C(t, St−ex) − C(t, St−)]J̃X(dt dx)
}
.

Let us now show that Mt is a martingale. Since the payoff function H is
Lipschitz, C is also Lipschitz with respect to the second variable:

C(t, x) − C(t, y)
= e−r(T−t){E[H(xer(T−t)+XT −Xt)] − E[H(yer(T−t)+XT −Xt)]

}
≤ c|x− y|E[eXT−t ] = c|x− y|, (12.13)

since eXt is a martingale. Therefore the predictable random function ψ(t, x) =
C(t, St−ex) − C(t, St−) verifies:

E[
∫ T

0

dt

∫
R

ν(dx)|ψ(t, x)|2] = E[
∫ T

0

dt

∫
R

ν(dx)|C(t, St−ex) − C(t, St−)|2]

≤ E[
∫ T

0

dt

∫
R

c2(e2x + 1)S2
t−ν(dx)]

using (12.2) ≤ c2
∫

R

(e2x + 1)ν(dx) E[
∫ T

0

S2
t−dt] <∞,

so from Proposition 8.8, the compensated Poisson integral∫ t

0

∫ ∞

−∞
e−rt[C(t, St−ex) − C(t, St−)] J̃X(dt dx)

is a square-integrable martingale. Also, since C is Lipschitz,

||∂C
∂S

(t, .)||L∞ ≤ c so E[
∫ T

0

S2
t−|

∂C

∂S
(t, St−)|dt] ≤ c2E[

∫ T

0

S2
t−dt] <∞

so, by Proposition 8.6,
∫ t
0
σSt

∂C
∂S (t, St−)dWt is also a square-integrable mar-

tingale. Therefore, Mt is a square-integrable martingale. Ĉt −Mt is thus a
(square-integrable) martingale; but Ĉt −Mt =

∫ t
0
a(t)dt is also a continuous
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process with finite variation. It is therefore a continuous martingale with fi-
nite variation hence from Remark 8.2 we must have a(t) = 0 Q-almost surely
which yields the PIDE (12.10).

Introducing the integro-differential operator:

LSg(x) = rxg′(x) +
σ2x2

2
g′′(x) +

∫
ν(dy)[g(xey) − g(x) − x(ey − 1)g′(x)],

which is well defined, under hypothesis (12.2), for any C2 function g with
bounded first derivative, the equation for European options can be written
as:

∂C

∂t
(t, S) + LSC(t, S) − rC(t, S) = 0 on [0, T [×]0,∞[

with the terminal condition C(T, S) = H(S).

In general the three terms under the integral cannot be separated otherwise
the integral does not converge. In the case where the process is of finite
variation, i.e., σ = 0 and

∫ 1

−1
|y|ν(dy) < ∞ the derivative term under the

integral can be absorbed into the first order derivative term and the equation
reduces to a first order PIDE:

∂C

∂t
(t, S) + (r + c)S

∂C

∂S
(t, S) − rC(t, S) +

∫
ν(dy)[C(t, Sey) − C(t, S)] = 0,

where c =
∫
ν(dy)(1 − ey).

REMARK 12.2 “Boundary conditions” As we will observe in Section
12.2.1, the terminal value (Cauchy) problem (12.10)–(12.11) is well posed and
has a unique solution continuous on [0, T [×[0,∞[. By substituting S = 0 in
(12.10) it is seen that any such solution verifies C(t, 0) = H(0) exp[−r(T − t)]
for t ∈ [0, T ]. In the case of the call option, this gives C(t, 0) = 0 for t ∈ [0, T ].
As in the case of diffusion models, this is a property of solutions and not a
condition imposed on the solution. Some authors incorrectly refer to such
behavior at the boundary of the domain as a “boundary condition.” In fact
the terminal condition (payoff) alone determines uniquely the solution and
one does not require the specification of boundary conditions to have a unique
solution. The uniqueness of the solution can be seen in financial terms as a
consequence of absence of arbitrage: two European options with the same
terminal payoff should have the same price so the terminal condition should
determine the solution in a unique manner. In other words, any solution
verifies C(t, 0) = H(0) exp[−r(T − t)] automatically so if we try to impose a
boundary condition at S = 0 it is either redundant or impossible to satisfy!
This is due to the fact that the coefficients of the integro-differential operator
in (12.10) vanish at S = 0.
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Since various changes of variable will be useful in the sequel, we will give
different forms of the PIDE (12.10). Define

f(t, y) = er(T−t)C(t, S0e
y), y = ln

S

S0
. (12.14)

Then f has the following probabilistic representation:

f(t, y) = E[h(XT−t + r(T − t) + y)],

where h(z) = H(S0e
z). Using the change of variable formula to compute the

partial derivatives of f , we obtain a PIDE with constant coefficients in terms
of this new parameterization:

COROLLARY 12.1 PIDE in log-price

Under the conditions (12.2) and (12.9) the forward value of the option f :
[0, T ] × R �→ R given by (12.14) is a C1,2 solution of

∀(t, y) ∈ [0, T [×R,
∂f

∂t
(t, y) +

σ2

2
∂2f

∂y2
(t, y) + (r − σ2

2
)
∂f

∂y
(t, y)]

+
∫
ν(dz)[f(t, y + z) − f(t, y) − (ez − 1)

∂f

∂y
(t, y)] = 0.

∀x ∈ R, f(T, x) = h(x).

For call (or put) options one can make a further simplification by using the
homogeneity of the payoff function. Define the log forward moneyness x and
the time to maturity τ by

τ = T − t, x = ln(S/K) + rτ. (12.15)

Rewriting the payoff and the option value in terms of these new variables:

u(τ, x) =
erτ

K
C(T − τ,Kex−rτ ), h(x) = (ex − 1)+, (12.16)

we obtain a simple expression for the forward value of the option u(τ, x):

u(τ, x) = E[h(Xτ + x)] = Pτh(x), (12.17)

where Pτ is the semi-group or evolution operator of the processX. Computing
the derivatives of u by the change of variable formula we obtain the following
equation for u:
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COROLLARY 12.2 PIDE in log-moneyness coordinates
Under the conditions (12.2) and (12.9) the function

u : [0, T ] × R → R,

defined by (12.15)–(12.16) is continuous on [0, T ] × [0,∞[, C1,2 on
]0, T ]×]0,∞[ and verifies the partial integro-differential equation:

∂u

∂τ
(τ, x) =

σ2

2
[
∂2u

∂x2
(τ, x) − ∂u

∂x
(τ, x)]

+
∫
ν(dy)[u(τ, x+ y) − u(τ, x) − (ey − 1)

∂u

∂x
(τ, x)]

with the initial condition: ∀x ∈ R, u(0, x) = (ex − 1)+.

12.1.2 Barrier options

Barrier options were discussed in Chapter 11. Consider for instance an up-
and-out call option with maturity T , strike K and (upper) barrier B > K.
The terminal payoff is given by

HT = (ST −K)+ if max
t∈[0,T ]

St < B,

= 0 if max
t∈[0,T ]

St ≥ B.

The value of the barrier option at time t can be expressed as discounted
expectation of the terminal payoff: Ct = e−r(T−t)E[HT |Ft]. By construction,
e−rtCt is a martingale. Defining H(S) = (S − K)+1S<B and the first exit
time from ]0, B[

τB = inf{s ≥ t,Xs ≥ B},
we can introduce a deterministic function

C(t, S) = e−r(T−t) E[H(ST∧τB
)|St = S]. (12.18)

Due to the strong Markov property of St, Ct coincides with C(t, St) before
the barrier is crossed, i.e., for t ≤ τB . Therefore,

Ct∧τB
= C(t ∧ τB , St∧τB

) (12.19)

for all t ≤ T . Note that for t ≥ τB , Ct and C(t, St) may be different: if the
barrier has already been crossed Ct stays equal to zero , but C(t, St) may
become positive again if the stock returns to the region below the barrier.
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By analogy with the case of European options, one can derive a pricing equa-
tion in the following way. Assume that the function C(t, S) : [0, T ]×]0,∞[→
]0,∞[ is C1,2, i.e., smooth enough for the Itô formula to be applied. Applying
the Itô formula to Ĉt = exp(−rt)C(t, St) between t = 0 and t = T ∧ τB we
obtain, as in (12.12):

dĈt = a(t)dt+ dMt where

dMt = e−rt
∂C

∂S
(t, St−)σSt−dWt +

∫
R

e−rt[C(t, St−ex) − C(t, St−)]J̃X(dt dx)

and a(t) = e−rt[
∂C

∂t
(t, St−) − rC(t, St−) + LSC(t, St−)].

From (12.19) we know that Ĉt∧τB
is a martingale. Therefore, its drift part

must be equal to zero which means that
∫ t∧τB

0
a(t)dt = 0 for all t ≤ T . This

implies that with probability 1, a(t) = 0 almost everywhere on [0, τB ]:

∂C

∂t
(t, St−) + LSC(t, St−) − rC(t, St−) = 0,

which should be verified for almost every t ∈]0, τB [ with probability 1 so:

∂C

∂t
(t, S) + LSC(t, S) = rC(t, S) ∀(t, S) ∈ [0, T [×]0, B[. (12.20)

For these arguments to work, we need the smoothness of C which is not obvi-
ous, especially at the barrier S = B. The above reasoning can be rigorously
justified if σ > 0 (see [48, Chapter 3] and [337]):

PROPOSITION 12.2 PIDE for barrier options
Let C(t, S) be the value of a up-and-out call option defined by (12.18) in an

exponential-Lévy model with diffusion coefficient σ > 0 and Lévy measure ν.
Then (t, S) → C(t, S;T,K) verifies

∀(t, S) ∈ [0, T [×]0, B[,
∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2
∂2C

∂S2
(t, S) − rC(t, S)

+
∫
ν(dy)[C(t, Sey) − C(t, S) − S(ey − 1)

∂C

∂S
(t, S)] = 0. (12.21)

∀S ∈]0, B[, C(t = T, S) = (S −K)+. (12.22)
∀S ≥ B, ∀t ∈ [0, T ], C(t, S) = 0. (12.23)

The main difference between this equation and the analogous PDEs for
diffusion models is in the “boundary condition”: (12.23) not only specifies
the behavior of the solution at the barrier S = B but also beyond the barrier
(S > B). This is necessary because of the nonlocal nature of the operator LS :
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to compute the integral term we need the function C(t, .) on ]0,∞[ and (12.23)
extends the function beyond the barrier by zero. In the case of a rebate, the
function would be replaced by the value of the rebate in the knock-out region
S > B.

The case σ > 0 is not the only case where the barrier price verifies (12.21):
more generally, if C(., .) defined by (12.18) can be shown to be C1,2 (or simply
C1,1 in the case of finite variation models) then C is a solution of the boundary
value problem above. Since

C(t, S) = e−r(T−t)
∫
qBt,T (u)H(u)du,

where qBt,T is the (risk-neutral) transition density of the process St∧τB
stopped

at the first exit from the barrier, the smoothness of (t, S) �→ C(t, S) is linked
to the smoothness of this transition density. In analytical terms G(t, T, S, u) =
e−r(T−t)qBt,T (u) is nothing but the Green function for the operator LS with
boundary conditions (12.23). Smoothness results for Green functions associ-
ated to integro-differential operators are studied using an analytical approach
in [158, 157] in the case of a diffusion coefficient bounded away from zero. In
the case of pure jump models where σ = 0 smoothness is not obvious: the
behavior of the option price at the barrier depends on the local behavior of
the Lévy process at the barrier. Some smoothness results may be obtained
using Fourier methods [71] or by probabilistic methods [58] but the conditions
for such results to hold are not easy to verify in general.

Defining as above

f(t, y) = er(T−t)C(t, S0e
y), y = ln

S

S0
, b = ln

B

S0
, (12.24)

we obtain a PIDE with constant coefficients in terms of f :

∀(t, y) ∈ [0, T [×] −∞, b[,
∂f

∂t
(t, y) +

σ2

2
∂2f

∂y2
(t, y) + (r − σ2

2
)
∂f

∂y
(t, y)]

+
∫
ν(dz)[f(t, y + z) − f(t, y) − (ez − 1)

∂f

∂y
(t, y)] = 0. (12.25)

∀t ∈ [0, T [, ∀y ≥ b, f(t, y) = 0.
∀y ∈ R, f(T, y) = (S0e

y −K)+1y<b. (12.26)

Similarly, the function u : [0, T ] × R → R defined as in (12.16) is a C1,2

solution of the partial integro-differential equation:

∂u

∂τ
(τ, x) =

σ2

2
[
∂2u

∂x2
(τ, x) − ∂u

∂x
(τ, x)]

+
∫
ν(dz)[u(τ, x+ z) − u(τ, x) − (ez − 1)

∂u

∂x
(τ, x)].

∀x ∈ R, u(0, x) = (ex − 1)+1x<lnB−lnK+rτ .

∀τ ∈ [0, T ], ∀x ≥ ln
B

K
+ rτ, u(τ, x) = 0.

© 2004 by CRC Press LLC



392 Financial Modelling with jump processes

Notice that in this last parameterization the boundary is not constant any-
more but an affine function of time. PIDEs for values of other types of barrier
options may be derived in a similar fashion, using in-out/call-put parity rela-
tions [70, 383].

12.1.3 American options

As discussed in Section 11.4, the value of an American put is given by the
supremum over all nonanticipating exercise strategies, i.e., the set T (t, T ) of
nonanticipating random times τ with t ≤ τ ≤ T , of the value of the payoff at
exercise:

Pt = ess sup
τ∈T (t,T )

E[e−r(τ−t)(K − Sτ )+|St = S] = P (t, St),

where P (t, S) = sup
τ∈T (t,T )

E[(Ke−r(τ−t) − SeXτ−t)+]. (12.27)

Results shown in [48] in the case σ > 0 allow to characterize the func-
tion P (t, S) in terms of the solution of a system of partial integro-differential
inequalities:

PROPOSITION 12.3 Linear complementarity problem
Let P : [0, T [×]0,∞[ be the unique bounded continuous solution of

∂P

∂t
(t, S) + LSP (t, S) − rP (t, S) ≤ 0,

P (t, S) − (K − S)+ ≥ 0,{
∂P

∂t
(t, S) + LSP (t, S) − rP (t, S)

}
{P (t, S) − (K − S)+} = 0 (12.28)

on [0, T ]×]0,∞[ and ∀S ∈]0,∞[, P (T, S) = (K − S)+,

where σ > 0 and

LSP (t, S) = rS
∂P

∂S
+
σ2S2

2
∂2P

∂S2

+
∫
ν(dy)[P (t, Sey) − P (t, S) − S(ey − 1)

∂C

∂S
(t, S)],

then the value of the American put option is given by:

Pt = P (t, St). (12.29)

If P were a smooth C1,2 function then the above proposition could be proved
by applying the Itô formula.2 However, even in the case where σ > 0, the

2A heuristic proof along these lines is given in [245].
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solution P (., .) is known not to be C1,2 so we cannot proceed in this way. A
proper proof of this result involves the dynamic programming principle, see
[48, 316, 317]. The linear complementarity problem above can also be written
in the form of a nonlinear Hamilton-Jacobi-Bellman equation on [0, T ] × R:

min{−∂P
∂t

(t, S) − LSP (t, S) + rP (t, S), P (t, S) − (K − S)+} = 0,

P (T, S) = (K − S)+.

The strong Markov property of (St) implies that the exercise decision at any
time t only depends on t and St. Therefore, for each t there exists an exercise
region Et such that it is optimal to exercise the option if St is in Et and to
continue holding it otherwise. In an exponential-Lévy model the value P (t, S)
of an American put is convex and nonincreasing in S and satisfies∣∣P (t, S1) − P (t, S2)

∣∣ ≤ |S1 − S2|.

This entails that the exercise region has the simple form {S : S ≤ b(t)}: there
exists an exercise boundary {(t, b(t)), t ∈ [0, T ]} such that it is optimal to
exercise if St is below the boundary and to continue otherwise. The domain
[0, T ] × R

+ of the put option price P (t, S) is divided into the exercise region

E = {(t, S) : x ≤ b(t)} = {(t, S) : P (t, S) = (K − S)+}

and the continuation region

C = {(t, S) : S > b(t)} = {(t, x) : P (t, S) > (K − S)+}.

REMARK 12.3 Smooth pasting In the case of a jump-diffusion model
with σ > 0 and finite jump intensity, it is shown in [390, 316] that the value
P : (t, S) �→ P (t, S) of the American put option is continuously differentiable
with respect to the underlying on [0, T [×]0,∞[ and in particular the derivative
is continuous across exercise boundary:

∀t ∈ [0, T [,
∂P

∂S
(t′, S) →

(t′,S)→(t,b(t))
−1. (12.30)

Relation (12.30) is called the smooth pasting condition. However this condi-
tion does not always hold when σ = 0, i.e., for pure jump models. Boyarchenko
and Levendorskii [72, Theorem 7.2] show that the smooth pasting condition
fails for tempered stable processes with finite variation, i.e., with α± < 1.
These authors also give a sufficient condition for smooth pasting to hold [72,
Theorem 7.1] but this condition is given in terms of Wiener-Hopf factors and
is not easy to verify in a given model. In the case of models with jumps of a
given sign (i.e., only positive or only negative jumps) necessary and sufficient
conditions for smooth pasting to hold have been given by Avram et al. [17]:
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if the process can jump over the exercise boundary then the derivative is con-
tinuous at the boundary if and only if the process is of infinite variation. A
complete treatment in the case of a general Lévy process is given by Alili &
Kyprianou [4].

Under an additional condition, Pham [316] gives the following characteri-
zation for the couple (P (., .), b(.)):

PROPOSITION 12.4 Free boundary problem
Assume that σ > 0, the intensity of jumps is finite and r−∫ (ey−1)ν(dy) ≥ 0.
Then (P, b) is the unique pair of continuous functions verifying

P : [0, T [→ [0,∞[ nonincreasing, convex, 0 ≤ b(t) ≤ K,

∂P

∂t
+ LSP (t, S) − rP (t, S) = 0, while S > b(t),

lim
S↓b(t)

P (t, S) = K − b(t), ∀t ∈ [0, T [,

lim
S↓b(t)

∂P

∂S
(t, S) = −1, ∀t ∈ [0, T [,

P (T, S) = (K − S)+, ∀S ∈ [0,∞[,

P (t, S) > (K − S)+, if S > b(t),

P (t, S) = (K − S)+, if S ≤ b(t).

This formulation, where the unknowns are both the pricing function f(., .)
and the boundary b, is called a free boundary problem. There are few results
available on free boundary problems for integro-differential operators, see,
e.g., [157, 151].

12.2 Second order integro-differential equations

All the equations obtained above involve operators of type:

Lf(x) = a1(x)
∂f

∂x
+ a2(x)

∂2f

∂x2

+
∫
ν(dy)[f(x+ a0(x, y)) − f(x) − a0(x, y)1{|a0(x,y)|<1}

∂f

∂x
(x)],

which are all incarnations under different changes of variable of the infinites-
imal generator LX of the Lévy process

LXf(x) = γ
∂f

∂x
+
σ2

2
∂2f

∂x2
+
∫
ν(dy)[f(x+ y) − f(x) − y1{|y|<1}

∂f

∂x
(x)].
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Since we are concerned here with risk-neutral dynamics, the relation (11.5) is
verified so LX takes the form:

LXf(x) =
σ2

2
(
∂2f

∂x2
− ∂f

∂x
) +

∫
ν(dy)[f(x+ y) − f(x) − (ey − 1)

∂f

∂x
(x)],

which, under condition (11.5), is well defined for any Lipschitz function f ∈
C2(R). In the Black-Scholes model, Xt = −σ2t/2 + σWt and LX reduces to
a second-order differential operator

LXf(x) =
σ2

2
(
∂2f

∂x2
− ∂f

∂x
), (12.31)

which is well-defined for any f ∈ C2(R). When the Lévy process is of infinite
variation, i.e., if σ > 0 or

∫ 1

−1
|x|ν(dx) = ∞, f is required to be twice differen-

tiable in order for the derivatives and the integral term to make sense: LX is
then a second-order operator (even if σ = 0). When σ = 0 and

∫ |x|ν(dx) <∞
(i.e., the process has finite variation) the operator can be rewritten as

LX .f(x) = b
∂f

∂x
+
∫
ν(dy)[f(x+ y) − f(x)],

where f is now only required to be C1: LX is a first order operator. Finally,
if X is a compound Poisson process (without drift!) L is an operator of order
zero and f can need not even be differentiable:

LXf(x) =
∫
ν(dy)[f(x+ y) − f(x)],

LX is thus of “order zero.” But smoothness is not the only condition required
on f to define Lf : f (and its derivatives up to the order of the operator) have
to be integrable with respect to ν for the integral term to be defined, which
means that f and its derivatives can increase at infinity but their growth is
determined by the decay rate of the Lévy density. For example if∫

|x|≥1

|x|pν(dx) <∞

then Lϕ can be defined for ϕ ∈ C2([0, T ]×R) which grows slower than 1+|x|p:
∃C > 0, |ϕ(t, x)| ≤ C(1 + |x|p):

Lϕ(x) = Aϕ(x) +
∫
|y|≤1

ν(dy)[ϕ(x+ y) − ϕ(x) − y
∂ϕ

∂x
] (12.32)

+
∫
|y|>1

ν(dy)[ϕ(x+ y) − ϕ(x)], (12.33)

where A is a second-order differential operator. The terms in (12.32) are well
defined for ϕ ∈ C2([0, T ] × R) since for |y| ≤ 1

|ϕ(τ, x+ y) − ϕ(τ, x) − y
∂ϕ

∂x
(τ, x)| ≤ y2 sup

B(x,1)

|ϕ′′(τ, .)|,
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while the term in (12.33) is well defined because of the conditions on the decay
of ν. In particular LXϕ is well-defined for ϕ ∈ C2

0 (R) but one can allow ϕ to
grow at a faster rate by imposing a faster decay at infinity of the Lévy measure.
In exponential-Lévy models, since the right tail of ν decays exponentially this
allows for functions which grow at an exponential rate when x → +∞. This
is useful since the value of a call option grows linearly in S = S0e

x therefore
exponentially in x.

An important property, that the integro-differential operator LX shares
with the more well known second order differential operators, is the (positive)
maximum principle [65, 159]: for ϕ ∈ C2

0 (R)

ϕ(x0) = sup
x∈R

ϕ(x) ≥ 0 ⇒ LXϕ(x0) ≤ 0. (12.34)

12.2.1 Nonlocality and its consequences

The main difference between (12.31) and (12.31) is the nonlocal character
of (12.31): whereas L0f(x) only involves the value and the derivatives of f at
x, i.e., the local behavior of f at x, in order to evaluate LXf(x) we need to
know f not only in a neighborhood of x but for all values which the process
can jump to from x: {x+y, y ∈ supp(ν)}. Since in the majority of the models
considered here (except models with Poisson jumps) jumps are unbounded,
this means that values of f at all points y ∈ R are used in computing LXf(x).

For considering boundary value problems as in the case of barrier options,
we need to define LXf for functions f defined on a bounded interval [a, b].
The nonlocality alluded to above has the following practical consequence: if
we want to define LXf for a function f defined on a bounded interval [a, b], the
integral term in expression (12.31) becomes meaningless unless we extend f by
assigning values to f outside [a, b]. Obviously there are many ways to extend
a function beyond its domain of definition; each of these extensions will lead
to a different value for LXf(x) (even when x ∈ [a, b]). One way of extending
functions beyond [a, b] will be to choose some function h : R → R and set
u(x) = h(x) for x /∈]a, b[. Note that by doing so we may destroy the regularity
of the function f at the boundary. This has a probabilistic interpretation in
terms of the process X stopped at its first exit from [a, b], which was already
encountered when discussing barrier options. Smooth extensions are possible
but do not have this probabilistic interpretation.

12.2.2 The Fourier view: pseudo-differential operators

For readers tired of seeing the ∂ sign let us make a digression in Fourier
space. Recall the definition of the Fourier transform:

Ff(z) =
∫ ∞

−∞
eixzf(x)dx,
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where i =
√−1 and its inverse:

F−1f(z) =
1
2π

∫ ∞

−∞
e−ixzf(x)dx.

One of the important properties of the Fourier transform is that it maps the
derivative ∂x into a multiplication operator:

Ff ′ = izFf(z).

More generally, any differential operator Lf =
∑n
j=1 ajf

(j) with constant
coefficients is mapped into multiplication by a polynomial:

F
n∑
j=1

ajf
(j) =

n∑
j=1

aj(iz)jFf(z)

for any smooth f in the domain of L such that the corresponding Fourier
integrals are well defined. The polynomial ψL(z) =

∑n
j=1 aj(iz)

j is called the
Fourier symbol of the operator L. So, if you prefer computing fast Fourier
transforms to computing derivatives, one way of computing Lf is to compute
the Fourier transform Ff , multiply by the symbol of L and then invert the
Fourier transform:

Lf = F−1[ψL(z)Ff(z)]. (12.35)

Thus, any differential operator L with constant coefficients corresponds to
multiplication by a polynomial ψL in Fourier space. What happens if we
replace polynomials by more general functions ψL? Well, the operator L
can still be defined by (12.35) as long as Fourier inversion can be done on
ψL(z)Ff(z) which leaves a wide range of choices for ψL: analytic functions are
among the most studied ones. When ψL is not a polynomial, the operator L
defined by (12.35) is not a differential operator anymore: it is called a pseudo-
differential operator, with symbol ψL. L is sometimes denoted L = ψL(∂).
Consider now the integro-differential operator encountered in the preceding
section:

LXf(x) = γ
∂f

∂x
+
σ2

2
∂2f

∂x2
+
∫
ν(dy)[f(x+ y) − f(x) − y1{|y|<1}

∂f

∂x
(x)].

Taking Fourier transforms yields:

FLXf(z) = {iγz − z2σ2

2
+
∫
ν(dy)[eizy − 1 − izy1{|y|<1}]}Ff(z),

where we recognize the Lévy-Khinchin representation of the characteristic
exponent ψ of X:

F(LXf)(z) = ψX(z)Ff(z), i.e., LX = ψX(∂). (12.36)
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So, like Molière’s Monsieur Jourdain who spoke in prose without knowing it,
we have been manipulating pseudo-differential operators without knowing it:
the infinitesimal generator LX of a Lévy process X is a pseudo-differential
operator whose symbol is given by the characteristic exponent ψX of X.

This remark opens the way to the application of many results known for
pseudo-differential operators to the study of partial integro-differential equa-
tions and Lévy processes. Though we will not employ such techniques in this
volume, curious readers are referred to [137] for a systematic study of pseudo-
differential operators and related boundary value problems, [209] for a brief
account of their relation with Lévy processes and Markov processes and [71]
for applications to option pricing in exp-Lévy models.

REMARK 12.4 Fractional order A more intrinsic definition of the
order of the operator LX , which is justified by the expression of its Fourier
symbol, can be given by examining the rate of growth of the Lévy measure
at zero [137]: when σ = 0 and γ = 0, the order of L can be defined as the
smallest α ≥ 0 such that ∫

|x|≤1

|x|αν(dx) <∞. (12.37)

Notice that since ν(.) is a Lévy measure α ≤ 2. This definition coincides with
the stability index α for a (tempered) stable processes, is smaller than one
for processes with finite variation and equal to zero for compound Poisson
processes. When σ > 0, the order is equal to 2, because a second derivative is
present in the operator, and if σ = 0 but γ �= 0, the order is equal to max(1, α)
because a first derivative is present.

12.2.3 Classical solutions and Feynman-Kac representations

Now let us get back to real space. Consider an integro-differential operator
L as above. A smooth function f : [0, T ] × R �→ R is said to be a “classical”
solution of the associated boundary value problem if u is continuously differ-
entiable in t, u(t, .) : R �→ R belongs to the domain of definition of L for each
t ∈ [0, T ], verifies the boundary conditions and

∂u

∂τ
(τ, x) = Lu.

The requirement that u(t, .) : R �→ R belongs to the domain of definition of L
ensures that the derivatives in Lu are well-defined continuous functions and
Lu(t, x) is defined pointwise. This imposes that u ∈ C1,2([0, T ] × R); if there
is no diffusion component and the process is of finite variation, one can simply
require the function to be C1,1.

Existence and uniqueness of classical solutions are discussed in [157, 48] for
the case σ > 0 and [297, 77] for the case σ = 0. A precise formulation of such
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results requires defining the appropriate function spaces in which existence
and uniqueness holds and involves in particular specifying the behavior of
solutions at infinity. Since we are only interested in the pointwise values of
solutions, namely option prices, we will refrain from going into such details. In
the next section we will see a notion of solution which avoids specifying various
function spaces in order to discuss existence and uniqueness of solutions.

More interesting for our purpose is the link with option values (defined via
risk neutral expectations of terminal payoffs) which requires a probabilistic
representation of solutions of PIDEs. In the case of second order parabolic
PDEs the well-known Feynman-Kac formula gives a probabilistic represen-
tation of the solution in terms of an associated Markovian diffusion process.
Similar results are available in the integro-differential case [48, Theorems 3.3
– 8.1.].

Let γ : [0, T ] → R be a bounded (L∞) function and σ : [0, T ] → R
+

be a positive bounded function. JX denotes a Poisson random measure on
[0, T ] × R with intensity µ(dy dt) = ν(dy) dt with ν a Lévy measure and J̃X
the compensated version of JX : J̃X(A) = JX(A) − ∫

A
dt ν(dy). For a given

t ∈ [0, T [, x ∈ R define the jump process (Xt,x
s )s∈[t,T ] by

Xt,x
s = x+

∫ s

t

γ(u)du+
∫ s

t

σ(u)dWu (12.38)

+
∫ s

t

∫
|y|≥1

yJX(du dy) +
∫ s

t

∫
|y|≤1

yJ̃X(du dy).

Xt,x
s is the position at time s > t of a jump process starting in x at time t

and having drift γ(.), a time-dependent volatility σ(.) and a jump component
described by a (pure jump) Lévy process with Lévy measure ν. If σ(t) = σ
and γ(t) = γ then Xt,x

s = x + Xs−t where X is a Lévy process with triplet
(σ2, ν, γ) and (12.38) is simply the Lévy-Itô decomposition.

PROPOSITION 12.5 Feynman-Kac representation: whole space
Consider a bounded function h ∈ L∞(R). If

∃ a, a > 0,∀t ∈ [0, T ], a ≥ σ(t) ≥ a (12.39)

then the Cauchy problem

∂f

∂t
(t, x) +

σ2(t)
2

∂2f

∂x2
(t, x) + γ(t)

∂f

∂x
(t, x)

+
∫
ν(dy)[f(t, x+ y) − f(t, x) − y1|y|≤1

∂f

∂x
(t, x)] = 0,

∀x ∈ R, f(T, x) = h(x), (12.40)

has a unique solution given by

f(t, x) = E[h(Xt,x
T )],
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where Xt,x is the the process given by (12.38).

Of course, this representation does not come as a surprise since we derived
the PIDE verified by option prices starting from their probabilistic represen-
tation in the first place. But the assertion above means that there is no other
solution to the PIDE, which could not be concluded from our derivation.

A similar representation holds in the case of bounded domains [48, Theorem
8.2.]: define τ(t, x) as the first exit time from the domain [a, b] of the process
(Xt,x

s )t∈[0,t] defined in (12.38):

τ(t, x) = inf{s ≥ t, Xt,x
s /∈]a, b[}. (12.41)

PROPOSITION 12.6 Feynman-Kac representation: bounded do-
main
Consider a bounded function h ∈ L∞(R). If

∃a, a > 0, a ≥ σ(t) ≥ a

then the boundary value problem

∂f

∂t
(t, x) +

σ2(t)
2

∂2f

∂x2
(t, x) + γ(t)

∂f

∂x
(t, x)

+
∫
ν(dy)[f(t, x+ y) − f(t, x) − y1|y|≤1

∂f

∂x
(t, x)] = 0 on [0, T [×]a, b[,

∀x ∈ [a, b], f(T, x) = h(x),
∀t ∈ [0, T ], ∀x /∈]a, b[, f(t, x) = 0, (12.42)

has a unique (classical) solution given by:

f(t, x) = E[h(Xt,x
T )1T<τ(t,x)],

where Xt,x is the the process given by (12.38).

REMARK 12.5 The Feynman-Kac formula for jump processes in bounded
domains, shown in [48] for zero boundary conditions, is generalized by Rong
[337] to time-dependent boundary conditions f(t, x) = g(t, x) for x /∈ O where
g is only differentiable in the sense of distributions and ∂g/∂x(t, .), ∂g/∂t(t, .),
∂2g/∂x2(t, .) ∈ Lp(R).

An important property of solutions, which holds both for Cauchy problems
and boundary value problems is the comparison principle: if f1 and f2 are
two solutions then

∀x ∈ O, f1(T, x) ≤ f2(T, x) ⇒ ∀t ∈ [0, T ], ∀x ∈ O, f1(t, x) ≤ f2(t, x).
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TABLE 12.1: Correspondence between analytical and probabilistic
properties

PIDE Jump process Xt,x Financial inter-
pretation

x Starting point of process Xt,x Log moneyness

Integro-differential
operator

Infinitesimal generator

Terminal condition Payoff at maturity

Solution of PIDE
f(t, x)

E[h(Xt,x
T )] Value of option with

payoff h

Fundamental solution
of Cauchy problem

Transition density ρt(x) ofXt e−r(T−t) × Gamma
of call option

Zero boundary condi-
tion for x ≥ b

Stopping at first exit from b Knock-out barrier b

Green function with
zero boundary condi-
tion for x ≥ b

Density of stopped process e−r(T−t) × Gamma
of up-and-out call

Smoothing property Smoothness of density Price is smoother
than payoff

Comparison principle H ≥ 0 ⇒ E[H] ≥ 0 Static arbitrage re-
lations

This property is synonymous with the positiveness of the density of the
process. Another property is the parabolic smoothing effect: under con-
dition (12.39) for any bounded terminal condition h ∈ L∞, the solution
f(t, .) : x → f(t, x) at time t < T is smoother in x than the terminal con-
dition [159, 158]. From the probabilistic point of view this corresponds to
the smoothness of the density of the (stopped) process. Table 12.1 summa-
rizes the correspondence between the analytic and probabilistic properties
discussed above. Note that these results hold under the condition (12.39)
that the volatility σ is bounded away from zero, which guarantees that the
solutions are smooth. For a pure jump process where σ = 0 the regularity
of the solutions is more difficult to obtain and requires the use of advanced
techniques [58, 137, 77, 56]. In addition, in the case of American options, solu-
tions are known not to be regular even in the case of diffusion models. We will
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now see an alternative notion of solution which does away with smoothness
requirements.

12.2.4 Viscosity solutions (*)

As noted above, in order for the option price to be a classical solution of
the pricing equation, we need to show that it is continuously differentiable up
to some degree (once in t, twice in x) which is not always easy in models with
jumps. To obtain existence and uniqueness of classical solutions we need to
specify a function space in which the solution lies and this requires in turn
knowing a priori the regularity of the solution solving the equation. The
notion of viscosity solution gives an intrinsic definition of a solution which
is local in nature and does not impose a priori the existence of derivatives:
continuity will be enough.

Consider first a smooth (C1,2) solution of

∂u

∂τ
= LXu, (12.43)

u(0, x) = h(x), (12.44)

and take a smooth test function ϕ ∈ C2([0, T ] × R) such that u(τ0, x0) =
ϕ(τ0, x0) and (τ0, x0) is a global maximum of the function u− ϕ:

∀(τ, x) ∈ [0, T ] × R, u(τ, x) − ϕ(τ, x) ≤ u(τ0, x0) − ϕ(τ0, x0) = 0.

Writing the first and second order conditions for the maximum at (τ0, x0)
yields:

∂u

∂x
(τ0, x0) =

∂ϕ

∂x
(τ0, x0),

∂u

∂τ
(τ0, x0) =

∂ϕ

∂τ
(τ0, x0),

∂2u

∂x
(τ0, x0) ≤ ∂2ϕ

∂x2
(τ0, x0).

Such a test function ϕ therefore captures the first order behavior of u at
(τ0, x0) exactly and its second order behavior up to an inequality. Assume
now that LXϕ is well defined (we will give sufficient conditions on ϕ below).
Substituting in LX gives

∂ϕ

∂τ
(τ0, x0) − LXϕ(τ0, x0) ≤ ∂u

∂τ
(τ0, x0) − LXu(τ0, x0) = 0. (12.45)

Similarly, if ϕ ∈ C2([0, T ] × R) such that u(τ0, x0) − ϕ(τ0, x0) = 0 is a global
minimum of u− ϕ on [0, T ] × R then

∂ϕ

∂τ
(τ0, x0) − LXϕ(τ0, x0) ≥ ∂u

∂τ
(τ0, x0) − LXu(τ0, x0) = 0. (12.46)

Conversely, if we require (12.45)–(12.46) to hold for all test functions ϕ ∈
C2([0, T ] × R) we recover (12.43) using the fact that LX verifies a maximum
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principle: in fact, this way of characterizing solutions can be extended to
any operator L (even nonlinear ones) verifying the maximum principle. But
in (12.45) - (12.46) the derivatives only involve the test function ϕ so the
inequalities involving ϕ make sense even if u is not differentiable, but simply
continuous (or even semicontinuous, see below). This simple yet powerful idea
leads to the notion of viscosity solutions, introduced by M. Crandall and P.L.
Lions for first order PDEs and by P.L. Lions for second order PDEs [103].
Using test functions in the manner above allows to make sense of nonsmooth
solutions for nonlinear or degenerate PDEs [103]. The notion of viscosity
solution was generalized to integro-differential equations by Soner [366] and
Sayah [348] for first order operators and by Alvarez and Tourin [6], Barles,
Buckdahn and Pardoux [28] and Pham [317] for problems involving a second
order operator.

Let us now give a proper definition of a viscosity solution. A locally bounded
function v : [0, T ] × R → R is said to be upper-semicontinuous if

(tk, xk) → (τ, x) implies v(τ, x) ≥ lim sup
k→∞

u(tk, xk) := lim
k0→∞

sup
k≥k0

u(tk, xk)

and lower-semicontinuous if

(tk, xk) → (τ, x) implies v(τ, x) ≤ lim inf
k→∞

u(tk, xk) := lim
k0→∞

inf
k≥k0

u(tk, xk).

If v is both upper- and lower-semicontinuous then it is continuous. Denote
by USC (respectively LSC) the class of upper semicontinuous (respectively
lower semicontinuous) functions v : ]0, T ] × R → R and by Cp([0, T ] × R) the
set of measurable functions on [0, T ]×R with polynomial growth of degree p:

ϕ ∈ Cp([0, T ] × R) ⇐⇒ ∃C > 0, |ϕ(t, x)| ≤ C(1 + |x|p). (12.47)

Under a polynomial decay condition on the tails of the Lévy density, Lϕ can
be defined for ϕ ∈ C2([0, T ] × R) ∩ Cp([0, T ] × R):

Lϕ(x) = Aϕ(x) +
∫
|y|≤1

ν(dy)
[
ϕ(x+ y) − ϕ(x) − y

∂ϕ

∂x

]
(12.48)

+
∫
|y|>1

ν(dy)[ϕ(x+ y) − ϕ(x)], (12.49)

where A is a second-order differential operator. The terms in (12.48) are well
defined for ϕ ∈ C2([0, T ] × R) since for |y| ≤ 1,

|ϕ(τ, x+ y) − ϕ(τ, x) − y
∂ϕ

∂x
(τ, x)| ≤ y2 sup

B(x,1)

|ϕ′′(τ, .)|,

while the term in (12.49) is well defined for ϕ ∈ Cp([0, T ] × R) if∫
|y|≥1

|x|pν(dx) < +∞. (12.50)
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This condition is equivalent to the existence of a moment of order p for the
Lévy process Xt. We will assume in the sequel that it holds for p = 2.

Consider the following parabolic integro-differential equation on [0, T ] × R

and O = (a, b) ⊂ R an open interval:

∂u

∂τ
= Lu, on (0, T ] ×O, (12.51)

u(0, x) = h(x), x ∈ O; u(τ, x) = g(τ, x), x /∈ O, (12.52)

where g ∈ Cp([0, T ]× R−O) is a given continuous function with g(0, x) = h(x),
defining the boundary conditions outside O. Denote by ∂O = {a, b} the
boundary of O and by O = [a, b] its closure.

DEFINITION 12.1 Viscosity solution v ∈ USC is a viscosity subso-
lution of (12.51)–(12.52) if for any (τ, x) ∈ [0, T ]×R and any (test function)
ϕ ∈ C2([0, T ] × R) ∩ C2([0, T ] × R) such that v − ϕ has a global maximum at
(τ, x):

∀(t, y) ∈ [0, T ] × R, v(τ, x) − ϕ(τ, x) ≥ v(t, y) − ϕ(t, y),

the following is satisfied:

∂ϕ

∂τ
(τ, x) − Lϕ(τ, x) ≤ 0, for (τ, x) ∈]0, T ] ×O, (12.53)

min{∂ϕ
∂τ

(τ, x) − Lϕ(τ, x), v(τ, x) − h(x)} ≤ 0, for τ = 0, x ∈ O,

min{∂ϕ
∂τ

(τ, x) − Lϕ(τ, x), v(τ, x) − g(τ, x)} ≤ 0, for (τ, x) ∈]0, T ] × ∂O

and v(τ, x) ≤ g(τ, x) for x /∈ O. (12.54)

v ∈ LSC is a viscosity supersolution of (12.51)–(12.52) if for any (τ, x) ∈
[0, T ]×R and any (test function) ϕ ∈ C2([0, T ]×R)∩C2([0, T ]×R) such that
v − ϕ has a global minimum at (τ, x):

∀(t, y) ∈ [0, T ] × R, v(τ, x) − ϕ(τ, x) ≤ v(t, y) − ϕ(t, y),

the following is satisfied:

∂ϕ

∂τ
(τ, x) − Lϕ(τ, x) ≥ 0, for (τ, x) ∈]0, T ] ×O, (12.55)

max{∂ϕ
∂τ

(τ, x) − Lϕ(τ, x), v(τ, x) − h(x)} ≥ 0, for τ = 0, x ∈ O,

max{∂ϕ
∂τ

(τ, x) − Lϕ(τ, x), v(τ, x) − g(τ, x)} ≥ 0, for (τ, x) ∈]0, T ] × ∂O

and v(τ, x) ≥ g(τ, x) for x /∈ O. (12.56)
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A function v ∈ C2([0, T ] × R) is called a viscosity solution of (12.51)–
(12.52) if it is both a subsolution and a supersolution. v is then continuous
on ]0, T ] × R and verifies (12.47) with p = 2.

Since L verifies a maximum principle, one can show that a classical solution
u ∈ C1,2([0, T ]×R)∩C2([0, T ]×R) is also a viscosity solution. However, since
the definition above only involves applying derivatives to the test functions ϕ,
a viscosity solution need not be smooth: it is simply required to be continuous
on ]0, T ] × R. Note that a subsolution/supersolution need not be continuous
so the initial condition is verified in a generalized sense.

REMARK 12.6 In the case of second-order PDEs (with no integral term)
u − ϕ can be assumed to have a local minimum/maximum and the resulting
definition is unchanged. This is not necessarily true here due to the nonlocality
of the integral operator.

Several variations on this definition can be found in the articles cited above.
First, one can restrict the maximum/minimum of u− ϕ to be equal to zero:

LEMMA 12.1
v ∈ USC is a viscosity subsolution of (12.51-12.52) if and only if for any
(τ, x) ∈ [0, T ] × R and any ϕ ∈ C2([0, T ] × R) ∩ C2([0, T ] × R), if v(τ, x) =
ϕ(τ, x) and v(τ, x) ≤ ϕ(τ, x) on [0, T ] × R then ϕ verifies (12.53)–(12.54).

PROOF Clearly the definition of a subsolution implies the property above.
Inversely, let ϕ ∈ C2([0, T ] × R) ∩ C2([0, T ] × R) be such that v − ϕ has a
global maximum at (τ, x). We can modify ϕ by adding a constant:

ψ(t, y) = ϕ(t, y) + u(τ, x) − ϕ(τ, x).

ψ then satisfies the following properties:(
∂ψ

∂τ
− Lψ

)
(t, y) =

(
∂ϕ

∂τ
− Lϕ

)
(t, y), ∀(t, y) ∈ [0, T ] × R, (12.57)

ψ(τ, x) = u(τ, x), (12.58)

and (τ, x) is a global maximum point of u− ψ so

∀(t, y) ∈ [0, T ] × R, u(t, y) ≤ ψ(t, y) ≤ 0. (12.59)

A similar result holds for supersolutions. As shown in [28], one can also
replace “maximum” and “minimum” by “strict maximum” and “strict mini-
mum” in Definition 12.1. Finally, one can require the test functions to be C1,2
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or C∞ instead of C2. The growth condition at infinity ϕ ∈ Cp on test func-
tions is essential for Lϕ to make sense. It may be replaced by other growth
conditions under stronger hypotheses on the decay of the Lévy density.

Defining

F

(
∂2ϕ

∂x2
(τ, x),

∂ϕ

∂x
(τ, x), ϕ, v(τ, x), τ, x

)
=
∂ϕ

∂τ
(τ, x) − LXϕ(τ, x),

the Equations (12.45)–(12.46) can be rewritten as:

F

(
∂2ϕ

∂x2
(τ, x),

∂ϕ

∂x
(τ, x), ϕ, u(τ, x), τ, x

)
≥ 0,

if u(τ, x) − ϕ(τ, x) = max
[0,T ]×R

u− ϕ;

F

(
∂2ϕ

∂x2
(τ, x),

∂ϕ

∂x
(τ, x), ϕ, u(τ, x), τ, x

)
≤ 0

if u(τ, x) − ϕ(τ, x) = min
[0,T ]×R

u− ϕ.

If the equation is verified on a bounded domain, e.g., O = [0, T ]×]a, b[ with
the condition u(τ, x) = h(x) outside the domain as for barrier options, then
F should be replaced by:

F (
∂2ϕ

∂x2
(τ, x),

∂ϕ

∂x
(τ, x), ϕ, v(τ, x), τ, x) =

∂ϕ

∂τ
(τ, x) − LXϕ(τ, x) for (τ, x) ∈ O

= v(τ, x) − h(x) for (τ, x) /∈ O

with the additional condition that on the boundary x = a, b

max{v(τ, x) − h(x),
∂ϕ

∂τ
(τ, x) − LXϕ(τ, x)} ≥ 0 for subsolutions,

min{v(τ, x) − h(x),
∂ϕ

∂τ
(τ, x) − LXϕ(τ, x)} ≤ 0 for supersolutions.

In this form, the definition can be generalized to nonlinear equations: F may
be nonlinear with respect to all variables as long as it is decreasing with
respect to the first variable ∂2ϕ/∂x2.

REMARK 12.7 Boundary conditions We noted above that, for clas-
sical solutions, “boundary” conditions have to be imposed on R − O and
not only on the boundary ∂O = {a, b}. Since the nonlocal integral term in
(12.53)–(12.54) only involves the test function ϕ and not the solution itself
so one can be led to think that behavior of u beyond the boundary is not
involved in the definition (see remark in [317, Sec. 5.1.]). Note however that
the test functions have verify ϕ ≤ v (respectively ϕ ≥ v) on [0, T ] × R and
not only on [0, T ] ×O, which requires specifying u outside O.
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While the class of viscosity solutions is sufficiently large to allow for ex-
istence of solutions in the cases where smooth solution do not exist, it is
sufficiently small to obtain uniqueness, using comparison principles. Compar-
ison principles for integro-differential equations were obtained by Soner [366],
Sayah [348], Alvarez and Tourin [6]; the case of a general Lévy measure is
treated in [317, 220]:

PROPOSITION 12.7 Comparison principle [6, 317, 220]
If u ∈ USC is a subsolution with initial condition u0 and v ∈ LSC is a

supersolution of (12.43) with initial condition v0 then

∀x ∈ R, u0(x) ≤ v0(x) ⇒ u(τ, x) ≤ v(τ, x) on ]0, T ] × R. (12.60)

In financial terms, comparison principles simply translate into arbitrage in-
equalities: if the terminal payoff of a European options dominates the termi-
nal payoff of another one, then their values should verify the same inequality.
These results can be used to show uniqueness of viscosity solutions. Existence
and uniqueness of viscosity solutions for such parabolic integro-differential
equations are discussed in [6] in the case where ν is a finite measure and
in [28] and [317] for general Lévy measures. Growth conditions other than
u ∈ C2 can be considered (see, e.g., [6, 28]) with additional conditions on the
Lévy measure ν. An important advantage with respect to the classical theory
[48, 157] is that we do not require that the diffusion part be nondegenerate:
σ is allowed to be zero. Another important property of viscosity solutions
is their stability under various limits, which is important when studying the
convergence of numerical schemes.

In the case of European and barrier options, the following result [99, 97]
shows that the option value in an exponential-Lévy model can be characterized
as the unique continuous viscosity solution of the backward PIDE (12.51-
12.52):

PROPOSITION 12.8 Option prices as viscosity solutions [99]

Assume the Lévy measure ν(.) verifies the decay condition (12.47) with p = 2.
Then:

• Let u(τ, x) be the (forward) value of a European option defined by (12.5).
If the payoff function H verifies a Lipschitz condition 12.8 and h(x) =
H(S0e

x) has quadratic growth at infinity, u is the (unique) viscosity
solution of the Cauchy problem (12.6).

• The forward value of a knockout (double) barrier call or put option
f(t, y) defined by (12.24) is the (unique) viscosity solution of (12.25-
12.26).
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Note that we do not require that the diffusion component to be nonzero, nor
do we need growth conditions on the intensity of small jumps as in Proposition
12.1. A similar result for American options is shown in [317, Theorem 3.1]:

PROPOSITION 12.9 American option prices as viscosity solutions

Consider an exp-Lévy model verifying the hypotheses (12.2) and (11.5). Then
the value of the American put

P : (t, S) �→ P (t, S) = sup
t≤τ≤T

E[e−r(τ−t)(K − Ser(τ−t)+Xτ−t)+]

is the unique continuous viscosity solution of:

min{−∂P
∂t

(t, S) − LSP (t, S) + rP (t, S), P (t, S) − (K − S)+} = 0,

P (T, S) = (K − S)+

on [0, T ]×]0,∞[.

As we will see later, these results provide an appropriate framework for
studying the convergence of finite difference schemes, regardless of whether
the smoothness of the option price as a function of the underlying is known.

12.3 Trees and Markov chain methods

The simplest numerical method in the case of the Black-Scholes model is
obtained by approximating the continuous time diffusion process by a dis-
crete time Markov chain: the Cox-Ross-Rubinstein binomial tree. Since the
binomial tree process converges weakly3 to the Black-Scholes process, from
the definition of weak convergence the value of any European option with a
continuous bounded payoff computed by the binomial tree will converge to its
value in the limiting Black-Scholes model.

This idea can be generalized to many other stochastic models, including
Markov models with jumps, using the methods described by Kushner and
Dupuis [243]: given a continuous time stochastic model (for instance, a jump-
diffusion model), we construct a discrete time Markov chain S∆t,∆x — typ-
ically, a multinomial tree — with transition probabilities specified such that
when ∆t→ 0, the process S∆t,∆x, defined by interpolating the Markov chain,
converges weakly to S. Sufficient conditions for weak convergence to jump dif-
fusions in terms of transition probabilities of the Markov chain can be found in

3See 2.3.3 for a definition of weak convergence.
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[243]. Under these conditions, option prices and hedge ratios computed with
the discrete model S∆t,∆x will provide approximations for option prices/hedge
ratios in the continuous-time model defined by S [322, 269].

12.3.1 Multinomial trees

A family of Markov chain approximations is provided by multinomial trees,
studied by Amin [7] in the context of jump-diffusion models. Given a contin-
uous time exp-Lévy/jump-diffusion model St = S0 expXt one can construct
the discrete–time Markov chain by setting

S∆t,∆x
t+∆t = sn+1 = S∆t,∆x

t exp[εn] = sn exp[εn], t = n∆t, (12.61)

where εn is an i.i.d. family of random variables taking a finite number k of
values, called the “branching number” of the tree. The method is defined
by the choice of the k values (the nodes) and the transition probabilities.
The computationally tractable case is that of recombining trees: the values
taken by εn are multiples of a given step size ∆x. In order to represent the
asymmetry of jumps one should allow the transitions to be asymmetric:

εn ∈ {−k1∆x, . . . ,−∆x, 0,∆x, . . . ,+k2∆x}
with k = k1 + k2 + 1. Then the paths of the Markov chain ln sn fall on a
lattice with step size (∆t,∆x) hence the name of “lattice method.” We will
denote quantities on the lattice by Anj where n denotes the time index of a
node and j the price index. The value of the asset at node (n, j) is given by
Snj and can evolve to k states in the next step given by

Sn+1
j+i = Snj exp[i∆x], i = −k1, . . . 0, . . . k2.

The values of k1, k2 and the transition probabilities are chosen to obtain ab-
sence of arbitrage and such that the transition density of the Markov chain sn

approximates the transition density of St. Absence of arbitrage is obtained
by imposing that the discounted Markov chain e−nr∆tsn is a martingale. If
qi = Q(εn = i∆x) are the transition probabilities this means:

k2∑
i=−k1

qi exp(i∆x) = exp(r∆t), (12.62)

where r is the discount rate. This can also be interpreted as moment matching
condition for the first moment of exp(Xt+∆t−Xt). Matching other moments
of exp(Xt+∆t − Xt) can give extra conditions to determine the transition
probabilities:

k2∑
i=−k1

qi exp(ji∆x) = exp(r∆t)E[exp(jεn)]. (12.63)
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In most models based on Lévy processes or affine jump-diffusion models, the
characteristic function is known analytically so the moment conditions are
known and the transition probabilities can be determined by solving a linear
system. Moment matching is not the only way to specify transition probabili-
ties but is widely used in practice. Since moments are precisely the derivatives
of the characteristic function at zero, exponential moment matching is equiv-
alent to matching the Taylor expansion of the characteristic function of the
returns St+∆t/St at zero. However to match accurately the behavior of large
jumps, i.e., the tails of the risk neutral density one needs to use large values
of k which increases correspondingly the complexity of the scheme.

The value of a European option can then be computed by backward induc-
tion: starting from the payoff (the final node N∆t = T ) we go backwards and
at each step/each node in the tree we compute the value of the option as the
discounted expectation of the values on the branches

Cnj = e−r∆t
k2∑

i=−k1
qiC

n+1
j+i . (12.64)

In the case of an American put option, this backward step is replaced by an
optimization step where the risk neutral expectation is compared to the payoff
from exercise:

Pnj = max{(K − Snj )+, e−r∆t
k2∑

i=−k1
qiP

n+1
j+i }. (12.65)

This is one of the main advantages of tree methods: pricing American options
is as easy as pricing European ones since conditional expectations are simple
to compute on a tree.

If the transition probabilities are chosen such that the (interpolated) Markov
chain converges weakly to S as (∆x,∆t) → 0 convergence of European option
prices follows for put options (which have bounded continuous payoffs) and,
by put-call parity, for call options. Convergence of American option prices to
their continuous-time value is by no means an obvious consequence of weak
convergence, but can be shown to hold [243]: more generally the value func-
tion of an optimal stopping or dynamic portfolio optimization problems in the
multinomial tree converges to the value function of the analogous problem in
the limiting exp-Lévy model [243, 322].

12.3.2 Multinomial trees as finite difference schemes

Multinomial trees are usually introduced as we have done here, in terms
of an approximation of the risk neutral process (St)t∈[0,T ] by a discrete time
Markov chain (sn)n=1..N with finite state space and their construction does
not involve the PIDEs discussed above. Since they give rise to a lattice in
(t, S)-space, they can also be interpreted as explicit finite difference schemes
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for the associated PIDE, constructed on this lattice. A multinomial tree with
k branches corresponds to an explicit finite difference scheme on a uniform
grid for the log-price, using k neighboring points to approximate the terms
in the PIDE. Therefore, their convergence and properties can also be studied
in the framework of finite difference schemes and they suffer from the well
known drawbacks of explicit schemes, namely restrictive stability conditions
on the size of the time step. But two properties distinguish a multinomial
tree from a general explicit finite difference scheme.

First, the transition matrix in a multinomial tree (or more generally, any
Markov chain approximation method) has positive entries corresponding to
the risk neutral transition probabilities of the underlying Markov chain. This
guarantees that a positive terminal condition/payoff will lead to a positive
price and inequalities between payoffs will lead to inequalities between prices.
In mathematical terms it means the scheme verifies a discrete version of the
comparison principle: it is a monotone (or positive) scheme. In financial
terms, it means that arbitrage inequalities will be respected by the approxi-
mation.

Second, the one-step transition probabilities are chosen such that the dis-
counted value of the approximating Markov chain is a martingale. Because of
the way backward induction is done, the martingale property is also inherited
by prices of all European options computed in the tree. This guarantees that
the prices obtained are arbitrage-free, not only when ∆t,∆x→ 0, but also for
any finite ∆t,∆x. In particular, put-call parity will be respected exactly and
not only up to first order in ∆t. This property does not hold for arbitrary finite
difference schemes, but can be imposed at the price of extra complications: it
means that certain functions (here the function C(t, S) = exp(−rt)S) have to
be integrated exactly by the scheme. Of course, both of these properties are
interesting from a financial point of view.

12.4 Finite difference methods: theory and implemen-
tation

Finite difference methods are approximation schemes for partial differential
equations based on replacing derivatives by finite differences in the pricing
equation. In the case of PIDEs we have an additional integral term which can
be discretized by replacing it with Riemann sums.

There are three main steps in the construction of a finite difference scheme:

• Localization: if the PIDE is initially given on an unbounded domain,
we reduce it to a bounded one and introduce “artificial” boundary con-
ditions. This induces an approximation error usually called localization
error. In the PIDE case, the domain of integration in the integral term
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also has to be localized, which gives another error term. Both terms have
to be estimated and controlled by an appropriate choice of localization.

• Approximation of small jumps: when the Lévy measure diverges at zero,
the contribution of this singularity to the integral term can be approxi-
mated by a second derivative term. This corresponds to approximating
small jumps of a Lévy process by a Brownian motion as in Chapter 6.

• Discretization in space: the spatial domain is replaced by a discrete
grid and the operator L is replaced by a matrix M , acting on the vector
Un = (u(n∆t, j∆x), j = 0 . . . N) representing the solution on the grid
points:

Lu(n∆t, j∆x) � (MUn)j .

• Discretization in time: the time derivative is replaced by a finite dif-
ference. There are several choices, leading to different time stepping
schemes.

The result is a linear system to be solved iteratively at each time step, starting
from the payoff function. Finally, after all these approximations, we need
to examine under what conditions the solutions of the numerical scheme do
converge to the solutions of the PIDE when the discretization parameters go
to zero and try to obtain estimates of these errors. We will now detail this
step for the PIDE:

∂u

∂τ
= LXu, u(0, x) = h(x), (12.66)

to be solved on [0, T ]×O where either O = R (European option) or O =]a, b[
is an open interval (barrier options) with appropriate boundary conditions
imposed outside of O.

12.4.1 Localization to a bounded domain

Since numerical computations can only be performed on finite domains,
the first step is to reduce the PIDE to a bounded domain. For a double
barrier knock-out option, this is already done: the PIDE is solved between
the barriers and the boundary conditions are naturally given by the terms
of the contract which is worth zero outside the boundary. For a European
option (or a single barrier option) we localize the problem by replacing O with
] −A,A[:

∂uA
∂τ

= LXuA, ]0, T ]×] −A,A[, (12.67)

uA(0, x) = h(x), x ∈] −A,A[.

In order for the resulting problem to be a well posed one, should add artificial
boundary conditions for uA at all points outside of ] − A,A[ and not only
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at ±A. Since the option price u(τ, x) behaves asymptotically like the payoff
function h for large |x|, a sensible choice is to set:

uA(τ, x) = h(x) ∀x /∈] −A,A[. (12.68)

This boundary condition has a probabilistic representation in terms of the
process Xt + x stopped at first exit from the domain ] − A,A[. Using this
probabilistic interpretation the following error estimate is shown in [98] for
bounded payoff functions:

PROPOSITION 12.10 Bound on localization error [98]
If ‖h‖L∞ <∞, and ∃α > 0,

∫
|x|>1

ν(dx)eα|x| < +∞ then

|u(τ, x) − uA(τ, x)| ≤ 2Cτ,α||h||∞ exp[−α(A− |x|)], (12.69)

where Cτ,α = EeαMτ , Mτ = supt∈[0,τ ] |Xt|.

Similarly, the integral term in LX has to be truncated at some finite up-
per/lower bounds Br, Bl: this corresponds to truncating the large jumps of
the Lévy process, i.e., replacing it by a new process X̃τ characterized by the
Lévy triplet (γ̃, σ, ν1x∈[Bl,Br]), where γ̃ is determined by the martingale con-
dition:

γ̃ = −σ
2

2
−
∫ Br

Bl

(ey − 1 − y1|y|≤1)ν(dy).

Denoting by ũ(τ, x) = E[h(x+X̃τ )] the solution of the PIDE with the integral
term truncated as above, the following error estimate is given in [98]:

PROPOSITION 12.11 Truncation of large jumps [98]
Let h(x) be an almost everywhere differentiable function with ‖h′‖L∞ < ∞.

Assume ∃αr, αl > 0, such that
∫ ∞

1

e(1+αr)yν(dy) <∞ and
∫ −1

−∞
|y|eαl|y|ν(dy) <∞. (12.70)

Then the error due to the truncation of large jumps can be estimated by

|u(τ, x) − ũ(τ, x)| ≤ ‖h′‖L∞τ(C1e
−αl|Bl| + C2e

−αr|Br|). (12.71)

Therefore, when the Lévy density decays exponentially, both the truncation
of the domain and the truncation of large jumps lead to errors that are ex-
ponentially small in the truncation parameters. We will assume in the sequel
that both approximations have been done and focus on the numerical solution
of the localized problem.
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12.4.2 Discretization in space

The next step is to replace the domain [−A,A] by a discrete grid: consider
a uniform grid on [0, T ] × [−A,A]:

τn = n∆t, n = 0 . . .M, ∆t = T/M,

xi = −A+ i∆x, i = 0 . . . N, ∆x = 2A/N.

Let {uni } be the solution on discretized grid, extended by zero outside of
[−A,A].

Consider first the finite activity case where ν(R) = λ < +∞. Then the
integro-differential operator can be written as

Lu =
σ2

2
∂2u

∂x2
−
(
σ2

2
+ α

)
∂u

∂x
+
∫ Br

Bl

ν(dy)u(τ, x+ y) − λu, (12.72)

where α =
∫ Br

Bl
(ey − 1)ν(dy). To approximate the integral terms one can use

the trapezoidal quadrature rule with the same grid resolution ∆x. Let Kl,
Kr be such that [Bl, Br] ⊂ [(Kl − 1/2)∆x, (Kr + 1/2)∆x]. Then:

∫ Br

Bl

ν(dy)u(τ, xi + y) �
Kr∑
j=Kl

νjui+j , λ � λ̂ =
Kr∑
j=Kl

νj ,

α � α̂ =
Kr∑
j=Kl

(eyj − 1)νj , where νj =
∫ (j+1/2)∆x

(j−1/2)∆x

ν(dy). (12.73)

As noted above since we need the solution on [−A+Bl, A+Br] to compute
the integral term, the actual computational grid extends from i = Kl to i =
N +Kr but uni = h(xi) for i /∈ [0, N ]. Alternatively, Andersen and Andreasen
[8] propose to compute the jump integral using a Fourier transform: this
methods is well suited when boundary conditions are periodic (for example,
when the function is extended by zero) but if this is not the case (for example
when the payoff function is used as a boundary condition) it may lead to
oscillating error terms.

The space derivatives can be discretized using finite differences:

(
∂2u

∂x2

)
i

� ui+1 − 2ui + ui−1

(∆x)2
, (12.74)

(
∂u

∂x

)
i

�
{ ui+1−ui

∆x , if σ2/2 + α̂ < 0
ui−ui−1

∆x , if σ2/2 + α̂ ≥ 0.
(12.75)

The choice of approximation for the first-order derivative is determined by
stability requirements (see below).

© 2004 by CRC Press LLC



Integro-differential equations and numerical methods 415

12.4.3 An explicit-implicit finite difference method

Denoting by D and J the matrices representing respectively the discretiza-
tions of the differential and the integral parts of L, the explicit scheme is given
by:

un+1 − un

∆t
= Dun + Jun ⇒ un+1 = [I + ∆t(D + J)]un. (12.76)

In this scheme, each step consists in multiplying by the matrix I+∆t(D+J).
However, the stability of the scheme imposes stringent conditions on the time
step: a sufficient condition for stability is

∆t ≤ inf{ 1

λ̂
,
∆x2

σ2
}.

While the first term is not very constraining given usual values of λ, the second
term (also present in the diffusion case) forces to use a very small time step,
therefore increasing computation time.

Another choice is the implicit scheme

un+1 − un

∆t
= Dun+1 + Jun+1 ⇒ [I − ∆t(D + J)]un+1 = un. (12.77)

This scheme does not suffer from the stringent stability condition on the step
size ∆t but now we have to solve a linear system at each iteration.

In the case of diffusion models, J = 0 and the matrix I−∆tD is tridiagonal:
the resulting linear system is thus very easy to solve. In the present case D
is still tridiagonal but J is a dense matrix: in general all terms are nonzero
and the solution of the system by a linear solver requires O(N2) operations.
More generally one can use any combination of the above schemes, known as
θ-scheme:

un+1 − un

∆t
= θ(Dun + Jun) + (1 − θ)[Dun+1 + Jun+1]. (12.78)

For θ = 0 we recover the explicit scheme but the complexity for θ �= 0 is the
same as for the implicit scheme.

This discussion on computational complexity at each step vs. the number
of steps shows that if J = 0 then an implicit scheme is a good choice while if
D = 0, an explicit scheme should be chosen. When both terms are present one
can use operator splitting: the integral term is computed using the solution
computed at the preceding iteration, while the differential term is treated
implicitly, leading to the following explicit-implicit time stepping scheme [98]:

un+1 − un

∆t
= Dun+1 + Jun, τn = n∆t, n = 0 . . .M.

This leads to the tridiagonal system

(I − ∆tD)un+1 = (I + ∆tJ)un = Aun, (12.79)
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which has the same complexity as in the Black-Scholes case.

ALGORITHM 12.1 Explicit-implicit scheme for PIDE
Initialization:

u0
i = h(xi), ∀ i.

For n = 0, . . . ,M − 1: solve

(I − ∆tD)un+1 = (I + ∆tJ)un = Aun. (12.80)

Impose boundary conditions: replace

un+1
i = h(xi), for i /∈ {0, . . . , N},

where

(Dun+1)i =
σ2

2
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
−
(
σ2

2
+ α̂

)
un+1
i+1 − un+1

i

∆x
− λ̂uni

(Jun)i =
K∑

j=−K
νju

n
i+j

α̂ =
Kr∑
j=Kl

(eyj − 1)νj , νj =
∫ (j+1/2)∆x

(j−1/2)∆x

ν(dy).

Two key properties of a finite difference scheme are its consistence with
the continuous equation and its stability. The numerical scheme is said to be
(locally) consistent with the PIDE (12.67) if the discretized operator converges
to its continuous version when applied to any test function v ∈ C∞([0, T ]×R):
we require that∣∣∣∣vn+1

i − vni
∆t

− (Dv)n+1
i − (Jv)ni −

(
∂v

∂τ
− Lv

)
(τn, xi)

∣∣∣∣ = rni (∆t,∆x) → 0

at all points in the computational domain when (∆t,∆x) → 0. Consistency
means the discrete equation approximates the continuous equation (which
does not ensure that the solution approximates the continuous one).

The scheme is said to be stable if for a bounded initial condition, the solution
uni is uniformly bounded at all points of the grid, independently from ∆t, ∆x:

∃C > 0, ∀ ∆t > 0, ∆x > 0, i ∈ {0..N}, n ∈ {0, . . . ,M} : |uni | ≤ C.

Stability ensures that the numerical solution at a given point (i.e., the option
value for a given date/underlying) does not blow up when (∆t,∆x) → 0.
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These properties hold for the explicit-implicit scheme presented above:

PROPOSITION 12.12 Consistence, stability and monotonicity[98]

The explicit-implicit scheme given by Algorithm 12.1 is unconditionally stable
and consistent with the PIDE (12.67) as (∆t,∆x) → 0. Moreover it is a
monotone scheme:

u0 ≥ v0 ⇒ ∀n ≥ 1, un ≥ vn.

REMARK 12.8 Other notions of stability Various definitions for the
stability of numerical schemes can be found in the literature: for example, the
“von Neumann stability” studied for a similar scheme in [8] represents un as a
discrete Fourier transform and requires the corresponding Fourier coefficients
to remain bounded under iteration of the scheme. This is essentially equivalent
to stability in L2 norm with periodic boundary conditions and simply controls
a global error in the least square sense but does not control the error on the
value of a given option. Moreover it does not allow to capture the effect of
boundary conditions when they are nonperiodic, which is the case here.

When the Lévy measure is singular near zero, the above scheme cannot be
applied directly. In Chapter 6 we observed that any infinite activity Lévy
process can be approximated by a compound Poisson process by truncating
the Lévy measure near zero, i.e., jumps smaller than ε and that the approxi-
mation can be further improved by replacing the small jump by a Brownian
motion (see Section 6.4): Xt is approximated byXε

t where X̃ε
t has Lévy triplet

(γ(ε), σ2 + σ2(ε), ν1|x|≥ε) with

σ2(ε) =
∫ ε

−ε
y2ν(dy).

One could choose γ(ε) = γ but this violates the martingale condition for
expXε

t so put-call parity is violated. If we require in addition that the ap-
proximating finite activity model is risk neutral we obtain:

γ(ε) = −σ
2 + σ2(ε)

2
−
∫
|x|≥ε

(ey − 1 − y1|y|≤1)ν(dy).

Since Xε
t is a jump-diffusion process with compound Poisson jumps, the
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scheme (12.1) can be applied to compute the solution uε(τ, x) of

∂uε

∂τ
= Lεu

ε, uε(0, x) = h(x), where

Lεf =
σ2 + σ2(ε)

2
∂2f

∂x2
−
(
σ2 + σ2(ε)

2
+ α(ε)

)
∂f

∂x

+
∫
|y|≥ε

ν(dy)f(x+ y) − λ(ε)f(x) with

σ2(ε) =
∫ ε

−ε
y2ν(dy), α(ε) =

∫
|y|≥ε

(ey − 1)ν(dy), λ(ε) =
∫
|y|≥ε

ν(dy).

Using the method in (6.2) one can show the following bound for the truncation
error:

|u(τ, x) − uε(τ, x)| ≤ K‖h′‖∞
∫ ε
−ε |x|3ν(dx)
σ2(ε)

.

As seen above, this scheme is stable and consistent if λ(ε)∆t < 1, i.e., the
time step is smaller than the average interval between jumps. However for
barrier options the convergence may be oscillatory as in the case of diffusion
models [395] and it may be better to use nonuniform meshes at the bound-
ary. The finite difference scheme discussed above can be adapted to the case
of American options by treating the early exercise feature using a penalty
method, see [114].

12.4.4 Convergence

In the usual approach to the convergence of finite difference schemes for
PDEs, consistency and stability ensure convergence under regularity assump-
tions on the solution. This approach is not feasible here because, as discussed
in Section 12.2.4, solutions may be nonsmooth and higher order derivatives
may not exist. For example, in the variance gamma model the value of a call
option is C1 in the price variable but not C2.

This is where viscosity solutions come to the rescue: in the case of second-
order parabolic PDEs verifying a comparison principle as in Proposition (12.7),
Barles and Souganidis [29] show that, for elliptic/parabolic PDEs, any finite
difference scheme which is locally consistent, stable and monotone converges
uniformly on each compact subset of [0, T ] × R to the unique continuous vis-
cosity solution, even when solutions are not smooth.

This result can be extended to the PIDEs considered here [98]:

PROPOSITION 12.13 Convergence of explicit-implicit scheme
The solution of the explicit-implicit finite difference scheme described above

converges uniformly on each compact subset of ]0, T ]×R to the unique viscosity
solution of (12.51)–(12.52).
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PROOF We give here the main steps of the method, see [98] for de-
tails. The scheme 12.1 verifies the properties of local consistency, stability
and monotonicity. Now define

u(τ, x) = lim inf
(∆t,∆x)→0 (n∆t,j∆x)→(τ,x)

unj ,

u(τ, x) = lim sup
(∆t,∆x)→0 (n∆t,j∆x)→(τ,x)

unj .

The stability of the scheme implies that the limits defining u and u are finite
bounded functions and by definition u ≤ u. The monotonicity and consistency
of the scheme then implies that u ∈ USC is a subsolution4 and u ∈ LSC a
supersolution of (12.66).
Using the comparison principle for semicontinuous solutions (Proposition 12.7),
we can therefore conclude that u ≤ u. So u = u = u is a continuous viscosity
solution. Using the continuity of the limit u one can then show, along the
lines of [29], that the convergence to u is uniform on all compact subsets of
]0, T ] × R using a variation on the proof of Dini’s theorem.

Readers used to convergence results for finite difference schemes should note
that the requirements on the scheme are quite weak: we have only used local
consistency whereas the usual conditions for convergence to classical solutions
(Lax theorem) require global consistency, i.e., the convergence in (12.81) must
not be pointwise but with respect to some global norm, which requires knowing
in advance in what function space the solutions live. This shows the flexibility
of the notion of viscosity solution. The price to pay is the loss of information
about the order of convergence. Of course in cases where smoothness of the
solution can be shown by other means (for example if σ > 0) one can discuss
the order of convergence using classical methods and higher order schemes
can be used.

The numerical examples shown in Figures 12.1–12.2, taken from [98], illus-
trate the performance of the scheme when compared to Carr and Madan’s FFT
method (described in Section 11.1) in the case of a put option h(x) = (1−ex)+.
The errors are computed in terms of Black-Scholes implied volatility:

ε(τ, x) = |ΣPIDE(τ, x) − ΣFFT(τ, x)| in %.

The computations were done in variance gamma models with Lévy density

ν(x) = a
exp(−η±|x|)

|x|
and two sets of parameters a = 6.25, η− = 14.4, η+ = 60.2 (VG1) and a =
0.5, η− = 2.7, η+ = 5.9 (VG2) and a Merton model with Gaussian jumps in

4Note that u, u are defined as pointwise limits and cannot be assumed to be continuous
in general: this shows why we cannot restrict a priori subsolutions or supersolutions in
Definition 12.1 to be continuous. However, semicontinuity is preserved in the limit.

© 2004 by CRC Press LLC



420 Financial Modelling with jump processes

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

A / [T*(σ2+ ∫ y2ν(dy))]1/2

im
pl

ie
d 

vo
la

til
ity

 e
rr

or
 ε

(τ
,x

) 
in

 %

|ε(T,0)|
sup

{2/3 ≤ e
x
 ≤ 2}

|ε(T,x)|

 Initial data: (1 − ex)+ 

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2

2.5

3

3.5

4

A / [T*(σ2+ ∫ y2ν(dy))]1/2

im
pl

ie
d 

vo
la

til
ity

 e
rr

or
 in

 %

|ε(T,0)|
sup

{2/3 ≤ e
x
 ≤ 2}

|ε(T,x)|

 Initial data: (1 − ex)+ 

FIGURE 12.1: Influence of domain size on localization error for the
explicit-implicit finite difference scheme. Left: Put option in Merton jump-
diffusion model. Right: Put option in variance gamma model.
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FIGURE 12.2: Numerical precision for a put option in the Merton model.
Left: Influence of number of time steps M . ∆x = 0.05, ∆t = T/M . Right:
Decrease of error with maturity.

log-price with Lévy density

ν(x) = 0.1
e−x

2/2

√
2π

and volatility σ = 15%

for a put of maturity of T = 1 year. When the FFT method is available it is
more efficient but the finite difference scheme described here can be used in
a much more general context: in presence of barriers and in cases where the
characteristic function is not known in closed form.

The localization error is shown in Figure 12.1: domain size A is represented
in terms of its ratio to the standard deviation of XT . An acceptable level is
obtained as soon as this ratio is of order � 5.

We observe that a nonsmooth initial condition leads to a lack of precision
for small T . This phenomenon, which is not specific to models with jumps,
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FIGURE 12.3: Influence of truncation of small jumps on numerical error
in various variance gamma models. Put option.

can be overcome using an irregular time-stepping scheme which exploits the
smoothness in time of the solution. Here the optimal time stepping scheme is
obtained by using logarithmically spaced time steps [353].

In the case of infinite activity models an additional parameter which influ-
ences the solution is the truncation parameter ε for the small jumps. Choosing
this parameter as small as possible is not necessarily a good idea: Figure 12.3
shows that, for a given ∆x > 0 the minimal error is obtained for a finite ε
which in this case is larger than ∆x. The optimal choice of ε is not universal
depends on the growth of the Lévy density near zero, see [98].

12.5 Analytic method of lines

For American options, the finite difference methods outlined above cannot
be used directly since the exercise boundary is not known and has to be
computed iteratively at the same time as the price.

A method which has been used by several authors [79, 293, 294, 71] both
for the Black-Scholes model and for models with jumps is the method of lines:
the idea here is to discretize time derivatives only, obtaining a differential-
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difference equation in x:

fn+1(x) − fn(x)
∆t

+ Lfn(x) − rfn(x) = 0, x > bn, (12.81)

fn(x) = K − S0e
y, x ≤ bn. (12.82)

This equation must be solved iteratively, going backwards from the maturity:
each iteration step involves solving the integro-differential equation above in
the x variable. In some special cases, this can be done analytically. In [71,
Chapter 5] an expression of the solution is given based on the Wiener-Hopf
factors φ+

q , φ
−
q introduced in Chapter 11: denoting the Fourier transform of g

by Fg:

fn(x) = K − S0e
x + (1 +

r

∆t
)−1gn(x), (12.83)

where Fgn = φ−q F(1[bn,∞[w
n) (12.84)

and Fwn = φ+
q F[fn+1(x) + S0e

x − (1 + r∆t)K]. (12.85)

Applying this method requires, of course, knowing the Wiener-Hopf factors
and evaluating several Fourier transforms at each iteration, one for computing
wn from fn+1, one for computing gn from wn and finally a Fourier inversion
for computing fn from gn. Examples where this method can be used are given
in [250].

This method can also be viewed as a special case of the Galerkin method,
outlined in the next section.

12.6 Galerkin methods

While finite difference methods represent the solution by its values on a
discrete grid, Galerkin methods are based on the representation of the solution
u using a basis of functions:

u(τ, x) =
∑
i≥1

ai(τ)ei(x),

which is then approximated by restricting to a finite number of basis functions:

uN (τ, x) =
N∑
i=1

ai(τ)ei(x). (12.86)

Advantages of this representation include the ability to directly estimate the
derivatives (Greeks) of the option value — if the basis functions ei have deriva-
tives known in closed form — and to compute values of the solution at points
not necessarily belonging to a uniform grid.
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12.6.1 Variational formulation and the Galerkin method

Consider the PIDE in the time-to-maturity/log moneyness variables (τ, x):

∂u

∂τ
= Lu, (12.87)

where L = LX is the integro-differential operator

Lu =
σ2

2
[
∂2u

∂x2
(x) − ∂u

∂x
(x)] +

∫
ν(dy)[u(x+ y) − u(x) − (ey − 1)

∂u

∂x
(τ, x)].

The Galerkin method is based on a variational formulation of the PIDE [48].
First we choose a suitable Hilbert space H of functions of x which contains
the solutions of our equation and a complete basis of H, that is, a sequence
(ei)i≥1 of linearly independent elements of H such that

∀i ≥ 1, 〈ei, f〉H = 0 ⇒ f = 0. (12.88)

Here 〈. , .〉H denotes the scalar product in H. A possible choice for H is a
weighted L2 space

〈f, g〉L2(w) =
∫
f(x)g(x)w(x)dx,

where w is a weight function which fixes the growth at infinity of the solutions
or associated Sobolev spaces [48, 219]. In view of the remarks in Section
12.2.1, an exponential weight w(x) = exp(a|x|) is a natural choice and allows
for exponentially growing solutions (call options in particular); this choice
has been used in the variational formulation of the Black-Scholes equation in
[219] and for PIDEs in the jump-diffusion case in [390]. If the equation has
boundary conditions, these can be incorporated into the choice of H and of
the basis functions (ei). If the solution u is known to be smooth enough such
that ∂u

∂τ ∈ H and Lu ∈ H then the equation (12.87) is equivalent to

∀i ≥ 1, 〈∂u
∂τ
, ei〉L2(w) = 〈Lu, ei〉L2(w). (12.89)

But in general Lu /∈ L2(w) so this formulation is restrictive. A more flexible
approach is to interpret the scalar products as duality products: instead of
an L2 space one can choose ei, u ∈ H where H = H1(w), a weighted Sobolev
space of order 1, such that Lu ∈ H∗ and 〈Lu, ei〉 is well defined as a duality
product [48]:

∀i ≥ 1, 〈∂u
∂τ
, ei〉 = 〈Lu, ei〉. (12.90)

Note that if u, v are both in L2(w) then 〈u, v〉 = 〈u, v〉L2(w) so this formulation
includes the preceding one but it more flexible.
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Equation (12.90) is called a variational formulation of the PIDE and allows
for solutions which are less regular than classical solutions: a solution u ∈
H = H1(w) is not necessarily C1,2 and the derivatives of u which appear in
Lu ∈ H∗ are defined in the sense of distributions. Note however that, unlike
the case of classical solutions, it is not straightforward to obtain a probabilistic
representation for such generalized solutions since the usual Itô formula does
not apply for u ∈ H1(w). Approximation arguments must be used in this
case to obtain such probabilistic representations [48, 337].

The formulation (12.90) can be used to obtain a numerical solution in the
following way. As in the case of the finite difference method, we begin by
localizing the problem to a bounded domain:

∂uA
∂τ

= LXuA, (0, T ]×] −A,A[, (12.91)

uA(τ, x) = h(x), x /∈] −A,A[, uA(0, x) = h(x), x ∈] −A,A[.

To repeat the procedure above we have to choose a space H of functions on
] − A,A[ and a basis (ei) of H. A first guess would be the Sobolev space
H1

0 ( ]−A,A[ ) with boundary conditions imposed at ±A but to compute the
nonlocal integral term in 〈Lu, ei〉, we need to know u outside of ]−A,A[ and
extending by zero is a crude approximation. A solution proposed in [287] is
to replace u by U = uA − h, which tends exponentially to zero at ±∞ and
can therefore be extended by zero beyond the domain with an exponentially
small error. This gives rise to a source term F = LXh in the equation:

∂U

∂τ
− LXU = LXh = F, ]0, T ]×] −A,A[, (12.92)

U(τ, x) = 0, x /∈] −A,A[, U(0, x) = 0, x ∈] −A,A[.

This equation can now be written in the variational form above using a basis
of H = {f ∈ H1(R), f(x) = 0 for |x| ≥ A}: the “discretization” then consists
in projecting onto a finite number of basis elements ei, i = 1 . . . N :

∀i = 1 . . . N, 〈∂U
∂τ

, ei〉 = 〈LU, ei〉 (12.93)

and looking for a solution UN in the form (12.86) verifying:

∀i = 1 . . . N, 〈∂UN
∂τ

, ei〉 = 〈LUN , , ei〉 + 〈F, ei〉

⇐⇒
n∑
j=1

Kij
d

dτ
ai(τ) =

N∑
j=1

Lijai(τ) + Fi,

where Aij = 〈Lej , ei〉, Kij = 〈ej , ei〉 =
∫ A

−A
ei(x)ej(x)dx. (12.94)

This is now an initial value problem for a N -dimensional ordinary differential
equation which can be written in matrix form as:

K
d

dτ
vN +AvN = FN , vN = (ai(τ), i = 1 . . . N). (12.95)
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This equation can now be iteratively solved by time discretization, using one
of the time stepping schemes described in Section 12.4.3: this may be an
explicit, implicit or θ-scheme. Representing by vnN the vector of components
of UN (n∆t) on the basis (ei, i = 1 . . . N), we obtain:

K
vn+1
N − vnN

∆t
= θAvn+1

N + (1 − θ)AvnN + FN .

Unlike the case of a finite difference method, the resulting solution is not
only defined on a discrete grid but is a continuous function UnN (τ, x) =∑N
i=1 v

n
N,iei(x) defined at all points of the domain. UnN converges5 in H to

the solution U as N , the dimension of the approximation, is increased [287].

12.6.2 Choice of a basis

Different choices of basis are possible in the Galerkin method and lead to
numerical methods of varying efficiency. When L is a differential operator, a
common choice is a finite element basis, using “hat” functions associated to
a (possibly irregular) mesh xj :

ej(x) =
x− xj−1

xj − xj−1
for x ∈ [xj−1, xj ],

=
xj+1 − x

xj+1 − xj
for x ∈ [xj , xj+1],

= 0, x /∈ [xj−1, xj+1].

This grid can be defined in log-price but also in the price directly since we
do not require it to be regularly spaced. This choice yields piecewise linear
approximations for u and a piecewise constant approximation defined almost
everywhere for its derivative. In fact, using the above basis on a regular grid
yields a finite difference scheme. The main difference with the finite difference
method is the capability of using an irregular grid which is dense at points
where a higher accuracy is required: for example, when solving the forward
equation one might be interested in having more strikes closer to the money.
Generalizations using higher order (piecewise quadratic or cubic) functions
can be constructed along the same lines. These choices are interesting when
dealing with differential operators since their locality leads to a tridiagonal
matrix A = [Aij ]. In this case the integral operator leads to a dense matrix
so finite elements are not particular appealing.

Another choice is to use complex exponentials

ej(x) = exp
(

2jπx
A

)
,

5Note that unlike the convergence of finite difference schemes to viscosity solutions which is
pointwise, the convergence should be interpreted here in the sense of a global L2 or Sobolev
norm.
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where A is the domain size. The representation of the function in this basis is
nothing else but the discrete Fourier transform! In particular, if we choose a
regular grid with size 2n and solve the equation in space variable by performing
FFT at each time step, this corresponds to the method of lines outlined in
Section 12.5. This representation is well suited when the solution is known
to be smooth with periodic boundary conditions. In cases where the solution
is not smooth (for instance, at the barrier for barrier options) a well-known
feature of Fourier transform — called the Gibbs phenomenon — is that the
Fourier series exhibits oscillatory behavior at such points. When the resolution
is increased the convergence is not polynomial and the implementation of
nonperiodic boundary conditions can be problematic.

The above approaches do not yield “sparse” representations of the operator
L: they give rise to a dense matrix with a lot of nonzero elements which means
a lot of computation time will go into the solution of the linear system at each
time step if non-explicit schemes are used. The use of a wavelet basis can help
to remove these difficulties: a wavelet basis is generated from a function ψ(x)
called the mother wavelet by dilating and translating it by powers of 2:

ej,k(x) = 2−nj/2ψ(2−jx− k). (12.96)

ψ can be chosen such that ej,k have compact support, are orthogonal to poly-
nomials of a given degree and form an orthogonal basis of L2(R); other choices
are also possible/interesting [106]. Compact support and exact representation
of polynomials of a fixed degree allow accurate representation of regions with
strong gradients such as price regions close to the barrier for barrier options
or the neighborhood of the exercise boundary for American options. Fast al-
gorithms, with performance comparable to FFT, are available for computing
wavelet coefficients [106].

It is possible [104, 52] to construct wavelet bases adapted to a given (integro-
differential) operator in the sense that functions at different refinement levels
are orthogonal with respect to the bilinear form induced by the operator.
With this choice of basis, the matrix is “as sparse as possible.” The basic
idea is to use an appropriate choice of wavelet to obtain a lot of near zero
terms in the matrix and then approximate the dense matrix of the discrete
integral operator by dropping small terms so as to end up with a sparse matrix.
A Galerkin method for PIDEs using a wavelet basis has been suggested by
Matache et al. [287]. To compute the matrix A in (12.94) the Lévy density has
to be known in analytic form, which is the case in most parametric exp-Lévy
models. In the case of time-inhomogeneous models described in Chapter 14
the computation has to be done at each time step which makes the method less
easy to use. Also, when the Lévy measure is empirically calibrated to market
data as in Chapter 13, an additional quadrature is necessary to compute the
matrix A.

Finally, note that the variational formulation extends to the case of Amer-
ican options [219, 48] and Galerkin methods can also be applied in this case
[286].
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12.7 A comparison of numerical methods for PIDEs

The different numerical methods described above yield different represen-
tations of the option price: in tree methods the solution is represented by
its values on the nodes of a tree, in finite difference methods the solution is
represented by its values on a (typically regular) grid and in Galerkin meth-
ods the function C is represented by its coefficients on a basis of functions.
Therefore Galerkin methods come with a natural interpolation scheme which
makes things easier if one is interested in computing the solution at points
not belonging to the initial grid.

As already pointed out above, multinomial trees are special cases of explicit
finite difference schemes. Also, finite difference schemes can be seen as special
cases of finite element methods which are themselves special cases of the
Galerkin approach. Thus, in terms of generality we have:

Trees ⊂ Finite difference methods ⊂ Finite elements ⊂ Galerkin methods

The Galerkin method is therefore the most general and special choices of basis
lead to the other methods including the finite difference/FFT method.

However, more general does not mean simpler to implement: the complex-
ity of implementation increases as we go from trees to general Galerkin meth-
ods. While the tree or finite difference methods can be implemented by any
quant with reasonable programming knowledge, finite elements and Galerkin
methods require the use of specialized toolboxes to be implemented in a rea-
sonable time. Also, finite difference programs use less memory than Galerkin
methods since there is no overhead for managing grids, at the expense of not
easily being able to refine the grid. This explains why finite element and
Galerkin methods have had a limited scope of application in computational
finance until now, at least for European or barrier options. On the other
hand, Galerkin methods become interesting when there are delicate boundary
conditions/irregular boundaries involved as in the case of American options
or convertible bonds. Aside from these two cases, finite difference methods
such as the one proposed in Section 12.4 seem to be the best choice.

A good property of a numerical scheme is monotonicity: in financial terms
it means that if h, g are two payoff functions and h ≥ g then the prices
un(h), un(g) computed by the scheme also verify un(h) ≥ un(g) at each point.
Monotonicity guarantees that the prices computed using the scheme respect
arbitrage inequalities. In computational terms, monotonicity means that the
discretized equation verifies a comparison principle just as in the continuous
equation. Multinomial trees, as well as the finite difference schemes presented
in Section 12.4 are monotone schemes while Galerkin/finite element methods
are not monotone in general: prices computed from nonmonotone schemes are
only arbitrage-free up to a numerical error.
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TABLE 12.2: Numerical methods for partial integro-differential equations

Method Advantages Drawbacks Ref.

Multinomial
tree/lattice

Monotonicity, ease of
implementation

Inaccurate representa-
tion of jumps, slow con-
vergence

[7]

Analytic method
of lines

Fast when feasible Needs closed form
Wiener-Hopf factor.

[79, 71]

Explicit/Implicit
finite difference
scheme

Fast, simple to im-
plement, monotone,
handles barriers effi-
ciently.

[98,
114]

Crank-
Nicholson/FFT

Fast Boundary conditions
not handled efficiently.

[8]

Finite elements Extends to American
options

Dense matrix: slow
computation.

Wavelet-
Galerkin

Extends to American
options

Implementation is diffi-
cult.

[287]

Galerkin methods are particularly useful when a robust approximation is
sought to solve partial differential equations on an inhomogeneous mesh. This
is the case for example when solving forward PIDEs [82] in order to price
call/put options for a whole range of strikes and maturities at once. Also,
they can be extended to the case of American options.

A major advantage of PIDE methods for valuation is their computational
efficiency for single asset options and the ability to handle barriers, early exer-
cise and obtain the sensitivities (Greeks) as a by-product of the computation.
But, as in the case of diffusion models, PIDE methods become inefficient as
soon as we have more than two underlying assets/factors. The only feasible
method for pricing American/barrier options in high dimensional problems
such as the pricing of basket options is the Monte Carlo method, discussed in
Chapters 6 and 11.

Table 12.2 further compares various numerical methods for PIDE, discussed
in this chapter, and sums up their relative advantages and drawbacks.
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Further reading

The literature on parabolic integro-differential equations, especially regard-
ing numerical methods and viscosity solutions, is rapidly growing.

The link between PIDEs and risk neutral valuation is the tip of an iceberg
called potential theory which explores the deep connection between partial dif-
ferential equations and Markov processes. Potential theory was first developed
in the context of diffusion processes (Markov processes without jumps) and
later extended to Markov processes with jumps [110]. A balanced overview of
the relation between integro-differential operators and Markov processes with
jumps is given by Jacob [208], see also [370].

Smoothness and integrability of densities of Lévy processes are studied using
Fourier techniques in [345]. These results have been generalized to Markov
processes with jumps using the tools of Malliavin calculus by Bismut [58]; see
also [309] and [248].

Elliptic and parabolic PIDEs of the type studied in this chapter were sys-
tematically studied by Bensoussan and Lions [48] and Garroni and Menaldi
[157] under the hypothesis of a diffusion component which is nonzero and
bounded from below (“ellipticity”). Properties of the fundamental solutions
(Green functions) for such equations are studied in [158]. Feynman-Kac rep-
resentations are discussed under this hypothesis in [48, Chapter 3], see also
[337]. Integro-differential equations with boundary conditions are studied in
[77] using pseudo-differential operator methods and in [337] using a proba-
bilistic approach.

An introduction to viscosity solutions of PDEs is given in [103] and [143].
The relevance of viscosity solutions for numerical methods in finance is dis-
cussed in [27] in the case of diffusion models. Our discussion of convergence
of numerical schemes to viscosity solutions follows the method introduced by
Barles and Souganidis [29] for nonlinear PDEs. Viscosity solutions for PIDEs
where studied by Soner [366], Alvarez and Tourin [6], Sayah [348], Barles et
al. [28] and Pham [317]. The case of general Lévy measures is only treated
in Barles, Buckdahn and Pardoux [28] and Pham [317]: while the hypotheses
in [28] exclude the case of exponential-Lévy models treated here, Pham [317]
gives a general framework applicable to European and American options in
all the models treated in this book.

The relation between optimal stopping and the free boundary problem for
PIDEs is discussed in [48, 157] in the nondegenerate case and [348, 317] in the
general case where the absence of a diffusion component is allowed. American
options on underlying assets with jumps and the relation between the optimal
stopping problem and the integro-differential free boundary problem have
been studied in the case of a jump-diffusion with compound Poisson jumps by
Zhang [392, 390, 389] using a variational inequality approach and by Pham
[316] using a viscosity solution approach. Variational methods for American
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options was introduced in [219] for the Black-Scholes equation and extended
by Zhang [392, 390] to jump-diffusion models with finite activity and finite
exponential moments.

In the context of option pricing models with jumps, PIDEs for option prices
were considered in [23, 8] for models with compound Poisson jumps and in
[98, 97, 329, 311] for exp-Lévy models; see also [114, 376, 383].

Multinomial tree methods for option pricing in jump-diffusion models were
proposed by Amin [7]. Weak convergence of approximation schemes is studied
by Kushner and Dupuis [243]; financial examples in relation to incomplete
market models and models with jumps can be found in the book Prigent [322].
Andersen and Andreasen [8] use an operator splitting approach combined
with a fast Fourier transform (FFT) evaluation of the jump integral to price
European options in a jump-diffusion model with finite jump intensity, where
the diffusion terms involve nonconstant local volatilities. Finite difference
methods for models with finite and infinite activity are studied by Cont and
Voltchkova [98]. The method of lines was used in [79, 294] for American option
valuation; Meyer [293] uses the method of lines to value American options
where the number of jump sizes is finite. Galerkin methods for parabolic
PDEs are reviewed in [378]. Wavelets have been used in many contexts for
the discretization of differential and integral operators see, e.g., [169, 104].
Wavelet Galerkin methods for pricing options in exp-Lévy models have been
proposed by Matache et al. [287, 286].
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Chapter 13

Inverse problems and model
calibration

If you want to know the value of a security, use the price of another
security that is as similar to it as possible. All the rest is modelling.

Emmanuel Derman, The boys guide to pricing and hedging

As discussed in Chapter 10, exponential-Lévy models, jump-diffusion mod-
els and most other models encountered in this book correspond to incomplete
markets: perfect hedges do not exist, option prices cannot be uniquely identi-
fied from the underlying price process by arbitrage arguments alone. In fact,
as shown by Eberlein and Jacod [124] and Bellamy and Jeanblanc [46] (see
Proposition 10.2), in most models with jumps different choices of (equivalent)
martingale measure allow to generate any given price for a given European
option: the range of possible prices obtained by picking various equivalent
martingale measures is the maximal interval allowed by static arbitrage argu-
ments.1 These arguments illustrate the main difficulty of using the historical
approach for identification of exponential-Lévy models: due to the fact that
the market is incomplete, knowledge of the historical price process alone does
not allow to compute option prices in a unique way.

On the other hand, we observed in Chapter 9 that in any arbitrage-free
market the prices of securities can be represented as discounted conditional
expectations with respect to a risk-neutral measure Q under which discounted
asset prices are martingales. In incomplete market models, Q bears only
a weak relation to the time series behavior described by P: it cannot be
identified from P but only inherits some qualitative properties such as the
presence of jumps, infinite or finite activity, infinite or finite variation,. . . from
the historical price process (see Table 9.1). Furthermore, for an underlying on
which options are traded in an organized market, option prices quoted in the

1However this does not mean that any given prices for several options can be simultaneously
reproduced by such a model.

© 2004 by CRC Press LLC



market provide an extra source of information for selecting an appropriate
pricing model. Therefore a natural approach, known as “implied” or risk-
neutral modelling, is to model directly the risk-neutral dynamics of the asset
by choosing a pricing measure Q respecting the qualitative properties of the
asset price.

However an ad hoc choice of equivalent martingale measure — for instance,
starting from a Lévy process estimated from time series of log-prices and
performing an Esscher transform as in Proposition 9.9 — does not give values
consistent with the market prices of traded options, when they are available.
As argued in Section 10.6, consistency with market prices of options is an
important constraint on a pricing model.

In fact, as argued in Section 9.1, when option prices are quoted on the
market, a market-consistent pricing model Q can not be obtained only by
an econometric analysis of the time series of the underlying but by looking
at prices of contingent claims today (t = 0). In a market where options are
traded on the market, their prices are available and can be used as source
of information for selecting Q. Choosing a risk-neutral model such as to
reproduce the prices of traded options is known as model calibration: given
market prices (Ci)i∈I at t = 0 for a set of benchmark options (typically call
options with different strikesKi and maturities Ti), one looks for a risk-neutral
model Q which correctly prices these options:

∀i ∈ I, Ci = e−rTEQ[(STi
−Ki)+].

The logic is the following: one calibrates a risk-neutral model to a set of
observed market prices of options and then uses this model to price exotic,
illiquid or OTC options and to compute hedge ratios.

While the pricing problem is concerned with computing values of option
given model parameters, here we are interested in backing out parameters de-
scribing risk-neutral dynamics from observed option prices: model calibration
is thus the inverse problem associated to the pricing problem. But this inverse
problem is ill-posed: there may be many pricing models which generate the
same prices for the benchmark options thus the solution of the inverse prob-
lem is not necessarily unique. Another problem is, of course, the computation
of a solution for the inverse problem, for which efficient and stable algorithms
are needed.

If we add to calibration constraints the requirement that our risk-neutral
model belongs to a certain prespecified class of models, such as exponential-
Lévy of jump-diffusion models, then there is no guarantee that a solution
exists: one may not be able to find a model in the specified class which exactly
reproduces market prices of options. Of course market prices are given up to
bid-ask spreads so exact calibration is not meaningful, so a more feasible
interpretation of the calibration problem is to achieve the best approximation
of market prices of options with a given model class. If the approximation
is interpreted in a least squares sense, this leads to a nonlinear least squares
problem, discussed in Section 13.2.
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In this chapter we will study these problems in the context of exponential-
Lévy models. Consider a risk-neutral exponential-Lévy model defined by its
characteristic triplet (σ(θ), ν(θ), γ(θ)) where θ is some set of parameters in the
parametric case or simply the characteristic triplet itself in the nonparametric
case. To calibrate this model to option prices one must solve the following
problem:

Calibration Problem 1 Given an exponential-Lévy model (σ(θ), ν(θ), γ(θ))
and observed prices Ci of call options for maturities Ti and strikes Ki, i ∈ I,
find θ such that the discounted asset price St exp(−rt) is a martingale and the
observed option prices are given by their discounted risk-neutral expectations:

∀i ∈ I, Ci = e−rTEθ[(STi
−Ki)+].

where Eθ denotes the expectation computed in the exponential-Lévy model with
triplet (σ(θ), ν(θ), γ(θ)).

The solution of this problem then gives an implied Lévy measure describing
the jumps of the risk-neutral process. Despite its simple form, Problem 1
presents formidable difficulties related to the fact that it is an ill-posed inverse
problem: there may exist no solution at all or an infinite number of solutions.
Even if we use an additional criterion to choose one solution from many, the
dependence of the solution on input prices may be discontinuous, which results
in numerical instability of calibration algorithm.

We will argue that in order to identify a risk-neutral model correctly, one
should take into account the information both from the historical time series
and from prices of traded options. To achieve this, one can restrict the choice
of pricing rules to the class of martingale measures equivalent to a prior model,
either resulting from historical estimation or otherwise specified according to
the views held by a risk manager: the calibration procedure then updates the
prior according to the information in market prices of options. This approach
is discussed in Section 13.1.

As we will argue, even when restricting to exponential-Lévy models the
resulting minimization problem is ill-posed because there may be many Lévy
triplets reproducing option prices equally well and the solution may depend
on the input data in a discontinuous way. In Section 13.3, using the notion
of relative entropy, we present a regularization method that removes both
of these problems. The role of relative entropy is two-fold: it ensures that
the calibrated Lévy measure is equivalent to the prespecified prior and it
regularizes the ill-posed inverse problem.
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13.1 Integrating prior views and option prices

We argued in Chapter 9 that if a market is arbitrage-free, it must be possi-
ble to express option prices as discounted expectation of payoffs under some
martingale probability equivalent to the historical one. Therefore, if the his-
torical price process has been estimated statistically from the time series of the
underlying, the calibration must be restricted to martingale measures equiva-
lent to the estimated historical probability. Borrowing the terminology from
Bayesian statistics we use the word prior to denote this historical probability.
The calibration problem now takes the following form:

Calibration Problem 2 (Calibrating with a prior) Given a prior model
(σ0, ν0, γ0) and the observed prices Ci of call options for maturities Ti and
strikes Ki, i ∈ I, find an exponential-Lévy model (σ(θ), ν(θ), γ(θ)) such that
the discounted asset price St exp(−rt) is a martingale, the probability mea-
sure Qθ generated by (σ(θ), ν(θ), γ(θ)) is equivalent to the prior P0 and the
observed option prices are given by discounted risk-neutral expectations under
Qθ:

∀i ∈ I, Ci = e−rTEθ[(STi
−Ki)+|S0 = S].

Using the absolute continuity conditions of Proposition 9.8, all Lévy processes
can be split into equivalence classes. If the prior was chosen from one such
class, the calibrated measure must also lay in this class. If one wants to
calibrate a model from a given parametric family, equivalence imposes some
constraints on the parameters.

If the prior is of jump-diffusion type with finite jump intensity a nonzero
diffusion component, the class of equivalent models includes all jump-diffusion
models with compound Poisson jumps that have the same diffusion component
and a Lévy measure that is equivalent to that of prior. For example, if the
prior Lévy measure has a density that is everywhere positive, the calibrated
measure must also have an everywhere positive density. When the diffusion
component is present, we can obtain an equivalent martingale measure simply
by changing the drift, therefore no additional constraints are imposed on the
Lévy measure and it can be freely changed during calibration.

When the prior is an infinite-activity Lévy process, stricter conditions are
imposed on the behavior of calibrated Lévy measure near zero by the inte-
grability condition (9.20). Let ν be the prior Lévy measure and ν′ be the
calibrated one. Define φ(x) = log dν′

dν (x) as in Chapter 9.
If ν has a density with stable-like singularity at zero, that is, ν(x) = f(x)

|x|1+α

with f positive and finite, the condition (9.20) is satisfied if |φ(x)| ≤ C|x|α/2+ε
in a neighborhood of zero for some ε > 0, which means that ν′ will also have
a density with stable-like behavior near zero.
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If φ is finite and satisfies |φ(x)| ≤ C|x| in a neighborhood of zero, then
the integral (9.20) is finite for every Lévy measure ν. Below we give some
examples of equivalence classes for some parametric models.

Example 13.1 Tempered stable process
Let us suppose that the prior is a tempered stable process with center γc (we
use the representation (4.29), that is, we do not truncate the large jumps)
and Lévy measure ν of the form

ν(x) =
c−

|x|1+α e
−λ−|x|1x<0 +

c+
x1+α

e−λ+x1x>0.

We would like to calibrate a Lévy process from the same family to option
prices. In this case, the absolute continuity condition requires that the pa-
rameters of the calibrated process satisfy α′ = α, c′+ = c+, c′− = c− (see
Example 9.1) and the condition (9.21):

γ′c − γc = Γ(1 − α)
{
c+(λ′+)α−1 − c+(λ+)α−1 + c−(λ′−)α−1 − c−(λ−)α−1

}
.

Finally, since the calibrated measure must be risk-neutral, it must satisfy

γ′c = −
∫ ∞

−∞
(ex − 1 − x)ν′(dx),

which entails

− γ′c = Γ(−α)λ′+c+

{(
1 − 1

λ′+

)α
− 1 +

α

λ′+

}

+ Γ(−α)λ′−c−

{(
1 +

1
λ′−

)α
− 1 − α

λ′−

}
.

This gives us five equations for six unknown parameters in the pricing model.
Therefore, only one of them actually needs to be calibrated, i.e., one can fix
arbitrarily only one decay rate or only the mean of the process.

Example 13.2 Kou jump-diffusion model
When the prior corresponds to a double exponential model with characteristic
triplet (σ, ν, γ) where ν has a density

ν(x) = c+e
−λ+x1x>0 + c−e−λ−|x|1x<0, (13.1)

the only condition imposed by absolute continuity is that σ′ = σ. By ad-
justing γ′ we can fulfil the risk-neutrality condition, which leaves us four free
parameters to calibrate: as in every jump-diffusion model, all parameters of
the Lévy measure are free.
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These examples show, that although Kou’s double exponential model and
the tempered stable model have the same number of parameters, the former
one has a much greater potential of reproducing option prices because it has
four free parameters when the prior is fixed whereas in the tempered stable
process all parameters but one are fixed by the equivalence to the prior and
the risk-neutrality.

Choice of prior measure Ideally, parameters of the prior should be esti-
mated from historical data. If such data is not available, but the calibration
to options on the same asset is carried out regularly, say, every day, then a
good choice for the prior of the day n is the calibrated measure of the day
n − 1. Indeed, a model which is good enough to calibrate a cross section of
option prices may not be rich enough to represent correctly the dynamics of
the option prices across time: as a result, calibrating the model to current op-
tion prices may result in time varying parameters. In order to avoid arbitrage
these different models should generate the same set of scenarios, i.e., generate
equivalent measures. Choosing at each re-calibration the preceding pricing
model as a prior automatically enforces this property: all risk neutral proba-
bilities thus obtained by successive updating will remain absolutely continuous
with respect to the first one. This choice of prior thus enforces the consis-
tency of calibration over time. What about the initial choice of the prior? If
no historical data is available, its only role is to regularize the calibration at
the first iteration and to stabilize the results of our model choice. Its exact
form is thus not very important; it will be corrected at later stages. One can
therefore take any reasonable parametric model — for instance, the Merton
jump-diffusion model — with parameters that may or may not correspond to
typical values of option prices.

13.2 Nonlinear least squares

In order to obtain a practical solution to the calibration problem, many
authors have resorted to minimizing the in-sample quadratic pricing error
(see for example [8, 41]):

S(θ) =
N∑
i=1

ωi|Cθ(Ti,Ki) − Ci|2, (13.2)

the optimization being usually done by a gradient-based method. More pre-
cisely, in the least squares method one must solve the following calibration
problem:
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FIGURE 13.1: Lévy measure calibrated to DAX option prices via a nonlin-
ear least squares method. The starting measure for both graphs is a Merton’s
model (Gaussian jumps); the jump intensity is initialized to 1 for the solid
curve and to 5 for the dashed one.

Calibration Problem 3 (Least-squares calibration) Given an exp-Lévy
model (σ(θ), ν(θ), γ(θ)) and the observed prices Ci of call options for maturi-
ties Ti and strikes Ki, i ∈ I, find

θ∗ = arg min
Qθ∈Q

N∑
i=1

ωi|Cθ(Ti,Ki) − Ci|2,

where Cθ denotes the call option price computed for the exponential-Lévy
model with triplet (σ(θ), ν(θ), γ(θ)) and Q is the set of martingale measures.

Prior can be introduced into this problem by restricting the minimization to
the set of martingale measures, equivalent to the prior. The choice of weights
ωi is addressed later in this section.

While, unlike Problem 1, here one can always find a solution, at least if
the minimization is restricted to a compact set, the objective functional is
nonconvex so a gradient descent method may not succeed in locating the
minimum. Given that the number of calibration constraints (option prices) is
finite (and not very large), there may be many Lévy triplets reproducing call
prices with equal precision, which means that pricing error can have many
local minima or, more typically, the error landscape will have flat regions in
which the error has a low sensitivity to variations in model parameters (see
below). As a result, the calibrated Lévy measure is very sensitive not only to
the input prices but also to the numerical starting point in the minimization
algorithm [96]. Figure 13.1 shows an example of this instability: the two
graphs represent the result of a nonlinear least squares minimization where
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FIGURE 13.2: Quadratic pricing error as a function of model parameters,
Merton model, DAX options.

the variable θ is the vector of discretized values of ν on a grid. In both cases
the same option prices are used, the only difference being the starting points
of the optimization routines. In the first case (dashed line), we used Merton’s
model with intensity λ = 5 and in the second case (solid line), it was Merton’s
model with intensity λ = 1. As can be seen in Figure 13.1, the results of the
minimization are totally different!

One may think that in a parametric model with few parameters one will
not encounter this problem of multiple minima as long as there are (many)
more options than parameters. However, even if the minimum is unique, the
problem remains ill-posed, because the solution will depend on the input data
in a nonsmooth way, as illustrated by the following empirical example. Figure
13.2 represents the quadratic pricing error (13.2) for the Merton’s model on a
data set of DAX index options, as a function of the diffusion coefficient σ and
the jump intensity λ, other parameters remaining fixed. It can be observed
that if one increases the jump intensity while decreasing the diffusion volatility
in a suitable manner, the calibration error stays almost at the same level,
leading to a flat direction in the error landscape. Therefore, a small change
in the input data or in the initial value of the minimization algorithm can
move the solution a long way along the valley’s bottom. Even in this simple
parametric case one therefore needs some regularization or preconditioning to
solve the calibration problem in a stable way. In fact the number of parameters
is much less important from a numerical point of view than the convexity and
well-conditionedness of the objective function.

Choice of weights in the objective functional The relative weights ωi of
option prices in the functional to be minimized should reflect our confidence in
individual data points, which is determined by the liquidity of a given option.
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This can be assessed from the bid-ask spreads:

ωi =
1

|Cbid
i − Cask

i |2 .

However, the bid and ask prices are not always available from option price
data bases. On the other hand, it is known that at least for the options that
are not too far from the money, the bid-ask spread is of order of tens of basis
points of implied volatility (≈ 1%). This means that in order to have errors
proportional to bid-ask spreads, one must minimize the differences of implied
volatilities and not those of the option prices. However, this method involves
many computational difficulties (numerical inversion of the Black-Scholes for-
mula at each minimization step). A feasible solution to this problem is to
minimize the squared differences of option prices weighted by squared Black-
Scholes “vegas”2 evaluated at the implied volatilities of the market option
prices, in view of the following approximation.

N∑
i=1

(I(Cθ(Ti,Ki)) − Ii)2 ≈
N∑
i=1

(
∂I

∂C
(Ii)(Cθ(Ti,Ki) − Ci)

)2

=
N∑
i=1

(Cθ(Ti,Ki) − Ci)2

Vega2(Ii)
,

where I(.) denotes the Black-Scholes implied volatility as a function of option
price and Ii denotes the market implied volatilities.

13.3 Regularization using relative entropy

The discussion of preceding section has made it clear that reformulating the
calibration problem as a nonlinear least squares problem does not resolve the
uniqueness and stability issues, even if the calibration is restricted to the class
of measures, equivalent to the prior: the inverse problem remains ill-posed. To
obtain a unique solution in a stable manner we must introduce a regularization
method [133]. One way to achieve this is to add to the least-squares criterion
(13.2) a penalization term and minimize the functional

J (θ) =
N∑
i=1

ωi|Cθ(Ti,Ki) − Ci|2 + αF (Qθ,P0) (13.3)

2Vega is the common name of the first derivative of Black-Scholes price with respect to
volatility.
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over the set of parameters θ that correspond to martingale measures equivalent
to the prior. The first role of the penalization term F is to ensure uniqueness
of solution. Indeed, if F is convex in θ then for α large enough the entire
functional J (θ) will be convex and the solution will be unique. Empirical
studies [96] show that for DAX option prices and nonparametric calibration
of Lévy measure uniqueness of solution is achieved already for α small enough
for calibration quality to be acceptable. The second role of F is to ensure
stability of solution. As a measure of closeness of the model Qθ to the prior
P0, it penalizes the models that are too far from the prior. In other words,
here we do not trust the data completely: to a model which reproduces option
prices exactly but is very far from the prior we prefer a model which has
slightly worse calibration quality but is more similar to the prior. This allows
to obtain a more stable solution of the calibration problem while remaining
within the same error bounds fixed by the bid-ask fork.

Many choices are possible for the penalization term (see [133]) but in this
setting it is particularly convenient to use the relative entropy or Kullback
Leibler distance E(Qθ|P0) of the the pricing measure Qθ with respect to the
prior model P0 (see Section 9.6).

The relative entropy has several interesting properties which make it a pop-
ular choice as a regularization criterion [133]. As explained in Section 9.6 it is
a convex functional of the Lévy measure, with a unique minimum correspond-
ing to the prior Lévy measure. The same is true in the parametric case, if
the Lévy measure is a convex function of the parameters. In other parametric
models, the relative entropy may no longer be a globally convex function of
the parameter vector, but if the parameterization is sufficiently well-behaved,
that is, if the Lévy measure depends on the parameters in a smooth way and
different parameter sets correspond to different Lévy measures, then the rela-
tive entropy will still have its global minimum at the prior and will be convex
in some neighborhood of this minimum. This means that one can still use it
as a penalization term. Figure 13.3 plots the relative entropy for the double
exponential model as a function of parameters c+ and λ+ the other ones being
fixed. Note the nice convex profile around the global minimum (dark region).

An important property of the relative entropy which makes it particularly
convenient for calibration is that it preserves absolute continuity of the cali-
brated measure Qθ with respect to the prior: if the Lévy measure approaches
zero at some point where the prior Lévy measure is nonzero, the gradient of
the relative entropy term becomes arbitrarily large and pushes it away from
zero. Using relative entropy as penalty function therefore guarantees that the
solution will be an equivalent martingale measure.

From the point of view of information theory, minimizing relative entropy
with respect to some prior measure corresponds to adding the least possible
amount of information to the prior in order to correctly reproduce observed
option prices. Finally, the relative entropy of Qθ with respect to P0 is a simple
function of the parameter vector θ: in the nonparametric case it is given by
(9.28) and (9.29) by a one-dimensional integration and for most parametric
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FIGURE 13.3: Relative entropy in Kou’s double exponential model as a
function of parameters cQ and λQ of the positive part of Lévy measure.

models it is explicitly computable.

Example 13.3 Relative entropy for double exponential model
If both P and Q are of double exponential type with Lévy measures of the

form (13.1), the relative entropy can be easily computed from Equation (9.28):

T−1E(Q|P) =
1

2σ2
(bQ − bP )2 +

cQ+

λQ+
ln
cQ+
cP+

− cQ+
λQ+ − λP+

(λQ+)2
+
cP+
λP+

− cQ+

λQ+

+
cQ−
λQ−

ln
cQ−
cP−

− cQ−
λQ− − λP−
(λQ−)2

+
cP−
λP−

− cQ−
λQ−

,

where bQ and bP are drifts of the two processes with respect to zero truncation
function.

The calibration problem now takes the form:

Calibration Problem 4 (Least squares calibration regularized by rel-
ative entropy)
Given a prior exponential-Lévy model P0 with characteristics (γ0, σ0, ν0), find
a parameter vector θ which minimizes

J (θ) =
N∑
i=1

ωi|Cθ(Ti,Ki) − Ci|2 + αH(θ), (13.4)

where H(θ) = E(Qθ|P0), relative entropy of the model (γ(θ), σ(θ), ν(θ)) with
respect to the prior.
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FIGURE 13.4: Lévy measure implied from DAX option prices by solving
Problem 4. The starting measure for both graphs is a Merton’s model (Gaus-
sian jumps); the jump intensity is initialized to 1 for the solid curve and to 5
for the dashed one.

In the discretized nonparametric case where θ corresponds to the entire Lévy
measure discretized on a grid, it was shown in [96] that Problem 4 always has
a finite solution that depends continuously on the input prices and converges
to the least squares solution with minimal entropy when α goes to zero. More-
over, for α large enough this solution is unique. Figure 13.4 shows the effect
of regularization on the calibration problem represented in Figure 13.1. The
calibrated measure is now little sensitive to the starting values of minimiza-
tion algorithm: for two very different initializers the calibrated measures are
quite similar. Notice also the smoothing effect of regularization on calibrated
measures.

Choice of the regularization parameter The functional (13.4) consists
of two parts: the relative entropy functional, which is convex (at least locally)
in its argument θ and the quadratic pricing error which measures the precision
of calibration. The coefficient α, called the regularization parameter defines
the relative importance of the two terms: it characterizes the trade-off between
prior knowledge of the Lévy measure and the information contained in option
prices. If α is large enough, the convexity properties of the entropy functional
stabilize the solution and when α→ 0, we recover the nonlinear least squares
criterion (13.2). Therefore the correct choice of α is important: it cannot be
fixed in advance but its “optimal” value depends on the data at hand and the
level of error present in it.

One way to achieve this trade-off is by using the Morozov discrepancy prin-
ciple [300, 134]. Assume that bid and ask price data are available. This means
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that we can measure the error on inputs by

ε0 = ||Cbid − Cask|| ≡
√∑

i

ωi|Cbid
i − Cask

i |2.

Since the “true” price lies somewhere between the bid price and the ask price
and not exactly in the middle, it is useless to calibrate the midmarket prices
exactly: we only need to calibrate them with the precision ε0. On the other
hand, by increasing α we improve the stability, so the best possible stability
for this precision is achieved by

α∗ = sup{α : ||Cθ(α) − Cmm|| ≤ ε0}, (13.5)

where θ(α) denotes the parameter vector found with a given value of α and
Cmm is the vector of midmarket prices. In practice ||Cθ(α) − Cmm|| is an
increasing function of α so the solution can be found by Newton’s or dichotomy
method with a few low-precision runs of the minimization routine.

What if the bid and ask quotes are not available? In this case a possible
solution is to use the model error as a proxy for the market error. To do so,
we first minimize the quadratic pricing error (13.2) without regularization.
The minimal least squares error level ε̂0 achieved by solving this optimization
problem can now be interpreted as a measure of model error: if ε̂0 = 0 then it
means that perfect calibration can be achieved but this almost never happens:
typically ε̂0 > 0 represents the “distance” of market to the model and gives an
a priori level of quadratic pricing error that one cannot really hope to improve
upon while staying in the same class of models. Note that here we only need
to find the minimal value of (13.2) and not to locate its minimum so a rough
estimate is sufficient and the presence of “flat” directions is not a problem.

The discrepancy principle in this setting consists in authorizing a maximum
error ε0 which is of the same order of magnitude as ε̂0 but slightly greater (we
must sacrifice some precision to gain stability). Then the optimal α can be
found as before by solving Equation (13.5). In practice taking ε0 = δε̂0 with
δ between 1.1 and 1.5 produces satisfactory results.

13.4 Numerical implementation

We will now show how the general ideas of the preceding sections can
be applied to the specific problem of nonparametric calibration of the (dis-
cretized) Lévy measure when the prior is a jump-diffusion model with com-
pound Poisson jumps and a nonzero diffusion component. We represent the
calibrated Lévy measure ν by discretizing it on a grid (xi, i = 0 . . . N) where
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xi = x0 + i∆x:

ν =
N∑
i=1

νiδ(x− xi). (13.6)

The grid must be uniform in order to use the FFT algorithm for option pric-
ing. This means that we effectively allow a fixed (but large) number of jump
sizes and calibrate the intensities of these jumps. The Lévy process is then
represented as a weighted sum of independent standard Poisson processes with
different intensities. The prior Lévy measure must also be discretized on the
same grid, for example, using the formula

νPi =
∫ xi+∆x

xi−∆x

νP (dx)

for the points x1, . . . , xN−1 and integrating up to infinity or minus infinity
for the points x0 and xN . The calibrated Lévy measure will of course be
equivalent to the discretized prior and not to the original one, but if the grid
is sufficiently fine, one can construct a good approximation of the continuous
case. There are four main steps in the numerical solution of the calibration
problem.

• Choice of the weights assigned to each option in the objective function.

• Choice of the prior measure P0.

• Choice of the regularization parameter α.

• Minimization of the functional (13.4) for given α and P0.

Since the first three steps have already been discussed, in this section we con-
centrate on the last one. The minimum of functional (13.4) is searched in
the space of discretized Lévy measures using a gradient descent method: a
possible choice is the L-BFGS-B routine written by Zhu, Byrd and Nocedal
[75]. Therefore, to find the minimum we must be able to compute the func-
tional itself and its gradient. To compute the functional, we first evaluate the
characteristic function of the calibrated Lévy process for a given maturity T
using the Lévy-Khinchin formula:

φT (v) = expT{−1
2
σ2v2 + ib(ν)v +

N∑
i=0

(eivxi − 1)νi}, (13.7)

where the drift b can be computed from ν using the martingale condition
(it will again be a finite sum). Notice that when the jump part is a sum of
Poisson processes the characteristic function can be evaluated exactly: this is
not an approximation. Using the Fast Fourier transform, the characteristic
function can be evaluated simultaneously at a large number of points. The
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second step is to evaluate option prices using formulae (11.19) and (11.20) of
Chapter 11. We recall these formulae from Chapter 11:

ζT (v) =
e−rTφT (v − i) − eivrT

iv(1 + iv)
,

zT (k) =
1
2π

∫ +∞

−∞
e−ivkζT (v)dv. (13.8)

Here zT (k) = e−rTE[(esT −ek)+]−(1−ek−rT )+ is the time value of the option.
Note that this time we need to approximate the Fourier integral (13.8) by a
finite sum in order to use the Fast Fourier transform. Notice that using only
two Fourier transforms, we are able to compute option prices for an arbitrary
number of strikes and a single maturity. This means that computing the
functional requires twice as many Fourier transforms as there are maturities
in the price sheet and this number is usually quite small. The entropy part of
the objective functional is easy to compute since it only contains one integral
which becomes a finite sum in our setting.

The essential step that we are going to discuss now is the computation of the
gradient of the functional to be minimized with respect to the discretized Lévy
measure νi. If we were to compute this gradient numerically, the complexity
would increase by a factor equal to the number of grid points. Fortunately,
some preliminary thought allows to develop a method to compute the gradient
of the option prices with only a two-fold increase of complexity compared
to computing prices alone. Due to this optimization, the execution time of
the program changes on average from several hours to about a minute on a
standard PC. We will now show how to compute the derivative of option price
with respect to a discretized variable νi.

First observe that the derivative of option price with respect to νi is equal
to the derivative of zT . Direct computation shows that

∂ζT (v)
∂νj

=
Te−rTφT (v − i)

iv(1 + iv)
{
iv(1 − exj ) + exj (eivxj − 1)

}
=

T (1−exj )e−rT
φT (v − i)

1 + iv
+TexjeivxjζT (v)−TexjζT (v)+TexjeivrT

eivxj−1

iv(1 + iv)
.

Computing the Fourier transform term by term yields:

∂zT (k)
∂νj

= T (1 − exj )e−rT
1
2π

∫ ∞

−∞
eivk

φT (v − i)
1 + iv

+ Texj{zT (k − xj) + (1 − ek−xj−rT )+ − zT (k) − (1 − ek−rT )+}

= T (1 − exj )e−rT
1
2π

∫ ∞

−∞
eivk

φT (v − i)
1 + iv

+ Texj{CT (k − xj) − CT (k)}.

Therefore, the gradient may be represented in terms of the option price and
one auxiliary function. Since we are using FFT to compute option prices
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for the whole price sheet, we already know these prices for the whole range
of strikes. As the auxiliary function will also be computed using the FFT
algorithm, the computational time will only increase by a factor of two. The
computation of the gradient of entropy term of the objective functional is
straightforward and we do not dwell on it [96].

Here is the final calibration algorithm as implemented in the numerical
examples of the next section.

1. Choose the prior. Since we did not use the historical price data, we
chose the prior by calibrating a simple auxiliary jump-diffusion model
(Merton model) to option prices to obtain an estimate of volatility σ0

and a candidate for the prior Lévy measure ν0.

2. Compute the implied volatilities and vegas corresponding to market
option prices and choose the weights ωi.

3. Fix σ = σ0 and run least squares (α = 0) using gradient descent method
with low precision to get estimate of “model error”

ε̂20 = inf
ν

N∑
i=1

ωi|Cσ,νi − Ci|2.

4. Compute the optimal regularization parameter α∗ to achieve trade-off
between precision and stability using the a posteriori method described
at the end of Section 13.3:

ε2(α∗) =
N∑
i=1

ωi|Cσ,ν(α
�)

i − C∗
i |2 � ε̂20. (13.9)

The optimal α∗ is found by running the gradient descent method (BFGS)
several times with low precision.

5. Solve variational problem for J (ν) with α∗ by gradient-based method
(BFGS) with high precision.

13.5 Numerical results

In order to assess the performance of the algorithms described above, we
will first examine their performance on artificial data sets of “option prices”
simulated from a given exponential-Lévy model. Then, we will apply the
regularized algorithm to empirical data sets of index options and examine the
implied Lévy measures thus obtained.
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FIGURE 13.5: Left: Implied Lévy measure calibrated to option prices
simulated from Kou’s jump-diffusion model with σ0 = 10%. σ has been
calibrated in a separate step (σ = 10.5%). Right: Calibration accuracy. The
solid line corresponds to calibrated implied volatilities and crosses correspond
to the true ones.

13.5.1 Tests on simulated data

Figure 13.5 shows the results of nonparametric calibration of Lévy measure
to simulated option prices. A data set of option prices was generated using
Kou’s jump-diffusion model (with double exponential jump size distribution)
with a diffusion part σ0 = 10% and a continuous Lévy density

ν(x) = c(e−λ+x1x>0 + e−λ−|x|1x<0). (13.10)

The density was taken asymmetric with the left tail heavier than the right
one (λ− = 1/0.07 and λ+ = 1/0.13) and the constant c was chosen to have
the jump intensity equal to 1. The fast Fourier pricer was used to generate
prices of 21 options with maturity 5 weeks and equidistant strikes ranging
from 6 to 14 (the spot being at 10). The calibration algorithm with Merton’s
model as prior was then applied to this simulated price sheet. The right
graph in Figure 13.5 compares the implied volatilities of calibrated option
prices (solid line) to the true (simulated) implied volatilities (crosses). With
only 21 options the accuracy of calibration is already quite satisfactory. The
left graph compares the nonparametric reconstruction of the Lévy density to
the true double exponential density. The main features of the true density are
successfully reconstructed with the nonparametric approach. The only region
in which we observe a detectable error is near zero. This is due to the fact
that the volatility of the prior was automatically fixed by the algorithm at a
level slightly greater than the true one. The redundancy of small jumps and
diffusion component is well known in the context of statistical estimation on
time series [45, 276]. Here we retrieve another version of this redundancy in
a context of calibration to a cross-sectional data set of options.
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FIGURE 13.6: Left: Market implied volatilities for DAX options com-
pared with model implied volatilities. Each maturity has been calibrated
separately. Right: Implied Lévy measures.

13.5.2 Empirical result: single maturity

Figure 13.6 presents the result of calibration of Lévy measures to options
on DAX index traded on the German stock exchange. Here each maturity
has been calibrated separately. The left graph shows the calibration accuracy
for three different maturities: clearly the model allows to reproduce a single
maturity quite well. The right graph shows the corresponding implied Lévy
measures which share the following features:

• The calibrated measures are strongly asymmetric; the left tail is much
heavier than the right one.

• The calibrated measures are bimodal with one mode at zero and another
one corresponding to large negative jump, whose magnitude becomes
larger as the maturity increases.

• The intensities of calibrated measures are quite small; note however that
these are risk-neutral intensities and that jump intensity of a compound
Poisson process is not preserved under equivalent measure changes.

Figure 13.7 shows the Lévy measures calibrated to options of roughly the
same maturity but at different calendar dates. The exact form of the density
changes but its qualitative behavior remains the same.

13.5.3 Empirical results: several maturities

We have seen that time homogeneous jump-diffusion (exponential-Lévy)
models can calibrate an implied volatility smile for a single maturity quite
accurately. Unfortunately, due to the independence and stationarity of their
increments these models perform poorly when calibrating several maturities
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FIGURE 13.7: Stability of calibration over calendar dates. Implied Lévy
measures have been calibrated at different dates for shortest (left) and second
shortest (right) maturity.

at the same time: the implied volatility smile in exponential-Lévy models flat-
tens too quickly with maturity. Figure 13.8 depicts a market implied volatility
surface for DAX options. This surface flattens out as the maturity grows but
even for the last maturity it is still quite skewed. In the left graph of Fig-
ure 13.9 the implied volatilities have been computed for an exponential-Lévy
model calibrated to the first market maturity. The implied volatility smile
generated by the model flattens out too rapidly compared to the market data.
In the right graph the model was calibrated to the last maturity and we ob-
serve the same effect working in the opposite direction: this time the smile
is too skewed and ATM volatility is too low for the first maturity. These
remarks suggest that to reproduce the term structure of implied volatility
correctly we have to relax either stationarity or independence of increments.
Additive processes, which are time inhomogeneous extensions of Lévy pro-
cesses, are discussed in Chapter 14. Stochastic volatility models with jumps,
where increments are no longer independent, are discussed in Chapter 15.

Further reading

Empirical evidence in option prices for the presence of jumps is discussed
in [40, 43, 85] and [96]. Nonlinear least squares methods are used to calibrate
jump-diffusion models in [8] and stochastic volatility models with jumps in
[41]. Nonparametric calibration methods for jump-diffusion models based on
relative entropy minimization were introduced in [96]. The ill-posed nature
of model calibration problems has been progressively recognized in various
contexts. Ill-posed inverse problems are an active topic of research in applied
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FIGURE 13.9: Implied volatilities for all maturities were computed, using
the implied Lévy measure calibrated to the first maturity (left graph) and the
last maturity (right graph).

mathematics. Regularization methods for ill-posed inverse problems are dis-
cussed in [133, 134]. The use of (relative) entropy for model selection in finance
was initiated by Stutzer [371] and Avellaneda [14, 13, 15] in the framework
of discrete state spaces. Calibration of jump-diffusion and exponential-Lévy
models by relative entropy minimization is discussed in [96]. An updated list
of references on calibration methods for option pricing models may be found
at:

http://www.cmap.polytechnique.fr/˜rama/dea/
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Chapter 14

Time inhomogeneous jump pro cesses

The sciences do not try to explain, they hardly even try to interpret, they
mainly make mo dels. By a mo del is meant a mathematical construct
which, with the addition of certain verbal interpretations, describ es ob-
served phenomena. The justification of such a mathematical construct is
solely and precisely that it is exp ected to work.

John von Neumann

While Lévy processes offer nice features in terms of analytical tractability,
the constraints of independence and stationarity of their increments prove
to be rather restrictive. On one hand, in Chapter 7 we have seen that the
stationarity of increments of Lévy processes leads to rigid scaling properties
for marginal distributions of returns, which are not observed in empirical
time series of returns. On the other hand from the point of view of risk
neutral modelling, we have observed in Chapter 13 that exponential-Lévy
models allow to calibrate to implied volatility patterns for a single maturity
but fail to reproduce option prices correctly over a range of different maturi-
ties. Both problems are due to the fact that exponential-Lévy models do not
allow for time inhomogeneity. In this chapter we discuss the class of expo-
nential additive models, which represent the risk-neutral dynamics of an asset
as St = S0 expXt, where X is a process with independent but not stationary
increments, called an additive process. We will see that this generalization al-
lows to take into account deterministic time inhomogeneities: the parameters
describing local behavior will now be time dependent but nonrandom. The
main advantage of this approach is that it allows to preserve almost all the
tractability of Lévy processes while enabling us to reproduce the whole range
of option prices across strikes and maturities.
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14.1 Additive processes

Additive processes are obtained from Lévy processes by relaxing the condi-
tion of stationarity of increments.

DEFINITION 14.1 Additive process A stochastic process (Xt)t≥0 on
R

d is called an additive process if it is cadlag, satisfies X0 = 0 and has the
following properties:

1. Independent increments: for every increasing sequence of times t0 . . . tn,
the random variables Xt0 ,Xt1 −Xt0 , . . . , Xtn

−Xtn−1 are independent.

2. Stochastic continuity: ∀ε > 0, P[|Xt+h −Xt| ≥ ε] →
h→0

0.

Before discussing generalizations of the Lévy-Khinchin formula for additive
processes, we give some simple examples illustrating this notion.

Example 14.1 Brownian motion with time dependent volatility
Let (Wt)t≥0 be a standard Brownian motion on R, σ(t) : R

+ → R
+ be a

measurable function such that
∫ t

0
σ2(s)ds <∞ for all t > 0 and b(t) : R

+ → R

be a continuous function. Then the process

Xt = b(t) +
∫ t

0

σ(s)dWs (14.1)

is an additive process. In fact, all one-dimensional continuous additive pro-
cesses have this form.

Example 14.2 Cox process with deterministic intensity
Let λ(t) : R

+ → R
+ be a positive measurable function such that Λ(t) =∫ t

0
λ(s)ds <∞ for all t and let M be a Poisson random measure on R

+ with
intensity measure µ(A) =

∫
A
λ(s)ds for all A ∈ B(R+). Then the process

(Xt)t≥0 defined path by path via

Xt(ω) =
∫ t

0

M(ω, ds) (14.2)

is an additive process. It can also be represented as a time changed Poisson
process: if (Nt)t≥0 is a standard Poisson process and

X ′
t(ω) = NΛ(t)(ω) (14.3)

then (X ′
t)t≥0 and (Xt)t≥0 have the same law. The independent increments

property now follows from properties of Poisson random measures and conti-
nuity of probability is a consequence of the continuity of time change. This
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process can be seen as a Poisson process with time dependent intensity λ(t):
the probability of having a jump between t and t+ ∆ is given by λ∆ + o(∆)..
It is an example of a Cox process, which is a generalization of the Poisson
process allowing for stochastic intensity [235]. Λ(t) is sometimes called the
hazard function and λ(t) the hazard rate.

The sum of two independent additive processes is obviously an additive
process. Adding the two examples above we get a model frequently used in
option pricing applications:

Example 14.3 Time inhomogeneous jump-diffusion
Given positive functions σ : R+ → R

+, λ : R+ → R
+ as above and a sequence

of independent random variables (Yi) with distribution F the process defined
by

Xt =
∫ t

0

σ(s)dWs +
NΛ(t)∑
i=1

Yi (14.4)

is an additive process.

More generally, in the same way that Lévy processes are superpositions of
a Brownian motion and independent (compensated) Poisson processes (see
Chapter 3), we will see that any additive processes can be represented as a
superposition of independent processes of type (14.2) and (14.1).

Example 14.4 Lévy process with deterministic volatility
Extending Example 14.1, we now consider Lévy processes with time dependent
volatility. Consider a continuous function σ(t) : R

+ → R
+. Let (Lt)t≥0 be a

Lévy process on R. Then

Xt =
∫ t

0

σ(s)dLs (14.5)

is an additive process: the independent increments property is straightfor-
ward, and to show that X is continuous in probability, one way is to decom-
pose L into a sum of a compound Poisson process incorporating big jumps
and the residual process having only jumps of size smaller than one. Then
the integral with respect to compound Poisson part can be easily shown to
be continuous in probability and the rest can be shown to be L2-continuous
hence also continuous in probability.

Example 14.5 Time changed Lévy process
In Example 14.2, we have constructed an additive process by applying a con-
tinuous deterministic time change to a standard Poisson process. This method
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can be generalized to arbitrary Lévy process. Let (Lt)t≥0 be a Lévy process
on R

d and let v(t) : R
+ → R

+ be a continuous increasing function such that
v(0) = 0. Then the process (Xt)t≥0 defined path by path via

Xt(ω) = Lv(t)(ω) (14.6)

is an additive process. This follows from independent increments property of
L and the continuity of time change.

The last three examples are already sufficiently rich and can be used to
construct flexible parametric models, based on additive processes, for option
pricing. The exact form of the volatility function or the time change can then
be adjusted to reproduce the term structure of option prices while the driving
Lévy process L can be chosen to calibrate the smile (see below).

In all the above examples Xt has an infinitely divisible distribution for all
t. This is a general property of additive processes [345, Theorem 9.1.]: for
any t, the characteristic function of Xt has a Lévy-Khinchin representation:

E[exp(iu.Xt)] = expψt(u) with (14.7)

ψt(u) = −1
2
u.Atu+ iu.Γt +

∫
Rd

µt(dx)(eiu.x − 1 − iu.x1|x|≤1),

where, as usual, At is a positive definite d×d matrix and µt is a Lévy measure,
that is, a positive measure on R

d satisfying
∫

Rd(|x|2 ∧ 1)µt(dx) < ∞. Note
that, unlike the case of Lévy processes, ψt(u) is not linear in t anymore. In a
model where Xt = ln(St/S0) describes the log-return, the triplet (At, µt,Γ(t))
completely describes the distribution of the asset at time t, as viewed from
t = 0: we will call (At, µt,Γ(t)) the spot characteristics of X.

Similarly, for any t > s, Xt − Xs is a sum of infinitely divisible random
variables therefore infinitely divisible. Independence of increments implies the
following relation between the characteristic functions of Xs, Xt and Xt−Xs:

φXs
(u)φXt−Xs

(u) = φXt
(u). (14.8)

The characteristic function of Xt −Xs can therefore be written as:

E[exp(iu.(Xt −Xs))] = expψt
s(u) where (14.9)

ψt
s(u) = −1

2
u.(At −As)u+ iu.(Γt − Γs)

+
∫

Rd

(µt(dx) − µs(dx))(eiu.x − 1 − iu.x1|x|≤1).

If At − As is a positive matrix and µt − µs a Lévy measure (therefore a
positive measure), the above equation is none other than the Lévy-Khinchin
representation of Xt − Xs, which has therefore characteristic triplet (At −
As, µt−µs,Γt−Γs). The triplet (At−As, µt−µs,Γt−Γs) completely describes
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the distribution of the increments on [s, t] and we will call it the forward Lévy
triplet associated to the dates (s, t). The positiveness of At −As, µt − µs for
each t ≥ s, which was used to define the forward characteristics, means that
the spot volatility At and the spot Lévy measure µt should increase with t.

Conversely, when does a set of spot characteristics, (At, µt,Γ(t))t≥0, specify
an additive process? The following result shows that the positiveness of for-
ward characteristics plus a continuity condition on spot characteristics suffice:

THEOREM 14.1 (see Sato [345], Theorems 9.1–9.8)
Let (Xt)t≥0 be an additive process on R

d. Then Xt has infinitely divisible
distribution for all t. The law of (Xt)t≥0 is uniquely determined by its spot
characteristics (At, µt,Γt)t≥0:

E[exp(iu.Xt)] = expψt(u) where (14.10)

ψt(u) = −1
2
u.Atu+ iu.Γt +

∫
Rd

νt(dx)(eiu.x − 1 − iu.x1|x|≤1).

The spot characteristics (At, µt,Γt)t≥0 satisfy the following conditions

1. For all t, At is a positive definite d × d matrix and µt is a positive
measure on R

d satisfying µt({0}) = 0 and
∫

Rd(|x|2 ∧ 1)µt(dx) <∞.

2. Positiveness: A0 = 0, ν0 = 0, γ0 = 0 and for all s, t such that s ≤ t,
At −As is a positive definite matrix and µt(B) ≥ µs(B) for all measur-
able sets B ∈ B(Rd).

3. Continuity: if s → t then As → At, Γs → Γt and µs(B) → µt(B) for
all B ∈ B(Rd) such that B ⊂ {x : |x| ≥ ε} for some ε > 0.

Conversely, for family of triplets (At, µt,Γt)t≥0 satisfying the conditions (1),
(2) and (3) above there exists an additive process (Xt)t≥0 with (At, µt,Γt)t≥0

as spot characteristics.

Examples of spot characteristics (At, µt,Γt)t∈[0,T ] verifying these conditions
can be constructed in the following way: consider

• A continuous, matrix valued function σ : [0, T ] → Md×n(R) such that
σ(t) is symmetric and verifies

∫ T

0
σ2(t)dt <∞.

• A family (νt)t∈[0,T ] of Lévy measures verifying

∫ T

0

dt

∫
(1 ∧ |x|2)νt(dx) <∞.

• A deterministic function with finite variation (e.g., a piecewise continu-
ous function) γ : [0, T ] → R.
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Then the spot characteristics (At, µt,Γt)t∈[0,T ] defined by

At =
∫ t

0

σ2(s)ds, (14.11)

µt(B) =
∫ t

0

νs(B)ds ∀B ∈ B(Rd), (14.12)

Γ(t) =
∫ t

0

γ(s)ds, (14.13)

satisfy the conditions (1), (2) and (3) and therefore define a unique additive
process (Xt)t∈[0,T ] with spot characteristics (At, µt,Γt)t∈[0,T ]. (σ2(t), νt, γ(t))
are called local characteristics of the additive process.

Example 14.6
In Example 14.4, assume that the jumps sizes Yi verify |Yi | ≤ 1. Then the
local characteristics are given by

(σ2(t), λ(t)F, λ(t)E[Y1]).

Not all additive processes can be parameterized in this way, but we will
assume this parameterization in terms of local characteristics in the rest of
this chapter. In particular, the assumptions above on the local characteristics
imply that X is a semimartingale which will allow us to apply the Itô formula
(see below).

REMARK 14.1 Let (Xt)t≥0 be a Lévy process with characteristic triplet
(A, ν, γ). It is also an additive process, with spot characteristics given by
(At = tA, µt = tν,Γt = tγ)t≥0, forward characteristics on [s, t] given by
((t− s)A, (t− s)ν, (t− s)γ) and local characteristics given by (A, ν, γ).

Sample paths of additive processes The local characteristics of an addi-
tive process enable to describe the structure of its sample paths: the positions
and sizes of jumps of (Xt)t∈[0,T ] are described by a Poisson random measure
on [0, T ] × R

d

JX =
∑

t∈[0,T ]

δ(t,∆Xt) (14.14)

with (time inhomogeneous) intensity given by νt(dx)dt:

E[JX([t1, t2] ×A)] = µT ([t1, t2] ×A) =
∫ t2

t1

νt(A)dt. (14.15)
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The compensated version J̃X can therefore be defined by: J̃X(dt dx) =
JX(dt dx) − νt(dx)dt. In terms of this Poisson random measure, the addi-
tive process Xt satisfy a generalized version of Lévy-Itô decomposition [345]
of which we give the one-dimensional version:

Xt = Γt +
∫ t

0

σ(s)dWs +
∫

s∈(0,t],|x|≥1

xJX(ds× dx)

+
∫

s∈(0,t],0<|x|<1

xJ̃X(ds× dx), (14.16)

where (Wt)t≥0 is a standard Wiener process, JX is a Poisson random measure
on [0, T ]×R with intensity measure νt(dx)dt and the terms in the decomposi-
tion are independent. This decomposition shows that X is a semimartingale.
Using the results of Section 8.2, we can compute its quadratic variation [X,X]:

[X,X]t =
∫ t

0

σ(s)2ds+
∫

s∈(0,t],|x|≥1

x2JX(ds× dx)

=
∫ t

0

σ(s)2ds+
∑

s∈(0,t]

|∆Xs|2.

Additive processes as Markov processes Due to the independence of
their increments, additive processes are spatially (but not temporally) homo-
geneous Markov processes.

Consider an additive process (Xt)t∈[0,T ] described by the local character-
istics (σ2(t), νt, γ(t)). The family of transition operators (Ps,t)0≤s≤t defined
by:

Ps,tf(x) ≡ E[f(Xt)|Xs = x] = E[f(Xt −Xs + x)]

is described by the forward characteristics of X. Let C0 be the set of continu-
ous functions, vanishing at infinity and C2

0 be the set of functions f such that
f, f ′ and f ′′ are in C0. By analogy with the case of Lévy processes, one can
define an infinitesimal generator:

Ltf(x) =
1
2
σ2(t)

∂2f

∂x2
+γ(t)

∂f

∂x
+
∫

R

νt(dy)[f(x+y)−f(x)−y ∂f
∂x

(x)1{|y|≤1}]

for f ∈ C2
0 . Since X is a semimartingale, we can apply the Itô formula

(Proposition 8.19) to f(Xt):

f(Xt) = f(0) +
∫ t

0

Lsf(Xs)ds+Mt, (14.17)
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where

Mt =
∫ t

0

f ′(Xs)dWs

+
∫

R×(0,t]

{f(Xs− + x) − f(Xs−)}{JX(dx× ds) − νs(dx)ds} (14.18)

is a martingale for every f ∈ C2
0 . Formula (14.17) implies that

E{f(Xt)} = f(0) + E

{∫ t

0

Lsf(Xs)ds
}
. (14.19)

This is already the key result that we need to price exotic options. It can also
be used to prove that

Ltf(x) = lim
s↓0

Pt,t+sf(x) − f(x)
s

(14.20)

for every f ∈ C2
0 .

14.2 Exponential additive models

In exponential additive models, the risk-neutral dynamics of an asset price
is given by St = exp(rt+Xt), where (Xt)t≥0 is an additive process such that
(eXt)t≥0 is a martingale. By Proposition 3.17, the characteristic function of
X must then satisfy φt(−i) = 1 which implies the following conditions on the
spot characteristics:

∀t,
∫
|y|>1

µt(dy)ey <∞ and

Γt = −At

2
−
∫

(ey − 1 − y1|y|≤1)µt(dy). (14.21)

Equivalently, the discounted price (Ste
−rt) = (exp(Xt))t≥0 is a martingale if

and only if the local characteristics satisfy the following conditions:∫
|y|>1

νt(dy)ey is integrable in t and (14.22)

γt = −σ
2
t

2
−
∫

(ey − 1 − y1|y|≤1)νt(dy),

where the last inequality holds dt-almost everywhere.
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14.2.1 Option pricing in risk-neutral exp-additive models

European options The price at time t = 0 of a European call with matu-
rity T , and strike K is

C0(S, T,K) = e−rTE[(SerT+XT −K)+]. (14.23)

The price is determined by the spot characteristics (AT , νT , γT ). Since XT is
infinitely divisible with triplet (AT , νT , γT ), we come to the conclusion:

PROPOSITION 14.1
The price of a European option with maturity T in an exp-additive model

with spot characteristics (At, µt,Γt)t≥0 is equal to the price of the same
option in an exp-Lévy model with characteristic triplet (AT /T, µT /T,ΓT /T ).

The pricing methods and algorithms developed for exp-Lévy models (e.g.,
Fourier methods discussed in Section 11.1) can therefore be used without
modification for exp-additive models.

Forward start options A forward start call1 starting at T1 and maturing
at T2 has payoff at expiry given by

H = (ST2 −mST1)
+ = (SerT2+XT2 −mSerT1+XT1 )+

= SerT1+XT1 (er(T2−T1)+XT2−XT1 −m)+,

where m is the proportion of ST1 at which the strike of the option is fixed at
date T1. Using the independent increments property of X we can compute
the price of this option at date 0:

P0 = e−rT2E[H] = Se−r(T2−T1)E[er(T2−T1)+XT2−XT1 −m)+]. (14.24)

The price of a forward start option is thus determined by the forward char-
acteristics (AT2 − AT1 , µT2 − µT1,ΓT2 − ΓT1). More precisely, we have the
following result:

1See Section 11.2.
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PROPOSITION 14.2 Forward start options in exp-additive mod-
els
The price of a forward start call starting at T1 and expiring at T2 in an

exp-additive model with spot characteristics (At, µt,Γt)t≥0 is equal to the
price of a European call with the same moneyness and maturity T2 − T1 in
an exp-Lévy model with characteristic triplet(

AT2 −AT1

T2 − T1
,
µT2 − µT1

T2 − T1
,
ΓT2 − ΓT1

T2 − T1

)
. (14.25)

Note that today’s price of this forward start option is also equal to the
future price (at T1) of a European option with maturity T2. This implies that
the future smile is completely determined by today’s forward smile hence also
by today’s smile. This sheds light on an important drawback of exponential
additive models: having observed the smile today for all strikes and maturities,
we know option prices at all future dates. This means that the evolution of
smile as a whole is completely deterministic and does not depend on any
market parameters. Therefore, influence of new information on the dynamics
of smile cannot be incorporated.

Path dependent options Since path dependent options are not only sen-
sitive to the terminal distribution of the process but to the whole path,
their pricing in exp-additive models cannot be completely reduced to the
exp-Lévy case but the key methods are not much different. The value of
path-dependent option with maturity T depends on the local characteristics
(σ(t), νt, γ(t))t∈[0,T ] and not only on spot characteristics for the maturity T .
As an example consider the pricing of an up-and-out option with payoff at
maturity

(ST −K)+1sup[0,T ] Xt<B . (14.26)

Then the payoff may be represented as

H(XT∧Tb
) where Tb = inf{t : St ≥ B}

and H(S) = (S −K)+1S>B . (14.27)

Following the lines of Proposition 12.2 we can show that the value UOC(t)
is given by UOC(t) = C(t, St) where C : [0, T ] × [0,∞[ is a solution of the
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following boundary value problem involving the local characteristics: ν.

∀(t, S) ∈ [0, T ]×]0,∞[,
∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2(t)S2

2
∂2C

∂S2
(t, S) − rC(t, S)

+
∫
νt(dy)[C(t, Sey) − C(t, S) − S(ey − 1)

∂C

∂S
(t, S)] = 0, (14.28)

∀S ∈]0, B[, C(t = T, S) = (S −K)+, (14.29)
∀S ≥ B, ∀t ∈ [0, T ] C(t, S) = 0. (14.30)

Such partial integro-differential equations can then be solved numerically us-
ing the numerical methods presented in Chapter 12, in particular the finite
difference method described in Section 12.4.

14.2.2 Calibration to option prices

In view of Proposition 14.1, the problem of calibrating spot characteris-
tics of an additive process for one maturity to prices of European options for
this maturity is equivalent to that of calibrating the characteristics of a Lévy
process to the same options. However, the distribution of a Lévy process is
completely determined by its marginal distribution at one fixed time. This
means that if we know sufficiently many option prices for one maturity, we
can calibrate an exponential-Lévy model. For an exponential additive model
this is no longer the case: the distribution of the process is no longer de-
termined by the marginal distribution at one fixed time. This gives us the
necessary freedom to calibrate several maturities simultaneously, which was
hardly possible in exponential-Lévy models.

Given a set of option prices with maturities Ti, i = 1 . . .m and an exist-
ing calibration algorithm for exponential-Lévy models (parametric or non-
parametric), the simplest way to calibrate an exp-additive model is to cal-
ibrate spot characteristics separately for each maturity using the algorithm
for exponential-Lévy models (see Chapter 13). If the calibrated spot charac-
teristics satisfy the positiveness conditions of Proposition 14.1 — the forward
characteristics must be positive — then we are done, the spot characteristics
for different maturities that we have calibrated can correspond to a single
additive process. If not, the following algorithm could be used.

ALGORITHM 14.1 Calibration of exp-additive models to option
prices
Calibration of spot characteristics (ATi

, νTi
, γTi

)i=1...m to option data with
maturities T1, . . . , Tm.

• Calibrate the spot characteristics for the first maturity (AT1 , µT1 ,ΓT1)
using the existing calibration method for exp-Lévy models.
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• For maturities T2, . . . , Tm calibrate the n-th triplet using the calibra-
tion algorithm for exp-Lévy models under the positiveness constraints:
ATn

≥ ATn−1 and µTn
(B) ≥ µTn−1(B) for al l B ∈ B(R).

These constraints are linear and typically simple to implement, both in
parametric and in nonparametric models. If the Lévy measures have a density
µt(x) then the inequalities become µTn

(x) ≥ µTn−1(x). In a nonparametric
calibration algorithm as the one describes in Chapter 13, where µTn

is dis-
cretized on a grid, the positiveness constraints amount to a finite number of
linear inequalities, one for each grid point.

This algorithm gives a set of spot characteristics on the discrete tenor (Ti)
that respects the positiveness constraints. To determine the process com-
pletely, we must somehow interpolate the spot characteristics between ma-
turity dates and extrapolate them outside the interval [T1, Tm]. Making the
additional assumption that the local characteristics are piecewise constant,
we obtain the following result:

σ2(t) =
AT1

T1
, t ≤ T1; σ2(t) =

ATi+1 −ATi

Ti+1 − Ti
, t ∈]Ti, Ti+1]. (14.31)

νt =
µT1

T1
, t ≤ T1; νt =

µTi+1 − µTi

Ti+1 − Ti
, t ∈ (Ti, Ti+1].

Local characteristics for t > Tm can be taken equal to those on the interval
]Tm−1, Tm].

Figure 14.1 shows the results of calibrating a nonparametric exponential
additive model to prices of DAX options for three different maturities. The
intensity of spot measures changes roughly proportionally to time to maturity,
which would be the case in an exponential-Lévy model. However, the shape
of Lévy density does not remain constant: as time to maturity increases, the
Lévy densities spread out, reflecting the fear of larger jumps for options with
longer times to maturity. This effect clearly rejects the Lévy hypothesis (be-
cause the shape of Lévy density is maturity-dependent). In these graphs, the
volatility parameter was allowed to change in order to obtain maximum sim-
ilarity between Lévy measures. Despite this, the calibrated densities are very
different. This shows that time dependence in volatility alone is not sufficient
to explain the smile, the Lévy measure must also vary. The calibration method
above allows to extract a set of implied forward Lévy triplets and can be used
to test the adequacy of additive processes for modelling risk-neutral dynamics
of an asset, based on option prices. We have applied here this method to
DAX option prices; observations based on this data are summarized up in
Table 14.1.
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TABLE 14.1: Testing time homogeneity of risk-neutral dynamics
using option prices

Hypothesis Compatible with
observed option
prices?

(Xt) is an additive process Yes

At = σ2t (local volatility does not depend on
time)

Yes

(Xt) is a Lévy process No

νt = tν (local Lévy measure does not depend
on time)

No

νt = λ(t)ν (local Lévy measure depends on
time only through intensity)

No

14.3 Exp-additive models vs. local volatility models

Additive processes allow, almost by definition, to reproduce option prices
over a wide range of strikes and maturities. This happens because distribu-
tions of an additive process at different times, unlike those of a Lévy process,
are only weakly linked to each other; knowledge of option prices for one ma-
turity imposes almost no constraints on other maturities. This is a very nice
and interesting property: indeed, additive processes provide a mathematically
tractable framework to construct models with jumps that can reproduce the
entire two-dimensional surface of implied volatility smile. In this respect they
are comparable to local volatility models [122, 112] where the risk-neutral
dynamics of the asset is given by a Markov diffusion:

dSt

St
= rdt+ σ(t, St)dWt. (14.32)

Local volatility models are also capable to reproducing an arbitrary profile of
implied volatilities across strikes and maturities. However, by contrast with
local volatility models where computing forward smiles or pricing forward
start options can be quite difficult, additive models are sufficiently simple to
allow many analytical computations and where analytical computations are
not possible, numerical methods (such as fast Fourier transforms) developed
for exponential-Lévy models can be used without any modification. As in the
case of local volatility models, this simplicity comes at the price of a strong
nonstationarity of exp-additive models. The high precision of calibration to
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FIGURE 14.1: Left: Lévy measures, normalized by time to maturity, cal-
ibrated to DAX options of maturities T = 8, 71, 225 days with σ allowed
to vary for maximum similarity between Lévy measures. Right: Spot Lévy
measures for the same maturities.

option prices at a given date is achieved by introducing explicit time depen-
dence into the characteristic triplet and especially the jumps. This may lead
to an unrealistic forms for forward and future smiles. On one hand, due to
independence of increments of an additive process, all future smiles are locked
in by today’s option prices: all forward smiles can be computed from today’s
(spot) implied volatility surface. On the other hand, due to non-stationarity
of the model, forward smiles may not have the right shape.

More precisely, in an exponential additive model, the price at time T1 of
an option expiring at time T2 will be equal to today’s price of a forward start
option starting at T1 and expiring at T2. This means that today’s forward
smile will become spot smile in the future. Since today’s forward smile can
be computed from today’s spot smile, this means that all future smiles are
completely determined by option prices (for all maturities) on a given date.
Thus, these models do not allow for the arrival of new information between
today and tomorrow: the future smiles are completely predicted. No wonder
that this prediction does not seem to work too well on calibrated measures.
Spot measures for a given time to maturity are more or less stationary (see
Figure 13.7 in Chapter 13) and they are always different from corresponding
forward measures: the latter have more mass in the tails and less mass in the
center (see Figure 14.2).

To summarize, exponential additive models have enough degrees of free-
dom to reproduce implied volatility patterns across strike and maturity. The
calibration algorithm described above translates implied volatility skews and
term structures into forward Lévy triplets which can then be interpolated
to give implied diffusion coefficients and implied Lévy measures and used to
price path-dependent options. However the performance of exponential addi-
tive models across time is not as good as their cross-sectional performance,
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FIGURE 14.2: Comparison of a forward Lévy measure on June 13, 2001
(options starting in one month with maturity two months) to the spot Lévy
measure on July 13, 2001 for options with the same maturity date.

because the predicted forward Lévy measures are too different from spot Lévy
measures and because the evolution of implied volatility smile is deterministic.
But additive processes go as far as one can go with independent increments.
To construct models with a more stable performance across time one should
relax the hypothesis of independence of increments to improve smile dynam-
ics and gain more stationarity: this provides a motivation for the stochastic
volatility models discussed in the next chapter.

Further reading

A thorough treatment of Poisson processes with generalizations to time in-
homogeneous case and to Cox processes is given in Kingman [235]. Additive
processes were introduced by Paul Lévy [252, 260]. Their properties are stud-
ied in the monograph by Sato [345] and their relation to semimartingales is
discussed in [215].

Poisson processes with stochastic intensity, called Cox processes, have many
applications especially in insurance and credit risk modelling [246] which are
beyond the scope of this book. Cox processes have also been used for modelling
high-frequency transaction data, in particular to accommodate the empirical
features of durations between consecutive trades, see [135, 342, 343].
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In diffusion-based stochastic volatility models, review@ in:S&ion 15.1, at 
is also driven by a Brownian motion, which can be correlated with Wt. Such 
models do account for volatility clustering, dependence in increments and long 
term smiles w d  skewa, but cannot geuerate jumps nor cantthey give rise to 
realistic short-tkrm hblied volatility patterns. ~ k e r m o r e ,  ihe positiveness 
of at requires to use a nonlinear diffusion: an example is the CIRLs upe root 
process, discussed in Section 15.1.2, which drives the Heston model 't 1961. 

These shortcomings can be overcome by introducing jumps in these models. 
Jumps can be added in stochastic volatility models in two ways: in the returns 
and in the evolution of volatility. Adding an independent jump component to 
the returns of a diffusion-based stochastic volatility model improves the short- 
maturity behavior of implied volatility without deteriorating long-term smiles: 
an example of this approach is illu'htrated by the Bates model, discussd in 
Section 15.2. I 

Another possibility is to d d  jumps in the volatility process. Using a (pos- 
itive) LBvy process t'o drive the volatility ut allows to build positive, mean- 
reverting volatility processes with realistic dynamiix without resorting to nbn- 
linear models: positive Omstein-Uhlenbeck processes, proposed as models for 
volatility by Barndo&-Nidsen and Shephard, are discussed in Section 15.4. 
These models are analytically tractable but computations become quite in- 
volved as soon as "leverage" effects are included. 

A different way to build models with dependence in increments is to time 
change a LBvy process by a positive increasing process with dependent incre- 
ments. Using this method, treated in Section 15.5, though one does not start 
from a "stochastic volatility" representation such as (15.11, similar implied 
volatility patterns can be obtained. 

Sometimes the introduction of stoclqstic volatility models is justified by em- 
pirically observing that indicators of market volatiIity - such as the quadratic 
variation of returns or moving average estimators of the variance of returns 
- behave in a highly erratic, manner, suggesting that "market voJ@.ilityl' is 
stochastic. As discussed in Section 7.5, erratic behavjor of sample quadratic 
variation or sample variance does not imply iq wy w@y tbe existence of an 
additional "st~chastic volatility" factor. High variability of realized vpriance 
may be due to the presence of jumps and not to the presence of stochagtic 
volatility: random behavior of quadratic variation is in fact a generic property 
of all exponential-L6vy models. The m@n difference between expL&y/exp- 
additive and stochastic volatility models is not their variability and marginal 
properties but the introduction of dependence in the increments which enables 
in turn fl&le modelling of the term structure of various quantities. 

This flexibility is illustrated by the following example. Let (Xt)t>o be the 
log-price process. If X is a L6vy process then its fourth c u m u l i t n t - ~ ~ [ ~ ~ ]  is 
always proportional to t (see Proposition 3.13) and the kurtosis of Xt always 
decays as l l t ,  whatever model is khosen. In X is a "stochastic volatility" 
process Xt = otdWt, assuming that the volatility process is independent 
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from the Brownian motion, we find that c4(Xt)  = 3 ~ a r ( C  czds), that is, 
many different types of dependence on t are possible. 

The price for this flexibility is an increase in dimension. In a stochastic 
volatility models the price St is no longer a Markov process: the evolution of 
the price process is determined not only by its value but also by the level of 
volatility. To regain a Markov process one must consider the two-dimensional 
process (St, at) .  This is why in practice users have privileged parametric 
models where efficient Fourier-based computational procedures are available. 

As we saw in Chapter 9, one must distinguish statistical models for time 
series behavior from pricing models, i.e., models for risk-neutral dynamics. 
As a result of the introduction of an extra factor of randomness, the stochas- 
tic volatility models considered here lead to incomplete market models2 and 
time series behavior of returns does not pinpoint option prices in a unique 
way. Also, since autocorrelation functions or the Markov property are not 
invariant under change of measure, observing volatility clustering or mean- 
reversion in the level of historical volatility does not necessarily imply similar 
behavior in the pricing models, unless we make ad hoc assumptions on the 
premium associated to "volatility risk." Since the main driving force behind 
continuous time stochastic volatility models has been the development of op- 
tion pricing models, instead of making arbitrary assumptions on risk premia 
(as is frequently seen in the literature), we will limit our discussion to the 
performance of stochastic volatility models as pricing models, i.e., models 
for risk-neutral dynamics which, as in Chapter 13, are calibrated to option 
prices, not time series of underlying. References on econometric applications 
of stochastic volatility models are given at the end of the chapter. 

15.1 Stochastic volatility models without jumps 

A widely studied class of stochastic volatility models is the class of bivariate 
diffusion models in which the (risk-neutral dynamic) of the asset price (St)t20 
satisfies the stochastic differential equation 

where (at)t2o is called the instantaneous volatility process. In such models, 
the price St is not a Markov process anymore but (St, a t )  is a Markovian 
diffusion. This means we have to deal with an additional dimension when 
using numerical methods. 

2 ~ t  is possible to introduce "stochastic volatility" models where the volatility is not an extra 
random factor but driven by past returns, leading to a complete market model. The models 
considered in the sequel (and used in practice) are not of this type. 
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where (.&)&I is a w'i;';&r proceas c ~ ? e l ~ t @  ,vylthh (I$?!). & 6 'Rgu$ly call+ 
the mte ofmearrreuer&bo qnd q is t ~ k ' l o n g - i y ~ ~ ~ ~ ~ ; ?  levd of a. The dr& 
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where_(Zt) is a standard Brownian motion independent of (Wt). In most 
practical situations, p is taken to be a constant. 
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structure of volatilities,*~~de &hi& OU *race& 'is ai&&-rev&-ting 
but takes negative values; which meanb that one will have to apply a nonlinear 
transformation to it, in order 20 obtqin'%poisitive Golatility procesk. Due to 
this reason, the model will become less ma~hematic$ly p c t a b l e  and option 
prices will be, mb;e difficult to compute. The most suita;b~e'~khciice &om the 
three,lis$ed above is the CIR process becaqs.e it is both ,~e+~-rev@jng and 
positive. A viable alternatiye to CIR i$ to take y~ Ornste@-U&nbeok.process 
but drive it with a pwitik noise, e.g., a positivqLBvy pro 
will h discussed in Ijectim-fb.3. - - - - .-- - - - - * .- 

When there is no correlation between the Brownian motions driving the 
volatility q d  the price pjoceqq, gqyatj9n (15.2) can be rewrjptep using, time 
e h w e d  I$owwiap motion reprqentatipn: , , , ,  , I -  

where ut = $: ff:+ is th:! integrated variance process. ff the distributio? % , , ( .  . of 
integrated variance is kno$n, optfoh pricesrr&y ybeT&ornputed as an average of 

the stychy+i$ volatility 
of $ohtilit$ IS a linear 

1 
in this yase, the 

discussion of the'role of 
integrated ~ k m c e  in option pricing. 

In all cases, stdchastic volatility m?d$l? le& tb Bhrib$ti&s pf increments 
with tdl; w $ i i  +rq fatter n,qnal distljbqtidGs, e i e i  in a%ence gf jumps, 
t$lpu&'~i~ccise , 0 e$i@tes QQ tail decay rnk not be easy tiCpb$ai$ in specific 
d e b  [1501. I % +  :., i , ; Id 

I ! I  I . , - [ .  
~tochadtic & h t y  q ~ d e $ s  g,l?eric#~~ lead to, pplusd vol+ility pptteras 

dhich exhibit smiles and skeis: d shodi; b i  ~ e n a d t ' k d  nc!ovri [332] w h p  
(at)tlo and (Wt)t>0 are independent, then the implied vofatility profile K I-+ 

Ct (T, K) for fixedt, St,  T is a "smile" that is, locally convex with a minimum 
around the forward price of the s t ~ k  1% + +7t~(Tn$i i  I i WWk .the ~Wi&(rr 
procesp drivbg at is,cprr,elW with Wt tip g e ~ r a l  analysis,!~ qore ,diffi~ult, 
but n ~ & ~ ~ o u s  exmpl&' show that +$ negp#ve ~ o r r $ a t i o ~  p 5, Q, leads to a,n 
implied iolatility skew (downward sloping at the money)'while' p > 0 led8, to 
an upward sloping implied volatility curve. 

It is important to realizeFhat, due to the symmetry of Brownian incre- 
fnents, the asymmetry of' the (riskheutral) di tl'lbution --L' therefore the im- 
plied volatility skew - is completely determine b by this correlation coefficient 
p whiehplaysa fundamental'd&m g m ~ h g  mil* a d ~ k e w S .  A.mg&ive 
esrrelsticsa p u 0 is oaftmffnteqwet&~irl tdms df~fhd~o$l~erd.lemage~effwt, 
ie . ,  the emilpiricd cSbSBtBCItjlm .th& 1bge.l 
associaW with upr9(tebpd=.h ~ 1 %  
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TABLE 15.1: Stochastic volatility models without jumps 

Model 

Hull-White [203] 
Scott [358] 
Stein-Stein [368] 
Ball-Roma [20] 
Heston [I961 

Correlation 

Lognormal 
Gaussian OU 
Mean-reverting OU 
CIR 
CIR 

of high volatility. The leverage effect is offered as an "explanation" of the 
downward sloping implied volatility skews. However as argued in Section 1.2, 
this does not explain why in some markets we observe symmetric smiles or 
even upward sloping smirks or why the smile effects were enhanced after the 
1987 crash: does the leverage effect depend on markets or periods so negative 
correlation is more a "smile-fitting" constraint than an structural explanation 
for the smile. 

But the performance of stochastic volatility models at short maturities is 
not very different from that of the Black-Scholes model, the effect of stochastic 
volatility becoming visible only at longer time scales: short-term skews cannot 
match empirically observed ones. 

Table 15.1 gives some examples of bivariate diffusion models used for option 
pricing. It should be noted that, as long as p = 0, the model cannot generate 
an implied volatility skew and will always produce a symmetric implied volatil- 
ity smile. Among these models, the Heston model is quite popular in practice. 
The choice of the square root (CIR) process as the instantaneous volatility 
leads to closed form expressions for characteristic functions of various quanti- 
ties of interest in this model, enabling the use of Fourier transform methods 
such as the ones described in Section 11.1 for option pricing. We now discuss 
in more detail the CIR process, which represents the instantaneous volatility 
in the Heston model. 

15.1.2 The square root process 

The square root process, also known as the CIR process after Cox, Ingersoll 
and Ross. It is defined as the solution of the following stochastic differential 
equation: 

The parameters A, r] and 8 are positive constants. This process is continuous 
and positive because if it ever touches zero, the diffusion term disappears and 
the drift pushes the process in the positive direction. The precise behavior 
of the process near zero depends on the values of parameters: if O2 5 2X7, 
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the process never touches zero; the drift term always pushes it away before 
it comes too close. In the opposite case the process will occasionally touch 
zero and reflect but this situation is less interesting for stochastic volatility 
modelling. The CIR process, like the Ornstein-Uhlenbeck procms, is mean- 
reverting and possesses a stationary version. 

Moments and  correlation structure The mean of square root process 
can be computed by taking the expectation of (15.9): 

The solution of this equation is given by E{yt) = q + (yo - q)e-xt, that is, q 
represents the long-term mean of the process and X is responsible for the rate 
of mean-reversion. Other moments can be computed in a similar fashion. In 
particular, 

In the limit t -, oo (or in the stationary' case) the last two terms die out 
and the variance becomes equal to 9. This explains the role of 8, known 
as the "volatility of volatility" in this setting. In the stationary re~ime the 
autocorrelation function is given by acf (s) = e-x8. Therefore, X clrn again 
be identified with the inverse correlation length or the inverse characteristic 
length of volatility clusters in this model. 

Stationary distribution The infinitesimal generator of the CIR process is 

Denoting the distribution of yt by pt, we can write, for a bounded C2 function 
f ,  the Fokker-Planck equation: 

where pt(f) = Sf (x)dPt. In particular, if p is the stationary distribution, it 
satisfies p(L f )  = 0. Choosing f (x) = eiux, we come to the following equation 
for the characteristic function of p: 

Its solution satisfying p(0) = 1 has the form 
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I .  . . . 1 . .  :. . [ , , , ' 7  a c t ,  < . <  ', . , 

' ,  A t t  , t . i <  . * '  I ,  ,, ' . > , ' f  I f .  2 ,  

15.2 A stochastic volatility model with jumps: the Bate$ 
model 

' 1 ,; I 4 L 
As noted above, diffusion based stochastic volatility models cannot generate 

sufficient variability and at&h&y h shb'h-t& '1'&t&r&'d fn&W1im@kd 
volatility skews for short maturities. The jumpdiffusion st~chastic volatility 
model i n t r o d b d  by pat- 1411 'cop* with t&' pr#ap bq: dcbing p w o r -  
tional lo -nahnd jumps to the Heston sto&&ic vo!atil!t# lmddel. In the 
origi* k p Y + t b  i @ h @ 1  has the follhin%; foqa  

\ 1 ;, , >  ( 2  

r t  . 

I ,  5 .,,; t 

where (w:) auj (Wr)  are Brownian motions with correlation p, driving 
gde 'and 'bdat#r.t$, wd aZt id % compound Poisson process with intensity X 

1 
;(: . : I :  :,, :.. i&tt=(~~~~&!rt-Vr)&,+ryT~~~'$id& c: : . , ; :  .I .: . ;  Z., 

i i, t I :  I :  , 1 $ 1  1 : ' t 1 1 ' .  . !  , , l ~ B t ~  '1 

where (it) is a yrnpqund Poisson process with intepsity A and Gaussian dis- 
tribution of j k p  &m. l?htik1*odal- r4sQ'Be"driflwed as a generalization 
of the Merton junip-diffusion mod91 (see Chaptq 9 alloying for stochastic 
volatility. Although the no arbit'i'ige 'cdndition L e s  the dkift of the price 

PVYF%R% W - 9  ?WQFe i9 F4 o4@~e, WW? @MI , ~ l a ~ ~ @ e ~  
the model (for exrwnp e, intensity of jumps and parsmeters of jump,@tiel$ty 
tribution) can be changed without leaving the class of equivalent probabi~ity 
measures. Jumps in the log-price do mt have to be Gaqseign in this model. 
One can replace the Gaussian &$ribqtidi-~fsny o t h d  cbnvenient distri- 
bution for the jump size @&out w.loss of tractability, provided that the 
characteristic function is mmpu&&. - -+- :.A \ I .  i 

I r , . , 
I < ! I  -'- 

Option pricing[ b &I% s t o c ~ a ~ k c  vdat& ~ o d d +  well as in other models 
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Characteristic function of t h e  log-price Let us first compute the char- 
acteristic function of the continuous component X,C of Xt ,  following [196]. 
Let 

Applying It6's formula to Mt = f (X,C, I4 , t )  yields 

1 d2 f  d 2 f  1 d2 f  
dMt = (-&? +PO&- 

- v, d f  
2 d x  

+ -e214- + ( r - X k -  -)- 
dxdv 2 dv2 2 d x  

d f  d f  Of a f + C(q - &)% + at )d t  + fia,dws + 8 f i - d w V .  dv  

Since f ( X ; ,  K, t )  is a martingale we obtain, by setting the drift term to zero: 

1 d 2 f  d 2 f  1 2 d 2 f  1 d f  
-v- +pev-+ -e + ( T - x E ' -  -v)- 
2 dx2 dxdv 2 dv2 2 d x  

d f  d f  + [(v - v)- + - = 0. (15.12) 
av  at 

Together with the terminal condition f (x, u, T )  = eiux this equation allows 
to compute the characteristic function of log-price. To solve it, we guess the 
functional form of f :  

f ( x ,  u ,  t )  = exp{C(T - t )  + v D ( T  - t )  + i u x )  , (15.13) 

where C and D are functions of one variable only. Substituting this into 
Equation (15.12), we obtain ordinary differential equations for C and D: 

1 2  2 u2 + i u  D'(s) = -0 D ( s )  + (ipeu - t )  D(s )  - --- 
2 2 ' 

C f ( s )  = CqD(s) + iu ( r  - xL) 

with initial conditions D(0)  = C ( 0 )  = 0. These equations can be solved 
explicitly: 

u2 + i u  
D( s )  = - 

y coth + [ - i p h '  

7 s  E - ipeu - 3 ln cosh - + 
O2 ( 2 s i n e )  2 , 

where y = Je2(u2 + iu) + ( C  - i p 0 ~ ) ~ .  The characteristic function without 
the jump term can now be found from Equation (15.13). To incorporate the 
jump term, since jumps are homogeneous and independent from the contin- 
uous part, we need only to multiply the characteristic function that we have 
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obtained by the characteristic function of the jumps which in this case is 
simply 

Finally, the characteristic function of the price process in the model of Bates 
is 

(u2 + iu)v0 
(15.14) 

coth + 5 - ipeu 

with y defined above. 

Implied volatility pat terns  in the  Bates model Some implied volatility 
smiles attainable in the Bates model are shown in Figure 15.2. In this model 
there are two ways to generate an implied volatility skew. The first way is to 
introduce a (negative) correlation between returns and volatility movements, 
as in diffusion-based stochastic volatility models. Alternatively, an implied 
volatility skew for short-term options can be generated by asymmetric jumps 
(as in expLBvy models) even if the noise sources driving volatility and returns 
are independent. 

Therefore the "intuition" - originating from bivariate diffusion models - 
that the implied volatility skew is systematically linked to a "leverage effect" 
is groundless: it is simply due to the symmetry (stemming from normality) 
of Brownian increments and gives yet another example of a property specific 
to the Brownian universe. 

We have seen that correlation and jumps have similar effect on the implied 
volatility smile; is there any feature which allows to distinguish them? The 
answer is yes: jumps and correlation both induce an implied volatility skew 
but they influence the term structure of volatility differently. It is clear from 
Figure 15.2 that the smiles that are due to jumps are stronger at short maturi- 
ties and flatten out much faster as the time to maturity increases. In contrast, 
smiles due to correlation can be used to obtain a skew at longer maturities 
but are not sufficient to explain the prices of short-maturity options. Also, 
introducing jumps increases the overall level of implied volatility while corre- 
lation has little effect on it. Finally, at-the-money volatility stays roughly the 
same in absence of jumps and tends to increase for longer maturities when 
the jumps are present. 

These remarks shed light on a very nice feature of the Bates model: here 
the implied volatility patterns for long-term and short-term options can be 
adjusted separately. One can start by calibrating the jumps on one or two 
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15.3.1 Definition and properties 

Given a L6vy process (Zt), d e g e  (yt) t>O - as 

where the last term is the stochastic integral, defined as in Section 8.1.4, of 
the (nonrandom) function ex(s-t) :  if (Z t )  has characteristic triplet (a2, v, y) 

' I I .  i c  then 

If Z is a Brownian motion, y is the Gaussian omstein-~hlenbkck process. 
If Z is any other Uvy process, y is a jump propess which is a non-Gaussian 
analogue of Omstein-Uhlenbeck process. y will be called an OU process driven 
by Z; Z is called the background driving L6vy process (BDLP) of y. 

The process (yt) verifies tF.e $ear 'titochastiq differentia$ wuation" : 

Its local behavior is described as the sum of a linear damping term and a 
random term described by the increments of Zt: 

Thus, the jumps of are the game aec the 'jmp of Zt but '"between" twb 
jumps of &, yt debt@ exljonentirdly duk tb'& line&- dmping t e f i ~ ~ .  A 
trajectory of s~Uvy-driven OU prokess is sb'iwIirguae lldil (right graph). 
The BDLP is in this case a compound Poisson subordinator (with positive 
jumps), so the trajectory consists of upward jumps yi* p,wi* pf+~lawqd . $  

exponeptial decay bqtyeqn them. This rw@s in a mdre realistic asymmetric 
behayior for "volat#ity" than ia di$usion modeb: volatility jumps up su'gdegly 
but simmers down gradually. 

Characteristic function and characteristic triplet To compute the 
characteristic function of process (15.16) we need the following simple lemma. 

3 0 f  course this description is only ~ r r e c t  if jumps occur b finite number, not for an infinite 
activity L6vy process Zt. 
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LEMMA 15.1 
Let f : [0, TI + R be left-continuous and (Zt)t>o - be a Ldvy process. Then 

where $(u)  is the characteristic exponent of Z .  

PROOF First consider a piecewise constant left-continuous function f ( t )  = 

c E ~  fillt,-,,ti] (z). For this function J f (t)dZt = xZ1 f i (Zi  - Zi-1) and 

This equality can now be extended by approximation to an arbitrary left- 
continuous function f .  0 

Applying the lemma to Equation (15. I s ) ,  we find the characteristic function 
of yt : 

In particular, if Z is a Brownian motion with drift p and volatility a ,  its 
characteristic exponent is $(u) = i p - a 2 u 2 / 2  and the characteristic function 
of yt becomes 

P a2u2 
E { ~ ' ~ Y '  ) = exp { i ~ [ ~ ~ e - ' ~  + - X (1 - e-*')] - 4X - e-2"" )), 

which shows that in this case yt is a Gaussian random variable. Its stationary 
distribution is also Gaussian, with mean p/X and variance $. 

In the general case formula (15.18) allows to show that the distribution of 
yt is infinitely divisible and to compute its characteristic triplet. 

PROPOSIT1 ON 15.1 
Let (2t)t>o be a Lkvy process d t h  chdmcteristic triple't (A,>;?). The dis- 

tribution of  yt, defined by Equatioti (15.16), ds inwitely d h i b l e  for every t 
and has characteristic triplet (A!, u:, 7:) with 
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where J B  is  a shorthand notation for { J x ,  x E B) .  

PROOF First, let us show that Y; is a LBvy measure. To see this observe 
that first, it is a positive measure, second 

third, $((-m, -11) < m by the same reasoning, and finally 

Substituting $ from the LQvy-Khinchin formula into (15.18) and after some 
simple transformations, we obtain: 

Since v,Y is a Levy measure, 

which justifies the interchange of integrals in the last term of (15.19). Per- 
forming this operation, we see that the last term of (15.19) becomes 

This completes the proof of proposition. 0 

In particular, this proposition shows that v,Y has a density 

The finiteness of moments and the tail index of yt are related to the moments/ 
tail index of the driving LBvy process 2: 

PROPOSITION 15.2 Moments and correlation structure 
The n- th  absolute moment of the Ornstein-Uhlenbeck process (yt)t>o exists 

for every t > 0 or, equivalently, f o r t  > 0 if the n- th  absolute moment of the 
driving Ldvg process (Zt)t>o - exists. 
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The reader can easily protwthis p l ; m i m  by cornparkg the U w y m w m e  
of yt (given in Proposition 15.1) to the Levy measure of Zt and applying 

we can, placing ourselves in the stationary case, compute the' dutocorrelatiod 
function ac f ( s )  = implies that 

\ I  n ,i< ik?.\ 

Therefore a c f ( s )  = edXa.  This shows that A-l plays the role of a correlation 
time for OU processes. , - u l  , - zt : 

By adding together idd&ndehtt 0b pr6e&es, one'%'h&-dn richer $r%e- 
lation structures, including long-range depenwce, but at the price of increas- 

model dimensioh. k t  (yt yt)t20 and (fit b2 ?,,be independent OU processes. 
The correlation function of y + f i  is a convex combination of the correlation 
functions of the two processes: .srtp~3rtr wC+.: I -  I I  ;" r r " r i ~ r  

Adding together s-:wb&+Waibt fmmbwbEQU rpoboesse~, one can 
obtain every c~rr&iohifh& W.ici hith peeonvex envelop of {eVXt, X > 
0), that is, every decreasing completely monotonous function f satisfying 
f (0) = 1. This all& to obtain arbitrary term,structF&'for implied volatil- 
ity patterns but ac the  price of adding more factors. Superpositions of OU 
processes are discussed in 1361. 

. u o i j i ; r r ~ ~  3 0  'finrq 9& athlq~no- <i.iT 

Simulation L6vy cap be imulated us- 
ing Equation  or' 4 'id ~ 1 e :  

15.3.2 Stationary distributions of &? processes $"kqW9 
Ornstein-Uhlenbeck processes are closely linked to a c l w  of i- 

visible distributions called self-decomposable distributjons. The class of selt 
decomposable distributions (also called c b  L) contains, all distributions p 
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such that for all b'st!l t h h  e&Wa d h t f $ m  pb wW!b(x)  * fi(a/b)&!(z), 
where ,ii denotes the characteristic function of p. In other words, X is self- 
decomposable if for every b > 0 there e h t s  a,!an;1' m4va 'able &+,indepe 
from X such that b-'X + ~b and X Bsve the s A e la 3 , ~ h 6  
decomposable,qistributions can therefwe bq men as the class of stationary 
distributne a f  AR(A) (autore&&ve oi @rr 1) processes. 

Self-decomposability can be characterized' in terms of L6vy measure as fol- 
lows (we only give the xkMmt in aw&menaion41 -.fa ~,mdMiples- 
sim14 vqeion RW$+ a p q d  of this theorem see 4345, tbeour;p 15,lQL). 

, - ,  I 
I t I I . I t '  ' 

The main property of self-decom osable distributions that makes them in- 
teresting in the context of stod-1a8 i!' ic volsltility n#ldliaa:is tkt t h ~  c h ~  of 
self-decomposable dihributions cbincides with the 6 l m  of st&ionary d'lstri- 
butions of ~ 6 h d r i v e n  OU proc-8. l3& makes it possible to construct an 
OU pro&& witH preehibed %thtio&rf disiribution. 

then the OU process ( ~ t ) t > ~  defined by  Equation (15.16) has a stationary 
distribution p which is self-decomposable, ?ti'&&r"bcteri&& ebponent" 

Conversely, for every self-decomposable distribution p there exists a Ldvy pro- 
cess ( Z t ) t 2 ~  such that p &I the ~@tib$dfy &trib@i&n of the OU process driven 
by Z .  

, , 
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which is finite by theorem condition, and on the other hand 

for some finite constant C by the theorem's condition. 
The second step is to prove that vY is a LBvy measure of a self-decomposable 

distribution. For every x > 0 we have vY([x, 00)) = Szm v([z, r n ) ) e .  This 

means that vY has a density vY(x) = 9 which is a LBvy density of a 
self-decomposable distribution by Proposition 15.3. 

The third step is to show that $y is a characteristic exponent of an infinitely 
divisible distribution with prescribed triplet. From the proof of Proposition 
15.1, we know that 

Since we have already shown that vy is a LBvy measure we can compute 
the limit and, using Lebesgue's dominated convergence theorem, obtain the 
desired result. 

Finally let us prove that p is the stationary distribution of (yt). Let yo have 
the distribution p. Then 

The converse statement. Equation (15.23) shows that vy has a density 

If the stationary distribution is known, these formulae allow to back out v. 
It is easy to check that it will be a LBvy measure and that condition (15.21 
will be satisfied. b 
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15.3.3 Positive Omstein-Uhlenbeck pkc&ises 

Positive OU processes present a particular interdst in the context of stochas- 
tic volatility modelling. One can, of course, construct a positive process 
from every OU process, by exponentiating or squaring it, but if the OU pro- 
cess itself is positive, the model is h e a r  and therefore more mathematically 
tractable. Positive OU processes were used for stochastic volatility modelling 
by Barndorff-Nielsen and Shephard [36, 381. 

From Proposition 15.1 it is clear that a process of OU type is almost surely 
positive for every t if and only if yo 2 0 and the driving Lbvy process Zt is a 
subordinator. In this case Barndorff-Nielsen and Shephard suggest to use the 
positive OU process to represent directly the square of volatility process: 

For various computations in stochastic volatility models it is important to 
characterize the law of integrated variance process vt = S,' a2(s)ds. The 
characteristic function of integrated OU process can be easily evaluated owing 
to the linear structure of the process. From Equations (15.16) and (15.15) we 
find: 

Therefore, .the Laplace transform (we are using Laplace transform now be- 
cause the process is positive) of vt can be computed in the same way as the 
characteristic function of yt and we obtain for u < 0: 

where 1(u) = E[euZ1]. Sometimes we will also need the joint distribution of 
vt and Zt .  Its Laplace transform is also easy to compute: 

Example 15.1 OU process with gamma stationary distribution 
The stationary measure of the square root process, discussed in the next 

section, is the gamma distribution. In this respect it is interesting to consider 
an OU process which admits a gamma distribution as its stationary measure 
and compare the oorresponding stochastic wlatility models based on the two 
processes. In particular, this will allow us to see, whether, in addition to 
marginal properties of ot, jumps in the volatility are important. 

Suppose that the stationary measure p is the gamma distribution with 
density p(z) = =&zc-1e7axl.20 This means that the L6vy messure vY 
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* ,  
'1n this section we d&ws the stodhastic ;o1adty rnodeb was propb&d by 

Barndorff-Nielsen a d  Shephard [36, 381 where the squared volatility pro&ss 
is a L6vy-driven powikive Omstein-UNenbeck pqocess d&ribed by Equation 
( 5 ) .  The key points of this approach afe fhe p&sgini of Jumps in the 
volatility, flexibility in the choice of marginal distributions for volatility and 
the d a b % @  ol ~ ~ ~ n n . e x p r e a s i m  for:ah.oPateristip 5nctione af i&& 
grated mfatility anel x e h h s .  , , ,  i t  , , &  

This model can be used B&h for.lstatiisticrdanalyh of piwdea & actda 
ranging from several minutes to several days and for option pricing purposes. 
Yader - .  thd historid~@~ob8bi1ity the statistical e e 1 ' :  hgw ,the farm 

/ 1-' 
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p i e  p m 8 ~ s 8 - b  &antinuam sample paths. Nate&bat,,octh6n p # O i& is not 
coraect; ta h t q x e t  at as %l&iHkPr,!&ce the sletraqe are kdib dkahd by tlie 
iiw&neatb Of which kefbre  m n f r i ~  to &e datWp,&f  msturne. 

To cmpute' the W e r i s t i t  iYlnctim of .bhWtqpprice pmcerJB Xt, we bt 
condition on the trajectory of Z and then use the formula (15.29) that gives 
the joint Laplace tmwforrn ~f integr&ted'wiaade and clpving Wvy process 
zt - 

, a 

thH i$, there e@tk%n 

in detail in [308]. Under one such structure preserving martingale probability 
the model (15.30) has the form 
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Example 15.2 BNS model with gamma stationary distribution for volatility 
As in Example 15.1, suppose that the volatility process has gamma stationary 
distribution. In this case the integral in (15.31) can be computed explicitly 
and we obtain (in the risk-neural case with p = r - l(p) and ,B = -;) 

u2 + iu 
ln ~ { e " ~ ~ }  = iut { r  - - c&(A, t)- 

- P 2 

aXc { u2 + iu &(A, t)  } + In I+---- 
X(a - iup) + 9 2 a - iup 

2iXup - u2 + iu + Act 
2X(a - iup) + u2 + iu '  

~ - . , - x t  where &(A, t) = _.  Figure 15.3 depicts the implied volatility smiles com- 
puted in this model with p = 0 (left graph) and p = -0.5 (right graph). 
When p = 0, the smiles are not very pronounced, they are symmetric for 
all maturities and quickly flatten out. A nonzero value of p has the effect of 
making the smiles stronger and asymmetric. Note however that in this model 
a single parameter (p) determines both the size of jumps in the price process 
(which governs the intensity of the smile effect) and the correlation between 
price and volatility, that is responsible for the asymmetry of the smile for all 
maturities. In other words, if p is zero, the smile is both symmetric and flat, 
and if p is nonzero, the smile is both skewed and strong. This strong relation- 
ship between jumps and volatility reduces the flexibility of calibration and 
makes it difficult to calibrate the jump component and volatility separately. 
For this reason the calibration quality in this framework may be worse than 
the quality achieved using the Bates model or the time changed LBvy models 
of the next section. 

0 

15.5 Time changed LBvy processes 

In the Bates model the leverage effect and skew for long maturities were 
achieved using correlated sources of randomness in the price process and the 
instantaneous volatility. The sources of randomness are thus required to be 
Brownian motions. In the BNS model the leverage effect and skew were 
generated using the same jumps in the price and volatility. This does not 
require the sources of randomness to be Brownian motions but imposes some 
restrictions on attainable smiles and term structures. A third way to achieve 
leverage and long-term skew is to make the volatility govern the time scale of 
the Lkvy process driving jumps in the price. This idea leads to the following 
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FIGURE 15.3: Implied volatility patterns in the BNS model with OU- 
driven stochastic volatility process with gamma stationary distribution. Prices 
were computed with the following parameter values: X = 10, a: = 0.2, c = 
8.16, a = 40.8 and zero interest rate. Left graph corresponds to p = 0 and 
right graph to p = -0.5 

generic model: 

, (15.34) 

where (Yr) t to  is a I&y prowss (with or wi tbut  Brownian part). The leverage 
effect is preserved becausein the regions of high volatility 'business time' flows 
faster and price jumps occur at a higher rate. 

Introducing stochastic valatility iato an exponentiabLBvy model via time 
change was suggested by Garr et al. 1811. These authors argue that one should 
use Levy processes wit4out Brownian component. However, when jumps are 
consic&xl to be rare events, processes with Brownian component may offer 
a more redistic vision of piice qpves (compare with discussions in Chapter 
4). In the rest of this section we paxtidly follow the treatment ~f Cars et al. 
[162]. I 

The formulation (15.34) implies that the time change is continuous. This 
rules out the subordination procedure, discussed in Chapter 4, but has im- 
portant implications and advantages. Winkel 13841 shows that if the price 
process is continuously observable, Y is not a compbund Pdissbn i,Irotess ahd 
the time change does not have jumps, then the vola&ity can be reconstructed 
from the path of price process. In other words, the filtration generated by the 
price process alone coincides with the filtration generated by the price and 

C ' 

volatility. 
The represetitation 15.34 allows to write the characteristic function of 'the 

log-price process. ' 

~ { ~ t u x t  ) = e + u ( t ' @ ~  (u)), 
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tbkg &(u) the characteristic e x p w t  ofthe LBvy process (Y,)tlo and 
&(t,u) is the Laplace exponent of i n t M t e d  variance process that 
i8, &, (t,  U )  = In E(eaVt ) . 

To complete the description of the model we must address three questiong: 
which L6vy processes we to be used, which volatility processes are best suited 
for this model and fipdly,h6 can m e  aonstruct martingale versions of modeh 
0tt-h ty* aitrage-free optiop 

The first qu&tion is the easiest oAe: this model can be used to i ~ p r a v e  the 
perforihkce of any of the models of C h p k ~  char- 
I t c w i e  is k r r m  and tL hmm frunction d thrrae & w e d  
process can be cor%F;*uted. Among infinite-activity rn~akh,~ihe  normd inverse 
~ l 6 i M  kf~d't~k! ' t d i h m  atll~&mkeh$%Yb &&ee! +!hi wbr% 
w l @ ~ p r o c e s s  has a )h&Wm&tk''&- at s h o d ' ~ & ~ h ' d t r d ~  tlic 

q Q$&bolk Ijw'mat:&:4eaCks W c & & ~ ~ ~ ~ w ~ u I c E ~ .  lulmlVi& 
%fJbcW hc~ic&.'~ hq*dEtlllftPty18ttuP Hod% CZbitble '&p&&&& model hit$ 
be even better because it allows to control the relati& size8.0f1&&f3~el&d 
negative jumps. 

The volatility process should, as in the diffusion setting, bq,posit$jand 
mean-reverting. If one wishes to compute option prices via Fourier transform 
&e ~ h l a c e / ~ o u r i e r  expdheht ~~ be l&W in &med form. Both positive 
OU process and CIR process question is whether it makes 
any difference. At first sight, the 'two processes are very dif- 
ferent, even if they have the same correlation structure p d  same stationary 
dist&ttdA (&'Pi&& l$iy(*'q~t& 'tHd j$Wf~mi%k~ifl . ~ a *  W S 

bc~& ~ e h c ~ b h  '~olatifii~' t h r b * ~ ~ % w + + ~ ' & ~ d b .  
The left p p h  in F i . e  15.4 s&kdtfk$ di~tr ibdi8h~i i f  %%$$"d"bi3J!~& 

twdyd& 'o~-dri^dd'!#&&astic 
E?&y&mb&&*M w l?tft st&&volatl 
firow &'the W& i6 i r l L P i ~ ' P S . f ' : ~ W  
&sh&e &ich'&e'ahs tGf'pri'c&+proceiiiei air 
bill not differ much. However unlike the CIR process which is a nonlinesr dif- 
&8nc lhodel, thk: OU 'process is described by a linear equatibh: 'b' be 
simulated exactly and Monte Carlo methods,may be easier to impleme$;"' 

* f * s i j ~  ti <> rj I :  ;\,: I < I  ,*.I F < 5 1  [Ll; ? i  j { f e ~ t f  I : ~ ? ~ I I  + ' * 

, l r + ; , \ I , r i lfil)O ; ~ t , ) r i t + ~ ~ ~ f i  t 111 I . , ~ I O  
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The positiveness condition of t h i  lermak csrirar~t~ belomitted without impas 
ing additional integrability properties either on the dinghle or on the time 
change. Indeed, the Cauchy pro%@, although it is s bordinate to Brownian 

integrable. 

m 
&tiofi-@ty n ;--finat+ is not a martingale because it is nat 

i 

Thk lemma shows that martingde'versions of sto astic volatility models 
of type (15.34) may be constructed simply by ap ing the t ipe  change to 
martingale versions of Uvy processes. 

{ 5. 1 i. 

Bxample 15.3.- 

, ' " ,,*,* ' I  ' 8  

( \ ,4&;),=4w'4(plH* 
1 .  $ . , I  , i 1 , ;< ,  

Ms W&%h#&t? $ h f i b % r ~ ~ h d  Lkb f& bE/+-2$k 1): 
As in Example 15.1, suppose that & & ~ i f i - ~ ~ d f l d  
process with gamma stationary distri 
of log-price process is 
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seen earlier in this chapter (Section 15.1) that in uontinuous stochastic vdatil- 
ity models, when there is no instantaneous aorrelotion between volatility and 
returns, the implied volatility smile is locally convex with A minimum at the 
money farward (K ri s&''(~'~)). One may think that this is also true in 
L6vy models ~ t h  stochastic volatility, at least when the jump$ ,are symmet- 
ric. However, from Figure 15.4, we see that even if the jumps are symmetric 
but the jump component is sufficiently strong, the minimum of the smile does 
not occur at the money (on the graph it is shifted to the left). Taking smaller 
values of I E ,  we come back to the Brownian st@as;ic volatility setting and 
the minimum shifts towards the money. 0 

FIGURE 15.x Lefk Distrib;ti&b ofintbgr'ated%dIatility distribd~ons for 
a two-year horizon Eor the CIR process and a positive OU process (with dhe 
same parametem ae in Figure 15.1). Right: Implied volatility smiles in the 
NIG model wrtb\~~!drivell stechktic volatility .The? &wun&us are T = 0.3, 
r = 0, 0 = 1, 0 = 0, yo = 0.2, X = 2, c =  2.04 and a = 10.2. The varying 
 par^^ K measwciy3,lbe p r w t y , a f , t b  NIG,px~gpq b~Brwnian motion 

smR,tPw behve fhiwY)..  , ,,;, 
1 I I ,  I .  

1 1  

15.6 Do we need stochkic volatility and jumps? 

We have seen in Chapter? 11 and 13 that exponential-L6vy models can 
generate a variety of shapes for implied volatility surfaces, including smiles 
and skews for a gima maturity but perform poorly across maturities. In 
Chapter 14, we saw that ib is possible to calibrate also the term structure of 
implied volatility using a one-factor additive procest, with independent ,log- 
returns. However, this led to a non-stationt-iry risk-aentrai promas which 
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implied forward implied volatilities which behave quite differently from spot 
implied volatilities. As discussed in the beginning of this chapter, introducing 
"stochastic volatility" takes the pressure off the timedependence and allows 
to reproduce a realistic implied volatility pattern across maturities without 
having to introduce strong time variation of parameters but fails to give real- 
istic behavior for short maturities. 

From the point of view of calibration to option prices, jumps allow to re- 
produce strong skews and smiles at short maturities while stochastic volatility 
makes the calibration of the term structure possible, especially for long-term 
smiles. Combining jumps in returns and stochastic volatility allows to cali- 
brate the implied volatility surface across strikes and maturities without in- 
troducing explicit time dependence in parameters. In addition, in a stochastic 
volatility model, increments of the price process are not independent, which 
implied that, unlike the exponential additive models of Chapter 14, knowledge 
of today's smile still leaves a degree of freedom for modelling forward smiles. 
This leads to a greater stability of calibrated parameters across time. 

On the other hand, once these two ingredients - jumps in returns and 
"stochastic volatility" - are included, the models have a fairly good em- 
pirical performance. The results given above show that there is not much 
justikation for introducing complex dynamics for the volatility: once the 
main requirements of positiveness and mean-reverting behavior have been re- 
spected, various choices for the driving process at give similar results. When 
it comes to calibrating market option prices, the time changed LBvy model 
often outperforms the BNS model 13523: the OU model restricts the possible 
implied volatility patterns by requiring the same parameter p to characterize 
the jumps in the returns, i.e., their skewness both for short and long maturi- 
ties. On the contrary, the performance of the Bates model is similar to that 
of time chwged LBvy models. In fact, the Bates model has an additional 
degree of freedom: since the short-term skew is essentially due to the jump 
term and the long-term skew is due to the correlation parameter p, short and 
long maturities can be calibrated separately. Thus the Bates model appears 
to be at the same time the simplest and the most flexible of the models. Table 
15.2 further compares the three models and shows their advantages compared 
to standard exponentiaLL6vy models and diffusion-based stochastic volatility 
models. 

Further reading 

Given our brief presentation of stochastic volatility models, there is a lot of 
room for further reading on this topic! The Bates model was introduced in 
[41]. A general discussion of diffusion-based stochastic volatility models can 

© 2004 by CRC Press LLC



TABLE 15.2: Stochastic volatility models with jumps 
- -  - 

Characteristics 

Historical 
Jumps in price 

Volatility clusters 

Leverage effect 

Risk-neutral 
Symmetric smiles 

Skew for short 
maturities 
Skew for long 
maturities 
Flexible term 
structure 
Pricing European 
options I 

be found in [150, Chapters 1-21 or [261]; hedging in such models is discussed 
in [195]. Stochastic volatility models based on positive Ornstein Uhlenbeck 
processes were introduced by Barndorff-Nielsen and Shephard with an econo- 
metric motivation in [32, 361. Option pricing under these models was studied 
in [307, 3081. An empirical comparison between the BNS model with OU 
stochastic volatility and exponential-L6vy models is given by Tompkins [379]. 
Stochastic volatility models constructed from time changed L6vy processes 
can be found in [81]. Examples of calibration and comparison between differ- 
ent L6vy-based stochastic volatility models from the point of view of option 
pricing are given in [352] and [81]. 

Discrete time stochastic volatility models for econometric modelling are 
discussed in [36l, 3431. 

In all the models discussed in this chapter, it is possible to obtain the Fourier 
transform of option prices in closed form due to the special analytic form of 
the characteristic functions. A general class of models with this property is 
given by affine jump-diffusions [119, 1181: for all models in this class option 
prices can be computed by Fourier transform in a similar way. 

all 

SV-LBvy 

J 

J 

J 

J 

models 
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Epilogue 

As we have been writing this volume, the literature on jump processes in 
finance has been constantly growing and the material presented here can only 
partly reflect current research topics. Among important topics which have 
been left out are applications of jump processes in interest rate and credit 
risk modelling. 

Credit events, viewed as sudden changes in the credit quality of a firm, 
are naturally modelled as jump processes and many of the concepts and tools 
used in this volume have been successfully employed for modelling default and 
credit risk. Credit risk modelling is a vast subject and a single chapter would 
have been insufficient to review current research on this topic. We refer the 
reader to the recent monograph by Schonbucher [351]. 

The development of arbitrage-free models compatible with empirical obser- 
vations for pricing interest rate derivatives has also led in the recent years 
to the development of models based on jump-diffusions and Lkvy processes 
for instantaneous forward rates [363, 59, 1271 and LIBOR rates [166, 1261. 
Bjork et al. [59] provide a general analysis of arbitrage restrictions in such 
interest rate models. Several extensions of the LIBOR market model with 
jumps have been proposed, based on marked point processes 1166, 168, 1671 
and LBvy processes [126]. While the complexity of such models has prevented 
their widespread use in the interest rate derivatives market, they present po- 
tentially interesting aspects and merit further study, especially regarding their 
calibration, implementation and empirical performance. An interesting case 
study which illustrates the advantages of LIBOR models with jumps for pric- 
ing and hedging short term interest rate derivatives is given by Nahum and 
Samuelides 13031. 

Finally, let us note that there are other fields of application where modelling 
with jump processes is more natural than with diffusion processes. Examples 
are insurance claims and losses due to operational risk. We hope that the 
present volume will encourage more researchers and practitioners to contribute 
to this topic and improve our understanding of theoretical, numerical and 
practical issues related to financial modelling with jump processes. 
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Modified Bessel functions 

Modified Bessel functions are also called Bessel functions of imaginary argu: 
ment. They are simple special functions in the sense that they are very well 
studied, tabulated and fast algorithms for their computation are implemented 
in most computational toolboxes. Consider the equation 

The modified Bessel function of the first kind I, ( z )  for z 2 0 and v 2 0 is equal 
to the solution of Equation (A. 1) that is bounded when z -t 0. The modified 
Bessel function of the second kind K,(z) for for z 2 0 and v 2 0 is equal to 
the solution of Equation (A.l)  that is bounded when z + oo. These functions 
are always linearly independent and admit the following series expansions: 

+, 
- "- w e  N ' V ' W X  L W. i L 

" ( ~ / 2 ) " + ~  fmx 

I u ( Z ) = L ! r  k + v  +I):  v is not a negative integer, 
k=O 1 1 -., - -- . . 3 " 1 1  

I-n(z> = ~ n ( z ) ,  n = 0 , 1 ,  . . . , I '  4 

For integer values of v the last expression shoulc!%WW@mM in the limiting 
sense. For all orders v we have K&) = K,(z). 

I ? ,  5 \ 

Asymptotic behavior When z + +oo we wtilb 

I&) = x- [ I +  0 (f)] , &?Qw .\/27FZ 

When z + 0, 

(z12)u v is not a negative integer, W )  - r ( v  + 1) 
Ko(z) - - log Z ,  
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Closed form expressions for modified Ei&ml . .. - - 5. 

order 

~ h t s '  &r&entation leads to the foll&&~k&! %t?rll6ftk h ihtl'6'grdsWd~ 
tion: . , 

* F &.A) 
Relation with Bessel functions of real &urnen& ''?h9 modihd Bessel 
function of the first kind can be expressed via the ~ e & e l  faction of the first 
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processes with a view towards simulation, J. Appl. Probab., 38 (2001),
pp. 482–493.

501© 2004 by CRC Press LLC



502 References

[13] Avellaneda, M., The minimum-entropy algorithm and related methods
for calibrating asset-pricing models, in Proceedings of the International
Congress of Mathematicians, (Berlin, 1998), Vol. III, Documenta Math-
ematica, 1998, pp. 545–563.

[14] Avellaneda, M., Minimum entropy calibration of asset pricing models,
Int. J. Theor. Appl. Finance, 1 (1998), pp. 447–472.

[15] Avellaneda, M., Buff, R., Friedman, C., Grandchamp, N., Kruk, L.,
and Newman, J., Weighted Monte Carlo: a new technique for calibrating
asset-pricing models, Int. J. Theor. Appl. Finance, 4 (2001), pp. 91–119.

[16] Avellaneda, M. and Paras, A., Managing the volatility of risk of portfo-
lios of derivative securities: the Lagrangian uncertain volatility model,
Applied Mathematical Finance, 3 (1996), pp. 23–51.

[17] Avram, F., Kyprianou, A., and Pistorius, M., Exit problems for spec-
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Spéculation”, Math. Finance, 10 (2000), pp. 341–353.

© 2004 by CRC Press LLC



508 References

[102] Cox, J. C., Ingersoll, J. E., Jr., and Ross, S. A., An intertemporal general
equilibrium model of asset prices, Econometrica, 53 (1985), pp. 363–384.

[103] Crandall, M., Ishii, H., and Lions, P., Users guide to viscosity solutions
of second order partial differential equations, Bulletin of the American
Mathematical Society, 27 (1992), pp. 1–42.

[104] Dahlke, S. and Weinreich, I., Wavelet bases adapted to pseudo-
differential operators, Appl. Comput. Harmon. Anal., 1 (1994), pp. 267–
283.

[105] Danielsson, J. and de Vries, C., Tail index and quantile estimation
with very high frequency data, Journal of Empirical Finance, 4 (1997),
pp. 241–258.

[106] Daubechies, I., Ten Lectures on Wavelets,, SIAM: Philadelphia, 1992.

[107] Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer,
M., and Stricker, C., Exponential hedging and entropic penalties, Math.
Finance, 12 (2002), pp. 99–123.

[108] Delbaen, F., Monat, P., Schachermayer, W., and Stricker, C., Weighted
norm inequalities and hedging in incomplete markets, Finance Stoch., 1
(1997), pp. 181–229.

[109] Delbaen, F. and Schachermayer, W., The fundamental theorem of as-
set pricing for unbounded stochastic processes, Math. Ann., 312 (1998),
pp. 215–250.

[110] Dellacherie, C. and Meyer, P., Probabilités et Potentiel. Chapitres I à
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[147] Föllmer, H. and Schied, A., Stochastic Finance, De Gruyter: Berlin,
2002.
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Math. Finance, 11 (2001), pp. 79–96.

[163] Gerber, H. and Shiu, E., Pricing perptual options for jump processes,
North American actuarial journal, 2 (1998), pp. 101–112.

[164] Gikhman, I. and Skorokhod, A., Introduction to the Theory of Random
Processes, Dover Publications Inc.: Mineola, NY, 1996. Translated from
the 1965 Russian original.

[165] Glasserman, P., Monte Carlo Methods in Financial Engineering,
Springer: New York, 2003.

[166] Glasserman, P. and Kou, S., The term structure of forward rates with
jump risk, Math. Finance, 13 (2003), pp. 383–410.

[167] Glasserman, P. and Merener, N., Cap and swaption approximations in
LIBOR market models with jumps, J. Comput. Finance, 7 (2003), pp. 1–
36.

[168] Glasserman, P. and Merener, N., Numerical solution of jump-diffusion
LIBOR market models, Finance Stoch., 7 (2003), pp. 1–27.

[169] Glowinski, R., Lawton, W., Ravachol, M., and Tenenbaum, E., Wavelet
solution of linear and nonlinear elliptic, parabolic and hyperbolic prob-
lems in one space dimension, in Proceedings of the 9th International
Conference on Numerical Methods in Applied Sciences and Engineer-
ing, SIAM: Philadelphia, 1990.

[170] Goll, T. and Kallsen, J., Optimal portfolios for logarithmic utility,
Stochastic Process. Appl., 89 (2000), pp. 31–48.
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Université Paris VI, 2002.
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[248] Léandre, R., Estimation dans Lp(Rn) de la loi de certains proces-
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[256] Lévy, P., Œuvres de Paul Lévy. Vol. III, Gauthier-Villars: Paris, 1976.
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[259] Lévy, P., Œuvres de Paul Lévy. Vol. VI, Gauthier-Villars: Paris, 1980.
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Schweizer decomposition, Stochastic Anal. Appl., 13 (1995), pp. 573–
599.

© 2004 by CRC Press LLC



References 525

[357] Schweizer, M., A guided tour through quadratic hedging approaches, in
Jouini and Pliska [225], pp. 538–574.

[358] Scott, L. O., Pricing stock options in a jump-diffusion model with
stochastic volatility and interest rates: applications of Fourier inver-
sion methods, Math. Finance, 7 (1997), pp. 413–426.

[359] Sepp, A., Analytical pricing of lookback options under a double-
exponential jump diffusion process. Available from the author’s Web
site, 2003.

[360] Sepp, A., Pricing double-barrier options under a double-exponential
jump-diffusion process: Applications of Laplace transform. Available
from the author’s Web site, 2003.

[361] Shephard, N., Statistical aspects of ARCH and stochastic volatility, in
Time Series Models, Chapman and Hall: London, 1980, pp. 1–67.

[362] Sheynin, O., S. D. Poisson’s work in probability, Arch. History Exact
Sci., 18 (1977/78), pp. 245–300.

[363] Shirakawa, H., Interest rate option pricing with Poisson-Gaussian for-
ward rate dynamics, Math. Finance, 1 (1991).

[364] Shiryaev, A., ed., Probability theory. III. Stochastic Calculus, Vol. 45
of Encyclopaedia of Mathematical Sciences, Springer: Berlin, 1998.
A translation of Current problems in mathematics. Vol. 45 (Russian),
Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.: Moscow,
1989.

[365] Sklar, A., Random variables, distribution functions, and copulas—a per-
sonal look backward and forward, in Distributions with Fixed Marginals
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Symbol Description

σ(A) The smallest σ-algebra,
with respect to which A is
measurable. A may be a
collection of subsets or a
collection of functions

#A Number of elements in A
P(A) Probability of event A
E[X] Expectation of random

variable X
ΦX Characteristic function of

a random variable X
ΨX Cumulant generating

function) of a random
variable X

φt(.) Characteristic function of
a Lévy process

ψ(.) Characteristic exponent of
a Lévy process

MX Moment generating func-
tion of X

JX Jump measure of a cadlag
process X

X
d= Y X and Y have the same

distribution
Xn

d→ X (Xn) converges to X in
distribution

µn ⇒ µ (µn) converges weakly to
µ

Xn
P→ X (Xn) converges to X in

probability
i.i.d. Independent and identi-

cally distributed
a.s. Almost surely
a.e. Almost everywhere
B(E) Borel σ-algebra of E
ω ∈ Ω scenario of randomness
a.b Scalar product of vectors

a and b
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