
HOW TO TRADE ON AN EXTERNAL
CRYPTOCURRENCY EXCHANGE VIA
METATRADER 5

Not so long ago, the MQL5 language developers have introduced the
updated functionality featuring the ability to develop custom symbols and
charts. The broad traders' community has not yet had time to appreciate
the power of this innovation, but even an easy and unobtrusive brainstorm
shows an enormous potential hidden in the custom symbols. Together with
other MQL tools, they allow you to implement many of the most daring and
interesting ideas.
From now on, MetaTrader 5 is not just a terminal that interacts with one
DC. Instead, it is a self-sufficient analytical platform able to connect to
various exchanges via the API, as well as visualize price movements and
trade flows. A small set of new features turns the terminal into an open
system rather than a toolbox containing a limited number of trading tools.
In my opinion, custom tools can also become powerful analytical
capabilities.

Let's illustrate the new language features using the popular subject of
cryptocurrencies as an example. I believe, it will further strengthen the
community's interest in custom symbols.
Who might benefit from the article:

psonk (25) (/@psonk) in steemit (/trending/steemit) • 2 months ago

 (/)

Trending
(/trending/steemit)

New
(/created/steemit)

Hot
(/hot/steemit)

Promoted
(/promoted/steemit)

Login (/login.html) Sign up
(https://signup.steemit.com) (/static/search.html) (/submit.html)

https://steemit.com/@psonk
https://steemit.com/trending/steemit
https://steemit.com/
https://steemit.com/trending/steemit
https://steemit.com/created/steemit
https://steemit.com/hot/steemit
https://steemit.com/promoted/steemit
https://steemit.com/login.html
https://signup.steemit.com/
https://steemit.com/static/search.html
https://steemit.com/submit.html

cryptocurrency exchange traders;
investors familiar with MetaTrader 5 and portfolio investments;
freelance programmers who can now execute the customers' orders related
to cryptocurrency trading in a simpler (and cheaper) way;
everyone who follows the new MetaTrader 5 and MQL5 language features.
First, we need to choose a cryptocurrency exchange providing a web API.

When developing one of my CodeBase products, I used BTC-e, which is no
longer relevant. Therefore, I decided to switch to an alternative — . Its API
features are sufficient to decently demonstrate both the new and already
existing MQL functionality, including downloading bars, price flow, market
depth, viewing current account orders and positions as well as order and
trade history.

Let's stick to the following plan.

Describing all data structures returned by web requests.
Developing the classes for connecting to the exchange. These classes
should implement WebRequest to their access points.
Developing an Expert Advisor that receives bars and updates
cryptocurrency prices in MetaTrader 5.
Developing scripts and an EA working with orders and positions.

1. API structures of the exchange data

Like some other cryptocurrency exchanges, BITFINEX has two access
points.

The first one (which is a set and format of requests) gives out the price data
of the exchange — bars, ticks, market depth. The data are generalized and
anonymous, so they are requested without any signatures and
authorizations.
The second access point provides data on your account — account status,
open positions, pending orders, trades history. These data are private, so
you should send the SHA384-HMAC data signature in the request header

using the API key received in your personal trader's room of the exchange.
This guarantees that the request is made by you and not by an attacker
under your name.
Both access points work in REST style (note: WebSockets are not considered
here) using JSON format. This is convenient both for reading data and
writing API.

The exchange has two protocol versions. The second version is currently in
beta mode. There are two reasons for its appearance. First, there is a new
functionality (requesting bars, working with alerts, orders' magic numbers,
etc.). The second reason is also clearly visible in the format of JSON
structures - this is traffic saving. Let's compare how the response to the
Ticker request (current symbol data) looks like in the first and second
protocol versions:

Version 1
Version 2
{

"mid":"244.755",
"bid":"244.75",
"ask":"244.76",
"last_price":"244.82",
"low":"244.2",
"high":"248.19",
"volume":"7842.11542563",
"timestamp":"1444253422.348340958"

}
[
BID,
BID_SIZE,
ASK,
ASK_SIZE,
DAILY_CHANGE,

DAILY_CHANGE_PERC,
LAST_PRICE,
VOLUME,
HIGH,
LOW
]
As you can see, the second version avoids naming the fields, but their
position is rigidly fixed meaning that arrays are used here instead of
objects. In this article, I will show examples for both API versions of the
exchange.

First, let's see what requests and structures of the open access point we
should use for each protocol version.
For version 1:

Symbols
Symbol Details
OrderBook

For version 2:
Ticker
Candles
Trades
Let me first explain how these structures are made using the SymbolDetails
request as an example. Other data structures are presented in the
BFxDefine.mqh file. If you need other API requests not included in the
article, you can check them out in a similar way.

How it looks in the documentation
How it looks in BFxDefine.mqh
[
{
"pair":"btcusd",
"price_precision":5,
"initial_margin":"30.0",

"minimum_margin":"15.0",
"maximum_order_size":"2000.0",
"minimum_order_size":"0.01",
"expiration":"NA"
},

...

]
struct bfxSymbolDetails
{
string pair;
int price_precision;
double initial_margin;
double minimum_margin;
double maximum_order_size;
double minimum_order_size;
string expiration;
};
struct bfxSymbolsDetails
{
bfxSymbolDetails symbols[];
};
The documentation shows that the request returns the object array. So, I
have created two structures. The first one (bfxSymbolDetails) parses and
stores data on a single array object. The second one (bfxSymbolsDetails)
stores the received bfxSymbolDetails object array and is directly used in a
web request. In other words, the JSON <-> MQL matching format is simple,
mirror-like and extends to all documentation.

When working with the exchange API, we will use two classes having the
common CBFx parent. Its objective is to encapsulate common data fields
and the general web request function.

//-- class CBFx
class CBFx
{
protected:
string m_answer; // result of request (before JSON deserialization)
enBFxRequestResult m_lastrr; // code of requests result
CJAVal m_lastjs; // deserialized answer from request
public:
CBFx() { }

protected:
string URL() { return "https://api.bitfinex.com/ "; }
string Answer() { return m_answer; }
enBFxRequestResult Request(string mode,string url_request,string
head,string body,char &result[])
{
char data[]; int n=StringLen(body); if(n>0)
StringToCharArray(body,data,0,n); string res_header="";
int r=WebRequest(mode, url_request, head, 10000, data, result,
res_header);
if(r<=0) return rrErrorWebRequest;
return r==200?rrOK:rrBadWebRequest;
}
};
The CBFx class has two descendants:

CBFxPublic — requests to public API (bars, quotes, depth of market);
CBFxTrade — requests to private API (trading, account data).
These descendants are described in the next two sections.

All preparatory work with the exchange API has been done. Now, let's
implement it in the MetaTrader 5 platform.

1. CustomSymbol

What is the situation with custom symbols at the moment? Working

https://api.bitfinex.com/

with them is almost completely similar to working with ordinary

symbols even considering that the entire management is conducted by

a small set of functions.

The purpose of our work is to create an exchange symbol, upload the bars
history and send prices regularly. Thus, we need the following MQL
functions:

CustomSymbolCreate
CustomSymbolSetInteger / CustomSymbolSetDouble /
CustomSymbolSetString
CustomRatesUpdate
CustomTicksAdd
Unfortunately, WebRequest cannot be called from the indicator. Therefore,
let's develop an EA to regularly request symbol bars and current prices, and
then update them in MetaTrader 5.

The interaction between the exchange and MetaTrader 5 is as follows:
OnInit

Check the presence of a symbol in MetaTrader 5 SymbolSelect.
If no symbol found -> Request SymbolDetails of the specified symbol.
Create the CustomSymbolCreate symbol and fill in its properties
CustomSymbolSetХХХ.
Check М1 history.
If download is required -> Request CandleHist with the necessary number
of last bars
Add CustomRatesUpdate bars
Start the timer
OnTimer

Request the Ticker price -> Update the CustomTicksAdd tick
Request the last bar CandleLast -> Update CustomRatesUpdate
This is the entire work cycle.
Let's complicate the work to get more working examples. To do this, make a

request and display the market depth (OrderBook) and time and sales
(TradesHist). Time and sales is displayed as a comment on a chart, while
the market depth is displayed as segments at the corresponding price
levels.

The public API is implemented in the CBFxPublic class.
#include (/trending/include) "BFxDefine.mqh"
//-- class CBFxPublic
class CBFxPublic: public CBFx
{
public:
CBFxPublic() { }
protected:
virtual enBFxRequestResult Request(string url_request);
public:
enBFxRequestResult Symbols(bfxSymbols &ret);
enBFxRequestResult SymbolsDetails(bfxSymbolsDetails &ret);
enBFxRequestResult OrderBook(string pair,int depth,bool
group,bfxOrderBook &ret);

public:
enBFxRequestResult CandleHist(string pair,enbfcTimeFrame tf,int
limit,bfxCandles &ret);
enBFxRequestResult CandleLast(string pair,enbfcTimeFrame tf,MqlRates
&ret);
enBFxRequestResult TradesHist(string pair,int limit,bfxTrades &ret);
enBFxRequestResult Ticker(string pair,bfxTicker2 &ret);
};
Let's have a look at CandleHist to explain its work.

Documentation description:
General request form:
https://api.bitfinex.com/v2/candles/trade::TimeFrame::Symbol/Section

Request response:

https://steemit.com/trending/include
https://api.bitfinex.com/v2/candles/trade::TimeFrame::Symbol/Section

[
[MTS, OPEN, CLOSE, HIGH, LOW, VOLUME],
...
]
Find the request parameters here:
https://docs.bitfinex.com/v2/reference#rest-public-candles

Sample request:
https://api.bitfinex.com/v2/candles/trade:1m:tBTCUSD/hist?limit=50

CandleHist MQL implementation:

//-- CandleHist
enBFxRequestResult CBFxPublic::CandleHist(string pair,enbfcTimeFrame
tf,int limit,bfxCandles &ret)
{
Request(URL()+"v2/candles/trade:"+bfcTimeFrame[tf]+":t"+STU(pair)+"/hist
"+(limit>0?"?limit="+string(limit):""));
if(m_lastrr==rrOK) m_lastrr=ret.FromJson(m_lastjs)?
rrSuccess:rrErrorStruct;
return m_lastrr;
}
CandleHist function forms the GET request. Since we are interested in
minute bars, the request line eventually looks as follows:
https://api.bitfinex.com/v2/candles/trade:1m:tXXXXXX/hist . As a
response, we get 1000 last bars from history.

The result of all these manipulations with API requests is a simple EA that
is to construct bars and move the price along the chart.
#include (/trending/include) "..\BFxAPI\BFxPublicAPI.mqh"

input string Pair="btcusd";
input int ShowBookDepth=0;
input bool ShowTimeSales=false;

https://docs.bitfinex.com/v2/reference#rest-public-candles
https://api.bitfinex.com/v2/candles/trade:1m:tBTCUSD/hist?limit=50
https://api.bitfinex.com/v2/candles/trade:1m:tXXXXXX/hist
https://steemit.com/trending/include

CBFxPublic bfx;
string mtPair;
//-- OnInit
int OnInit()
{
// create name for MT symbol
#ifdef (/trending/ifdef) MQL4
mtPair=StringToUpper(Pair);
#endif (/trending/endif)
#ifdef (/trending/ifdef) MQL5
mtPair=Pair; StringToUpper(mtPair);
#endif (/trending/endif)
mtPair+=".bfx";

// select symbol in MarketWatch
bool bnew=false;
if(!SymbolSelect(mtPair,true))
{
bfxSymbolsDetails sd;
enBFxRequestResult brr=bfx.SymbolsDetails(sd);
if(brr!=rrSuccess) return INIT_FAILED;
for(int i=0; i<ArraySize(sd.symbols);++i)
{
bfxSymbolDetails ss=sd.symbols[i];
if(ss.pair==Pair)
{
bnew=true;
CustomSymbolCreate(mtPair,"BITFINEX");
CustomSymbolSetString(mtPair,SYMBOL_ISIN,Pair);
CustomSymbolSetInteger(mtPair,SYMBOL_DIGITS,ss.price_precision);
CustomSymbolSetDouble(mtPair,SYMBOL_MARGIN_INITIAL,ss.initial_ma
rgin);
CustomSymbolSetDouble(mtPair, SYMBOL_VOLUME_MAX,
ss.maximum_order_size);
CustomSymbolSetDouble(mtPair, SYMBOL_VOLUME_MIN,

https://steemit.com/trending/ifdef
https://steemit.com/trending/endif
https://steemit.com/trending/ifdef
https://steemit.com/trending/endif

ss.minimum_order_size);
CustomSymbolSetDouble(mtPair,SYMBOL_VOLUME_STEP,
ss.minimum_order_size);
}
}
if(!SymbolSelect(mtPair, true)) return INIT_FAILED;
}
if(Symbol()!=mtPair) ChartSetSymbolPeriod(0,mtPair,bnew?
PERIOD_M1:Period());

// load some history
datetime adt[]; ArraySetAsSeries(adt,true);
int limit=1000;
if(CopyTime(mtPair,PERIOD_M1,0,1,adt)==1)
limit=(int)fmax(2,fmin((TimeCurrent()-adt[0])/60,1000));

bfxCandles bars;
enBFxRequestResult brr=bfx.CandleHist(Pair,tf1m,limit,bars);
if(brr==rrSuccess) CustomRatesUpdate(mtPair,bars.rates);

// start timer
EventSetTimer(3);
return INIT_SUCCEEDED;
}
//-- OnDeinit
void OnDeinit(const int reason) { EventKillTimer();
ObjectsDeleteAll(0,Pair,0); if(ShowTimeSales) Comment(""); }
//-- OnTimer
void OnTimer()
{
// get last tick
bfxTicker2 bt;
MqlTick tick[1]={0};
tick[0].time=TimeCurrent();
tick[0].time_msc=TimeCurrent();

if(bfx.Ticker(Pair,bt)==rrSuccess)
{
tick[0].flags=TICK_FLAG_BID|TICK_FLAG_ASK|TICK_FLAG_VOLUME|TICK
_FLAG_LAST;
tick[0].bid=bt.bid; tick[0].ask=bt.ask; tick[0].last=bt.last; tick[0].volume=
(long)bt.day_vol;
CustomTicksAdd(mtPair,tick); ChartRedraw();
}

// get last bar
MqlRates rate[1];
if(bfx.CandleLast(Pair,tf1m,rate[0])==rrSuccess)
{
rate[0].spread=int((tick[0].ask-tick[0].bid)*MathPow(10,_Digits));
CustomRatesUpdate(mtPair,rate);
if(tick[0].flags>0) { tick[0].last=rate[0].close; CustomTicksAdd(mtPair,tick); }
ChartRedraw();
}

if(ShowBookDepth>0) ShowBook(ShowBookDepth);
if(ShowTimeSales) TimeSales();
}
//-- ShowBook
void ShowBook(int depth)
{
bfxOrderBook bk;
if(bfx.OrderBook(Pair, depth, true, bk)!=rrSuccess) return;
if(ArraySize(bk.asks)>0)
{
for(int i=0; i<ArraySize(bk.asks);++i)
SetLine(Pair+"Asks"+IntegerToString(i),TimeCurrent(),bk.asks[i].price,Time
Current()+20PeriodSeconds(),
bk.asks[i].price,clrDodgerBlue,1,STYLE_DOT,i==0?
DoubleToString(bk.asks[i].volume,1):"");
}

if(ArraySize(bk.bids)>0)
{
for(int i=0; i<ArraySize(bk.bids);++i)
SetLine(Pair+"Bids"+IntegerToString(i),TimeCurrent(),bk.bids[i].price,Time
Current()+20PeriodSeconds(),
bk.bids[i].price,clrRed,1,STYLE_DOT,i==0?
DoubleToString(bk.bids[i].volume,1):"");
}
}
//-- TimeSales
void TimeSales()
{
bfxTrades tr;
string inf="";
if(bfx.TradesHist(Pair,10,tr)==rrSuccess)
{
for(int i=0; i<ArraySize(tr.trades);++i)
{
bfxTrade t=tr.trades[i];
inf+="\n "+IntegerToString(t.id)+" |
"+TimeToString(t.mts,TIME_DATE|TIME_MINUTES|TIME_SECONDS)+" |
"+DoubleToString(t.price,_Digits)+
" | "+DoubleToString(fabs(t.amount),2)+" | "+(t.amount>0?"Buy ":"Sell");
}
}
Comment(inf);
}
//-- SetLine
void SetLine(string name,datetime dt1,double pr1,datetime dt2,double
pr2,color clr,int width,int style,string st)
{
ObjectCreate(0,name,OBJ_TREND,0,0,0);
ObjectSetInteger(0,name,OBJPROP_RAY,false);
ObjectSetInteger(0,name,OBJPROP_TIME,0,dt1);

ObjectSetDouble(0,name,OBJPROP_PRICE,0,pr1);
ObjectSetInteger(0,name,OBJPROP_TIME,1,dt2);
ObjectSetDouble(0,name,OBJPROP_PRICE,1,pr2);
ObjectSetInteger(0,name,OBJPROP_WIDTH,width);
ObjectSetInteger(0,name,OBJPROP_COLOR,clr);
ObjectSetString(0,name,OBJPROP_TEXT,st);
ObjectSetInteger(0,name,OBJPROP_STYLE,style);
}
//-- SetArrow
void SetArrow(string name,datetime dt,double pr,color clr,int width,string
st)
{
ObjectCreate(0,name,OBJ_ARROW_LEFT_PRICE,0,dt,pr);
ObjectSetInteger(0,name,OBJPROP_TIME,0,dt);
ObjectSetDouble(0,name,OBJPROP_PRICE,0,pr);
ObjectSetInteger(0,name,OBJPROP_COLOR,clr);
ObjectSetString(0,name,OBJPROP_TEXT,st);
ObjectSetInteger(0,name,OBJPROP_WIDTH,width);
}
//+--+
First, be sure to launch it in debug mode and move along all the calls step
by step. Check out what exactly is returned by the API, how responses are
parsed and data are displayed

steemit (/trending/steemit) psonk (/trending/psonk)

foresttraders (/trending/foresttraders) all (/trending/all)

cryptocurrencytraders (/trending/cryptocurrencytraders)

2 months ago by psonk (25) (/@psonk) Reply 4 (/steemit/@psonk/how-to-

trade-on-an-external-cryptocurrency-

exchange-via-metatrader-5)

$ 0.00 3 votes

https://steemit.com/trending/steemit
https://steemit.com/trending/psonk
https://steemit.com/trending/foresttraders
https://steemit.com/trending/all
https://steemit.com/trending/cryptocurrencytraders
https://steemit.com/@psonk
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!

Sign up. Get STEEM!

Sort Order: Trending

[-]cheetah (73) (/@cheetah) · 2 months ago (/steemit/@psonk/how-to-trade-on-an-

external-cryptocurrency-exchange-via-metatrader-5#@cheetah/cheetah-re-psonkhow-to-trade-

on-an-external-cryptocurrency-exchange-via-metatrader-5)

Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested
in:
https://www.mql5.com/en/articles/4160

Reply$ 0.00

[-]psonk (25) (/@psonk) · 2 months ago (/steemit/@psonk/how-to-trade-on-an-

external-cryptocurrency-exchange-via-metatrader-5#@psonk/re-cheetah-cheetah-re-

psonkhow-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5-

20180208t231021790z)

Ok. It means we can always share idea

Reply

·

$ 0.00

[-]lalu24 (44) (/@lalu24) · 2 months ago (/steemit/@psonk/how-to-trade-on-an-external-

cryptocurrency-exchange-via-metatrader-5#@lalu24/re-psonk-how-to-trade-on-an-external-

cryptocurrency-exchange-via-metatrader-5-20180209t004019798z)

hey bro don't copy the content
cheetah is a bot which recognize the copied content
now as a beginner you wont realize it but when you got a high reputation it will frustrate
you
there is another bot too so called steem cleaner and there are many too

Reply$ 0.00

[-]orelmely (60) (/@orelmely) · last month (/steemit/@psonk/how-to-trade-on-an-

external-cryptocurrency-exchange-via-metatrader-5#@orelmely/re-psonk-how-to-trade-on-an-

external-cryptocurrency-exchange-via-metatrader-5-20180324t115733100z)

nice..
thankss it is your code?

Reply$ 0.00

https://steemit.com/@cheetah
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#@cheetah/cheetah-re-psonkhow-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5
https://www.mql5.com/en/articles/4160
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/@psonk
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#@psonk/re-cheetah-cheetah-re-psonkhow-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5-20180208t231021790z
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/@lalu24
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#@lalu24/re-psonk-how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5-20180209t004019798z
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#
https://steemit.com/@orelmely
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#@orelmely/re-psonk-how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5-20180324t115733100z
https://steemit.com/steemit/@psonk/how-to-trade-on-an-external-cryptocurrency-exchange-via-metatrader-5#

