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package stats
Функция glm
glm is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.
Функция glm.control
Auxiliary function for glm fitting. Typically only used internally by glm.fit, but may be used to construct a control argument to either function.
Package ‘glm2’
Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm.
Fitting Generalized Linear Models with Convergence Problems
Abstract The R function glm uses step-halving to deal with certain types of convergence problems when using iteratively reweighted least squares to fit a generalized linear model. This works well in some circumstances but non-convergence remains a possibility, particularly with a nonstandard link function. In some cases this is because step-halving is never invoked, despite a lack of convergence. In other cases step-halving is invoked but is unable to induce convergence.
One remedy is to impose a stricter form of stephalving than is currently available in glm, so that the deviance is forced to decrease in every iteration.
This has been implemented in the glm2 function available in the glm2 package. Aside from a modified computational algorithm, glm2 operates in exactly the same way as glm and provides improved convergence properties. These improvements are illustrated here with an identity link Poisson model, but are also relevant in other contexts.
Package ‘glmnet’
Чрезвычайно эффективные процедуры для подгонки полностью лассо или эластично-сетевой путь регуляризации для линейной регрессии, логистической и регрессионной многомерных моделей, регрессии Пуассона и модели Cox. Два недавних дополнения - Гауссовский многомерный ответ, и сгруппированный многочлен. Алгоритм использует спуск циклической координаты pathwise способом, как описано в статье, через URL ниже.
Introduction to Glmnet 
Glmnet - пакет, который подгоняет обобщенную линейную модель через оштрафованное наибольшее правдоподобие. Путь регуляризации вычислен для лассо или гибкого сетевого штрафа на сетке значения для лямбды параметра регуляризации. Алгоритм чрезвычайно быстр, и может использовать разреженность во входной матрице x. Он подгоняет линейный, логистический и многочлен, Пуассон и регрессионные модели Cox. Множество предсказаний может быть сделано из подогнанных моделей. Он может также подогнать множественному отклику линейной регрессии.
Regularization Paths for Generalized Linear Models via Coordinate Descent
Мы разрабатываем быстрые алгоритмы для оценки обобщенных линейных моделей с выпуклыми штрафами. Модели включают линейную регрессию, логистическую регрессию с двумя классами и проблемы о регрессии многочлена, в то время как штрафы включают L1 (лассо), L2 (краевые регрессии) и смеси двух (эластичная сеть). Алгоритмы используют спуск циклической координаты, вычисленный вдоль пути регуляризации. Методы могут решить большие проблемы и могут также эффективно иметь дело с прореженными предикторами. При сравнении времени исполнения найдено, что новые алгоритмы значительно быстрее конкурентов.
Coxnet: Regularized Cox Regression
We will give a short tutorial on using coxnet. Coxnet is a function which fits the Cox Model regularized by an elastic net penalty. It is used for underdetermined (or nearly underdetermined systems) and chooses a small number of covariates to include in the model. Because the Cox Model is rarely used for actual prediction, we will rather focus on finding and interpretating an appropriate model. We give a simple example of how to format data and run the Cox Model in glmnet with cross validation.
Package ‘glmc’
Fits generalized linear models where the parameters are subject to linear constraints. The model is specified by giving a symbolic description of the linear predictor, a description of the error distribution, and a matrix of constraints on the parameters.
Package ‘glmgraph’
We propose to use sparse regression model to achieve variable selection while accounting for graph-constraints among coefficients. Different linear combination of a sparsity penalty(L1) and a smoothness(MCP) penalty has been used, which induces both sparsity of the solution and certain smoothness on the linear coefficients.

package glmm
An Introduction to Model-Fitting with the R.
The R package glmm approximates the entire likelihood function for generalized linear mixed models (GLMMs) with a canonical link. glmm calculates and maximizes the Monte Carlo likelihood approximation (MCLA) to find Monte Carlo maximum likelihood estimates (MCMLEs) for the fixed effects and variance components. Additionally, the value, gradient vector, and Hessian matrix of the MCLA are calculated at the MCMLEs. The Hessian of the MCLA is used to calculate the standard errors for the MCMLEs. 
package tscount
Likelihood-based methods for model fitting and assessment, prediction and intervention analysis of count time series following generalized linear models are provided. Models with the identity and with the logarithmic link function are allowed. The conditional distribution can be Poisson or Negative Binomial.
An R Package for Analysis of Count Time Series Following Generalized Linear Models.
 The R package tscount provides likelihood-based estimation methods for analysis and modelling of count time series following generalized linear models. This is a exible class of models which can describe serial correlation in a parsimonious way. The conditional mean of the process is linked to its past values, to past observations and to potential covariate effects. The package allows for models with the identity and with the logarithmic link function. The conditional distribution can be Poisson or Negative Binomial. An important special case of this class is the so-called INGARCH model and its log-linear extension. The package includes methods for model _tting and assessment, prediction and intervention analysis. This paper summarizes the theoretical background of these methods with references to the literature for further details. It gives details on the implementation of the package and provides simulation results for models which have not been studied theoretically before. The usage of the package is demonstrated by two data examples.
Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model
This paper introduces and evaluates new models for time series count data. The Autoregressive Conditional Poisson model (ACP) makes it possible to deal with issues of discreteness, overdispersion (variance greater than the mean) and serial correlation.
A fully parametric approach is taken and a marginal distribution for the counts is speci¯ed, where conditional on past observations the mean is autoregressive. This enables to attain improved inference on coefficients of exogenous regressors relative to static Poisson regression, which is the main concern of the existing literature, while modelling the serial correlation in a °exible way. A variety of models, based on the double Poisson distribution of Efron (1986) is introduced, which in a ¯rst step introduce an additional dispersion parameter and in a second step make this dispersion parameter time-varying. 
All models are estimated using maximum likelihood which makes the usual tests available. In this framework autocorrelation can be tested with a straightforward likelihood ratio test, whose simplicity is in sharp contrast with test procedures in the latent variable time series count model of Zeger (1988). The models are applied to the time series of monthly polio cases in the U.S between 1970 and 1983 as well as to the daily number of price change durations of :75$ on the IBM stock. A :75$ price-change duration is de¯ned as the time it takes the stock price to move by at least :75$. The variable of interest is the daily number of such durations, which is a measure of intradaily volatility, since the more volatile the stock price is within a day, the larger the counts will be. The ACP models provide good density forecasts of this measure of volatility.
package ‘glmulti’
.
Автоматизированный выбор модели и усреднение модели. Обеспечивает обертку для glm и других функций, автоматически генерируя все возможные модели (при ограничениях, установленных пользователем) с указанным откликом и объясняющими переменными, и находя лучшие модели с точки зрения некоторого информационного Критерия (AIC, AICc или BIC). Может обработать очень большие количества моделей кандидата. Инструмент Генетический алгоритм, чтобы найти лучшие модели, когда исчерпывающий отбор кандидатов не выполним.
An R Package for Easy Automated Model Selection with (Generalized) Linear Models
We introduce glmulti, an R package for automated model selection and multi-model inference with glm and related functions. From a list of explanatory variables, the provided function glmulti builds all possible unique models involving these variables and, optionally, their pairwise interactions. Restrictions can be speci_ed for candidate models, by excluding speci_c terms, enforcing marginality, or controlling model complexity. Models are _tted with standard R functions like glm. The n best models and their support (e.g., (Q)AIC, (Q)AICc, or BIC) are returned, allowing model selection and multi-model inference through standard R functions. The package is optimized for large candidate sets by avoiding memory limitation, facilitating parallelization and providing, in addition to exhaustive screening, a compiled genetic algorithm method. This article briey presents the statistical framework and introduces the package, with applications to simulated and real data.
Package ‘glmm’
Approximates the likelihood of a generalized linear mixed model using Monte Carlo likelihood approximation. Then maximizes the likelihood approximation to return maximum likelihood estimates, observed Fisher information, and other model information.
Package ‘glmpath’
A path-following algorithm for L1 regularized generalized linear models and Cox proportional hazards model.
Package ‘glmvsd’
Variable selection deviation (VSD) measures and instability tests for high dimensional model selection methods such as LASSO, SCAD and MCP, etc., to decide whether the sparse patterns identified by those methods are reliable.
Package ‘glmx’
Extended techniques for generalized linear models (GLMs), especially for binary responses, including parametric links and heteroskedastic latent variables.
Package ‘lqa’
This package provides some basic infrastructure and tools to fit Generalized Linear Models (GLMs) via penalized likelihood inference. Estimating procedures already implemented are the LQA algorithm (that is where its name come from), P-IRLS, RidgeBoost, GBlockBoost and ForwardBoost.
Package ‘mgcv’
GAMs, GAMMs and other generalized ridge regression with multiple smoothing parameter estimation by GCV, REML or UBRE/AIC. Includes a gam() function, a wide variety of smoothers, JAGS support and distributions beyond the exponential family.
Package ‘spls’
This package provides functions for fitting a Sparse Partial Least Squares Regression and Classification
Package ‘acp’
Time series analysis of count data
Package ‘gam’
Functions for fitting and working with generalized additive models, as described in chapter 7 of ‘‘Statistical Models in S’’ (Chambers and Hastie (eds), 1991), and ‘‘Generalized Additive Models’’ (Hastie and Tibshirani, 1990).
Книга
Generalized Linear Models
This is an introductory textbook on the generalized linear model (GLM). We intend this book for anyone who has completed a course in regression analysis that covers basic model-fitting and statistical inference at the level of an upper division or first-year graduate course. Some previous background in maximum likelihood estimation for linear regression and some exposure to nonlinear regression is helpful. However, Chapters 2 and 3 cover these topics in sufficient detail.
This book has several unique features. First, we give a thorough treatment of logistic and Poisson regression. Although these are special cases of the GLM, they are very important in their own right, and they deserve special attention.
More importantly, the treatment of these two cases provides a solid foundation for the GLM. Second, we provide an introduction to generalized estimating equations, which is a topic closely related to GLM. Third, this text provides an introduction to the generalized linear mixed model (GLMM). Both generalized estimating equations and GLMMs are of increasing importance to many practitioners. Important application areas include biology, to analyze longitudinal data, and the physical sciences and engineering, to analyze correlated observations.
Модель допускает довольно гибкую спецификацию зависимости отклика на ковариантах, но специфицируя модель только с точки зрения ‘гладких функций’, а не детализировала параметрические отношения, возможно избежать вида громоздких и громоздких моделей, замеченных в разделе 2.3.4, например. Эта гибкость и удобство прибывают за счет двух новых теоретических проблем. Необходимо и представлять гладкие функции в некотором роде и выбрать, насколько гладкий они должны быть.
Эта глава иллюстрирует, как GAMs могут быть представлены, используя оштрафованные сплайны регрессии, оцененные оштрафованными методами регрессии, и как надлежащая степень гладкости для fj может быть оценена от данных, используя перекрестную проверку. Чтобы не затенять основную простоту подхода с массой технической детали, самой сложной моделью, которую рассматривают здесь, будет простая GAM с двумя одномерными гладкими компонентами. Кроме того, представленные методики не будут теми, которые наиболее подходят для общего практического применения, будучи скорее методами, которые позволяют основной платформе быть объясненной просто. Идеальный способ считать эту главу находится в компьютере, работающем через статистику и ее реализацию в R, рядом.

Если принятие этого подхода напоминает, что к файлам справки для функций R можно получить доступ, введя? сопровождаемый именем функции, в командной строке (например? lm, для справки на линейной функции моделирования).
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GAMs in practice: mgcv
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This chapter covers use of the generalized additive modelling functions provided by R package mgcv: the design of these functions is based largely on Hastie (1993), although to facilitate smoothing parameter estimation, their details have been modified. It is also well worth being aware of other packages available for GAM type modelling in R. At time of writing, two other packages stand out: gss, written by Chong Gu and gam, written by Trevor Hastie. There is not space in this book to cover these in detail, but section 5.6 offers brief introductions to both. Packages assist and gamlss are also available at cran.r-project.org, and the vgam package is also worth seeking out.

The gam function from library mgcv is very much like the glm function covered in chapter 2. The main difference is that the gam model formula can include smooth terms, s() and te(), and there are a number of options available for controlling automatic smoothness selection, or for directly controlling model smoothness. Some simple examples are helpful for introducing the main features, so this chapter starts with the cherry tree data from chapter 3, before moving on to some more realistic examples. When reading this chapter note that R and the mgcv package are subject to continuing efforts to improve them. Sometimes this may involve modifications of numerical optimization behaviour, which may result in noticeable, but (hopefully) statistically unimportant, differences between the output given in this chapter, and the corresponding results with more recent versions. Sometimes the exact formatting of output can also change a little. 
5.1 Cherry trees again 
The example with which chapter 3 ended is easily re-done
library(mgcv) 
data(trees) ct1<-gam(Volume˜s(Height)+s(Girth), family=Gamma(link=log),data=trees)
This fits the Generalized additive model [image: ]
and the fj are smooth functions. The degree of smoothness (within certain limits) of the fj is estimated by GCV. The results can be checked by typing the name of the fitted model object to invoke the print.gam print method, and by plotting the fitted model object. For example
> ct1 
Family: Gamma 
Link function: log 
Formula: Volume ˜ s(Height) + s(Girth) 
Estimated degrees of freedom: 
1.076070 2.408379 total = 4.484449 
GCV score: 0.008103299 
> plot(ct1,residuals=TRUE)


The resulting plot is displayed in the upper two panels of figure 5.1. Notice that the default print method reports the model distribution family, link function and formula, before displaying the effective degrees of freedom for each term (in the order that the terms appear in the model formula) and the whole model: in this case a straight line, corresponding to one degree of freedom, is estimated for the effect of height, while the effect of Girth is a estimated as a smooth curve with 2.4 degrees of freedom; the total degrees of freedom is the sum of these two, plus one degree of freedom for the model intercept. Finally the GCV score for the fitted model is reported. 
[image: ]
The plots show the estimated effects as solid lines/curves, with 95% confidence limits (strictly Bayesian credible intervals, based on section 4.8) shown as dashed lines. The coincidence of the confidence limits and the estimated straight line, at the point where the line passes through zero on the vertical axis, is a result of the identifiability constraints applied to the smooth terms∗ . The points shown on the plots are partial residuals. These are simply the Pearson residuals added to the smooth terms evaluated at the appropriate covariate values. For example, the residuals plotted in the top left panel of figure 5.1 are given by
5.1.1 Finer control of gam 
The simple form of the gam call producing ct1 hides a number of options that have been set to default values. The first of these is the choice of basis used to represent the smooth terms. The default is to use thin plate regression splines, which have some appealing properties, but can be computationally costly for large data sets. In the following this is modified by using s(...,bs="cr") to select penalized cubic regression splines to represent the same cherry tree model.
> ct2<-gam(Volume˜s(Height,bs="cr")+s(Girth,bs="cr"), +
 family=Gamma(link=log),data=trees) 
> ct2 
Family: Gamma 
Link function: log 
Formula: 
Volume ˜ s(Height, bs = "cr") + s(Girth, bs = "cr") 
Estimated degrees of freedom: 
1.000126 2.418591 total = 4.418718 
GCV score: 0.008080546
As you can see, the change in basis has made very little difference to the fit. Plots are in fact indistinguishable to those for ct1. This is re-assuring: it would be unfortunate if the model depended very strongly on details like the exact choice of basis. However, larger changes to the basis, such as using P-splines, can make an appreciable difference. 
Another choice hidden, in the previous two model fits, is the choice of the dimension, k, of the basis used to represent smooth terms. In the previous two fits, the default, k = 10, was used. The choice of basis dimensions amounts to setting the maximum possible degrees of freedom allowed for each model term. The actual effective degrees of freedom, for each term, will usually be estimated from the data, by GCV or UBRE, but the upper limit on this estimate is k − 1: the basis dimension, less one degree of freedom due to the identifiability constraint on each smooth term. The following example sets k to 20 for the smooth of Girth (and illustrates, by the way, that there is no problem in mixing different bases).
> ct3 <- gam(Volume ˜ s(Height)+s(Girth,bs="cr",k=20), + family=Gamma(link=log),data=trees) 
> ct3 
Family: Gamma 
Link function: log 
Formula: Volume ˜ s(Height) + s(Girth, bs = "cr", k = 20) 
Estimated degrees of freedom: 1.000003 2.424226 total = 4.424229 
GCV score: 0.00808297




Again, this change makes boringly little difference in this case, and the plots (not shown) are indistinguishable from those for ct1. This insensitivity to basis dimension is not universal, of course, and one quite subtle point is worth being aware of. This is that a space of functions of dimension 20, will contain a larger subspace of functions with effective degrees of freedom 5, than will a function space of dimension 10 (the particular numbers being arbitrary here). Hence it is often the case that increasing k will change the effective degrees of freedom estimated for a term, even though both old and new estimated degrees of freedom are lower that the original k − 1. 
A final default choice, that it is worth being aware of, is the value for γ in the GCV or UBRE scores (expressions (4.28) or (4.29), respectively) optimized in order to select the degree of smoothness of each term. The default value is 1, but GCV is known to have some tendency to overfitting on occasion, and it has been suggested that using γ ≈ 1.4 can largely correct this without compromising model fit (Kim and Gu, 2004). Applying this idea to the current model, results in the bottom row of figure 5.1 and the following output.
> ct4 <- gam(Volume ˜ s(Height) + s(Girth), + family=Gamma(link=log),data=trees,gamma=1.4) 
> ct4 
Family: Gamma 
Link function: log 
Formula: Volume ˜ s(Height) + s(Girth) 
Estimated degrees of freedom: 1.00011 2.169248 total = 4.169358 
GCV score: 0.00922805 
> plot(ct4,residuals=TRUE)


Clearly the heavier penalty on each degree of freedom in the GCV score has resulted in a model with fewer degrees of freedom, but the figure indicates that the change in estimates that this produces is barely perceptible.
5.1.2 Smooths of several variables
gam is not restricted to models containing only smooths of one predictor. In principle, smooths of any number of predictors are possible via two types of smooth. Within a model formula, s(), terms using the "tp" or "ts" bases, produce isotropic smooths of multiple predictors, while te() terms produce smooths of multiple predictors from tensor products of any bases available for use with s() (including mixtures of different bases). The tensor product smooths are invariant to linear rescaling of covariates, and can be quite computationally efficient. 
[image: ] The following code fragments both fit the model
5.1.3 Parametric model terms
So far, only models consisting of smooth terms have been considered, but there is no difficulty in mixing smooth and parametric model components. For example, given that the smooth of height, in model ct1, is estimated to be a straight line, we might as well fit the model:
gam(Volume˜Height+s(Girth),family=Gamma(link=log),data=trees)
but to make the example more informative, let us instead suppose that the Height is actually only measured as a categorical variable. This can easily be arranged, by creating a factor variable which simply labels each tree as small, medium or large:
trees$Hclass <- factor(floor(trees$Height/10)-5, labels=c("small","medium","large"))
Now we can fit a generalized additive model to these data, using the Hclass variable as a factor variable.
ct7 <- gam(Volume ˜ Hclass+s(Girth), family=Gamma(link=log),data=trees)
5.2.6 Prediction with predict.gam
The predict method function, predict.gam, enables a gam fitted model object to be used for prediction at new values of the model covariates. It is also used to provide estimates of the uncertainty of those predictions, and the user can specify whether predictions should be made on the scale of the response or of the linear predictor. For predictions on the scale of the linear predictor, predict.gam also allows predictions to be decomposed into their component terms, and it is also possible to extract the matrix, which when multiplied by the model parameter vector, yields the vector of predictions at the given set of covariate values. Usually the covariate values, at which predictions are required, are supplied as a data frame in argument newdata, but if this argument is not supplied then predictions/fitted values are returned for the original covariate values, used for model estimation. Here are some examples. Firstly on the scale of the linear predictor
> predict(m2)[1:5] 
1 			2 		3 		5 		6 
0.3024547 	0.3418227 	0.3474573 	0.2769854 	0.4541785 
> pv <- predict(m2,se=TRUE) 
> pv$fit[1:5] 
1 2 3 5 6
0.3024547 0.3418227 0.3474573 0.2769854 0.4541785 
> pv$se[1:5] 
1 2 3 5 6 
0.2640762 0.2164298 0.2158971 0.2237674 0.2275705
and then on the response scale
> predict(m2,type="response")[1:5] 
1 2 3 5 6 
1.353176 1.407511 1.415464 1.319147 1.574879 
> pv <- predict(m2,type="response",se=TRUE) 
> pv$se[1:5] 
1 2 3 5 6 
0.3573416 0.3046273 0.3055945 0.2951821 0.3583961

5.6.1 Package gam
Package gam is an implementation of the GAM framework of Hastie and Tibshirani (1990). The mgcv package was an attempt to provide GAMs for R, before the gam package was available, and its functions are based closely on the S equivalents designed by Hastie (1993). For this reason, basic use of gam is rather similar to basic use of mgcv. The main differences are: (i) s() terms in a gam::gam formula denote cubic smoothing spline smooths of one variable; (ii) smooths of any number of variables are provided by lo terms, and are loess smooths; (iii) gam::gam does not estimate the degree of smoothness automatically. 
In the following, a version of the final Chicago air pollution model is fitted, using package gam. The flexibility of the smooths (controlled by the df and span arguments) has been selected to give a fit with terms of similar complexity to those estimated using mgcv::gam.
> library(gam) 
> bfm <- gam(death˜s(time,df=140)+lo(o3,tmp,span=.1), family=poisson,control=gam.control(bf.maxit=150))

The control argument has to be modified a little, in this case, to achieve convergence of the back fitting iterations. Here is a default summary of the fit.
5.6.2 Package gss 
The gss package is a comprehensive implementation of the general smoothing spline approach to modelling described in the monographs by Wahba (1990) and Gu (2002). The modelling approach is somewhat different to the gam functions met so far, being based strongly on the notion of ANOVA decompositions of functions (see section 4.10.2). Again the Air pollution model provides a useful example:
library(gss) 
ssm <- gssanova1(death˜time+o3*tmp,family="poisson",nbasis=200)
The gssanova1 function is a computationally efficient reduced rank version of the function gssanova, which fits generalized smoothing spline ANOVA models based on the methods reported in Kim and Gu (2004). The model formula specifies a linear predictor, with the following structure:
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Figure 5.1 Components of GAM model fts 1o the cherry tree data. The upper two panels are
from ct1 and the lower 2 from ct 4.
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Table 5.1 Smoothing bases buil in to package mgcv, and a summary of their advantages and
disadvantages. (To use P-splines see ?p . spline.)
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log(E[Volume,]) = fi(Height;) + f2(Girth;) where Volume; ~ Gamma




