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Overview of this talk

What is the execution puzzle?

Components of an algorithmic execution

How much does it cost to trade?

How to reduce cost

Optimal scheduling
Choice of market or limit order
Optimal order routing

How much can trading costs be reduced?
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Overview of the execution puzzle

Typically, an execution algorithm has three layers:

The macrotrader

This highest level layer decides how to slice the meta-order:
when the algorithm should trade, in what size and for roughly
how long.

The microtrader

Given a slice of the meta-order to trade (a child order), this
layer of the algorithm decides whether to place market or limit
orders and at what price level(s).

The smart order router

Given a limit or market order, to which venue should the order
be sent?
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Our approach to the puzzle

First we will present some stylized facts.

Then, for each of the pieces of the execution puzzle, we will

Present conventional techniques and the theory underlying
them

Compare theoretical assumptions with empirical evidence

Suggest modified approaches whenever theory is inconsistent
with observation

We will attempt to present a state-of-the-art understanding of
order execution, emphasizing intuition and leaving out most of the
mathematical details.
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Market structure

We will consider a limit order book such as the BOVESPA or the
NYSE and two basic order types:

Market orders

Always executed if there is sufficient quantity available.

Limit orders

Are executed only if the limit price is reached.
On the BOVESPA, the NYSE and most other limit order book
markets, priorities are price first, then time.



Introduction Stylized facts Optimal scheduling Microtrader Order routing Conclusion

Market impact

The market impact function relates expected price change to
the volume of a transaction.

However, there is no reason a priori to expect that market
impact should be a function of volume only.

Market impact could be a function of:

Market capitalization
Bid-ask spread
The timescale over which the trade is executed.

Note that it is not only market orders that impact the market
price; limit orders and cancelations should also have market
impact.
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The square-root formula for market impact

For many years, traders have used the simple
sigma-root-liquidity model described for example by Grinold
and Kahn in 1994.

Software incorporating this model includes:

Salomon Brothers, StockFacts Pro since around 1991
Barra, Market Impact Model since around 1998
Bloomberg, TCA function since 2005

The model is always of the rough form

∆P = Spread cost + ασ

√
Q

V

where σ is daily volatility, V is daily volume, Q is the number
of shares to be traded and α is a constant pre-factor of order
one.
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Heuristic explanation of the square-root formula

Each trade impacts the stock price and variance adds so
impact should be proportional to volatility.

The amount of each individual impact is proportional to the
square root of trade size because risk capital should be
proportional to the square-root of the holding period.
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Empirical question

We have a simple formula with a heuristic derivation. Does the
formula work in practice?
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Impact of proprietary metaorders (from Tóth et al.)

Figure 1: Log-log plot of the volatility-adjusted price impact vs the ratio
Q/V
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Notes on Figure 1

In Figure 1 which is taken from [Tóth et al.], we see the
impact of metaorders for CFM1 proprietary trades on futures
markets, in the period June 2007 to December 2010.

Impact is measured as the average execution shortfall of a
meta-order of size Q.
The sample studied contained nearly 500,000 trades.

We see that the square-root market impact formula is verified
empirically for meta-orders with a range of sizes spanning two
to three orders of magnitude!

1Capital Fund Management (CFM) is a large Paris-based hedge fund.
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Another explanation for the square-root formula

In [Tóth et al.], the authors present an argument which says
that if latent supply and demand is linear in price over some
reasonable range of prices, market impact should be
square-root.

The condition for linearity of supply and demand over a range
of prices is simply that submitters of buy and sell meta-orders
should be insensitive to price over this range.

That seems like an innocuous assumption!
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Some implications of the square-root formula

The square-root formula refers only to the size of the trade
relative to daily volume.

It does not refer to for example:

The rate of trading
How the trade is executed
The capitalization of the stock

Surely impact must be higher if trading is very aggressive?

The database of trades only contains sensible trades with
reasonable volume fractions.
Were we to look at very aggressive trades, we would indeed
find that the square-root formula breaks down.



Introduction Stylized facts Optimal scheduling Microtrader Order routing Conclusion

Empirical question

What happens on average to the stock price while a metaorder is
being executed? And what happens to the stock price after
completion?



Introduction Stylized facts Optimal scheduling Microtrader Order routing Conclusion

Path of the stock price during execution (from Moro et al.)

Figure 2: Average path of the stock price during execution of a
metaorder on two exchanges
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Empirically observed stock price path

From Figure 2, we see that

There is reversion of the stock price after completion of the
meta-order.

Some component of the market impact of the meta-order
appears to be permanent.

The path of the price prior to completion looks like a power
law.

From [Moro et al.]

mt −m0 ≈ (4.28± 0.21)
( t

T

)0.71±0.03

(BME)

mt −m0 ≈ (2.13± 0.05)
( t

T

)0.62±0.02

(LSE)

where T is the duration of the meta-order.
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Summary of empirical observations

The square-root formula gives an amazingly accurate rough
estimate of the cost of executing an order.

During execution of a meta-order, the price moves on average
roughly according to (t/T )2/3.

Immediately after completion of a meta-order, the price begins
to revert.
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Summary of empirical observations

According to a literal reading of the square-root formula, the
cost of trading doesn’t depend on trading strategy.

Does this mean that there is nothing that we can do to reduce
trading costs?

No! We can reduce the size of the prefactor α by breaking down
the execution puzzle into its components and attacking each one
in turn.

We now turn our attention to optimal scheduling.
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Statement of the optimal scheduling problem

Given a model for the evolution of the stock price, we would
like to find an optimal strategy for trading stock, the strategy
that minimizes some cost function over all permissible
strategies.

A static strategy is one determined in advance of trading.

A dynamic strategy is one that depends on the state of the
market during execution of the order, i.e. on the stock price.

Delta-hedging is an example of a dynamic strategy. VWAP is
an example of a static strategy.

It turns out, surprisingly, that in many models, a statically
optimal strategy is also dynamically optimal.

For all the models we will describe, a static strategy set in
advance of trading is optimal.
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Almgren and Chriss

The seminal paper of [Almgren and Chriss] treats the
execution of a hidden order as a tradeoff between risk and
execution cost.

According to their formulation:

The faster an order is executed, the higher the execution cost
The faster an order is executed, the lower the risk (which is
increasing in position size).

The Almgren-Chriss model can be considered the conventional
market standard.
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Almgren and Chriss

In the Almgren and Chriss model, the stock price St evolves as

dSt = γ dxt + σ dZt

and the price S̃t at which transactions occur is given by

S̃t = St + η vt

where vt := −ẋt is the rate of trading.

Temporary market impact is proportional to the rate of
trading vt .

Temporary market impact decays instantaneously and has no
effect on the market price St .

The expectation E[St ] = γ xt of the market price during
execution is linear in the position xt . It does not revert after
completion.
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Price path in the Almgren and Chriss model

Figure 3: The Almgren and Chriss average price path is plotted in orange.
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The optimal strategy (with no price of risk) is just VWAP –
constant trading in volume time.
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Obizhaeva and Wang 2005

In the Obizhaeva and Wang model,

St = S0 + η

∫ t

0
vs e−ρ (t−s) ds +

∫ t

0
σ dZs (1)

with vt = −ẋt .

Market impact is linear in the rate of trading but in contrast
to Almgren and Chriss, market impact decays exponentially
with some non-zero half-life.
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Obizhaeva Wang order book process

Order density f(x)f(Dt) f(Dt+)

Et+ −Et

0 Dt Dt+

Et

Price level

When a trade of size ξ is placed at time t,

the volume impact process Et 7→ Et+ = Et + ξ

the spread Dt = η Et 7→ Dt+ = η Et+ = η (Et + ξ)
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Exponential resiliency

The volume impact process Et reverts exponentially to zero.
Thus, if there were no trades in the interval (t, t + ∆], we
would have

Et+∆ = Et e−ρ∆

Alternatively, the spread Dt reverts to zero.

This is referred to as exponential resiliency of the order book.
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Optimal strategy in the Obizhaeva Wang model

The optimal strategy in the OW model is

vs = δ(s) + ρ+ δ(s − T )

where δ(·) is the Dirac delta function.

The optimal strategy consists of a block trade at time t = 0,
continuous trading at the rate ρ over the interval (0,T ) and
another block trade at time t = T .
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Example of OW optimal strategy

Consider a Brazilian stock with 14,000 trades per day and a
liquidation whose horizon is 1 hour.

A rule of thumb is that the order book refreshes after 10-15
trades. So we take the half-life of the order book resilience
process to be 20× log 2 ≈ 14 trades.
log 2/ρ = log 2× 20 trades so ρ = 1/20 in trade time. One
hour has 2,000 trades so ρT = 100.

Recall that the optimal strategy is us = δ(s) + ρ+ δ(s − T ).
Thus,

X =

∫ T

0
vs ds = 2 + ρT = 102

The optimal strategy thus consists of a block trade of relative
size one at the beginning, another trade of size one at the end
and an interval VWAP of relative size 100.

The optimal strategy in this case is very close to VWAP.
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Price path in the Obizhaeva-Wang model

Figure 4: The OW average price path is plotted for two different values
of ρ.
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The optimal strategy is bucket-like.
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The model of Alfonsi, Fruth and Schied

[Alfonsi, Fruth and Schied] consider the following (AS)
generalization of the OW model:

There is a continuous (in general nonlinear) density of orders
f (x) above some martingale ask price At . The cumulative
density of orders up to price level x is given by

F (x) :=

∫ x

0
f (y) dy

Executions eat into the order book.
A purchase of ξ shares at time t causes the ask price to
increase from At + Dt to At + Dt+ with

ξ =

∫ Dt+

Dt

f (x) dx = F (Dt+)− F (Dt)

The order book has exponential resiliency; either the volume
impact process Et or the spread Dt revert exponentially.
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Schematic of the model

Order density f(x)

f(Dt)

f(Dt+)

Et+ −Et

0 Dt Dt+

Et

Price level

When a trade of size ξ is placed at time t,

Et 7→ Et+ = Et + ξ

Dt = F−1(Et) 7→ Dt+ = F−1(Et+) = F−1(Et + ξ)
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Optimal liquidation strategy in the AS model

The optimal strategy in the AS model is

vt = ξ0 δ(t) + ξ0 ρ+ ξT δ(T − t).

Just as in the OW model, the optimal strategy consists of a
block trade at time t = 0, continuous trading at the rate ρ
over the interval (0,T ) and another block trade at time
t = T .

The only difference is that in the AS model, the final block is
not the same size as the initial block.
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Generalization

It can be shown that the bucket-shaped strategy is optimal
under more general conditions than exponential resiliency.

Specifically, if resiliency is a function of the volume impact
process Et (or equivalently the spread Dt) only, the optimal
strategy has block trades at inception and completion and
continuous trading at a constant rate in-between.

These conditions may appear quite general but in fact, there
are many other models that do not satisfy them.
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A transient market impact model

The price process assumed in [Gatheral] is

St = S0 +

∫ t

0
f (vs) G (t − s) ds + noise (2)

The instantaneous impact of a trade at time s is given by
f (vs) – some function of the rate of trading.

A proportion G (t − s) of this initial impact is still felt at time
t > s.
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The square-root model

Consider the following special case of (2) with f (v) = 3
4σ
√

v/V
and G (τ) = 1/

√
τ :

St = S0 +
3

4
σ

∫ t

0

√
vs

V

ds√
t − s

+ noise (3)

which we will call the square-root process.

It turns out that the square-root process is consistent with the
square-root formula for market impact:

C
X

= σ

√
X

V
(4)

Of course, that doesn’t mean that the square-root process is
the true underlying process!
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The optimal strategy under the square-root process

Because f (·) is concave, an optimal strategy does not exist in
this case.

It is possible to drive the expected cost of trading to zero by
increasing the number of slices and decreasing the duration of
each slice.

To be more realistic, f (v) must be convex for large v and in
this case, an optimal strategy does exist that involves trading
in bursts, usually more than two.
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Price path in the Square-root model

Figure 5: The square-root model average price path.
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The optimal strategy does not exist in this model.
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Intuition

The optimal strategy depends on modeling assumptions.

In the Almgren-Chriss model where there is no price reversion
after completion of the meta-order, the optimal strategy is a
simple VWAP.

In other models where there is reversion, the optimal strategy
is to make big trades separated in time, perhaps with some
small component of continuous trading.

The intuition is easy to see:

The price reversion idea

If the price is expected to revert after completion, stop trading
early and start again later after the price has reverted!
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The market or limit order decision

Having decided how to slice the meta-order, should we send
market or limit orders?

Many market participants believe that market orders should
only be sent when absolutely necessary – for example when
time has run out.

Conventional wisdom has it that the more aggressive an
algorithm is, the more costly it should be.

This cannot be true on average. Traders are continuously
monitoring whether to send market or limit orders so in
equilibrium, market and limit orders must have the same
expected cost.

Market orders incur an immediate cost of the half-spread but
limit orders suffer from adverse selection.
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Adverse selection

Limit orders are subject to adverse selection:

If the price is moving towards us, we get filled. We would
rather that our order had not been filled. Had we not got the
fill, we could have got a better price.
If the price is moving away from us, we don’t get filled. We
need to resubmit at a worse price.

In general, we regret sending a market order because we have
to pay the half-spread.

In general, we regret sending a limit order because of adverse
selection.
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The order book signal

If we know the price is going against us, we should send a
market order. Otherwise we should send a limit order.

In practice, we cannot predict the future; we can compute
relative probabilities of future events.

One simple idea is to look at the shape of the order book. If
there are more bids than offers, the price is more likely to
increase than decrease.
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The SFGK zero-intelligence model

In this model due to Smith, Farmer, Gillemot and Krishnamurthy:

Limit orders can be placed at any integer price level p where
−∞ < p <∞.

If worried about negative prices, think of these as being
logarithms of the actual price.

Limit sell orders may be placed at any level greater than the
best bid B(t) at time t and limit buy orders at any level less
than the best offer A(t).

Market orders arrive randomly at rate µ.

Limit orders (per price level) arrive at rate α.

A proportion δ of existing limit orders is canceled.
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Price signal in the ZI simulation

Even in the ZI model, the shape of the order book allows
prediction of price movements.

Traders really would need to have zero intelligence not to
condition on book shape!

Figure 6: With one share at best offer, future price change vs size at best
bid.
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Microprice

The relationship between the imbalance in the order book and
future price movements is sometimes described in terms of the
microprice.

This can be thought of as a fair price, usually between the bid
and the ask.

As an example, in the context of the zero-intelligence model,
Cont and Larrard derived the following asymptotic expression:

Proposition 2 of Cont & Larrard

The probability φ(n, p) that the next price is an increase,
conditioned on having n orders at the bid and p orders at the ask
is:

φ(n, p) =
1

π

∫ π

0
dt

(
2− cos t −

√
(2− cos t)2 − 1

)p sin n t cos t
2

sin t
2
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Order splitting

The typical size of a meta-order is a large multiple of the
quantity typically available at the best quote.

Consequently, meta-orders need to be split into smaller child
orders.

This gives rise to a long-memory autocorrelation function
which is significant at all lags.

Order sign (or order flow) is thus highly predictable.
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Autocorrelation of order signs

Figure 7: Autocorrelation function of the time series of signs of Vodafone
market orders in the period May 2000 – December 2002, a total of
580,000 events (from [Bouchaud, Farmer, Lillo])
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Market impact relates to unexpected order flow

Figure 8: Average impact of AZN market orders vs expected order sign.
Buy orders in green; sell orders in red (from [Bouchaud, Farmer, Lillo])
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An explanation for price reversion due to Lillo et al.

The longer a meta-order has been active, the more likely it is
that it will continue.

If the meta-order does continue, the marginal market impact of
child orders will decrease.
If the meta-order stops (because it completes), market impact
will be large.
On average, price moves are unpredictable.
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The market/ limit order decision

We have two (related) signals:

From the current state of the order book, we can predict the
sign of the next price change.
From recent order flow history, we can judge whether active
meta-orders are more on the buy side or on the sell side.

The practical recipe is therefore to:

Send market orders when the market is going against us, limit
orders otherwise.
Trade more when others want to trade with us, less when there
are fewer counterparties.
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Order routing

Having optimally scheduled child orders and for each such
child order, having decided whether to send a market or a
limit order, where should the order be sent?

In Brazil, the answer is straightforward; there is currently only
one market – the BOVESPA.

In the US, there are currently approximately 13 lit venues and
over 40 dark venues.

On the one hand, it would be prohibitively complicated and
expensive to route to all of them.
On the other hand, by not routing to a particular venue, the
trader misses out on potential liquidity, and all things being
equal, will cause incur greater market impact.

Most traders have to use a smart order routing (SOR)
algorithm provided by a dealer.
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Smart order routing (SOR)

The goal of an SOR algorithm is to buy (or sell) as many
shares as possible in the shortest time by optimally allocating
orders across both lit and dark venues.

In the case of lit venues, there are hidden orders so there is
typically more liquidity available than is displayed.
In dark venues, by definition, all liquidity is hidden.

We will briefly describe

A heuristic algorithm due to Almgren and Harts
An algorithm based on machine learning techniques due to
Michael Kearns and his collaborators.
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The Almgren and Harts (AH) algorithm

The idea of this algorithm is that the more hidden quantity is
detected in a given venue, the more hidden quantity there is
likely to be.

This is a characteristic of distributions with fatter tails than
exponential.
Empirically, we find that order sizes are power-law distributed
in which case this assumption would definitely be justified.

For simplicity, let’s focus on the sale of stock.

If hidden quantity w is detected (by selling more than the
visible quantity) on a particular venue, the current estimate of
hidden liquidity is increased by w .

If no hidden quantity quantity is detected on a venue, the
existing estimate is decremented by a factor ρ.
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Conditional distribution of quantity: Power-law case

Suppose that the distribution of order sizes Q is power-law so that

Pr(Q > n) =
C

nα

Assuming the conditional probability that hidden quantity is greater
than n given that n slices have already been observed is given by

Pr(Q ≥ (n + 1)|Q ≥ n) =
Pr(Q ≥ (n + 1))

Pr(Q ≥ n)

=

(
n

n + 1

)α
→ 1 as n→∞

If the distribution of Q is power-law, the more quantity you
observe, the more likely it is that there is more quantity remaining.
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A simplified version of the Almgren-Harts (AH) algorithm

Our goal is to execute a sell order as quickly as possible by
optimally allocating quantity to all N venues.

We allocate quantity quasi-greedily sequentially to the venue
with the highest estimated quantity, visible and hidden.

If we see a fill of size nj when the displayed quantity is qj on
the jth venue, the pre-existing liquidity estimate Rj is decayed
by a factor ρ and incremented by the detected hidden liquidity:

Rj 7→ ρRj + (nj − qj)
+

Repeat until our quantity is exhausted and the order is
completed.
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The Kearns et al. (GKNW) algorithm

The idea behind the GNKW is not dissimilar to the idea
behind the AH algorithm although, as written, it is applied
only to dark pools.

In the allocation phase, orders are allocated greedily to the
venue with the greatest estimated liquidity.

In the re-estimation phase, parametric order-size distributions
are updated.

They find that the most practical approach is to estimate
separately the probability that the quantity is zero and the
exponent of a power-law for the probabilities of nonzero
quantities.

Allocation and re-estimation are performed in a continuous
loop.



Introduction Stylized facts Optimal scheduling Microtrader Order routing Conclusion

Simulation results

An algorithm can only be tested by experiment or simulation.

The data used for model estimation comes from particular
choices of algorithm and we can’t predict what would have
been if these algorithms had chosen to act differently.

In simulations, the GKNW algorithm outperformed two other
obvious choices of algorithm:

Equal allocation across venues
A bandit algorithm that begins with equal weights. If there is
any execution at a particular venue, that venues weight is
increased by a factor α = 1.05.
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Scope for further improvement

We have presented two conceptually similar smart order
routing algorithms.

Both algorithms implicitly assume that all trading venues offer
the same quality of execution.
But different venues have different latencies, at least one
respect in which not all venues can offer the same overall cost.
We need to think about incorporating execution quality into
routing decisions.
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A philosophical question

Question

Why should it be so complicated to trade stock?

One answer goes something like this:

Changes in market structure together with technological
innovation have massively reduced trading costs.

Nevertheless, some market participants achieve significantly
lower costs.

This requires either substantial investment in technology and
trading expertise or
careful selection of broker algorithms.

Note however that algorithm performance is very hard to
assess ex-post. Ideally, randomized experiments are required.
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Potential cost savings from optimal scheduling

To estimate potential savings from optimal scheduling,
assume that the square-root process (3) is correct and
consider a one-day order to sell 270,000 shares of Vale SA.

Daily volatility is assumed to be 2% and daily volume to be 3
million shares.
We consider liquidation starting at 10:30 and ending at 16:30
with child orders lasting 15 minutes.

Because we are not confident in the square-root model for
high volume fractions, we constrain volume fraction to be no
greater than 25%.

We compare the costs of VWAP, a two-slice bucket-like
strategy and a quasi-optimal strategy that consists of seven
roughly equal slices.
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Comparison of results

In the square-root model (3), the cost of a VWAP execution is
given exactly by the square-root formula:

σ

√
Q

V
= 0.02×

√
270

3000
= 0.02× 0.3 = 60 bp

Table 1: Cost comparison

Strategy Cost Saving

VWAP 60.0 bp
Bucket-like 49.6 bp 17%
Quasi-optimal 40.8 bp 32%



Introduction Stylized facts Optimal scheduling Microtrader Order routing Conclusion

Potential cost savings from microtrader improvements

Were we just to blindly send market orders, we would estimate
that the cost of each child order would be around a
half-spread.

Practical experience shows that it is not possible to reduce
this cost much below one third of a spread.

We conclude that we could potentially save up to one sixth of
the spread.
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Potential cost savings from smart order routing

A näıve estimate would be to use the square-root market
impact formula, changing the denominator V to reflect the
potential increase in liquidity from routing to extra venues.

If the potential liquidity accessed is doubled, costs should be
decreased by 1− 1/

√
2 ≈ 30% according to this simple

computation!
This could be one explanation for the multiplicity of trading
venues in the US.

We expect actual savings to be much less than this because
the different venues are all connected and information leaks
from one venue to the other.
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Final conclusion

Recent empirical and theoretical work on market
microstructure has led to a much improved understanding of
how to trade optimally.

Potential savings from careful order execution relative to
VWAP using a simple first-generation algorithm are
substantial.

Cost savings of 25% for reasonably sized orders are not
unreasonable.
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