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Abstract. Bid and ask sizes at the top of the order book provide information on short-term price moves. Drawing from classical
descriptions of the order book in terms of queues and order-arrival rates (Smith et al., 2003), we consider a diffusion model
for the evolution of the best bid/ask queues. We compute the probability that the next price move is upward, conditional on the
best bid/ask sizes, the hidden liquidity in the market and the correlation between changes in the bid/ask sizes. The model can be
useful, among other things, to rank trading venues in terms of the “information content” of their quotes and to estimate hidden
liquidity in a market based on high-frequency data. We illustrate the approach with an empirical study of a few stocks using
quotes from various exchanges.

1. Introduction

The term “order book” (OB) is generally used to
describe the bid and ask prices and sizes in continuous-
auction exchanges, such as NYSE-ARCA, BATS or
NASDAQ. A distinction is often made between Level
I quotes, i.e. the best bid/ask prices and sizes, and
Level II quotes, which consist of all prices and
sizes available in the order book. In either case, the
OB provides information on market depth, allowing
traders to estimate the impact of their trades. A
question of obvious interest, given the high degree of
transparency of OB data, is whether the order book
provides any information on short-term price moves.

The role of private information on the behavior of
agents in financial markets has been a central theme
of the market microstructure literature. In recent
years, with the emergence of competing electronic
trading venues (ECN’s and Dark Pools) for the same
asset and algorithmic trading, questions related to
the quality, speed and transparency of information on
various exchanges have become ever more relevant
for regulators and practitioners alike. Parlour and
Seppi (2008) offer a comprehensive review of the

theoretical microstructure literature in light of these,
now prevalent, limit order markets.

In the empirical microstructure literature, the focus
is on the net informational content of measurable
quantities in the limit order book, rather than the
information content of particular agents in the market.
For instance, the influence of variables such as the
sizes at the best quotes on future price moves have
been shown to be statistically significant (see Harris
and Panchapagesan (2005), Hellströem and Simonsen
(2009), Cao, Hansch, and Wang (2009)). All these
studies show that this effect is particularly strong at
short time intervals, on the order of 1–5 minutes. In
fact, Hasbrouck (1995) shows how one may compare
the relative information content of various time series
variables on the efficient price of an asset. Hasbrouck
used these econometric methods to analyze the initial
stages of the US stock market “fragmenting” into
regional exchanges, and at the time found “that the
preponderance of the price discovery takes place in the
New York Stock Exchange (NYSE) (a median 92.7
percent information share)”. Using similar techiques,
Cao, Hansch and Wang find that “the order book
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beyond the first step (best quotes) is informative - its
information share is about 30%”.

Here, we propose a modeling approach that allows
one to measure and compare the information content
of order books as well as make short term price
forecasts (on the order of seconds). We ask a simple,
fundamental, question about the OB. Can we forecast
the direction of the next price movement, based on
bid and ask sizes? The degree to which this can be
done given the OB could be called the information
content of the OB. For example, if the sizes of queues
do not provide information, then, if ∆P denotes the
next price move,

Prob.{∆P > 0 |OB}

= Prob.{∆P < 0 |OB} = 0.5,

where the probabilities are conditional on observing
the OB. If the OB is “informative”, we expect that

Prob.{∆P > 0 |OB} = p(OB),

i.e. that the order book provides a forecast of next
price move in the form of a conditional probability.
The information contained in the OB, if any, should
tell us to what extent p(OB) differs from 0.5 based on
the observation of limit orders in the book and on the
statistics of the queue sizes as they vary in time. We
will define an upward price move in terms of (i) the
depletion of the best ask queue and (ii) the arrival
of a new bid order at that price level. Conversely
a downward price move will be defined in terms of
(i) the depletion of the best bid queue and (ii) the
arrival of a new ask order at that price level. Such
a careful distinction in defining a price move ∆P
is important, since prices are very granular when
observed at a high frequency and the time at which
these two possible transitions occur are random.

Our approach is inspired by Markov-type models
for the order book, first proposed by Smith et al.
(2003) and more recently studied in Cont et al.
(2010). These models are high-dimensional Markov
processes with a state-space consisting of vectors (bid
price, bid size) and (ask price, ask size), and of
Poisson-arrival rates for market, limit and cancellation
orders. They are often referred picturesquely as “zero-
intelligence models”, because orders arrive randomly,
rather than being submitted by rational traders with
a budget, utility objective, memory, etc. Needless to
say, a full description of order books as a Markov

process gives rise to a highly complex system and
the solution of the model (in any sense) is often
problematic and of questionable value in practice. In
fact, one might argue that “zero-intelligence” may not
characterize the fashion in which continuous auctions
are conducted. Traders, often aided by sophisticated
computer algorithms, position their orders to take
advantage of situations observed in the order book
as well as to fill large block orders on behalf of
customers. Rules such as first-in-first-out, and the
possibility of capturing rebates for posting limit orders
(adding liquidity) result in markets in which there is a
significant amount of strategizing conditionally on the
state of the OB.

For this reason, we choose to simplify such
models by considering instead a reduced, diffusion-
type dynamics for bid and ask sizes and focusing on
the top of the book, instead of on the entire OB.
Thus, our goal is to create diffusion models, inspired
by SFGK or CST, that can be used to forecast the
direction of stock-price moves based on measurable
statistical quantities. In contrast to CST, we explicitly
model bid and ask quotes with some hidden liquidity,
i.e. sizes that are not shown in the OB, but which
may influence the probability of an upward move in
the price. The idea of estimating hidden liquidity is
not new to the trading literature, thought there is no
clear consensus on its definition or on how to estimate
it. For instance, Burghadt et al. (2006), estimate the
magnitude of hidden liquidity by comparing sweep-to-
fill prices to VWAP prices. Moreover in the spirit of
our computations of p(OB) they show a strong link
between order imbalance and the probability that the
next traded price is at the bid or at the offer. Also
note that there is a close relationship between of our
probabilities of an upward/downward move and the
notion of micro-price (the size weighted mid-price)
well known to practitioners (see Gatheral and Oomen).

2. Modeling Level I quotes

In the Markov model of CST, the OB has two
distinguished queues representing the sizes at best
bid and the best ask levels, which are separated by
the minimum tick size. Market, limit and cancellation
orders arrive at both queues according to Poisson
processes. One of the following two events must then
happen first:

1. The ask queue is depleted and the best ask price
goes up by one tick and the price “moves up”.
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2. The bid queue is depleted and the best bid price
goes down by one tick and the price “moves
down”.

The dynamics leading to a price change may thus be
viewed as a “race to the bottom”: the queue that hits
zero first causes the price to move in that direction.

As it turns out, the predictions of such models are
not consistent with market observations. If they were,
this would imply that if the best ask size becomes
much smaller than the best bid size, the probability that
the next price move is upward should approach 100%.
However, empirical analysis (see Section 4) shows that
this probability does not increase to unity as the ask
size goes to zero.

2.1. Hidden liquidity

We hypothesize that this happens for two reasons:
first, markets are fragmented; liquidity is typically
posted on various exchanges. In the U.S. for example,
Reg NMS requires that all market orders be routed to
the venue with the best price. Moreover, limit orders
that could be immediately executed at their limit price
on another market need to be rerouted to those venues.
Thus, one needs to consider the possibility that once
the best ask on an exchange is depleted, the price
will not necessarily go up, since an ask order at that
price may still be available on another market and a
new bid cannot arrive until that price is cleared on
all markets. The second reason is the existence of
trading algorithms that split large orders into smaller
ones that replenish the best quotes as soon as they
are depleted (“iceberg orders”). In the sequel, we will
model this by assuming that there is a fixed hidden
liquidity (size) behind the best bid and ask quotes.
This hidden liquidity may correspond to iceberg orders
or orders present on another exchange. Quotes on
other exchanges, although not technically hidden from
anybody, may be subject to latencies and therefore
only available to some traders with the fastest data
feeds. The main adjustable parameter in our model, the
hidden liquidity, will be an important indicator of the
information content of the OB.

In summary, the main new idea in our interpretation
of the OB models is that we do not immediately
assume that a true change in price occurs when either
of the queues first hits zero. Rather, we take the
following view. We postulate that a price transition
takes place whenever the first of two events happens:

1. The size for the best ask price goes to zero and
a new bid order appears at that price. This can
only happen if the hidden liquidity at that price
is depleted, i.e. all ask orders on all exchanges
are cleared at that price and iceberg orders are
exhausted.

2. Alternatively, the size for the best bid price goes
to zero and a new ask order appears at that price.

2.2. The discrete Poisson model

Adopting the language of queuing theory, we refer
to the number of shares offered at the lowest ask
price as the ask queue. Similarly, the number of
shares bid at the highest bid price is called the bid
queue. In the spirit of CST, we view these queues as
following a continuous time Markov chain (CTMC)
where time is continuous and share quantities are
discrete, consistently with a minimum order size. We
adopt the following notation,

h = minimum order size
λ = arrival rate of limit orders at the bid
µ = arrival rate of market orders or cancellations

at the bid
η = arrival rate of simultaneous cancellations at

the bid and limit orders at the ask (1)

and assume that the arrival rates on the opposite side of
the book are identical. Empirically, we know that the
queue sizes are negatively correlated. This may be due
to the presence of market makers who simultaneously
adjust their quotes on the bid and the ask when their
assessment of the fair price changes. Therefore, it is
convenient to incorporate correlation between the bid
and ask queues by introducing the diagonal transition
rates η.

The model for the top of the order book is a
continuous-time discrete space process in which the
evolution of the queues follows a Markov process
in which a state is (Xt, Yt), where Xt = bid queue
size and Yt = ask queue size at time t. Each state can
transition into eight neighboring states by increasing
or decreasing the queue sizes by h.
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We may write the moments of the process (Xt, Yt)
in terms of the transition rates

E [Xt+∆t −Xt|Xt, Yt]

= E [Yt+∆t − Yt|Xt, Yt]

= h (λ− µ) ∆t+ o(∆t)

E
[
(Xt+∆t −Xt)2|Xt, Yt

]
= E

[
(Yt+∆t − Yt)2|Xt, Yt

]
= h2 (λ+ µ+ 2η) ∆t+ o(∆t)

E [(Xt+∆t −Xt)(Yt+∆t − Yt)|Xt, Yt]

= h2 (2η) ∆t+ o(∆t). (2)

If we assume, for simplicity, that λ = µ the drifts,
variances and correlations of queue sizes simplify to

mX = mY = 0

σ2
X = σ2

Y = 2h2 (λ+ η)

ρ =
−η
λ+ η

(3)

3. Diffusion approximation

3.1. Probability of the ask queue depleting

Let <X > and <Y > denote, respectively, the
median size of the queues Xt, Yt. We define the
coarse-grained variables

x = X/ < X >, y = Y/ < Y >,

which measure the queue sizes “macroscopically”.
The process (xt, yt) can be approximated by the

diffusion

dxt = σdW
(1)
t

dyt = σdW
(2)
t

E
(
dW (1)dW (2)

)
= ρdt, (4)

where

σ2 =
2h2 (λ+ η)
< X >2

, (5)

ρ is defined in (2.7), and W (1),W (2) are standard
Brownian motions.

This diffusion limit is an approximation of the
discrete model in the sense of heavy traffic limits
(see Cont, 2011 and Cont and Larrard, 2011 for more
details). Essentially, this limit is valid if the average
queue sizes are much larger than the typical quantity
of shares traded and the frequency of orders per unit
time is high, i.e. < X >=< Y >� h and λ, η � 1.

We are interested in computing the function u(x, y)
representing probability that the ask size hits zero
before the bid size hits zero, given that we observe
the (standardized) bid/ask sizes (x, y). From diffusion
theory, this function satisfies the differential equation

σ2 (uxx + 2ρuxy + uyy) = 0, x > 0, y > 0, (6)

or, simply,

uxx + 2ρuxy +uyy = 0 for x > 0, y > 0. (7)

If we assume, naively, that the order-book fully
represents the liquidity in the market at a particular
price level, then the mid-price will move up once the
ask queue is depleted i.e. when yt = 0 for the first
time, since no more sellers are present at that level.
In this case, the probability that the price will increase
corresponds to the probability that the diffusion (7)
exits the quadrant {(x, y);x> 0, y > 0} through the
x-axis. The corresponding boundary conditions for
u(x, y) are therefore

u(0, y) = 0, for y > 0,

u(x, 0) = 1, for x > 0. (8)

Note that the processesXt and Yt do not have a drift
and therefore do not have a stationary distribution.
A drift could be introduced, as in CST, by modeling
market orders and cancellations separately, resulting in
queues sizes that revert around an equilibrium level.
However, such microstructural distinctions are not
essential when we fit the model to transactions data,
since we are interested in very short term predictions
rather than equilibrium distributions.

3.2. Probability of an upward move

What is essential, however, is to make a distinction
between an ask queue being depleted and a “genuine”
price move where a new bid order appears at price.



Marco Avellaneda, Josh Reed and Sasha Stoikov / Forecasting prices from level-I quotes in the presence of hidden liquidity 39

We know that an upward price move might not take
place when the ask queue is depleted, due to additional
liquidity at that level, which we call hidden liquidity.
This hidden liquidity can be attributed to either iceberg
orders or by virtue of a Reg-NMS-type mechanism in
which there are other markets that still post liquidity
on the ask-side at the same level and which must be
honored before the mid price can move up.

A simple way to model this is to assume that there
is an additional amount of liquidity, denoted by H ,
representing the fraction of average book size (<X >

or <Y > ) which is “hidden” or absent from the
book. A true price transition takes place if the hidden
liquidity is exhausted. In other words, we observe
queues of size x or y but the “true” size of the queues
are x+H and y+H . Thus, if we denote by p(x, y;H)
the probability of an upward price move conditional
on the observed queue sizes (x, y) and the hidden
liquidity parameter H , we have

σ2 (pxx + 2ρpxy + pyy) = 0, x > −H, y > −H,

with the boundary condition

p(−H, y) = 0, for y > −H,

p(x,−H) = 1, for x > −H.

In other words we can solve the problem with
boundary conditions at zero and use the relation

p(x, y;H) = u(x+H, y +H), (9)

where u(x, y) satisfies the diffusion equation (7) on
the first quadrant of the (x, y) plane with boundary
conditions (8). One could also obtain an effect
similar to that of our hidden liquidity parameter by
considering mixed Von-Neumann/Dirichlet boundary
conditions at zero or bid and ask processes with jumps.
Our modeling choice is motivated by the simplicity of
our closed form solution.

3.3. Solution

Theorem 3.1. The probability of an upward move in
the mid price is given by

p(x, y;H) = u(x+H, y +H), (10)

where

u(x, y) =
1
2

1−
Arctan

(√
1+ρ
1−ρ

y−x
y+x

)
Arctan

(√
1+ρ
1−ρ

)
. (11)

The proof of the above result is in the Appendix.
Remarks.

1. The probability depends on the hidden liquidity
H and the correlation ρ, but not on the volatility of
queue sizes σ.

2. As H approaches∞, p(x, y,H) approaches 0.5.
In other words, as the hidden liquidity grows, the bid
and ask sizes offer no information on the probability
of an upward price move.

3. If we set ρ = 0 the above expression simplifies to

u(x, y) =
2
π
Arctan

(
x

y

)
. (12)

4. As ρ approaches −1, the numerator and
denominator in (22) both tend to zero. The limit as
ρ→ −1 is

u(x, y) =
x

x+ y
.

5. If we consider the sector y < x, i.e. the sector
for which the ask queue is smaller than the bid queue,
u(x, y) is an increasing function of ρ. In fact, setting

ξ = y−x
y+x and α =

√
1+ρ
1−ρ ,

∂u

∂ρ
= − 1 + α2

1 + α2ξ2

1
(1− ρ)2

1
2ξ
.

This is a positive quantity since ξ is negative in
the sector. Therefore, the assumption ρ=−1 will
underestimate the probability of an up-tick if the “true”
correlation was different than −1.

4. Data analysis

In this section, we study the information content of
the best quotes for the tickers QQQQ, XLF, JPM, and
AAPL over the first five trading days in 2010 (i.e. Jan
4-8). All four tickers are traded on various exchanges,
and this allows us to compare the information content
of these venues. In other words we will be computing
the probability

Prob.{∆P > 0 |OB} = p(OB)
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discussed in the introduction, for ∆P defined to be the
next midprice move, and for OB defined to be the pair
of bid and ask sizes (x, y).

In our data analysis, we focus on the hidden liquidity
for the perfectly negatively correlated queues model,
i.e.

p(x, y;H) =
x+H

x+ y + 2H
(13)

which we estimate by minimizing square errors with
respect to the empirical probabilities. We make this
choice because the parameter H has a more important
impact on p than ρ and optimization routines often
converged towards the ρ = −1 case in our data set.

In practice, when performing our data analysis, we
find it easier to bucket the data in deciles of queue
sizes, rather than normalizing by the mean queue size,
as we did in Section 3. The implied hidden liquidity
parameter we compute in the sequel can therefore be
interpreted as a fraction of the maximum observed
queue size.

4.1. Data description

The data comes from the WRDS database, more
specifically the consolidated quotes of the NYSE-TAQ
data set. Each row has a timestamp (between the hours
of 10:00 and 16:00, rounded to the nearest second),
a bid price, an ask price, a bid size, an ask size
and an exchange flag, indicating if the quote was on
NASDAQ (T), NYSE-ARCA (P) or BATS (Z), see
Table 1 for a sample of the data. There are other
regional exchanges, but for the purpose of this study,
we focus on these venues as they have significantly
more than one quote per second.

In table 2, we present some summary statistics for
the tickers QQQQ, XLF, JPM and AAPL, across the
three exchanges. The tickers QQQQ, XLF and JPM are
ideal candidates, because their bid-ask spread is almost
always one tick (or one cent) wide, much like our

stochastic model. We also pick AAPL, whose spread
most often trades at 3 cents (or three ticks wide), due to
AAPL’s relatively high stock price. Though our model
does not strictly consider spreads greater than one, we
use it to fit our model, conditional on the spread, i.e.
OB = (x, y, s) where s is the spread in cents.

4.2. Estimation procedure

1. We split the data set into three subsets, one for
each exchange. Items 2-6 are repeated separately
for each exchange and each ticker.

2. We remove zero and negative spreads.
3. We “bucket” the bid and ask sizes, by taking

deciles of the bid and ask size and normalizing
queue sizes so that (i, j) represents the ith decile
of the bid size and the jth decile of the ask size
respectively.

4. For each bucket (i, j), we compute the empirical
probability that the price goes up uij . This is
done by looking forward to the next mid price
change and computing the empirical percentage
of occurrences of (i, j) that ended up going up,
before going down.

5. We count the number of occurrences of the (i, j)
bucket, and denote this distribution dij .

6. We minimize least squares for the negatively
correlated queues model, i.e.

min
H

∑
i,j

[(
uij −

i+H

i+ j + 2H

)2

dij

]
(14)

and obtain an implied hidden liquidity H for
each exchange.

4.3. Results

We first illustrate the predictions of our model for
the ticker XLF on the Nasdaq exchange (T). We report
the empirical probabilities of an up move, given the

Table 1
A sample of the raw data

symbol date time bid ask bsize asize exchange

QQQQ 2010-01-04 09:30:23 46.32 46.33 258 242 T
QQQQ 2010-01-04 09:30:23 46.32 46.33 260 242 T
QQQQ 2010-01-04 09:30:23 46.32 46.33 264 242 T
QQQQ 2010-01-04 09:30:24 46.32 46.33 210 271 P
QQQQ 2010-01-04 09:30:24 46.32 46.33 210 271 P
QQQQ 2010-01-04 09:30:24 46.32 46.33 161 271 P
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Table 2
Summary statistics

Ticker Exchange num quotes quotes/sec avg(spread) avg(bsize + asize) avg(price)

XLF NASDAQ 0.7M 7 0.010 8797 15.02
XLF NYSE 0.4M 4 0.010 10463 15.01
XLF BATS 0.4M 4 0.011 7505 14.99

QQQQ NASDAQ 2.7M 25 0.010 1455 46.30
QQQQ NYSE 4.0M 36 0.011 1152 46.27
QQQQ BATS 1.6M 15 0.011 1055 46.28

JPM NASDAQ 1.2M 11 0.011 87 43.81
JPM NYSE 0.7M 6 0.012 47 43.77
JPM BATS 0.6M 5 0.014 39 43.82

AAPL NASDAQ 1.3M 13 0.034 9.1 212.50
AAPL NYSE 0.4M 4 0.046 5.7 212.66
AAPL BATS 0.6M 6 0.054 4.5 212.43

Table 3
Empirical vs. Model probabilities for the probability of an upward move (XLF), on Nasdaq (T). Rows represent bid size percentiles (i), columns
represent ask size percentiles (j). The model is given by p(i, j) = i+H

i+j+H
with H = 0.15

decile sizes 0.1 < 1250 0.2 < 1958 0.3 < 2753 0.4 < 3841 0.5 < 4835 0.6 < 5438 0.7 < 5820 0.8 < 6216 0.9 < 6742

0.1 0.50 0.38 0.25 0.25 0.32 0.26 0.23 0.23 0.15
0.2 0.61 0.50 0.47 0.41 0.36 0.40 0.38 0.27 0.20
0.3 0.75 0.53 0.50 0.43 0.39 0.37 0.43 0.39 0.28
0.4 0.74 0.58 0.57 0.50 0.42 0.42 0.47 0.46 0.37
0.5 0.68 0.64 0.61 0.58 0.50 0.51 0.48 0.49 0.41
0.6 0.74 0.60 0.63 0.58 0.49 0.50 0.50 0.50 0.49
0.7 0.78 0.62 0.57 0.53 0.52 0.50 0.50 0.60 0.53
0.8 0.77 0.73 0.61 0.54 0.51 0.50 0.40 0.50 0.42
0.9 0.85 0.79 0.72 0.63 0.60 0.51 0.47 0.57 0.50

decile sizes 0.1 = 1250 0.2 = 1958 0.3 = 2753 0.4 = 3841 0.5 = 4835 0.6 = 5438 0.7 = 5820 0.8 = 6216 0.9 = 6742

0.1 0.50 0.42 0.36 0.31 0.28 0.25 0.23 0.21 0.19
0.2 0.58 0.50 0.44 0.39 0.35 0.32 0.29 0.27 0.25
0.3 0.64 0.56 0.50 0.45 0.41 0.37 0.35 0.32 0.30
0.4 0.69 0.61 0.55 0.50 0.46 0.42 0.39 0.37 0.34
0.5 0.72 0.65 0.59 0.54 0.50 0.46 0.43 0.41 0.38
0.6 0.75 0.68 0.63 0.58 0.54 0.50 0.47 0.44 0.42
0.7 0.77 0.71 0.65 0.61 0.57 0.53 0.50 0.47 0.45
0.8 0.79 0.73 0.68 0.63 0.59 0.56 0.53 0.50 0.47
0.9 0.81 0.75 0.70 0.66 0.62 0.58 0.55 0.53 0.50

bid and ask sizes in table 3, as well as the model
probabilities, given by equation (13) with H estimated
with the procedure described above. Notice that even
for very large bid sizes and small ask sizes (say
the 90th percentile of sizes at the bid and the 10th
percentile of sizes at the ask) the empirical probability
of the mid price moving upward is high (0.85) but

not arbitrary close to one. The same is true of our
model, which assumes there is a hidden liquidity H
behind both quotes. We interpret H as a measure of
the information content of the bid and ask sizes: the
smaller H is, the more size matters. The larger the
H , the closer all probabilities will be to 0.5, even for
drastic size imbalances.
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Table 4
Implied hidden liquidity across tickers and exchanges

Ticker NASDAQ NYSE BATS

XLF 0.15 0.17 0.17
QQQQ 0.21 0.04 0.18
JPM 0.17 0.17 0.11
AAPL s = 1 0.16 0.90 0.65
AAPL s = 2 0.31 0.60 0.64
AAPL s = 3 0.31 0.69 0.63

In table 4, we display the hidden liquidity H for the
four tickers and three exchanges. These results indicate
that size is most important for

• XLF on NASDAQ,
• QQQQ on NYSE-ARCA
• JPM on BATS.

Finally we calculate H for AAPL, for different values
of the bid-ask spread (s = 1, 2 and 3 cents). We find
that

• AAPL quotes are more informative on NAS-
DAQ, and that they matter most when the spread
is small.

Modeling stocks with larger spreads may require
more sophisticated models of the order book, possibly
including Level II information. Since a majority of US
equities trade at average spreads of several cents, we
consider this avenue worthy of future research.

5. Conclusions

Based on a diffusion model of the liquidity at the top
of the order book, we proposed closed-form solutions
for the probability of a price uptick conditional on
Level-I quotes. The probability is a function of the
bid size, the ask size and an adjustable parameter,
H , the hidden liquidity. The advantage of this simple
model is that it can be fitted to high-frequency data
and produces an implied hidden liquidity parameter,
obtained by fitting tick data (from WRDS) to the
proposed formulas. The result is that we can classify
different markets in terms of their hidden liquidity
or, equivalently, how informative the Level I quotes
of a stock are in terms of forecasting the next price
move (up or down). If the hidden size is small
(compared to the typical size shown in the market
under consideration), we say that the best quotes are
informative. Statistical analysis for different stocks
shows the following results:

• for XLF (SPDR Financial ETF), NASDAQ has
the least hidden liquidity;

• for QQQQ (Powershares Nasdaq-100 Tracker),
NYSE-ARCA has the least hidden liquidity;

• for JPM (J.P. Morgan & Co.) BATS has the least
hidden liquidity and

• for AAPL (Apple Inc.) NASDAQ has the least
hidden liquidity.

We used only 5 days of data for these calculations
and a study of the stability of our hidden liquidity
parameter over longer periods remains to be done.
Nevertheless, the approach presented here seems to
provide a way of comparing trading venues, in terms
of their information content and hidden liquidity, and
hence on the possibility of forecasting price changes
from their orderbook data.

Appendix

Solution of the PDE (7) for general ρ

Proposition 1. Let Ω(X,Y ) be a harmonic function.
Let us set

v(ζ, η) = Ω
(
ζ

σ1
,
η

σ2

)
.

Then,

σ2
1vζζ + σ2

2vηη = 0. (15)

Proof. By the chain rule, σ2
1vζζ = σ2

1
ΩXX

σ2
1

= ΩXX .
The same holds for the η-derivative. Add and use
harmonicity of Ω.

Proposition 2. Let Ω be a harmonic function. Then

u(x, y) = Ω
(

y + x√
2
√

1 + ρ
,

y − x√
2
√

1− ρ

)
(16)

satisfies

uxx + 2ρuxy + uyy = 0. (17)

Proof. Let σ1 =
√

1 + ρ, σ2 =
√

1− ρ and set ζ =
y+x√

2
, η = y−x√

2
. Clearly, by Proposition 1, v(ζ, η) ≡

Ω( ζ
σ1
, ησ2

) satisfies

σ2
1vζζ + σ2

2vηη = 0. (18)
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Since u(x, y) = v(y+x√
2
, y−x√

2
), we have, after differen-

tiating twice the function u

uxx =
1
2
vζ,ζ +

1
2
vη,η − vζη

uyy =
1
2
vζ,ζ +

1
2
vη,η + vζη

uxy =
1
2
vζ,ζ −

1
2
vη,η. (19)

Adding the first two terms and then adding the third
one multiplied by 2ρ gives

uxx + 2ρuxy + uyy =
1
2
vζ,ζ +

1
2
vη,η − vζη

+ 2ρ
(

1
2
vζ,ζ −

1
2
vη,η

)
+

1
2
vζ,ζ +

1
2
vη,η + vζη

= vζ,ζ + ρ (vζ,ζ − vη,η) + vη,η

= (1 + ρ)vζ,ζ + (1− ρ)vη,η

= σ2
1vζζ + σ2

2vηη

= 0. (20)

Theorem 5.1. The probability of an upward move in
the mid price is given by

p(x, y;H) = u(x+H, y +H), (21)

where

u(x, y) =
1
2

1−
Arctan

(√
1+ρ
1−ρ

y−x
y+x

)
Arctan

(√
1+ρ
1−ρ

)
. (22)

Proof. Use Ω(X,Y ) =Arctan(Y/X) and apply
Proposition 2, using

X =
y + x√
2
√

1 + ρ
; Y =

y − x√
2
√

1− ρ
.

It follows that the function

u(x, y) =
1
2

1−
Arctan

(√
1+ρ
1−ρ

y−x
y+x

)
Arctan

(√
1+ρ
1−ρ

)
 (23)

satisfies
equation (3.4). Furthermore, we have u(x, 0) = 1
and u(0, y) = 0.
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