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Abstract

When data exhibit high volatility and jumps, which are common features in most high fre-
quency financial time series, forecasting becomes even more challenging. Using high frequency
exchange rate data, we show that wavelets, which are robust to high volatility and jumps, are
useful forecasters in high frequency settings when high volatility is a dominant feature that
affects estimation zones, forecasting zones or both. The results indicate that decomposing the
time series into homogeneous components that can then be used in time series forecast models
is critical. Different components become more useful than others for different data features
associated with a volatility regime. We cover a wide range of linear and nonlinear time series
models for forecasting high frequency exchange rate return series. Our results indicate that
when data display nonstandard features with high volatility, nonlinear models outperform lin-
ear alternatives. However, when data are in low volatility ranges for both estimations and
forecasts, simple linear autoregressive models prevail, although considerable denoising of the
data via wavelets is required.
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1 Introduction

A wavelet multiresolution analysis can be used to decompose a time series into different timescale
components, and a model can be fitted to each component to improve the forecast accuracy of
the series as a whole. When data exhibit high volatility and jumps, which are common features
in most high frequency financial time series, forecasting becomes more challenging. Wavelets,
which are capable of separating most heterogeneous data generation processes (DGP) into their
homogeneous components, have the potential for use in forecasting high frequency financial series.
Multiresolution analysis (MRA) wavelets can be used to decompose data series into high and low
frequencies components. A low frequency (or smooth) component represents general trends of the
data by eliminating the noisy part of high frequency (details) via a MRA. If the data display
standard features, then this smooth component alone can be used to forecast the series because it
contains more homogeneous information than the whole data. However, if data exhibit nonstandard
features, then high frequency components (details) can be more useful than smooth components
and the original data.

Using high frequency exchange rate data with such features, we partition our data into low
and high frequency zones, and show that wavelets are useful for forecasting all portions of our
data.1 The low and high frequency components of the data are used for estimation and forecasting
interchangeably. By using these different estimations and forecast zones, we also posit that the
wavelets component that represents the most useful forecaster may vary with the data features
in the estimation and forecasts zones. Smooth components are usually but not always the most
useful forecasters. Strikingly, when both estimation forecasts are performed, highly volatile data
environment detail components become more efficient over the smooth components. For the re-
maining cases, if low volatility prevails in either the estimation and forecasting zones or both, then
smooth components dominate.

For forecasting using wavelet components, we employ a vast range of linear and nonlinear
models. The results indicate that nonlinear models should be preferred in all cases except when
both estimation and forecasting have low volatility exposure, for which a simple linear model
outperforms numerous nonlinear ones . However, the wavelet component used in the model requires
several denoising iterations via a MRA analysis.

Whether forecasts are targeted for short or long horizons appears to matter only in the choice
of multiresolution level. In long forecast horizons, additional denoising is advisable before using
smooth components.

The remainder of this paper is organized as follows. Section 2 outlines how wavelets can be used
for to improve forecasting via multiresolution analyses. Section 3 displays the linear and nonlinear
models used in forecasting. Section 4 explains the data and shows how the data are divided
into different estimation and forecasting volatility zones in relation to the pseudo-out-of-sample
forecasting zones. Section 5 illustrates the results. Section 6 presents the conclusions.

2 Forecasting with wavelets via multiresolution analyses

In principle, wavelet analyses can be realized at all arbitrary time scales. However, if only key
features of the data are in question, then this analysis may not be necessary. Thus, the discrete
wavelet transformation (DWT) is more efficient and parsimonious than the continuous wavelet
transformation. When forecasting in an environment with nonstandard data features as emphasized
above, splitting data into homogeneous features is critical, and one component may overrule the
other under different volatility characteristics.

Let w(λ, t) be the change in the average of the time series x, where t is the time and λ refers
to the scale associated with the average. The DWT is a subsampling of w(λ, t) with only dyadic

1Although the potential usefulness of wavelets in forecasting has been acknowledged, few wavelet applications
are used for forecasting in economics. Arino and Vidakovic (1995)) focuses on car sales forecasts; Wong et al. (2003)
provide an application to exchange rates; Conejo et al. (2005) and Tan et al. (2010) forecast electricity prices;
Fernandez (2007) focuses on forecasting shipments of US manufactured items; Rua (2011) introduces the wavelet
approach for factor-augmented forecasting; and Zhang et al. (2017) consider forecasting with wavelets using high
frequency exchange rate data.
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scales, i.e., λ is of the form 2j−1, j = 1, 2, 3, . . ., and within a given dyadic scale, 2j−1, t’s are
separated by multiples of 2j .

Let x be a dyadic length vector (N = 2J) of observations. The length N vector of the discrete
wavelet coefficients w is obtained by

w =Wx,

where W is an N × N real-valued orthonormal matrix (based on the wavelet type) that defines
the DWT, which satisfies WTW = IN (n× n identity matrix).2 The nth wavelet coefficient wn is
associated with a particular scale and a particular set of times. The vector of wavelet coefficients
may be organized into J + 1 vectors,

w = [w1,w2, . . . ,wJ ,vJ ]T ,

where wj is a length N/2j vector of wavelet coefficients associated with changes on a scale of
length λj = 2j−1 and vJ is a length N/2J vector of scaling coefficients associated with averages
on a scale of length 2J = 2λJ .

Using the DWT, we can formulate an additive decomposition of x by reconstructing the wavelet
coefficients at each scale independently. Let Dj = WT

j wj define the jth level wavelet detail
associated with changes in x at the scale λj (for j = 1, . . . , J). The wavelet coefficients wj =Wjx
represent the portion of the wavelet analysis (decomposition) attributable to scale λj , whereas
WT
j wj is the portion of the wavelet synthesis (reconstruction) attributable to scale λj . For an

observation vector with length N = 2J , the vector DJ+1 is equal to the sample mean of the
observations.

A MRA may now be defined via

xt = Dj+1,t +Dj,t +Dj−1,t + ...+D1,t (1)

That is, each observation xt is a linear combination of wavelet detail coefficients at time t. Let
Sj =

∑J+1
k=j+1 Dk define the jth level wavelet smooth component. Although the wavelet detail

Dj is associated with variations at a particular scale, Sj is a cumulative sum of these variations

and will be increasingly smooth as j increases. In fact, x − Sj =
∑j
k=1 Dk such that only lower

scale details (high frequency features) from the original series remain. Hence, Equation (1) can be
rewritten

xt = Sj,t +Dj,t +Dj−1,t + ...+D1,t (2)

The terminology “detail” and “smooth” were used by Percival and Walden (2006) to describe
additive decompositions from Fourier and wavelet transforms. The goal is to examine data at
different resolutions with this representation. The smooth part is coarse, and we are examining
local averages, i.e., low frequency trends and the sample mean. The detail is the deviation from
the smooth part.

A variation of the DWT is called the maximum overlap DWT (MODWT). Similar to the DWT,
the MODWT is a subsampling at the dyadic scale; however, compared with the DWT, the analysis
involves all times t rather than multiples of 2j . The retention of all possible times eliminates the
alignment effects of DWT and leads to more efficient time series representations at multiple time
scales.

For a given level j, to produce forecasts for xt, we fit time series models to each component
of xt separately. Using Equation (2), a composite forecast for xt+h can be reconstructed from the
h-step ahead forecasts of individual components; i.e., Ŝj,t+h, D̂j,t+h, D̂j,t+h, ..., D̂j,t+h. Their sum

Ĉj,t+h refers to this composite forecast of xt+h.

Ĉj,t+h = Ŝj,t+h + D̂j,t+h + D̂j−1,t+h + ...+ D̂1,t+h (3)

Alternatively, the forecasts of all individual components can be separately used to forecast xt+h
alone. Notice that j is not allowed to be smaller than 1. Otherwise, for j = 0, when no wavelet
decomposition is applied to the data, Ĉ0,t+h = Ŝ0,t+h, which is identical to x̂t+h; i.e. the forecast
of xt+h is generated using the unfiltered data.

2DWT is an orthonormal transform, and orthonormality implies that x =WTw and ||w||2 = ||x||2.
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3 Forecast Evaluation and Forecast Models

We use the root mean square forecast error (RMSFE) as the forecast evaluation criteria and
calculate the following RMSFEs for different components of wavelets.

RMSFE =

√√√√ τ∑
l=1

(
xt+h − Ĉlj,t+h, Ŝlj,t+h, D̂l

j,t+h, x̂
l
j,t+h

)2
/τ (4)

where, Ĉj,t+h, Ŝj,t+h, and D̂j,t+h refer to the forecast obtained from the composite, smooth or
detail series at the jth level wavelet decomposition,respectively; and x̂j,t+h refers to the forecasts
of unfiltered data. τ denotes the number of times that the h-step ahead forecast error is calculated.

To produce each of these forecasts, we use several univariate time series models. The comparison
models include linear autoregressive (AR) models, autoregressive moving-average (ARMA) mod-
els, logistic smooth transition autoregressive (LSTAR) models, self-exciting threshold autoregres-
sive (SETAR) models, Markov-switching autoregressive (MS-AR) models, autoregressive neural
network (ARNN) models, and AR augmented with GARCH volatility component (AR-GARCH)
models.

Let yt represent either xt, or Sj,t, or Dj,t depending on the series that we use forecasting xt+h.
Let ŷt+h,t be the forecast of yt that is generated at time t for the time t + h (h ≥ 1) by any
forecasting model. In the RW model, ŷt+h,t is equal to the value of yt at time t.

The ARMA model is

yt = α+

p∑
i=1

φ1,iyt−i +

q∑
i=1

φ2,iεt−i + εt, (5)

where p and q are selected to minimize the Akaike information criterion (AIC) with a maximum
lag of 24. After estimating the parameters of equation (5), one can easily produce h-step (h ≥ 1)
forecasts through the following recursive equation:

ŷt+h,t = α+

p∑
i=1

φ̂1,iyt+h−i +

q∑
i=1

φ̂2,iεt+h−i . (6)

When h > 1, we iterate a one-period forecasting model to obtain forecasts by feeding the previous
period forecasts as regressors into the model. This finding means that when h > p and h > q,,
yt+h−i is replaced by ŷt+h−i,t, εt+h−i is replaced by ε̂t+h−i,t = 0.

An obvious alternative to iterating forward on a single-period model would be to tailor the fore-
casting model directly to the forecast horizon; in other words, the following equation is estimated
using the data to a maximum of t:

yt = α+

p∑
i=0

φ1,iyt−i−h +

q∑
i=0

φ2,iεt−i−h + εt, (7)

for h ≥ 1. We use the fitted values of this regression to directly produce an h-step ahead forecast.3

Because it is a special case of ARMA, the estimation and forecasts of the AR model can be
obtained by simply setting q = 0 in (5) and (7).

The AR-GARCH model is simply an AR model augmented by the following GARCH volatility
component:

σ2
t = a0 +

p∑
i=1

aiε
2
t−i +

q∑
i=1

biσ
2
t−i + ηt (8)

3Deciding whether the direct or the iterated approach is better is an empirical matter because it involves a trade-
off between the estimation efficiency and the robustness-to-model misspecification; see Elliott and Timmermann
(2008). Marcellino et al. (2006) have addressed these points empirically using a dataset of 170 US monthly macroe-
conomic time series, and they found that the iterated approach generates the lowest RMSFE values, particularly if
lengthy lags of the variables are included in the forecasting models and the forecast horizon is long.
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where σ2 represents the conditional variance of ε and ηt are i.d.d. errors. Once the AR-GARCH
model is estimated, its forecasts can be obtained via the mean equation as in the AR case.

The LSTAR model is

yt =

(
α1 +

p∑
i=1

φ1,i yt−i

)
+ dt

(
α2 +

q∑
i=1

φ2,i yt−i

)
+ εt, (9)

where dt = (1 + exp {−γ(yt−1 − c)})−1. Whereas εt are regarded as normally distributed i.i.d.
variables with zero mean, α1, α2, φ1,i, φ2,i, γ and c are simultaneously estimated using maximum
likelihood methods.

In the LSTAR model, the direct forecast can be obtained in the same manner as with the
ARMA model, which is the case for all subsequent nonlinear models.4 However, any iterative
scheme cannot be applied to obtain forecasts for multiple steps in advance as can be done for
linear models. This impossibility follows from the general fact that the conditional expectation
of a nonlinear function is not always equal to a function of that conditional expectation. In
addition, one cannot iteratively derive the forecasts for the time steps h > 1 by plugging in the
previous forecasts (e.g., Kock et al., 2011).5 Therefore, we use the Monte Carlo integration scheme
suggested by Lin and Granger (1994) to numerically calculate the conditional expectations, and
we then produce the forecasts iteratively.

When |γ| → ∞, the LSTAR model approaches the two-regime SETAR model, which is also
included in our forecasting models. As with LSTAR and most nonlinear models, forecasting with
SETAR does not permit the use of a simple iterative scheme to generate multiple-period forecasts.
In this case, we employ a version of the Normal Forecasting Error (NFE) method suggested by
Al-Qassam and Lane (1989) to generate multistep forecasts.6 NFE is an explicit, form-recursive
approximation for calculating higher-step forecasts under the normality assumption of error terms
and has been shown by De Gooijer and De Bruin (1998)to perform with reasonable accuracy
compared with the alternative methods numerical integration and Monte Carlo.

The two-regime MS-AR model that we consider here is as follows:

yt = αs +

p∑
i=1

φs,iyt−i + εt, (10)

where st is a two-state discrete Markov chain with S = {1, 2} and εt ∼ i.i.d. N(0, σ2). We estimate
MS-AR using the maximum likelihood expectation-maximization algorithm.

Although MS-AR models may encompass complex dynamics, point forecasting is less compli-
cated than other nonlinear models. The h-step forecast from the MS-AR model is

ŷt+h,t = P (st+h = 1 | yt, ..., y0)

(
αs=1 +

p∑
i=1

φ̂s=1,iyt+h−i

)

+P (st+h = 2 | yt, ..., y0)

(
αs=2 +

p∑
i=1

φ̂s=2,iyt+h−i

)
, (11)

where P (st+h = i | yt, ..., y0) is the ith element of the column vector Phξ̂t|t. In addition, ξ̂t|t
represents the filtered probability vector and Ph is the constant transition probability matrix (see,
Hamilton (1994)). Hence, multistep forecasts can be obtained iteratively by plugging in 1, 2, 3, . . .-
period forecasts, which are similar to the iterative forecasting method of the AR processes.

ARNN, which is the autoregressive single-hidden-layer feed-forward neural network model7

suggested in Teräsvirta (2006), is defined as follows:

4This process involves replacing yt with yt+h on the left side of equation (4) and running the regression using
data to a maximum time t to fitted values for corresponding forecasts.

5Indeed, dt is convex in yt−1 whenever yt−1 < c, and −dt is convex whenever yt−1 > c. Therefore, by Jensen’s
inequality, naive estimations underestimate dt if yt−1 < c and overestimate dt if yt−1 > c.

6A detailed exposition of approaches for forecasting from a SETAR model can be found in van Dijk et al. (2003)
7See Franses and Van Dijk (2000) for a review of feed-forward-type neural network models.
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yt = α+

p∑
i=1

φiyt−i +

h∑
j=1

λjd

(
p∑
i=1

γiyt−i − c
)

+ εt, (12)

where d is the logistic function, which is defined above as d = (1 + exp {−x})−1. In general, the
estimation of an ARNN model may be computationally challenging. Here, we act in accordance
with the QuickNet method, which is a type of “relaxed greedy algorithm” that was originally
suggested by White (2006). In contrast, the forecasting procedure for the ARNN model is identical
to the procedure for the LSTAR model.

4 Data

We use Japanese/Euro Yen (JPY/EUR) tick by tick spot exchange rate data available from 00:00
February 1, 2011 to 23:45 29th April, 2011. The data are obtained from Thick Data, Inc .

During this period, we have a total of 258,275 data points at irregular intervals. We take
5-minute trade volume-weighted averages to perform our estimations; hence, we have 16,383 data
points that can be used for estimation purposes. Figure 1 illustrates the exchange rate series.
Figure 2 provides the average trading volumes used as weights in the calculation of the 5-minute
averages. Figure 3 shows (log) return series, calculated based on 5-minute trade volume-weighted
averages, which we use in the estimation of our forecasting models. We further calculate the
volatility of the 5-minute return series in Figure 4, where the volatility is measured based on
standard deviations calculated based on 90-point backwards rolling windows.

[Figure 1 - 4 ]

As shown in the figures, the exchange rate returns exhibit different volatility characteristics
across the evaluation period. Certain jumps are also visible in periods where volatility appears to
be higher.

5 Pseudo-out-of-sample forecasting and forecasting zones

The pseudo-out-of-sample forecasting exercise on which we base our forecast evaluations is con-
ducted for different volatility regimes. We divide our data under 4 different regimes. Figure 5
illustrates these different volatility regimes on the time plot of the return series. Table 1 presents
the average volatilities for each regime, which are calculated as the average of the rolling standard
deviations, in addition to other details.

[ Figure 5 ]

Table 1: Volatility regimes and periodization.

Period Dates Regime Average Volatility Data Points
1 2011/02/01 - 2011/03/12 Low 0.00035 6.709
2 2011/03/13 - 2011/03/21 High 0.00064 2.662
3 2011/03/22 - 2011/04/03 Low 0.00036 1.847

By using these volatility regimes, we further define 4 different estimation and forecasting zones
for our pseudo-out-of-sample forecasting exercise. Table 2 depicts these estimation and forecasting
zones. In Zone 1, the model forecasts and estimates are for the data points of the low volatility
regime of Period 1 (Table 1). However, in Zone 2, although estimates are conducted for Period 1,
which is the low volatility regime, forecasts are conducted for data points in Period 2, which is the
high volatility zone. In Zone 3, both estimates and forecasts are conducted for the high volatility
regime of Period 2. In Zone 4, however, although estimates are conducted for the high volatility
regime, forecasts are solely confined to the low volatility regime of Period 3.
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Table 2: Estimation and forecasting zones.

Zones Estimation Forecasting
1 Low (Period 1) Low (Period 1)
2 Low (Period 1) High (Period 2)
3 High (Period 2) High (Period 2)
4 High (Period 2) Low (Period 3)

In each of these zones, we perform pseudo-out-of-sample forecasts for the forecast horizons
h = 1 (short) and h = 5 (long). When the estimation and forecasting zones both feature the same
volatility nature, e.g., Zone 1 and 3, the models are estimated by running regressions with data
no later than the date ti − τ , where τ is an integer that refers to the length of the training zone
of the pseudo-out-of-sample forecast exercise, i.e., the number of pseudo-out-of-sample forecasts is
repeated (see Figure 6).

[Figure 6 ]

In Zones 2 and 4, ti refers to the final date for which the forecast evaluation is conducted.
Alternatively, in Zone 2 and 4, the models are estimated using data no later than ti, with ti + τ
referring to the final date used in the forecast evaluation. In this setting, ti−1 always refers to the
date when the estimation is initialized (where i = 1, 2, 3), and j = 1, 2, ..., τ refers to the number of
times for which the forecast error is calculated. For each of these 4 zones, when j = 1 and the first
h = 1 horizon forecast is obtained using the coefficient estimates from the initial regressions, the
regressions use data between ti−1 and ti−τ (Zone 1, 3); ti (Zone 2, 4). Next, after moving forward
by one period, the procedure is repeated with j = 2, and the second h = 1 forecast is calculated
from the coefficient estimates obtained from the re-estimation of the models after extending the
data by one period. By repeating this procedure j = τ times, we calculate τ forecast errors for
each of the models and wavelet components and the series used in our applications. For h = 5, the
same procedure is repeated. Multistep forecasts are calculated in a recursive manner by feeding in
the previous period forecast as the input.

It should be emphasized that the wavelet decomposition is applied to the available data before
the estimation of each regression to prevent using the information in the forecast period. In the
first round, we performed a wavelet decomposition for the data between ti−1, ti−τ (Zone 1, 3) and
ti (Zone 2, 4) and then moved forward by one-period and re-applied the wavelet decomposition.

6 Results

Tables 3 - 6 tabulate the RMSFE results for the pseudo-out-of-sample period of length τ = 100
calculated at each volatility regime changing point for short forecast horizons (h = 1).

[Table 3 - 6 ]

Table 3 illustrates the RMSFE results for Zone 1. The second column shows the level, j, of
the wavelet decomposition.8 In the third column, the RMSFEs of the composite forecasts X̃j are
presented. When j = 0, the data are used in the model estimations instead of wavelet components;
hence, the forecasts become x̂. The third column shows the RMSFE obtained from the smooth
part of the data. The remaining columns display the RMSFE calculated from the details. For
each row block, which represent each model, the smallest RMSFE is emboldened. For example,
for the AR model, the smallest RMSFE belongs to S8, whereas for ARMA, the smallest RMSFE
is D8. Furthermore, the smallest RMSFE for the entire table is indicated by a star. For example,
in Table 3, the smallest RMSFE for Zone 1 where both estimations and forecasts are performed in
the low volatility regime is indicated as the AR model for which forecasts are performed using the
smooth part of the return series after the 8th level wavelet decomposition, S8. Table 4 - 6 display
the same results for the remaining estimation and forecast zones for h = 1. Table 7 - 10 illustrate
the results for long forecast horizons when h = 5.

8j = 0 refers to x̂, i.e. the forecast produced using unfiltered data
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[Table 7 - 10 ]

The overall results are summarized in Table 11.

Table 11: Summary of Results

h = 1 h = 5
Zones Model Variable Model Variable

Zone 1 (Low - Low) AR S8 ARNN S7

Zone 2 (Low - High) ARMA S1 ARNN S7

Zone 3 (High - High) LSTAR D3 LSTAR D2

Zone 4 (High - Low) ARMA S1 LSTAR X̃5

Linear models have higher forecast abilities only for short forecasts and low volatility zones for
both the estimation and the forecast window (Zone 1). In the other cases, when volatility is high
either in the estimation or the forecast window, nonlinear models appear to be superior. When
the forecast horizon is high, more sophisticated nonlinear models, such as the ARNN and LSTAR
models, become more dominant over their simplistic counterparts, such as the ARMA model.

Wavelet decomposition becomes useful in all cases instead of the return series. The smooth
part appears to be the most useful forecaster except when volatility is high in both the estimation
and the forecast zones (Period 2), where the detail series becomes more useful for forecasting. This
result indicates that when data exhibit nonstandard features, such as high volatility and jumps as
in the Period 2 details series, they carry additional information on the noisy part of the data and
become more useful for forecasting.

Usually either the details or the smooth part alone are sufficient to obtain suitable forecasting
performance except for long horizon forecasting in Zone 4, where a composite series should be
adopted for forecasting. Additionally, a higher level of decomposition proves to be more efficient
when the forecasting horizon is long. The only exception for this letter result is the AR model in
Zone 1, where the 8th level decomposition is performed to obtain the smooth part. This finding
may indicate that for a simple linear model, such as AR, denoising should be performed several
times to achieve a successful forecaster in a low volatility regime. Moreover, a higher level of
decomposition is beneficial for longer forecast horizons.

7 Conclusions

We analyzed the effect of the wavelet decomposition, type models and volatility on forecasting
performance using a high frequency exchange rate return series. The results indicate that because
wavelets can partition data into homogeneous components, they have the ability to improve the
forecast accuracy in high frequency settings. Conversely, the volatility characteristics of the data
used for estimation and forecasting purposes become critical for the choice of the component used
in time series models. Because smooth components of the series carry additional information on
the general trends of the series, they usually become the most useful component for forecasting
high frequency exchange rate returns. With a notable exception, when volatility is high, it is
expected to remain high in the forecast horizon regardless of whether the forecasts are performed
for short or long horizons, and the wavelet details component should be used instead of the smooth
component. This finding indicates that when data are highly volatile and exhibit frequent jumps,
wavelet details, which represent the noisier component of a series, carry more useful information
for forecasting.

In terms of model choice, our results suggest that nonlinear models should be used unless
volatility is low in both the estimation and forecast zone, and they should be used only if short-
term forecasting is targeted. In these latter cases, a simple linear AR could be used on ”cleaned”
data after a higher level of decomposition.
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Tables and Figures

Table 3: RMSFEs, h = 1, Zone 1 (Low - Low) (×10−7)
Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 0.7161
AR 1 1.0393 0.8317 0.9178
AR 2 1.0393 0.8299 0.9178 0.7337
AR 3 1.0514 0.8295 0.9178 0.7337 0.7365
AR 4 1.0444 0.7312 0.9178 0.7337 0.7365 0.807
AR 5 1.0447 0.7256 0.9178 0.7337 0.7365 0.807 0.7263
AR 6 1.0445 0.7184 0.9178 0.7337 0.7365 0.807 0.7263 0.7195
AR 7 1.043 0.7104 0.9178 0.7337 0.7365 0.807 0.7263 0.7195 0.7194
AR 8 1.0419 0.7104* 0.9178 0.7337 0.7365 0.807 0.7263 0.7195 0.7194 0.7111
ARMA 0 0.7151
ARMA 1 0.9174 0.9746 0.9879
ARMA 2 0.9811 0.829 0.9879 0.8139
ARMA 3 0.9613 0.8295 0.9879 0.8139 0.748
ARMA 4 0.9557 0.7314 0.9879 0.8139 0.748 0.8064
ARMA 5 0.955 0.7256 0.9879 0.8139 0.748 0.8064 0.7265
ARMA 6 0.9551 0.7185 0.9879 0.8139 0.748 0.8064 0.7265 0.7193
ARMA 7 0.9511 0.7148 0.9879 0.8139 0.748 0.8064 0.7265 0.7193 0.7194
ARMA 8 0.9538 0.7161 0.9879 0.8139 0.748 0.8064 0.7265 0.7193 0.7194 0.7113
SETAR 0 0.7197
SETAR 1 1.0195 0.8239 0.906
SETAR 2 1.024 0.8282 0.906 0.7328
SETAR 3 1.0368 0.8293 0.906 0.7328 0.7369
SETAR 4 1.0264 0.7287 0.906 0.7328 0.7369 0.8057
SETAR 5 1.0285 0.7252 0.906 0.7328 0.7369 0.8057 0.7269
SETAR 6 1.0284 0.7183 0.906 0.7328 0.7369 0.8057 0.7269 0.7191
SETAR 7 1.0282 0.7117 0.906 0.7328 0.7369 0.8057 0.7269 0.7191 0.7193
SETAR 8 1.0283 0.7125 0.906 0.7328 0.7369 0.8057 0.7269 0.7191 0.7193 0.7111
LSTAR 0 0.7202
LSTAR 1 0.868 0.855 0.9535
LSTAR 2 0.9155 0.8285 0.9535 0.8058
LSTAR 3 0.9332 0.828 0.9535 0.8058 0.7408
LSTAR 4 0.9194 0.73 0.9535 0.8058 0.7408 0.8036
LSTAR 5 0.9228 0.7249 0.9535 0.8058 0.7408 0.8036 0.7285
LSTAR 6 0.9228 0.7184 0.9535 0.8058 0.7408 0.8036 0.7285 0.7188
LSTAR 7 0.9228 0.712 0.9535 0.8058 0.7408 0.8036 0.7285 0.7188 0.7194
LSTAR 8 0.9226 0.7125 0.9535 0.8058 0.7408 0.8036 0.7285 0.7188 0.7194 0.7112
ARNN 0 0.7284
ARNN 1 1.0226 0.8518 0.8997
ARNN 2 1.0133 0.8195 0.8997 0.7365
ARNN 3 1.0359 0.8256 0.8997 0.7365 0.7363
ARNN 4 1.0264 0.7291 0.8997 0.7365 0.7363 0.8055
ARNN 5 1.0318 0.7256 0.8997 0.7365 0.7363 0.8055 0.727
ARNN 6 1.0313 0.7188 0.8997 0.7365 0.7363 0.8055 0.727 0.7192
ARNN 7 1.031 0.7116 0.8997 0.7365 0.7363 0.8055 0.727 0.7192 0.7194
ARNN 8 1.0319 0.7125 0.8997 0.7365 0.7363 0.8055 0.727 0.7192 0.7194 0.7115
MSVAR 0 0.7184
MSVAR 1 1.0387 0.8323 0.9177
MSVAR 2 1.024 0.8246 0.9177 0.7326
MSVAR 3 1.0428 0.8305 0.9177 0.7326 0.7364
MSVAR 4 1.0356 0.7312 0.9177 0.7326 0.7364 0.8071
MSVAR 5 1.0357 0.7256 0.9177 0.7326 0.7364 0.8071 0.7263
MSVAR 6 1.0355 0.7184 0.9177 0.7326 0.7364 0.8071 0.7263 0.7195
MSVAR 7 1.0355 0.7118 0.9177 0.7326 0.7364 0.8071 0.7263 0.7195 0.7194
MSVAR 8 1.0355 0.7125 0.9177 0.7326 0.7364 0.8071 0.7263 0.7195 0.7194 0.7111
AR-GARCH 0 0.7159
AR-GARCH 1 1.0228 0.8216 0.9113
AR-GARCH 2 1.0271 0.8229 0.9113 0.7339
AR-GARCH 3 1.0395 0.8251 0.9113 0.7339 0.7332
AR-GARCH 4 1.0322 0.7303 0.9113 0.7339 0.7332 0.8029
AR-GARCH 5 1.0327 0.7253 0.9113 0.7339 0.7332 0.8029 0.7255
AR-GARCH 6 1.0324 0.7183 0.9113 0.7339 0.7332 0.8029 0.7255 0.7192
AR-GARCH 7 1.0324 0.7118 0.9113 0.7339 0.7332 0.8029 0.7255 0.7192 0.7193
AR-GARCH 8 1.0324 0.7125 0.9113 0.7339 0.7332 0.8029 0.7255 0.7192 0.7193 0.7111
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Table 4: RMSFEs, h = 1, Zone 2 (Low - High) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 1.0619
AR 1 1.5778 1.015 1.557
AR 2 1.5986 1.0515 1.557 0.9797
AR 3 1.6083 1.0738 1.557 0.9797 0.9751
AR 4 1.6044 1.0159 1.557 0.9797 0.9751 1.0317
AR 5 1.6045 0.9954 1.557 0.9797 0.9751 1.0317 1.0055
AR 6 1.6044 0.9942 1.557 0.9797 0.9751 1.0317 1.0055 0.9911
AR 7 1.5962 0.9924 1.557 0.9797 0.9751 1.0317 1.0055 0.9911 0.9899
AR 8 1.6024 0.9924 1.557 0.9797 0.9751 1.0317 1.0055 0.9911 0.9899 0.9943
ARMA 0 1.0584
ARMA 1 1.2519 0.9028* 1.8715
ARMA 2 1.479 1.0408 1.8715 0.995
ARMA 3 1.451 1.0738 1.8715 0.995 0.9618
ARMA 4 1.4491 1.0178 1.8715 0.995 0.9618 1.0299
ARMA 5 1.4488 0.9969 1.8715 0.995 0.9618 1.0299 1.006
ARMA 6 1.4489 0.9951 1.8715 0.995 0.9618 1.0299 1.006 0.9918
ARMA 7 1.4355 0.9884 1.8715 0.995 0.9618 1.0299 1.006 0.9918 0.9903
ARMA 8 1.4435 0.9895 1.8715 0.995 0.9618 1.0299 1.006 0.9918 0.9903 0.9945
SETAR 0 1.0408
SETAR 1 1.5794 1.0055 1.5593
SETAR 2 1.6006 1.0496 1.5593 0.974
SETAR 3 1.6075 1.0699 1.5593 0.974 0.9754
SETAR 4 1.605 1.0162 1.5593 0.974 0.9754 1.0293
SETAR 5 1.6046 0.9951 1.5593 0.974 0.9754 1.0293 1.0056
SETAR 6 1.6046 0.9943 1.5593 0.974 0.9754 1.0293 1.0056 0.9909
SETAR 7 1.6043 0.9961 1.5593 0.974 0.9754 1.0293 1.0056 0.9909 0.99
SETAR 8 1.6045 0.9927 1.5593 0.974 0.9754 1.0293 1.0056 0.9909 0.99 0.9942
LSTAR 0 1.0803
LSTAR 1 1.4022 1 1.7053
LSTAR 2 1.4938 1.0378 1.7053 1.0924
LSTAR 3 1.5164 1.0738 1.7053 1.0924 0.9697
LSTAR 4 1.5099 1.018 1.7053 1.0924 0.9697 1.0277
LSTAR 5 1.5115 0.9976 1.7053 1.0924 0.9697 1.0277 1.0073
LSTAR 6 1.5122 0.9953 1.7053 1.0924 0.9697 1.0277 1.0073 1.0011
LSTAR 7 1.5118 0.9967 1.7053 1.0924 0.9697 1.0277 1.0073 1.0011 0.9901
LSTAR 8 1.5117 0.9929 1.7053 1.0924 0.9697 1.0277 1.0073 1.0011 0.9901 0.9944
ARNN 0 1.0355
ARNN 1 1.5563 0.9962 1.5528
ARNN 2 1.5741 1.0544 1.5528 0.977
ARNN 3 1.6057 1.0771 1.5528 0.977 0.9765
ARNN 4 1.5886 1.0132 1.5528 0.977 0.9765 1.0301
ARNN 5 1.5939 0.9957 1.5528 0.977 0.9765 1.0301 1.0054
ARNN 6 1.5928 0.9942 1.5528 0.977 0.9765 1.0301 1.0054 0.9898
ARNN 7 1.5928 0.9963 1.5528 0.977 0.9765 1.0301 1.0054 0.9898 0.9898
ARNN 8 1.5925 0.9928 1.5528 0.977 0.9765 1.0301 1.0054 0.9898 0.9898 0.9941
MSVAR 0 1.0649
MSVAR 1 1.6033 1.028 1.5671
MSVAR 2 1.6143 1.0542 1.5671 0.9825
MSVAR 3 1.6161 1.0737 1.5671 0.9825 0.9752
MSVAR 4 1.6101 1.0138 1.5671 0.9825 0.9752 1.0318
MSVAR 5 1.6128 0.9954 1.5671 0.9825 0.9752 1.0318 1.0055
MSVAR 6 1.6128 0.9942 1.5671 0.9825 0.9752 1.0318 1.0055 0.9911
MSVAR 7 1.6129 0.9963 1.5671 0.9825 0.9752 1.0318 1.0055 0.9911 0.9899
MSVAR 8 1.6129 0.9927 1.5671 0.9825 0.9752 1.0318 1.0055 0.9911 0.9899 0.9943
AR-GARCH 0 1.0787
AR-GARCH 1 1.5576 1.0085 1.5428
AR-GARCH 2 1.5782 1.0447 1.5428 0.9797
AR-GARCH 3 1.5886 1.0698 1.5428 0.9797 0.973
AR-GARCH 4 1.5847 1.0151 1.5428 0.9797 0.973 1.0293
AR-GARCH 5 1.5849 0.9953 1.5428 0.9797 0.973 1.0293 1.005
AR-GARCH 6 1.5849 0.9942 1.5428 0.9797 0.973 1.0293 1.005 0.991
AR-GARCH 7 1.5849 0.9963 1.5428 0.9797 0.973 1.0293 1.005 0.991 0.9899
AR-GARCH 8 1.5849 0.9927 1.5428 0.9797 0.973 1.0293 1.005 0.991 0.9899 0.9943
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Table 5: RMSFEs, h = 1, Zone 3 (High - High) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 6.78
AR 1 8.8608 6.6177 9.0213
AR 2 9.1512 7.0948 9.0213 6.5941
AR 3 9.2756 7.522 9.0213 6.5941 6.4571
AR 4 9.2465 6.9162 9.0213 6.5941 6.4571 7.357
AR 5 9.2463 6.7721 9.0213 6.5941 6.4571 7.357 6.9086
AR 6 9.2469 6.811 9.0213 6.5941 6.4571 7.357 6.9086 6.7458
AR 7 9.2469 6.7547 9.0213 6.5941 6.4571 7.357 6.9086 6.7458 6.8267
AR 8 9.2611 6.8375 9.0213 6.5941 6.4571 7.357 6.9086 6.7458 6.8267 6.7249
ARMA 0 6.78
ARMA 1 7.1284 6.58 10.8538
ARMA 2 7.8421 7.0373 10.8538 6.7025
ARMA 3 8.0661 7.4943 10.8538 6.7025 6.5268
ARMA 4 8.0573 6.9162 10.8538 6.7025 6.5268 7.3348
ARMA 5 8.0534 6.767 10.8538 6.7025 6.5268 7.3348 6.9086
ARMA 6 8.0559 6.811 10.8538 6.7025 6.5268 7.3348 6.9086 6.7414
ARMA 7 8.0561 6.7547 10.8538 6.7025 6.5268 7.3348 6.9086 6.7414 6.8267
ARMA 8 8.0487 6.8281 10.8538 6.7025 6.5268 7.3348 6.9086 6.7414 6.8267 6.7249
SETAR 0 7.0549
SETAR 1 9.1994 6.6877 9.2566
SETAR 2 9.3641 7.0251 9.2566 6.5874
SETAR 3 9.5113 7.4621 9.2566 6.5874 6.4343
SETAR 4 9.5326 6.9139 9.2566 6.5874 6.4343 7.3493
SETAR 5 9.5501 6.771 9.2566 6.5874 6.4343 7.3493 6.9168
SETAR 6 9.5488 6.8103 9.2566 6.5874 6.4343 7.3493 6.9168 6.7454
SETAR 7 9.5512 6.7539 9.2566 6.5874 6.4343 7.3493 6.9168 6.7454 6.8266
SETAR 8 9.5502 6.8395 9.2566 6.5874 6.4343 7.3493 6.9168 6.7454 6.8266 6.7244
LSTAR 0 7.1823
LSTAR 1 8.183 6.6433 10.0767
LSTAR 2 8.7241 6.993 10.0767 7.1614
LSTAR 3 8.7851 7.5043 10.0767 7.1614 6.3997*
LSTAR 4 8.6838 6.9387 10.0767 7.1614 6.3997* 7.2786
LSTAR 5 8.4784 6.7713 10.0767 7.1614 6.3997* 7.2786 6.785
LSTAR 6 8.4741 6.8116 10.0767 7.1614 6.3997* 7.2786 6.785 6.7356
LSTAR 7 8.4735 6.7517 10.0767 7.1614 6.3997* 7.2786 6.785 6.7356 6.8268
LSTAR 8 8.4767 6.8412 10.0767 7.1614 6.3997* 7.2786 6.785 6.7356 6.8268 6.7232
ARNN 0 7.0725
ARNN 1 9.0784 6.6549 9.3289
ARNN 2 9.1314 6.968 9.3289 6.5638
ARNN 3 9.5214 7.4333 9.3289 6.5638 6.4829
ARNN 4 9.5133 6.9437 9.3289 6.5638 6.4829 7.2593
ARNN 5 9.5105 6.7862 9.3289 6.5638 6.4829 7.2593 6.9038
ARNN 6 9.5131 6.8162 9.3289 6.5638 6.4829 7.2593 6.9038 6.768
ARNN 7 9.4809 6.7524 9.3289 6.5638 6.4829 7.2593 6.9038 6.768 6.8095
ARNN 8 9.4855 6.8393 9.3289 6.5638 6.4829 7.2593 6.9038 6.768 6.8095 6.7261
MSVAR 0 7.1801
MSVAR 1 8.7498 6.5729 9.0174
MSVAR 2 9.0453 7.0831 9.0174 6.5784
MSVAR 3 9.1706 7.5168 9.0174 6.5784 6.4629
MSVAR 4 9.162 6.9161 9.0174 6.5784 6.4629 7.3536
MSVAR 5 9.1576 6.7672 9.0174 6.5784 6.4629 7.3536 6.9088
MSVAR 6 9.1761 6.8184 9.0174 6.5784 6.4629 7.3536 6.9088 6.746
MSVAR 7 9.1626 6.7549 9.0174 6.5784 6.4629 7.3536 6.9088 6.746 6.8266
MSVAR 8 9.1557 6.832 9.0174 6.5784 6.4629 7.3536 6.9088 6.746 6.8266 6.7245
AR-GARCH 0 7.097
AR-GARCH 1 8.9104 6.5806 9.0983
AR-GARCH 2 9.1043 6.9711 9.0983 6.5874
AR-GARCH 3 9.2664 7.4461 9.0983 6.5874 6.449
AR-GARCH 4 9.2349 6.9069 9.0983 6.5874 6.449 7.2862
AR-GARCH 5 9.2362 6.7722 9.0983 6.5874 6.449 7.2862 6.8985
AR-GARCH 6 9.237 6.8112 9.0983 6.5874 6.449 7.2862 6.8985 6.7458
AR-GARCH 7 9.2373 6.7553 9.0983 6.5874 6.449 7.2862 6.8985 6.7458 6.8265
AR-GARCH 8 9.2371 6.842 9.0983 6.5874 6.449 7.2862 6.8985 6.7458 6.8265 6.7249
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Table 6: RMSFEs, h = 1, Zone 4 (High - Low) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 18.7402
AR 1 23.193 16.0463 25.8188
AR 2 23.2864 16.35 25.8188 18.3991
AR 3 23.7108 17.7087 25.8188 18.3991 17.7575
AR 4 23.6286 17.9878 25.8188 18.3991 17.7575 18.4715
AR 5 23.6177 17.6803 25.8188 18.3991 17.7575 18.4715 19.0519
AR 6 23.6099 18.4955 25.8188 18.3991 17.7575 18.4715 19.0519 17.9279
AR 7 23.6974 18.3667 25.8188 18.3991 17.7575 18.4715 19.0519 17.9279 18.4719
AR 8 24.0098 18.7929 25.8188 18.3991 17.7575 18.4715 19.0519 17.9279 18.4719 18.1445
ARMA 0 18.7402
ARMA 1 17.4302 13.4608* 30.2768
ARMA 2 17.3499 16.084 30.2768 17.3293
ARMA 3 17.1755 17.5215 30.2768 17.3293 17.5415
ARMA 4 17.2225 17.9686 30.2768 17.3293 17.5415 18.3377
ARMA 5 17.1792 17.6364 30.2768 17.3293 17.5415 18.3377 19.0497
ARMA 6 17.1921 18.4955 30.2768 17.3293 17.5415 18.3377 19.0497 17.9045
ARMA 7 17.0388 18.0914 30.2768 17.3293 17.5415 18.3377 19.0497 17.9045 18.4719
ARMA 8 17.0983 18.5276 30.2768 17.3293 17.5415 18.3377 19.0497 17.9045 18.4719 18.1062
SETAR 0 18.4336
SETAR 1 24.7703 17.052 25.2398
SETAR 2 23.6124 16.3062 25.2398 18.1873
SETAR 3 24.1996 17.8274 25.2398 18.1873 17.7463
SETAR 4 24.0889 17.9979 25.2398 18.1873 17.7463 18.5609
SETAR 5 24.1084 17.6854 25.2398 18.1873 17.7463 18.5609 19.0479
SETAR 6 24.0927 18.5045 25.2398 18.1873 17.7463 18.5609 19.0479 17.9216
SETAR 7 24.1002 18.2989 25.2398 18.1873 17.7463 18.5609 19.0479 17.9216 18.4715
SETAR 8 24.0943 18.4232 25.2398 18.1873 17.7463 18.5609 19.0479 17.9216 18.4715 18.2004
LSTAR 0 18.2958
LSTAR 1 21.0197 15.881 27.1077
LSTAR 2 20.2002 16.2892 27.1077 18.1192
LSTAR 3 20.7667 17.8055 27.1077 18.1192 18.2545
LSTAR 4 20.6636 17.9948 27.1077 18.1192 18.2545 18.4917
LSTAR 5 20.5653 17.5868 27.1077 18.1192 18.2545 18.4917 19.0665
LSTAR 6 20.5796 18.4896 27.1077 18.1192 18.2545 18.4917 19.0665 17.8842
LSTAR 7 20.5909 18.3001 27.1077 18.1192 18.2545 18.4917 19.0665 17.8842 18.4699
LSTAR 8 20.5884 18.4354 27.1077 18.1192 18.2545 18.4917 19.0665 17.8842 18.4699 18.1983
ARNN 0 18.9037
ARNN 1 26.7655 18.5306 26.3635
ARNN 2 23.9453 16.2643 26.3635 18.419
ARNN 3 24.1399 17.448 26.3635 18.419 17.5056
ARNN 4 23.9414 17.7909 26.3635 18.419 17.5056 18.7082
ARNN 5 23.9762 17.5258 26.3635 18.419 17.5056 18.7082 18.9889
ARNN 6 23.9467 18.4484 26.3635 18.419 17.5056 18.7082 18.9889 17.8173
ARNN 7 23.9085 18.2117 26.3635 18.419 17.5056 18.7082 18.9889 17.8173 18.4724
ARNN 8 24.0475 18.4242 26.3635 18.419 17.5056 18.7082 18.9889 17.8173 18.4724 18.1846
MSVAR 0 18.5284
MSVAR 1 21.9535 15.2797 25.8418
MSVAR 2 22.9883 16.2563 25.8418 18.3594
MSVAR 3 23.7168 17.8656 25.8418 18.3594 17.6872
MSVAR 4 23.3813 17.9329 25.8418 18.3594 17.6872 18.4605
MSVAR 5 23.3803 17.6551 25.8418 18.3594 17.6872 18.4605 19.0436
MSVAR 6 23.3855 18.4909 25.8418 18.3594 17.6872 18.4605 19.0436 17.9263
MSVAR 7 23.3921 18.2922 25.8418 18.3594 17.6872 18.4605 19.0436 17.9263 18.4717
MSVAR 8 23.4139 18.4505 25.8418 18.3594 17.6872 18.4605 19.0436 17.9263 18.4717 18.2002
AR-GARCH 0 20.0689
AR-GARCH 1 23.4084 15.9874 26.0277
AR-GARCH 2 23.0791 15.9358 26.0277 18.4351
AR-GARCH 3 23.4481 17.3047 26.0277 18.4351 17.7561
AR-GARCH 4 23.4405 17.7993 26.0277 18.4351 17.7561 18.3403
AR-GARCH 5 23.5067 17.6509 26.0277 18.4351 17.7561 18.3403 18.9903
AR-GARCH 6 23.744 18.6823 26.0277 18.4351 17.7561 18.3403 18.9903 17.9234
AR-GARCH 7 25.7613 19.9958 26.0277 18.4351 17.7561 18.3403 18.9903 17.9234 18.4697
AR-GARCH 8 25.8251 19.7831 26.0277 18.4351 17.7561 18.3403 18.9903 17.9234 18.4697 19.0582
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Table 7: RMSFEs, h = 5, Zone 1 (Low - Low) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 0.7114
AR 1 0.7190 0.7180 0.7124
AR 2 0.7563 0.7552 0.7124 0.7114
AR 3 0.7590 0.7445 0.7124 0.7114 0.7245
AR 4 0.7469 0.7115 0.7124 0.7114 0.7245 0.7355
AR 5 0.7488 0.7268 0.7124 0.7114 0.7245 0.7355 0.705
AR 6 0.7482 0.7173 0.7124 0.7114 0.7245 0.7355 0.705 0.7206
AR 7 0.7476 0.7104 0.7124 0.7114 0.7245 0.7355 0.705 0.7206 0.7157
AR 8 0.7476 0.7104 0.7124 0.7114 0.7245 0.7355 0.705 0.7206 0.7157 0.7114
ARMA 0 0.7114
ARMA 1 0.7190 0.7184 0.7119
ARMA 2 0.7317 0.7310 0.7119 0.7114
ARMA 3 0.7414 0.7348 0.7119 0.7114 0.7162
ARMA 4 0.7287 0.7079 0.7119 0.7114 0.7162 0.7274
ARMA 5 0.7313 0.7257 0.7119 0.7114 0.7162 0.7274 0.7024
ARMA 6 0.7306 0.7167 0.7119 0.7114 0.7162 0.7274 0.7024 0.7200
ARMA 7 0.7297 0.7104 0.7119 0.7114 0.7162 0.7274 0.7024 0.7200 0.7150
ARMA 8 0.7304 0.7104 0.7119 0.7114 0.7162 0.7274 0.7024 0.7200 0.7150 0.7147
SETAR 0 0.7022
SETAR 1 0.7105 0.7093 0.7122
SETAR 2 0.7500 0.7486 0.7122 0.7109
SETAR 3 0.7524 0.7424 0.7122 0.7109 0.7219
SETAR 4 0.7414 0.7117 0.7122 0.7109 0.7219 0.7332
SETAR 5 0.7382 0.7104 0.7122 0.7109 0.7219 0.7332 0.7161
SETAR 6 0.7387 0.7147 0.7122 0.7109 0.7219 0.7332 0.7161 0.7086
SETAR 7 0.7392 0.7136 0.7122 0.7109 0.7219 0.7332 0.7161 0.7086 0.7143
SETAR 8 0.7391 0.7099 0.7122 0.7109 0.7219 0.7332 0.7161 0.7086 0.7143 0.7154
LSTAR 0 0.7116
LSTAR 1 0.7203 0.7215 0.7108
LSTAR 2 0.7127 0.7207 0.7108 0.6975
LSTAR 3 0.7139 0.7317 0.7108 0.6975 0.7071
LSTAR 4 0.7054 0.7120 0.7108 0.6975 0.7071 0.7218
LSTAR 5 0.7042 0.7099 0.7108 0.6975 0.7071 0.7218 0.7176
LSTAR 6 0.7041 0.7145 0.7108 0.6975 0.7071 0.7218 0.7176 0.7074
LSTAR 7 0.7041 0.7135 0.7108 0.6975 0.7071 0.7218 0.7176 0.7074 0.7136
LSTAR 8 0.7041 0.7098 0.7108 0.6975 0.7071 0.7218 0.7176 0.7074 0.7136 0.7156
ARNN 0 0.7108
ARNN 1 0.7166 0.7161 0.7119
ARNN 2 0.7218 0.7208 0.7119 0.7119
ARNN 3 0.7111 0.7159 0.7119 0.7119 0.7053
ARNN 4 0.7265 0.7180 0.7119 0.7119 0.7053 0.7268
ARNN 5 0.7451 0.7184 0.7119 0.7119 0.7053 0.7268 0.7262
ARNN 6 0.7805 0.7407 0.7119 0.7119 0.7053 0.7268 0.7262 0.7397
ARNN 7 0.7509 0.6944* 0.7119 0.7119 0.7053 0.7268 0.7262 0.7397 0.7184
ARNN 8 0.8137 0.7259 0.7119 0.7119 0.7053 0.7268 0.7262 0.7397 0.7184 0.7556
MSVAR 0 0.7105
MSVAR 1 0.7170 0.7159 0.7125
MSVAR 2 0.7539 0.7526 0.7125 0.7115
MSVAR 3 0.7586 0.7440 0.7125 0.7115 0.7245
MSVAR 4 0.7474 0.7119 0.7125 0.7115 0.7245 0.7354
MSVAR 5 0.7483 0.7263 0.7125 0.7115 0.7245 0.7354 0.7047
MSVAR 6 0.7478 0.7172 0.7125 0.7115 0.7245 0.7354 0.7047 0.7204
MSVAR 7 0.7477 0.7141 0.7125 0.7115 0.7245 0.7354 0.7047 0.7204 0.7156
MSVAR 8 0.7477 0.7114 0.7125 0.7115 0.7245 0.7354 0.7047 0.7204 0.7156 0.7145
AR-GARCH 0 0.7099
AR-GARCH 1 0.7142 0.7120 0.7135
AR-GARCH 2 0.7348 0.7331 0.7135 0.7114
AR-GARCH 3 0.7376 0.7298 0.7135 0.7114 0.7168
AR-GARCH 4 0.7330 0.7178 0.7135 0.7114 0.7168 0.7201
AR-GARCH 5 0.7350 0.7252 0.7135 0.7114 0.7168 0.7201 0.7113
AR-GARCH 6 0.7337 0.7145 0.7135 0.7114 0.7168 0.7201 0.7113 0.7214
AR-GARCH 7 0.7339 0.7150 0.7135 0.7114 0.7168 0.7201 0.7113 0.7214 0.7122
AR-GARCH 8 0.7339 0.7119 0.7135 0.7114 0.7168 0.7201 0.7113 0.7214 0.7122 0.7148
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Table 8: RMSFEs, h = 5, Zone 2 (Low - High) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 0.9912
AR 1 1.0020 1.0016 0.9916
AR 2 1.0572 1.0565 0.9916 0.9913
AR 3 1.0513 1.0303 0.9916 0.9913 1.0115
AR 4 1.0571 1.0226 0.9916 0.9913 1.0115 0.9949
AR 5 1.0593 1.0159 0.9916 0.9913 1.0115 0.9949 0.9975
AR 6 1.0587 0.9977 0.9916 0.9913 1.0115 0.9949 0.9975 1.0081
AR 7 1.0513 0.9925 0.9916 0.9913 1.0115 0.9949 0.9975 1.0081 0.9912
AR 8 1.0513 0.9925 0.9916 0.9913 1.0115 0.9949 0.9975 1.0081 0.9912 0.9912
ARMA 0 0.9912
ARMA 1 1.0040 1.0029 0.9921
ARMA 2 1.0256 1.0244 0.9921 0.9913
ARMA 3 1.0319 1.0213 0.9921 0.9913 1.0005
ARMA 4 1.0400 1.0220 0.9921 0.9913 1.0005 0.9919
ARMA 5 1.0426 1.0155 0.9921 0.9913 1.0005 0.9919 0.9978
ARMA 6 1.0418 0.9978 0.9921 0.9913 1.0005 0.9919 0.9978 1.0075
ARMA 7 1.0346 0.9925 0.9921 0.9913 1.0005 0.9919 0.9978 1.0075 0.9911
ARMA 8 1.0412 0.9925 0.9921 0.9913 1.0005 0.9919 0.9978 1.0075 0.9911 0.9973
SETAR 0 1.0065
SETAR 1 1.0017 1.0002 0.9925
SETAR 2 1.0527 1.0506 0.9925 0.9914
SETAR 3 1.0696 1.0581 0.9925 0.9914 1.0026
SETAR 4 1.0647 1.0232 0.9925 0.9914 1.0026 1.0126
SETAR 5 1.0645 1.0148 0.9925 0.9914 1.0026 1.0126 0.9957
SETAR 6 1.0664 0.9997 0.9925 0.9914 1.0026 1.0126 0.9957 1.0077
SETAR 7 1.0668 0.9986 0.9925 0.9914 1.0026 1.0126 0.9957 1.0077 0.9932
SETAR 8 1.0667 0.9935 0.9925 0.9914 1.0026 1.0126 0.9957 1.0077 0.9932 0.9958
LSTAR 0 0.9912
LSTAR 1 0.9952 0.9954 0.9917
LSTAR 2 1.0348 1.0090 0.9917 1.0090
LSTAR 3 1.0577 1.0396 0.9917 1.0090 0.985
LSTAR 4 1.0539 1.0192 0.9917 1.0090 0.985 1.0057
LSTAR 5 1.0577 1.0175 0.9917 1.0090 0.985 1.0057 0.9936
LSTAR 6 1.0561 1.0001 0.9917 1.0090 0.985 1.0057 0.9936 1.0064
LSTAR 7 1.0571 0.9987 0.9917 1.0090 0.985 1.0057 0.9936 1.0064 0.9942
LSTAR 8 1.0572 0.9937 0.9917 1.0090 0.985 1.0057 0.9936 1.0064 0.9942 0.9958
ARNN 0 0.9924
ARNN 1 1.0021 1.0032 0.9901
ARNN 2 1.0081 1.0106 0.9901 0.9898
ARNN 3 1.0090 1.0088 0.9901 0.9898 0.9935
ARNN 4 1.0106 1.0202 0.9901 0.9898 0.9935 0.9831
ARNN 5 1.0880 1.0123 0.9901 0.9898 0.9935 0.9831 1.0681
ARNN 6 1.1399 1.0490 0.9901 0.9898 0.9935 0.9831 1.0681 1.0140
ARNN 7 1.1645 0.9779* 0.9901 0.9898 0.9935 0.9831 1.0681 1.0140 1.0668
ARNN 8 1.2730 1.0065 0.9901 0.9898 0.9935 0.9831 1.0681 1.0140 1.0668 1.0422
MSVAR 0 0.9925
MSVAR 1 1.0037 1.0033 0.9916
MSVAR 2 1.0582 1.0573 0.9916 0.9914
MSVAR 3 1.0559 1.0345 0.9916 0.9914 1.0115
MSVAR 4 1.0566 1.0222 0.9916 0.9914 1.0115 0.9950
MSVAR 5 1.0582 1.0155 0.9916 0.9914 1.0115 0.9950 0.9970
MSVAR 6 1.0583 0.9978 0.9916 0.9914 1.0115 0.9950 0.9970 1.0081
MSVAR 7 1.0584 0.9985 0.9916 0.9914 1.0115 0.9950 0.9970 1.0081 0.9912
MSVAR 8 1.0582 0.9920 0.9916 0.9914 1.0115 0.9950 0.9970 1.0081 0.9912 0.9970
AR-GARCH 0 0.9935
AR-GARCH 1 0.9994 0.9967 0.9938
AR-GARCH 2 1.0275 1.0247 0.9938 0.9912
AR-GARCH 3 1.0242 1.0138 0.9938 0.9912 0.9991
AR-GARCH 4 1.0336 1.0189 0.9938 0.9912 0.9991 0.9902
AR-GARCH 5 1.0378 1.0164 0.9938 0.9912 0.9991 0.9902 0.9956
AR-GARCH 6 1.0370 0.9993 0.9938 0.9912 0.9991 0.9902 0.9956 1.0066
AR-GARCH 7 1.0373 0.9988 0.9938 0.9912 0.9991 0.9902 0.9956 1.0066 0.9926
AR-GARCH 8 1.0372 0.9923 0.9938 0.9912 0.9991 0.9902 0.9956 1.0066 0.9926 0.9972
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Table 9: RMSFEs, h = 1, Zone 3 (High - High) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 6.7800
AR 1 6.8598 6.8489 6.7910
AR 2 7.4285 7.4166 6.7910 6.7796
AR 3 7.4000 7.2059 6.7910 6.7796 6.9643
AR 4 7.4293 7.1100 6.7910 6.7796 6.9643 6.9038
AR 5 7.4178 6.8524 6.7910 6.7796 6.9643 6.9038 7.0213
AR 6 7.4195 6.8124 6.7910 6.7796 6.9643 6.9038 7.0213 6.8294
AR 7 7.4158 6.7279 6.7910 6.7796 6.9643 6.9038 7.0213 6.8294 6.8506
AR 8 7.4487 6.8400 6.7910 6.7796 6.9643 6.9038 7.0213 6.8294 6.8506 6.7157
ARMA 0 6.7800
ARMA 1 6.8463 6.8370 6.7884
ARMA 2 7.1982 7.1879 6.7884 6.7797
ARMA 3 7.1697 7.1258 6.7884 6.7797 6.8142
ARMA 4 7.2144 7.0978 6.7884 6.7797 6.8142 6.8519
ARMA 5 7.2007 6.8502 6.7884 6.7797 6.8142 6.8519 7.0085
ARMA 6 7.2023 6.8133 6.7884 6.7797 6.8142 6.8519 7.0085 6.8257
ARMA 7 7.1983 6.7282 6.7884 6.7797 6.8142 6.8519 7.0085 6.8257 6.8506
ARMA 8 7.2316 6.8400 6.7884 6.7797 6.8142 6.8519 7.0085 6.8257 6.8506 6.7158
SETAR 0 6.8084
SETAR 1 6.8714 6.8089 6.8412
SETAR 2 7.2499 7.1376 6.8412 6.8367
SETAR 3 7.4918 7.2485 6.8412 6.8367 6.9173
SETAR 4 7.5482 7.1190 6.8412 6.8367 6.9173 6.9829
SETAR 5 7.5633 6.8516 6.8412 6.8367 6.9173 6.9829 7.0645
SETAR 6 7.5661 6.8142 6.8412 6.8367 6.9173 6.9829 7.0645 6.8367
SETAR 7 7.5749 6.7478 6.8412 6.8367 6.9173 6.9829 7.0645 6.8367 6.8401
SETAR 8 7.5706 6.8293 6.8412 6.8367 6.9173 6.9829 7.0645 6.8367 6.8401 6.7217
LSTAR 0 6.6989
LSTAR 1 6.7781 6.7955 6.7713
LSTAR 2 6.8970 6.9734 6.7713 6.667*
LSTAR 3 7.0391 7.1636 6.7713 6.667* 6.7485
LSTAR 4 7.1151 7.1288 6.7713 6.667* 6.7485 6.9010
LSTAR 5 7.1057 6.8599 6.7713 6.667* 6.7485 6.9010 7.0238
LSTAR 6 7.1164 6.8120 6.7713 6.667* 6.7485 6.9010 7.0238 6.8526
LSTAR 7 7.1189 6.7430 6.7713 6.667* 6.7485 6.9010 7.0238 6.8526 6.8423
LSTAR 8 7.1215 6.8302 6.7713 6.667* 6.7485 6.9010 7.0238 6.8526 6.8423 6.7187
ARNN 0 6.8411
ARNN 1 6.9027 6.9042 6.7777
ARNN 2 7.0406 7.0394 6.7777 6.7822
ARNN 3 7.0491 6.9812 6.7777 6.7822 6.8466
ARNN 4 6.8356 6.8090 6.7777 6.7822 6.8466 6.7416
ARNN 5 7.1940 7.0155 6.7777 6.7822 6.8466 6.7416 6.9251
ARNN 6 7.5352 7.0357 6.7777 6.7822 6.8466 6.7416 6.9251 7.0622
ARNN 7 7.6649 7.0472 6.7777 6.7822 6.8466 6.7416 6.9251 7.0622 6.8883
ARNN 8 7.5211 6.7473 6.7777 6.7822 6.8466 6.7416 6.9251 7.0622 6.8883 6.9504
MSVAR 0 6.8345
MSVAR 1 6.9032 6.8923 6.7908
MSVAR 2 7.4121 7.4023 6.7908 6.7772
MSVAR 3 7.3554 7.1597 6.7908 6.7772 6.9678
MSVAR 4 7.4377 7.1036 6.7908 6.7772 6.9678 6.9129
MSVAR 5 7.3998 6.8343 6.7908 6.7772 6.9678 6.9129 7.0155
MSVAR 6 7.4173 6.7990 6.7908 6.7772 6.9678 6.9129 7.0155 6.8275
MSVAR 7 7.4217 6.7311 6.7908 6.7772 6.9678 6.9129 7.0155 6.8275 6.8494
MSVAR 8 NaN NaN 6.7908 6.7772 6.9678 6.9129 7.0155 6.8275 6.8494 6.7171
AR-GARCH 0 6.7842
AR-GARCH 1 6.8432 6.8311 6.7920
AR-GARCH 2 7.0556 7.0438 6.7920 6.7796
AR-GARCH 3 7.0567 6.9740 6.7920 6.7796 6.8509
AR-GARCH 4 7.1134 6.9782 6.7920 6.7796 6.8509 6.8301
AR-GARCH 5 7.1018 6.8302 6.7920 6.7796 6.8509 6.8301 6.9091
AR-GARCH 6 7.1038 6.7940 6.7920 6.7796 6.8509 6.8301 6.9091 6.8250
AR-GARCH 7 7.1007 6.7336 6.7920 6.7796 6.8509 6.8301 6.9091 6.8250 6.8270
AR-GARCH 8 7.0999 6.8274 6.7920 6.7796 6.8509 6.8301 6.9091 6.8250 6.8270 6.7168
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Table 10: RMSFEs, h = 5, Zone 4 (High - Low) (×10−7)

Model level(j) Ĉj Ŝj D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8

AR 0 18.7399
AR 1 18.4039 18.3667 18.7770
AR 2 18.7929 18.7540 18.7770 18.7340
AR 3 20.2455 20.3106 18.7770 18.7340 18.6402
AR 4 19.9313 19.0721 18.7770 18.7340 18.6402 19.7179
AR 5 19.9808 18.8768 18.7770 18.7340 18.6402 19.7179 18.9587
AR 6 19.9073 18.8113 18.7770 18.7340 18.6402 19.7179 18.9587 18.6358
AR 7 19.5996 18.4775 18.7770 18.7340 18.6402 19.7179 18.9587 18.6358 18.6366
AR 8 19.9656 18.8157 18.7770 18.7340 18.6402 19.7179 18.9587 18.6358 18.6366 18.5520
ARMA 0 18.7402
ARMA 1 18.6846 18.6929 18.7291
ARMA 2 18.4083 18.4071 18.7291 18.7399
ARMA 3 19.6866 19.6512 18.7291 18.7399 18.7699
ARMA 4 19.4714 18.8836 18.7291 18.7399 18.7699 19.3104
ARMA 5 19.5497 18.8031 18.7291 18.7399 18.7699 19.3104 18.8994
ARMA 6 19.5223 18.9315 18.7291 18.7399 18.7699 19.3104 18.8994 18.6101
ARMA 7 19.1033 18.3819 18.7291 18.7399 18.7699 19.3104 18.8994 18.6101 18.6233
ARMA 8 19.5502 18.8141 18.7291 18.7399 18.7699 19.3104 18.8994 18.6101 18.6233 18.3592
SETAR 0 18.7797
SETAR 1 18.2845 18.1571 18.8753
SETAR 2 18.3244 18.1509 18.8753 18.8609
SETAR 3 19.0819 19.3224 18.8753 18.8609 18.4707
SETAR 4 18.7819 18.8441 18.8753 18.8609 18.4707 19.0507
SETAR 5 18.8330 18.5915 18.8753 18.8609 18.4707 19.0507 19.0765
SETAR 6 18.7856 18.8835 18.8753 18.8609 18.4707 19.0507 19.0765 18.4306
SETAR 7 18.7852 18.5688 18.8753 18.8609 18.4707 19.0507 19.0765 18.4306 18.5686
SETAR 8 18.7521 18.5158 18.8753 18.8609 18.4707 19.0507 19.0765 18.4306 18.5686 18.3780
LSTAR 0 18.6067
LSTAR 1 18.7681 18.9413 18.5855
LSTAR 2 18.2587 19.3853 18.5855 18.1508
LSTAR 3 18.1362 18.6668 18.5855 18.1508 18.8355
LSTAR 4 18.0695 18.6826 18.5855 18.1508 18.8355 18.5158
LSTAR 5 18.0567* 18.3566 18.5855 18.1508 18.8355 18.5158 18.9186
LSTAR 6 18.2951 18.8552 18.5855 18.1508 18.8355 18.5158 18.9186 18.2808
LSTAR 7 18.3071 18.5689 18.5855 18.1508 18.8355 18.5158 18.9186 18.2808 18.5685
LSTAR 8 18.2913 18.5110 18.5855 18.1508 18.8355 18.5158 18.9186 18.2808 18.5685 18.3649
ARNN 0 18.8211
ARNN 1 18.6770 18.6731 18.7447
ARNN 2 18.4453 18.4509 18.7447 18.7318
ARNN 3 19.3287 19.3095 18.7447 18.7318 18.7765
ARNN 4 18.9894 18.8688 18.7447 18.7318 18.7765 18.8361
ARNN 5 18.8922 18.7918 18.7447 18.7318 18.7765 18.8361 18.7230
ARNN 6 18.8975 18.6979 18.7447 18.7318 18.7765 18.8361 18.7230 18.8611
ARNN 7 19.0808 18.7214 18.7447 18.7318 18.7765 18.8361 18.7230 18.8611 18.9055
ARNN 8 19.1473 18.8501 18.7447 18.7318 18.7765 18.8361 18.7230 18.8611 18.9055 18.6383
MSVAR 0 18.7626
MSVAR 1 18.5294 18.4896 18.7803
MSVAR 2 18.5517 18.5150 18.7803 18.7259
MSVAR 3 19.5052 19.5713 18.7803 18.7259 18.6391
MSVAR 4 19.6142 18.8182 18.7803 18.7259 18.6391 19.6217
MSVAR 5 19.6695 18.6792 18.7803 18.7259 18.6391 19.6217 18.9358
MSVAR 6 19.8039 18.9469 18.7803 18.7259 18.6391 19.6217 18.9358 18.6228
MSVAR 7 19.7841 18.5855 18.7803 18.7259 18.6391 19.6217 18.9358 18.6228 18.6303
MSVAR 8 NaN NaN 18.7803 18.7259 18.6391 19.6217 18.9358 18.6228 18.6303 18.3989
AR-GARCH 0 18.7524
AR-GARCH 1 18.5115 18.4747 18.7763
AR-GARCH 2 18.3367 18.3024 18.7763 18.7365
AR-GARCH 3 18.5139 18.5283 18.7763 18.7365 18.7022
AR-GARCH 4 18.4719 18.2842 18.7763 18.7365 18.7022 18.9696
AR-GARCH 5 18.8401 18.6538 18.7763 18.7365 18.7022 18.9696 18.7660
AR-GARCH 6 19.1491 19.1560 18.7763 18.7365 18.7022 18.9696 18.7660 18.5603
AR-GARCH 7 20.2778 19.9659 18.7763 18.7365 18.7022 18.9696 18.7660 18.5603 18.6148
AR-GARCH 8 21.2187 20.0161 18.7763 18.7365 18.7022 18.9696 18.7660 18.5603 18.6148 19.2816
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Figure 1: JPY/EUR price series (5 min-
utes volume weighted averaged).

Feb 01 20:15 Feb 14 00:00 Feb 28 00:00 Mar 14 00:00 Mar 28 00:00

11
0

11
5

12
0

Figure 2: Average trading volume by
hours of the day.
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Figure 3: Returns of JPY/EUR
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Figure 4: Volatility of JPY/EUR Re-
turns
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Figure 5: Volatility of returns.
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Figure 6: Estimation and forecasting periodization.
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