Method of Burg’s Linear prediction
URL

http://www.mathworks.com/access/helpdesk/help/toolbox/signal/pburg.html

pburg - PSD using Burg method
Syntax

Pxx = pburg(x,p)
Pxx = pburg(x,p,nfft)
[Pxx,w] = pburg(...)
[Pxx,w] = pburg(x,p,w)
Pxx = pburg(x,p,nfft,fs)
Pxx = pburg(x,p,f,fs)
[Pxx,f] = pburg(x,p,nfft,fs)
[Pxx,f] = pburg(x,p,f,fs)
[Pxx,f] = pburg(x,p,nfft,fs,'range')
[Pxx,w] = pburg(x,p,nfft,'range')
pburg(...)
Description

Pxx = pburg(x,p) implements the Burg algorithm, a parametric spectral estimation method, and returns Pxx, an estimate of the power spectral density (PSD) of the vector x. The entries of x represent samples of a discrete-time signal, and p is the integer specifying the order of an autoregressive (AR) prediction model for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians per sample. Real-valued inputs produce full power one-sided (in frequency) PSDs (by default), while complex-valued inputs produce two-sided PSDs. 

In general, the length of the FFT and the values of the input x determine the length of Pxx and the range of the corresponding normalized frequencies. For this syntax, the (default) FFT length is 256. The following table indicates the length of Pxx and the range of the corresponding normalized frequencies for this syntax. 

PSD Vector Characteristics for an FFT Length of 256 (Default)
	Real/Complex Input Data
	Length of Pxx
	Range of the Corresponding Normalized Frequencies

	Real-valued
	129
	[0, π]

	Complex-valued
	256
	[0, 2π)


Pxx = pburg(x,p,nfft) uses the integer FFT length nfft to calculate the PSD vector Pxx. 

[Pxx,w] = pburg(...) also returns w, a vector of normalized angular frequencies at which the two-sided PSD is estimated. Pxx and w have the same length. The units for w are rad/sample. 

The length of Pxx and the frequency range for w depend on nfft and the values of the input x. The following table indicates the length of Pxx and the frequency range for w in this syntax. 

PSD and Frequency Vector Characteristics
	Real/Complex Input Data
	nfft Even/Odd
	Length of Pxx
	Range of w

	Real-valued
	Even
	(nfft/2 + 1)
	[0, π]

	Real-valued
	Odd
	(nfft + 1)/2
	[0, π)

	Complex-valued
	Even or odd
	nfft
	[0, 2π)


[Pxx,w] = pburg(x,p,w) uses a vector of normalized frequencies w with two or more elements to compute the PSD at those frequencies and returns a two-sided PSD.

Pxx = pburg(x,p,nfft,fs) 

or

Pxx = pburg(x,p,f,fs) uses the integer FFT length nfft to calculate the PSD vector Pxx or uses the vector of frequencies f in Hz and the sampling frequency fs to compute the two-sided PSD vector Pxx at those frequencies. If you specify nfft as the empty vector [], it uses the default value of 256. If you specify fs as the empty vector [], the sampling frequency fs defaults to 1 Hz. The spectral density produced is calculated in units of power per Hz. 

[Pxx,f] = pburg(x,p,nfft,fs)
or

[Pxx,f] = pburg(x,p,f,fs) returns the frequency vector f. In this case, the units for the frequency vector are in Hz. The frequency range for f depends on nfft, fs, and the values of the input x. The length of Pxx is the same as in the table above. The following table indicates the frequency range for f for this syntax. 

PSD and Frequency Vector Characteristics with fs Specified
	Real/Complex Input Data
	nfft Even/Odd
	Range of f

	Real-valued
	Even
	[0,fs/2]

	Real-valued
	Odd
	[0,fs/2)

	Complex-valued
	Even or odd
	[0,fs)


[Pxx,f] = pburg(x,p,nfft,fs,'range') or

[Pxx,w] = pburg(x,p,nfft,'range') specifies the range of frequency values to include in f or w. This syntax is useful when x is real. 'range' can be either:

· 'twosided': Compute the two-sided PSD over the frequency range [0,fs). This is the default for determining the frequency range for complex-valued x.

· If you specify fs as the empty vector, [], the frequency range is [0,1). 

· If you don't specify fs, the frequency range is [0, 2π). 

· 'onesided': Compute the one-sided PSD over the frequency ranges specified for real x. This is the default for determining the frequency range for real-valued x. Note that 'onesided' is not valid if you pass in a vector of frequencies (f or w).

	Note   You can put the string argument 'range' anywhere in the input argument list after p.


pburg(...) with no outputs plots the PSD in the current figure window. The frequency range on the plot is the same as the range of output w (or f) for a given set of parameters. 

Remarks

The power spectral density is computed as the distribution of power per unit frequency. This algorithm depends on your selecting an appropriate model order for your signal.

Examples

The Burg method estimates the spectral density by fitting an AR prediction model of a given order to the signal, so first generate a signal from an AR (all-pole) model of a given order. Use freqz to check the magnitude of the frequency response of your AR filter. Then, generate the input signal x by filtering white noise through the AR filter. Estimate the PSD of x based on a fourth-order AR prediction model because in this case we know that the original AR system model a has order 4:

% Define AR filter coefficients

a = [1 -2.2137 2.9403 -2.1697 0.9606];

[H,w] = freqz(1,a,256);     % AR filter freq response

% Scale to make one-sided PSD

Hp = plot(w/pi,20*log10(2*abs(H)/(2*pi)),'r'); 

hold on;

randn('state',1);

x = filter(1,a,randn(256,1));           % AR system output

pburg(x,4,511); 

xlabel('Normalized frequency (\times \pi rad/sample)')

ylabel('One-sided PSD (dB/rad/sample)')

legend('PSD of model output','PSD estimate of x')

[image: image1]
Algorithm

You can use linear prediction filters to model the second-order statistical characteristics of a signal. The prediction filter output can be used to model the signal when the input is white noise. 

The Burg method fits an AR linear prediction filter model of the specified order to the input signal by minimizing (using least squares) the arithmetic mean of the forward and backward prediction errors. The spectral density then is computed from the frequency response of the prediction filter. The AR filter parameters are constrained to satisfy the Levinson-Durbin recursion. 

References

[1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1987, Chapter7.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 1997.

Speech Processing Using Linear Prediction

In this set of demonstrations, we illustrate the modern equivalent of the 1939 Dudley vocoder demonstration. Instead of a bank of bandpass filters, modern vocoders use a single filter (usually implemented in a so-called lattice filter structure). The filter coefficients are calculated using any of a number of algorithms (based on linear prediction). In the examples below, we use an algorithm due to John Burg to calculate the filter coefficients. 

The original speech signal [image: image2.png]


Voder demo, borrowed from the , is sampled at 8kHz. The signal is broken into segments of 160 samples (20ms). Each segment is analyzed using Burg's algorithm for its spectral content (a tenth order linear predictor is the result of this analysis). 

A linear predictor uses observations of a signal to try to predict the next sample of the signal beyond those it can observe. The overall structure is as shown: 

[image: image3]
The input signal, x'(n), is delayed by one sample by the block labeled z-1. The block labeled F(z) is a filter whose output y(n) is an estimate of the current value of x'(n). Since that block only sees a delayed version of x'(n), its output is a prediction. The error in the prediction, e(n), is the difference between the what is being predicted and the prediction. 

Intuitively, linear prediction exploits the fact that a new sample of a signal is not totally independent of previous samples, usually. It captures that dependence. As such, when a predictor is working well, the error signal will have little residual correlation between samples. If the input to the linear predictor is the original voder speech signal [image: image4.png]


is not very intelligible. Intelligibility, therefore, must somehow depend on the correlation between samples in the signal. 
, then the error signal 

In fact, for speech, the linear predictor has to constantly change to adapt to what is being said. The input signal is divided into 20ms segments, and each segment is analyzed to provide the coefficients of the prediction filter, as shown below: 

[image: image6]
A box labeled "Burg's algorithm" uses one of several methods for calculating the coefficients of the linear predictor each 20ms. 

We can check the hypothesis that intelligibility depends on the correlation between samples by introducing the correlation into some random signal that has no speech content. Suppose we start with a white noise signal [image: image7.png]


. The block diagram used to create this synthetic speech is as follows: 
and filter it with the inverse of the prediction error filter above (changing the filter coefficients every 20ms). The result will be intelligible whispered speech 

[image: image9]
Burg's algorithm is used again to analyze each 20ms segment of speech, but now the results of the analysis are loaded into an "inverse lattice filter," which implements the inverse of the filter above that produced the prediction error. 

Notice that since the result is intelligible, information about intelligibility is almost entirely in the results produced by Burg's algorithm. Thus, such an algorithm can (and often does) form the front end of any device that analyzes speech, such as speech recognition system or a speech encoder. 

The whispered speech effect above, while intelligible, sounds, well ... whispered. The problem here is that the excitation, white noise, does not match well what the human vocal cords do. The human vocal cords, which provide an excitation signal in natural speech, vibrate at a frequency that depends on the speaker (and whether the speaker is male or female) and on the inflection intended by the speaker. A naive way to try to replicate the effect of the vocal cords is to use a sinusoidal excitation instead of white noise. The result [image: image10.png]


is completely unintelligible. There is simply not enough spectral richness in a sinusoid. 

An alternative excitation that is more spectrally rich is a periodic sequence of impulses, which looks like this: 

[image: image11]
If we set the period at 40 samples (5ms, or 39 zero-valued samples for every non-zero sample), then the excitation [image: image12.png]


. 
. Increasing the period to 80 samples results in speech with a lower tone 
has a perceptual pitch of 200Hz, but obviously no discernable speech content. Filtering it with the inverse lattice filter yields intelligible, if mechanical sounding speech 

With a periodic pulse excitation, speech sounds very mechanical. A slightly better result [image: image15.png]


comes from combining white noise with periodic pulses. More sophisticated techniques, such as those used today in digital cellular phones, analyze the speech further to construct much better excitation signals. 

Since the intelligibility information is contained in the coefficients produced by Burg's algorithm, we can manipulate the speed of the speech by manipulating these coefficients. For example, if we use every set of coefficients to reconstruct 40ms worth of speech rather than 20ms, the result is slow speech [image: image16.png]


is very different, having the overall pitch shifted down by a factor of two in addition to having the speech slowed down. 
. Note that we could also get slow speech by using every speech sample twice, but the result 

We can similarly speed up the speech by using each set of coefficients to reconstruct 10ms worth of speech rather than 20ms, the result is fast speech [image: image18.png]


is very different, having the overall pitch shifted up by a factor of two in addition to having the speech speeded up. 
. Note that we could also get fast speech by discarding every second speech sample, but the result 

Finally, synthesizing the speech from a musical excitation [image: image20.png]


in this case the first few bars of Passio Domini nostri by Arvo Part, yields a particularly interesting result 

