
b482005-303 (1).pdf

Artificial Neural Networks architectures for stock price prediction:
comparisons and applications

Luca Di Persio
University of Verona

Department of Computer Science
Strada le Grazie, 15 - Verona

Italy
luca.dipersio@univr.it

Oleksandr Honchar
University of Verona

Department of Computer Science
Strada le Grazie, 15 - Verona

Italy
oleksandr.gonchar@univr.it

Abstract: We present an Artificial Neural Network (ANN) approach to predict stock market indices, particularly
with respect to the forecast of their trend movements up or down. Exploiting different Neural Networks archi-
tectures, we provide numerical analysis of concrete financial time series. In particular, after a brief résumé of the
existing literature on the subject, we consider the Multi-layer Perceptron (MLP), the Convolutional Neural Net-
works (CNN), and the Long Short-Term Memory (LSTM) recurrent neural networks techniques. We focus on the
importance of choosing the correct input features, along with their preprocessing, for the specific learning algo-
rithm one wants to use. Eventually, we consider the S&P500 historical time series, predicting trend on the basis
of data from the past days, and proposing a novel approach based on combination of wavelets and CNN, which
outperforms the basic neural networks ones. We show, that neural networks are able to predict financial time series
movements even trained only on plain time series data and propose more ways to improve results.

Key–Words: Artificial neural networks, Multi-layer neural network, Convolutional neural network, Long short-
term memory, Recurrent neural network, Deep Learning, Stock markets analysis, Time series analysis, financial
forecasting

1 Introduction
During recent years, Artificial Neural Networks
(ANN) have been interested by a renewed attention
by academicians, as well as by practitioners, partic-
ularly within the financial arena. The turning point
being represented by the winning solution for Ima-
geNet challenge, in 2012, which was based on deep
convolutional network trained on Graphic Processing
Units (GPUs), see [18]. After such an event, ANN
approaches to deep learning have been used in lot of
different areas such, e.g., autonomic car driving, robot
aided surgery, guidance of intelligent drones, software
development, nuclear physics, and finance. Concern-
ing the financial framework, different type of mod-
els related to the problem of predicting assets prices
movements as well as the behaviour in time of more
structured financial instruments, have been consid-
ered. In most of the cases, proposed approaches have
been mainly based on statistical models used to anal-
yse time series of interest, see, e.g., [12, 13, 14] and
references therein, or by exploiting stochastic calculus
techniques, see, e.g., [7, 8], and references therein, or
by considering fine tuned expansions techniques, as,
e.g., in [11, 9], see also [20], and references therein,
while we refer to [5, 6], and references therein, for op-

timization problems related to the dividend and invest-
ment policy of a firm under debt constraints, resp. to
portfolio liquidation startegies for large portfolio posi-
tion in a limit-order market, and to [3], and references
therein, for models related to the spread of contagion
in financial networks. Is it worth to mention that,
for what concerns the machine learning approaches,
they are widely applied also to credit scoring, portfo-
lio management, algorithmic trading, see, [22, 24, 10],
respectively. In the present work we are dealing with
the ANN-machine learning approach to the study of
stock price movements prediction, a theme of increas-
ing relevance in actual financial markets, particularly
from the point of view of the so called fast trading
management of order books.

The paper is structured as follows: in Sec. 2
we provide a short review of known techniques used
for the stock price prediction and mainly based on
classic machine learning algorithms, logistic regres-
sion or support vector machine; in Sec. 3, we con-
sider more specifically the Multilayer perceptron, the
Convolutional neural network, and the Recurrent neu-
ral network architectures; then; in Sec. 4, we dis-
cuss input data for algorithms, feature selection and
preprocessing; eventually, in Sec. 5, we provide

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 403

the computational results related to the training pro-
cesses, based on S&P500 time series; in Sec. 6
we take into consideration optimized selection proce-
dures for the(hyper)parameters characterizing our ar-
chitectures, focusing the attention on the use of the
Tree-structured Parzen Estimator (sequential model-
based) optimization scheme; in Sec. 7 we consider
possible alternatives for our the study of the consid-
ered S&P500 time series from the machine learning
point of view, namely the Principal Component Anal-
ysis, the feature selection approach and the use of en-
sembles of neural networks; eventually, in Sec. 8, we
provide a numerical as well as a graphical interpreta-
tion of the results obtained exploiting the aforemen-
tioned approaches, and then commenting them in Sec.
9.

2 Existing approaches
The approaches used to forecast future directions of
share market prices are historically splitted into two
main categories: those that rely on technical analysis,
and those that rely on fundamental analysis. Techni-
cal analysis uses only historical data such as, e.g., past
prices, volume of trading, volatility, etc., while funda-
mental analysis is based on external information like,
e.g., interest rates, prices and returns of other assets,
and other macro/micro-economic parameters.

The machine learning approach to the latter prob-
lem has been declined in several forms, especially dur-
ing recent years, also aiming to find an effective way
to predict sudden financial crashes as, e.g., the one
happened during the 2007-08 biennium. As an exam-
ple, good results have been obtained using linear clas-
sifiers as the logistic regression one, which has been
used to predict the Indian Stock market, see [15], or
with respect to the S&P500 index, see [4]. More com-
plicated techniques, as large-margin classifier or Sup-
port Vector Machine (SVM), was the best choice for
prediction before the rise of neural networks. The lat-
ter uses a kernel trick which allows to consider our in-
put data as embedded into a higher-dimensional space,
where it is linearly separable. Successful applications
of SVM have been developed, e.g., with respect to
the analysis the Korea composite stock prices mar-
ket, see [26], and the NIKKEI 225 index, see [16],
clearly showing how SVM outperforms logistic re-
gression, linear discriminant analysis and even some
neural network approaches. Another popular tech-
nique based on decision trees, i.e. the random forest
one, was also applied to similar problems as in, e.g.,
[19], where the authors studied the BM&F/BOVESPA
stock market, resulting in a high accuracy obtained
by using as input features different technical indica-

tors such, e.g., simple and exponential moving aver-
ages, rate of change, stochastic oscillator, etc. The
aforementioned references are all characterized by an
accuracy in stock price movement forecasting that
ranges between 70% and 90%. In what follows, we
show that is possible to achieve the same accuracy by
mean of neural networks, working with preprocessed
open/close/high/low data, also working with high fre-
quent, intra-day, data.

3 Artificial neural networks
3.1 Multilayer perceptron

Artificial Neural Networks look like electronic models
based on the neural structure of the brain, which ba-
sically learns from experience. The simplest kind of
neural network is a single-layer perceptron network,
which consists of a single layer of output nodes, while
the inputs are fed directly to the outputs via a series of
weights. In this way, it can be considered the sim-
plest kind of feed-forward network. Multilayer neural
network consists of multiple layers of computational
units, usually interconnected in a feed-forward way.
Each neuron in one layer has directed connections to
the neurons of the subsequent layer. In many applica-
tions the units of these networks apply a sigmoid func-
tion as an activation function. The universal approx-
imation theorem for neural networks states that every
continuous function that maps intervals of real num-
bers to some output interval of real numbers can be
approximated arbitrarily closely by a multi-layer per-
ceptron with just one hidden layer. This result holds
for a wide range of activation functions as in the case
of sigmoidal functions.

3.2 Convolutional neural network

Convolutional neural network is a type of feed-
forward artificial neural network in which the connec-
tivity pattern between its neurons is inspired by the
organization of the animal visual cortex, whose indi-
vidual neurons are arranged in such a way that they
respond to overlapping regions tiling the visual field.
There are several different theory about how to pre-
cisely define such a model, but all of the various im-
plementations can be loosely described as involving
the following process:

◦ convolve several small filters on the input image;

◦ subsample this space of filter activations;

◦ repeat steps 1 and 2 until your left with sufficiently
high level features;

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 404

◦ use a standard a standard MLP to solve a particular
task, using the results features as input.

The main advantage of convolutional neural net-
works is that we use convolutional and downsampling
layers as learnable feature extractor, which allows us
to feed neural network without sophisticated prepro-
cessing, so that useful features will be learnt during
the training. In our case, instead of considering the
standard framework of 2D images, we apply convolu-
tional network to 1D data, namely to (financial) time
series.

3.3 Recurrent neural network

A recurrent neural network (RRN) is any artificial
neural network whose neurons send feedback signals
to each other. The idea behind RNNs is to make use
of sequential information. In a traditional neural net-
work we assume that all inputs (and outputs) are in-
dependent of each other. But for many tasks this is
not the better idea. In particular, if one wants to pre-
dict the next word in a sentence, then it is better if he
knows which words came before it. RNNs are called
recurrent because they perform the same task for ev-
ery element of a sequence, with the output being de-
pended on the previous computations. Another way to
think about RNNs is that they have a memory which
captures information about what has been calculated
so far. It is worth to mention that, eve in RNNs are
theoretically able to treat arbitrarily long sequences
of information, in practice they are limited to looking
back only for few steps.

4 Data processing
In what follows we focus our attention on the S&P500
index, exploiting related data from 1950 to 2016
(16706 data points). Usually stock market data looks
like on Figure 1 and 2, which report the close prices
for every days in the aforementioned time interval
(Fig.1).

Our goal is to predict the movements of the
S&P500 index, exploiting some information from pre-
vious data. Suppose we are going to predict if the
close price of the next day, resp. minute, is larger
or smaller than the previous one, based on the last
30 days, resp. minutes, of observations. Appropriate
time window and prediction horizon should be chosen
during hyper parameter optimization stage. First we
have to scale or normalize our input data. The input
vectors of the training data are normalized in such a
way that all the features have zero-mean, and unitary
variance. Usually data are scaled to be in the range
[-1; 1], or [0; 1]. In the neural network approaches

Figure 1: S&P500 index data from 2006 to 2016.

such renormalization strongly depends on the activa-
tion function of every neuron. A different approach,
see, e.g., [7], is about considering not raw open or
close ticks, but calculating return during the day, resp.
during the minute, and then using this data as the train-
ing set. In Fig. 2, we have reported the plot of returns
for the S&P500 index.

Figure 2: S&P500 index daily returns data.

In our research we use return prices as more rep-
resentative data with normalization for stock price
movement forecasting problem. In particular, we nor-
malized our time series to have zero mean and unit
variance, making use of the sklearn library, see [23].
All existing time series have been splitted, accord-
ingly to the latter, in train, 80%, resp. in test dataset,
the remaining 20%; moreover we use 10% of training
set for hyper parameter optimization. Every element
of the train data set is a normalized time series with

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 405

length of 30. Based on such a subdivision, we want to
predict the transition [1; 0] if price goes up, resp. [0;
1] if it goes down, next day, resp. minute, according
with the particular index chosen.

4.1 Preprocessing for regression problem

A classical approach in time series forecasting is rep-
resented by regression, predicting the exact value in
the future based on given known historical time win-
dow. Neural networks can face this problem as well.
The main difference from the point of view of the clas-
sification architecture, consists in changing the last
affine layer which turns to predict real value. It fol-
lows that the activation function should be a linear
function within the range -inf, +inf, moreover only
one neuron should be present in this layer, instead of
number of classes.

There is an important issue affecting the data
preparation stage before regression. In fact, we need
first to normalize data to be in some fixed range, them,
after the regression procedure ends, we have to restore
obtained results to predict actual value. We can sup-
pose that both the mean and the standard deviation
from historical time window are the same as for the
next value, so that, for training data, we first normal-
ize every time window and then subtract its mean and
divide for its standard deviation, in single prediction
value. We point out that a common mistake consists
in considering the the mean and the standard deviation
for target as a part of time window, affecting a lot the
final results.

5 Experimental results
In this section we provide the computational results
related to the training processes. All NNs were
trained using the Keras deep learning framework for
Python. Every NNs for S&P500 data was trained for
10 epochs, exploiting the Adam optimization algo-
rithm, see [17]. Computational time was reduced by
using GPU hardware, in particular we made use of a
GTX 860M to speed up tensor multiplication, as well
as other mathematical routines. In the hyperparame-
ters optimization section, see Sec. 6, we tune all the
parameters, e.g., the number of hidden layers, neu-
rons, optimization algorithm, etc., with respect to ar-
chitectures.

5.1 Multilayer perceptron architecture
We use the Multilayer perceptron architecture (MLP)
with two hidden layers and test different layer sizes
to determine the optimal size from the point of view
of data modelling. We choose the rectified linear unit

(ReLU) function as activation function, and, between
two hidden layers, one dropout layer is included to
prevent over fitting. The architecture of this model is
shown in Fig. 3.

Figure 3: MLP architecture.

5.2 Convolutional neural network architec-
ture

We use the Convolutional neural network architecture
(CNN), as a sequential combination of 1D convolu-
tional and max-pooling layers, choosing hyper param-
eters as follows:

◦ Number of filters = 64;

◦ Pool length = 2;

◦ Subsample length = 1;

◦ Activation function ReLU.

We provide experiment results with 1 and 2 hid-
den convolutional layers. The architecture of this
model is shown in Fig. 4.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 406

Figure 4: CNN architecture.

5.3 Recurrent neural network architecture
As a particular type of Recurrent neural network ar-
chitecture (RNN), we choose the Long Short-Term
Memory (LSTM) architecture, with 2 stacked recur-
rent layers and a softmax in the end. The number of
hidden neurons equals 100, while the activation func-
tions are hyperbolic tangent, while the inner activa-
tions are hard sigmoid functions. The architecture as-
sociated to the latter model is shown in Fig. 5.

5.4 Experimental Wavelet + CNN
One of the non-traditional approaches for financial
time series prediction with NNs is the so called
Wavelet-NNs (WNN). Basically, it feature extraction
is based in wavelet transform, taking details part and
skipping trend, which are then elaborated exploting a
MLP, see, e.g., in [25]. Since CNNs showed better
convergence and accuracy in previous experiments,
hence we decided to pass time series preprocessed
with Haar wavelets to the 2-layer CNN.

Figure 5: RNN architecture.

6 Hyperparameters optimization
We need to select the best parameters for our archi-
tectures such as number of neurons, hidden layers,
dropout ratio, optimization algorithm, and the num-
ber of filters in CNNs. It can be done by hyperpa-
rameters search, namely by using the following main
techniques: grid search, random search and the tree-
structured Parzen Estimator.

The Tree-structured Parzen Estimator (TPE), see
[1], is a sequential model-based optimization (SMBO)
approach. SMBO methods sequentially construct
models to approximate the performance of hyper-
parameters based on historical measurements, and
then subsequently choose new hyperparameters to
test based on this model. The TPE approach mod-
els P (x|y)P (x|y) and P (y)P (y), where x represents
the hyperparameters, while y is the associated qual-
ity score. In particular, P (x|y)P (x|y) is modeled by
transforming the generative process of hyperparame-
ters by replacing the distributions of the configuration
prior with non-parametric densities.

The main steps of the aforementioned procedure
are the following:

◦ describe the search space, that is hyperparameters
and possible values for them;

◦ implement the function to minimize, which is noth-
ing but our neural network model;

◦ optionally, take care of logging values and scores for
analysis.

The function to minimize takes hyperparameters
values as input and returns a score, that is a value for
error, since we are minimizing. The latter means that
each time the optimizer decides on which parameter
values it likes to check, we train the model and pre-
dict targets for validation set, or we perform a cross-
validation. Then we compute the prediction error and
give it back to the optimizer. After the latter step, it
again decides which values to check, and the cycle

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 407

starts over. In particular, we consider the following
set of parameters

6.1 The set of parameters for MLP
◦ N of hidden layers - choice from [2, 3];

◦ N of neurons in every layer [64, 126, 250, 512];

◦ Values of dropout rates - uniformly distributed - 0,
0.5;

◦ Optimizing algorithm - choice from Adam,
AdaDelta and RMSProp.

After 100 iterations of TPE was chosen model
with two hidden layers, first with 500 neurons, sec-
ond with 250. Dropout values were chosen quite high
- 0.75 and 0.6 for both layers. Best optimizing algo-
rithm is Adam.

6.2 The set of parameters for CNN
◦ N of convolution filters - choice from [32, 64]

◦ Filter length - choice from [2, 3]

◦ Pool length - choice from [2, 3]

◦ N neurons in fully-connected layer - choice from
[100, 250]

◦ Value of dropout rate - uniformly distributed - 0, 1

◦ Optimizing algorithm - choice from Adam,
AdaDelta and RMSProp

After 100 iterations of TPE, a two hidden layers
model has been selected, with filter length of 2, pool
length of 2, and with 64 filters in only one convolu-
tional layer. Dense layer has to have 250 neurons and
optimization algorithm has to be AdaDelta.

6.3 The set of parameters for RNN
◦ N of cells in every recurrent layer - choice from [50,

100];

◦ Optimizing algorithm - choice from Adam,
AdaDelta and RMSProp.

After 50 iterations of TPE, a two hidden layers
model has been selected, with 100 neurons each, op-
timized by Adam.

7 Further experiments
7.1 Principal components analysis
The Principal Components Analysis (PCA), see, e.g.,
[21], can be seen as an algorithm for linear dimen-
sionality reduction. It is mainly based on the Singular

Value Decomposition (SVD) technique for time se-
ries. SVD-type approaches aim at keeping only the
most significant singular vectors to project the data to
a lower dimensional space. PCA is mostly used as a
tool in exploratory data analysis and for making pre-
dictive models. The PCA approach implies an eigen-
value decomposition of a data covariance (or correla-
tion) matrix, or a singular value decomposition of a
data matrix, usually after mean centring, and normal-
izing or using Z-scores. We would like to underline
that such an approach is useful to reduce the number
of variables when using algorithms that do not rely on
time nature of input data, such as feed-forward neu-
ral networks. In our analysis we have chosen the 16
most relevant variables by exploiting the PCA tech-
nique, which allows us to achieve the results reported
in subsection. 8.2.3

7.2 Feature selection
Another classical approach in machine learning is the
so called feature selection, which can be used for the
selection of feature as well as for dimensionality re-
duction on sample sets, or even to improve the estima-
tors accuracy scores, and to boost their performance
on very high-dimensional datasets. There are several
variants on how to use it:

◦ Variance threshold: this is a simple baseline ap-
proach to feature selection. It removes all fea-
tures whose variance does not meet some thresh-
old. By default, it removes all zero-variance fea-
tures, namely those features that have the same value
in all samples.

◦ Univariate feature selection: such an approach
works by selecting the best features based on uni-
variate statistical tests. It can be seen as a prepro-
cessing step to an estimator.

◦ Recursive feature elimination (RFE): this approach
starts working on a given external estimator that as-
signs weights to features, e.g., the coefficients of a
linear model, then the RFE consists in selecting fea-
tures by recursively considering smaller and smaller
sets of them. First, the estimator is trained on the
initial set of features and weights are assigned to
each one of them. Then the features whose abso-
lute weights are the smallest, are pruned from the
current set of features. The next step consists in re-
cursively repeat the same procedure on the pruned
set, until the desired number of features to select is
eventually reached.

◦ A particularly effective procedure is constituted by
implementing a feature selector, by exploiting some
trained model. As an example, we can use random

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 408

trees algorithms which are very robust and precise
in classification tasks. In particular such an imple-
mentation allow us to compute feature importances,
which in turn can be used to discard irrelevant fea-
tures.

We have used the last option, choosing important
features from AdaBoost algorithm, from sklearn li-
brary.

7.3 Ensembles of neural networks

In machine learning, particularly in the creation of
artificial neural networks, ensemble averaging is the
process of creating multiple models and combining
them to produce a desired output, as opposed to creat-
ing just one model. Frequently an ensemble of mod-
els performs better than any individual one, mainly
because the various errors of the models average out.

In particular, we use the following strategy: first
we create a set of experts with low bias and high vari-
ance, and then we average them. Latter approach im-
plies the creation of a set of experts with varying pa-
rameters which are frequently represented by the ini-
tial synaptic weights. Nevertheless, we would like to
underline that other factors, such as the learning rate,
momentum etc., may be varied as well. Summing up,
we implement the following steps:

◦ generate N experts, each with their own initial val-
ues;

◦ train each expert separately;

◦ combine the experts and average their values.

It is worth to mention that it is also possible to
consider a combination of two or more models in or-
der to create a new one, which performs better than
any of them. In fact, since different models have dif-
ferent weak and strong sides, ad hoc blending proce-
dure of them, may significantly improve the perfor-
mance obtained by each single component. In order
to concretely realize such an approach, the key idea
we use is to learn weights of model using some simple
classifier as, e.g., logistic regression or another neural
network.

We used ensembles of three types: average,
weighted and blending. We chose the best models
from previous experiments in order to achieve better
results using their ensemble. As blending top classi-
fier we have used a regular logistic regression to get
the weights of simple predictors.

8 Results
8.1 Neural networks for regression
Using the architectures described in previous sections,
we have faced our problem as a regression problem. In
figures 6, 7 and 8, we report a graphical visualization
of obtained predictions

Figure 6: MLP architecture. Green line - actual value,
red line - predicted

Figure 7: CNN architecture. Green line - actual value,
red line - predicted

Looking at the MLP,CCN and RRN graphs, we
clearly observe that predicted values are behind the
actual data, which implies that neural networks can
follow the trend, but cannot predict the exact future
values of interest.

8.2 Neural networks for classification
8.2.1 Raw features
In Fig. 15 we have displayed the results related to the
training of different architectures on daily returns. It

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 409

Figure 8: RNN architecture. Green line - actual value,
red line - predicted

is easy to see that, from this perspective, CNNs are the
best choice for modelling financial time series. Such
a result suggests us to use CNN as basic predictor.
Plots of accuracy and losses changing during training,
are reported in figures from 9 to 14. In particular such
graphs show that, due to the stochastic nature of data
we are working with, the training procedure performs
slowly and messy.

Figure 9: MLP loss function within 10 epochs

Figure 10: MLP accuracy within 10 epochs

Figure 11: CNN loss function within 10 epochs

Figure 12: CNN accuracy within 10 epochs

Figure 13: RNN loss function within 10 epochs

Figure 14: RNN accuracy within 10 epochs

8.2.2 Wavelet-CNN
After training CNN on wavelet decomposed data, with
respect to the details of a signal, we obtain: MSE =
0.24, with an accuracy value equal to 0.55, hence ob-
taining a slight increase of performance if compared

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 410

MSE Accuracy
MLP 0.26 0.521
CNN 0.2491 0.536
RNN 0.2498 0.522

Figure 15: MSE and accuracy after training different
architectures

with previous results based on raw data.

8.2.3 PCA selected features

We would like to point out that the application of CNN
to PCA selected features, turns to produce poor re-
sults. In fact, by implementing such an approach we
lose the time-based structure of data. Then we trained
MLP on PCA-transformed data, achieving MSE =
0.26, with an accuracy value of 0.51, hence a worse
result, even if compared with raw trained networks.
Latter fact is not surprising, because in this case time
series is ruined by having removed some data points.

8.2.4 Tree-based selected features

We can train CNN on data from tree-selected features,
in order to choose CNN as a classifier, because ran-
dom trees chose last data points as significant data for
classification, hence without corrupt the time series
structure. Applying this method we achieve: MSE =
0.256, with an accuracy value of 0.525, hence a result
at least comparable to the one obtained by the MLP
approach.

8.2.5 Ensembles of neural networks

Exploiting the results reported along previous sec-
tions, we have chosen the CNN trained on raw fea-
tures model, the W-CNN model and the RNN model,
to create an ensemble which performs better than its
single components. We have reported in Fig. 16 the
results obtained applying average, hand-weighted en-
semble and blending.

As hand weights, we have empirically chosen 0.3
for CNN, 0.25 for RNN and 0.45 for W-CNN, as the
most accurate predictor.

After learning blending with logistic regression
we realized that it was hypothesis - learned (and nor-
malized) weights were 0.32 for CNN, 0.19 for RNN
and 0.49 for W-CNN, which shows us, that result of
W-CNN is the most important for an ensemble.

MSE Accuracy
Average ensemble 0.23 0.558
Hand-weighted ensemble 0.23 0.56
Blended ensemble 0.226 0.569

Figure 16: MSE and accuracy after training different
ensembles

9 Conclusions

In this work different artificial neural network ap-
proaches, namely MLP, CNN, and RNN, have been
applied to the forecasting of stock market price move-
ments. We compared results trained on a daily ba-
sis, for the S&P500 index, showing, in particular, that
convolutional neural networks (CNN) can model fi-
nancial time series better then all the other considered
architectures.

We also implemented a novel Wavelet + CNN al-
gorithm which outperforms other neural network ap-
proaches. In particular, it shows that feature prepro-
cessing is one of the most crucial parts in stock price
forecasting.

We would like to underline that we achieved
much better results using ensembles of neural net-
works. It is worth to mention that such an approach
has showed its power particularly when dealing with
large-scale classification tasks, such, e.g., Netflix cus-
tomer classification, see [2].

Our ongoing researches aim at treating more ex-
tended financial time series, and their features, in or-
der to improve the training performance as well as re-
lated accuracy, for the particular type of neural net-
works considered. Techincal indicators, moving aver-
ages and stochastic oscillators, will be also taken into
account to increase accuracy of prediction.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 411

References:

[1] J.Bergstra et al. Algorithms for Hyper-Parameter
Optimization NIPS 2015

[2] James Bennett, The Netflix Prize Proceedings of
KDD Cup and Workshop, 2007

[3] Benazzoli, C., Di Persio, L. , Default contagion
in financial networks International Journal of
Mathematics and Computers in Simulation, 10,
pp. 112-117, 2016

[4] S.-H.Chen, Genetic Algorithms and Genetic
Programming in Computational Finance,
Springer, 2002

[5] Chevalier, E., Vath, V.L., Scotti, S., An opti-
mal dividend and investment control problem
under debt constraints SIAM Journal on Finan-
cial Mathematics, 4 (1), pp. 297-326, 2013

[6] Chevalier, E., Vath, V.L., Scotti, S., Roch, A.
Optimal execution cost for liquidation through a
limit order market International Journal of The-
oretical and Applied Finance, 2016

[7] Cordoni, F. and Di Persio, L., Backward stochas-
tic differential equations approach to hedging,
option pricing, and insurance problems (2014)
International Journal of Stochastic Analysis,
2014.

[8] Cordoni, F. and Di Persio, L., Invariant measure
for the Vasicek interest rate model in the Heath-
Jarrow-Morton-Musiela framework (2015) Infi-
nite Dimensional Analysis, Quantum Probabil-
ity and Related Topics, 18 (3).

[9] Cordoni, F. and Di Persio, L., First order cor-
rection for the characteristic function of a multi-
dimensional and multiscale stochastic volatility
model (2014) International Journal of Pure and
Applied Mathematics, 93 (5), pp. 741-752.

[10] Cont, R., Kukanov, A. Optimal order placement
in limit order markets Quantitative Finance, pp.
1-19, 2016

[11] Di Persio, L., Pellegrini, G. and Bonollo, M.,
Polynomial chaos expansion approach to interest
rate models, (2015) Journal of Probability and
Statistics.

[12] Di Persio, L. and Frigo, M., Gibbs sampling ap-
proach to regime switching analysis of financial
time series (2016) Journal of Computational and
Applied Mathematics, 300, pp. 43-55.

[13] Di Persio, L. and Frigo, M., Maximum like-
lihood approach to markov switching models
(2015) WSEAS Transactions on Business and
Economics, 12, pp. 239-242.

[14] Di Persio, L. and Perin, I., An ambit stochastic
approach to pricing electricity forward contracts:
The case of the German Energy Market (2015)
Journal of Probability and Statistics.

[15] A. Dutta, G. Bandopadhyay and S. Sengupta,
Prediction of Stock Performance in the Indian
Stock Market Using Logistic Regression, Inter-
national Journal of Business and Information,
2012

[16] Wei Huang, Yoshiteru Nakamori, Shou-Yang
Wang, Forecasting stock market movement di-
rection with support vector machine, Computers
and Operations Research, archive Volume 32, Is-
sue 10, 2005, pp. 2513–2522

[17] D. P. Kingma, J. Lei Ba, Adam: A method for
stochastic optimization, 3rd Int. Conf. for Learn-
ing Representations, San Diego, 2015

[18] A. Krizhevsky, I. Sutskever and G. E. Hin-
ton, ImageNet Classification with Deep Convo-
lutional Neural Networks, NIPS 2012, Nevada,
2012

[19] Marcelo S. Lauretto, B. C. Silva and P. M.
Andrade, Evaluation of a Supervised Learn-
ing Approach for Stock Market Operations,
arXiv:1301.4944[stat.ML], 2013

[20] Marinelli, C., Di Persio and L., Ziglio, G., Ap-
proximation and convergence of solutions to
semilinear stochastic evolution equations with
jumps (2013) Journal of Functional Analysis,
264 (12), pp. 2784-2816.

[21] Pearson, K. On Lines and Planes of Closest Fit to
Systems of Points in Space. Philosophical Mag-
azine 2 ,pp. 559572. , 1901

[22] Rodan, A., Faris, H. Credit risk evaluation us-
ing cycle reservoir neural networks with support
vector machines readout Lecture Notes in Com-
puter Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics) , 9621, pp. 595-604, 2016

[23] Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M. and Duchesnay, E.,
Scikit-learn: Machine Learning in Python, Jour-
nal of Machine Learning Research Volume 12,
2011, pp.2825–2830

[24] Novak, G. Veluscek, D. Prediction of stock price
movement based on daily high prices Quantita-
tive Finance, 16 (5), pp. 793-826, 2016

[25] Chong Tan, Financial Time Series Forecasting
Using Improved Wavelet Neural Network, Mas-
ter Thesis, University of Aarhus, 2009

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 412

[26] Y. Wang and In-Chan Choi, Market Index and
Stock Price Direction Prediction using Machine
Learning Techniques: An empirical study on the
KOSPI and HSI, Technical report, 2013

[27] V.V.Kondratenko and Yu. A Kuperin, Using
Recurrent Neural Networks To Forecasting of
Forex, arXiv:cond-mat/0304469 [cond-mat.dis-
nn], 2003

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 413

