
ShellAutoTradingRobotCode 10.7.mq4 is an outline code shell that allows programmers to
create mq4 trading EA's quickly and easily, using Bob's 10.7 trading rationale. It is not an
auto-generator of the type available on the internet, so non-coders look away now; this is
not for you.

The key functions of the shell are:
• int init()
• int start()
• void ReadIndicatorValues()
• void LookForTradingOpportunities()
• void CountOpenTrades()
• bool LookForTradeClosure(int ticket){

int init()
I declare inputs such as TakeProfitPips and StopLossPips as integers in the extern list, so
that users know they are dealing with actual pips and not the points rubbish inflicted upon
us by those morons at CrapperQuotes. In any sane computing language, double x = 1 / 4
would result in x = 0.25. In the lunatic world of Crapql4, the same equation returns x = 0,
because an integer division creating a result < 0 is not allowed.

To overcome this, I use doubles converters, for instance TakeProfit and StopLoss. Int init()
contains the conversions, for example TakeProfit = TakeProfitPips.

Int start()
I use start() mostly for calling the key functions. You will often find you can leave it
untouched.

void ReadIndicatorValues()
Here is the process I follow whenever I add an indicator to my shell (this is merely how I do
it – you may have different methods):

• Declare the extern inputs somewhere within my inputs list at the top of my code.
• Add a function that calls the indicator. Mine start with 'Get' as in double

GetCSS(double index, int shift).
• Add code to ReadIndicatorValues to call the indi reading function.
• Add a chart feedback display to show the my call to the indi results in a correct

value.

There is a key input early in my code – EveryTickMode. If 'true', then my calls to the indi
functions usually require a value at the close of the previous candle to be compared with
the value now. When EveryTickMode is 'false', then my calls to the indi functions usually
require a value at the close of the two previous candles. I save a lot of faffing around with
the int shift declaration at the top of the function.

void LookForTradingOpportunities()
Basic 10.7 is this:

• Long trend trade:
• Red at the top.
• Yellow at the top.
• Stoch7 crosses the 10 or 30 levels from below.

• Long Counter Trend (CT) trade:
• Red is at the bottom.

• Yellow is at the top.
• Stoch7 crosses the 10 or 30 levels from below.

• Short trend trade:
• Red at the bottom.
• Yellow at the bottom.
• Stoch7 crosses the 90 or 70 levels from above.

• Short Counter Trend (CT) trade:
• Red is at the top.
• Yellow is at the bottom..
• Stoch7 crosses the 90 or 70 levels from above.

The code to detect all this is in the two blocks beginning with the comment "//Specific
system filters.". If the requirements for a long trade are met, then SendLong or SendShort
are set to 'true' as appropriate.

Your indi filters then go in the two code blocks beginning with:
 //Usual filters
 if (SendLong)
 {
and
 //Usual filters
 if (SendShort)
 {

These blocks are commented 'Usual filters' because they contain the stuff I normally
include. You can see how I implement a 'return' to cancel the trade if any of the filters fail.
You can adopt this method.

void CountOpenTrades()
This function iterates through the open trades on your platform and manages any that it
'owns'. The ea recognises ownership by any method you chose. For me, it is by magic
number.

CountOpenTrades() calls any management functions required, along with the vital
LookForTradeClosure(int ticket).
{

bool LookForTradeClosure(int ticket)
When you have a trading system that opens a trade when x conditions are met, you also
have one that closes said trade when the opposite conditions occur. Here you enter the
code that sets CloseThisTrade to 'true' when the opposite conditions occur – plenty of
examples in the shell.

Using the shell
You are completely free to use the shell to create ea's for yourself, for distribution at SHF
and amongst your friends; you do not need to ask the permission of Tommaso or myself to
use it.

Bear in mind that: Bob has given of his expertise freely; Tomasso and myself have given
our time freely in creating this shell; many other contributors have given their time freely in

creating code the shell uses. You are not free to use the shell for your own commercial
profit and doing so will have repercussions should I discover that you have done so. In
particular, Matt Kennel's liborderreliable is used on the strict understanding that it is not to
be used for commercial profit without a license from him. You can contact Matt via SHF
should you need advice.

In conclusion
Let's produce some killer ea's.

