import tweepy import time import requests import sqlite3 from telegram.ext import Updater, CommandHandler, JobQueue, CallbackContext from telegram import Bot, Update import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, r2_score from textblob import TextBlob # X API credentials (replace with your actual credentials) CONSUMER_KEY = 'your_consumer_key' CONSUMER_SECRET = 'your_consumer_secret' ACCESS_TOKEN = 'your_access_token' ACCESS_TOKEN_SECRET = 'your_access_token_secret' # GMGN API credentials GMGN_API_KEY = 'your_gmgn_api_key' GMGN_API_URL = '' # Telegram Bot credentials BOT_TOKEN = 'YOUR_TELEGRAM_BOT_TOKEN' CHAT_ID = 'YOUR_CHAT_ID' # Solanasniffer API URL SOLSNIFFER_API_URL = "https://api.solsniffer.com/token/" def setup_api(): auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True) return api def create_list(api, name, description, mode='private'): try: new_list = api.create_list(name=name, mode=mode, description=description) return new_list except tweepy.TweepError as e: print(f"Error creating list: {e}") return None def add_to_list(api, list_id, user_id): try: api.add_list_member(list_id=list_id, user_id=user_id) except tweepy.TweepError as e: print(f"Error adding user to list: {e}") def search_and_add_users(api, list_id, query, max_users=10): for user in tweepy.Cursor(api.search_users, q=query, count=20).items(max_users): add_to_list(api, list_id, user.id) print(f"Added user: {user.screen_name}") time.sleep(1) # To avoid hitting API rate limits too quickly def fetch_gmgn_data(contract_address): headers = {'Authorization': f'Bearer {GMGN_API_KEY}'} response = requests.get(f"{GMGN_API_URL}/token/{contract_address}", headers=headers) if response.status_code == 200: return response.json() return None def fetch_twitter_data(ticker, api): tweets = [] for tweet in tweepy.Cursor(api.search_tweets, q=ticker, tweet_mode='extended').items(100): tweets.append(tweet) # Here, you would process tweets to extract metrics like sentiment, engagement # This is a placeholder for actual implementation return pd.DataFrame({'tweet_text': [tweet.full_text for tweet in tweets]}) def preprocess_data(gmgn_data, twitter_data): df = pd.DataFrame(gmgn_data, index=[0]) df = pd.concat([df, twitter_data], axis=1) # Example features: df['price_change'] = df['current_price'] - df.get('previous_price', 0) df['sentiment_score'] = df['tweet_text'].apply(lambda x: TextBlob(x).sentiment.polarity) df['engagement_rate'] = 0 # Placeholder for engagement metrics # Normalize features scaler = StandardScaler() features = ['price_change', 'sentiment_score'] # Adjust according to actual features df[features] = scaler.fit_transform(df[features]) return df def train_model(data): X = data.drop(['success_metric'], axis=1, errors='ignore') y = data['success_metric'] if 'success_metric' in data.columns else data['price_change'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test) print("MSE:", mean_squared_error(y_test, y_pred)) print("R2 Score:", r2_score(y_test, y_pred)) return model def verify_contract_safety(contract_address): try: response = requests.get(f"{SOLSNIFFER_API_URL}{contract_address}") response.raise_for_status() data = response.json() safety_rating = data.get('safetyRating', 'Unknown') safety_score = data.get('safetyScore', 0) return safety_rating, safety_score except requests.RequestException as e: print(f"Error fetching safety data for {contract_address}: {e}") return "Unknown", 0 def check_safety_and_alert(context: CallbackContext): bot = context.bot job = context.job contract_address = job.context safety_rating, safety_score = verify_contract_safety(contract_address) if safety_rating.lower() != "good" and safety_score < 70: message = f"Alert: Safety rating for token {contract_address} has dropped to {safety_rating} with a score of {safety_score}." bot.send_message(chat_id=CHAT_ID, text=message) else: print(f"Safety check for {contract_address}: {safety_rating}, Score: {safety_score}") def add_safety_check_job(context: CallbackContext, contract_address): context.job_queue.run_repeating(check_safety_and_alert, interval=3600, first=0, context=contract_address) def send_token_to_bot(contract_address): url = f'https://api.telegram.org/bot{BOT_TOKEN}/sendMessage' data = { 'chat_id': CHAT_ID, 'text': f"New vetted token: {contract_address}" } response = requests.post(url, data=data) if response.status_code != 200: print(f'Failed to send message: {response.content}') else: print(f'Successfully sent message for token: {contract_address}') def add_monitor_command(update: Update, context: CallbackContext): if len(context.args) != 1: update.message.reply_text("Usage: /add_monitor ") return contract_address = context.args[0] add_safety_check_job(context, contract_address) update.message.reply_text(f"Monitoring started for contract {contract_address}") def main(): api = setup_api() # Create Telegram bot updater updater = Updater(BOT_TOKEN, use_context=True) dispatcher = updater.dispatcher job_queue = updater.job_queue # Setup Telegram bot commands dispatcher.add_handler(CommandHandler("add_monitor", add_monitor_command)) # Example of monitoring a contract (just for demonstration) add_safety_check_job(CallbackContext(job_queue), "0x1234567890abcdef...") # Start the bot updater.start_polling() # Monitor X for tokens influencers = ['KOL_Handle1', 'KOL_Handle2'] keywords = ['new memecoin', 'pumpfun launch'] list_name = "Crypto Influencers" list_description = "Prominent figures in the crypto space." new_list = create_list(api, list_name, list_description) if new_list: print(f"List created: {new_list.name}") search_and_add_users(api, new_list.id, ' OR '.join(keywords), max_users=10) while True: # Continuous monitoring monitor_tweets(api, influencers, keywords) time.sleep(60) # Wait for a minute before next search to avoid hitting rate limits else: print("Failed to create list.") if __name__ == "__main__": main()