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The recent financial crisis serves as a timely reminder of the substantial risk of investing in financial 

markets.  It also highlights the limitations of conventional, asset allocation-based risk management 

strategies. The swift and relentless correction in equity, commodity and real estate markets was a 

clear example of why diversification, both geographically and across assets classes, is neither a 

sufficient nor reliable risk control mechanism. During crises, historical correlations between asset 

classes and their volatility characteristics tend to break down; asset classes which have, in normal 

times, been uncorrelated, suddenly become correlated and alternative investments, which have 

been selected based on their ability to generate alpha without beta, suddenly appear to deliver high 

beta with little alpha. The phase-locking behavior that occurred during the most recent crisis, 

coupled with the jump in the level of market volatility, resulted in dramatic drawdowns for many 

investors and has put the spotlight on risk management. Increasingly, investors are realizing the 

importance of mitigating tail risk in order to achieve their long-term investment objectives. Most 

investors can withstand an annual loss of five per cent or even 10 per cent but few are able to 

absorb another drawdown such as the one they suffered in 2008.   

In this paper we present a novel, cost-effective portfolio management approach that focuses on 

delivering returns that have a constant volatility and that do not unduly expose the investor to the 

risk of fat-tails.  

TRADITIONAL TAIL-RISK MANAGEMENT TECHNIQUES: PORTFOLIO INSURANCE 

For a tail risk hedge to be effective it should possess two important characteristics: the hedge must 

be negatively correlated to asset returns and exhibit convex behavior to the upside during periods of 

market stress. Typically, implementation of tail risk hedging has involved the use of equity put 

options. Unfortunately, the cost is often prohibitive and as a result the drag on the performance of 

the portfolio is significant. As an alternative to purchasing put options, investors can also resort to 

dynamic portfolio insurance strategies. The earliest dynamic portfolio insurance model, proposed by 

Brennan and Schwartz (1979) and Rubinstein and Leland (1981), consists of overlaying a synthetic 

put option on the existing portfolio, and delta managing the overall exposure. Other dynamic 

strategies include the notorious Constant Proportion Portfolio Insurance, an arguably more robust 

approach that was proposed by Black and Jones (1987) and Black and Perold (1992). Although all 

dynamic hedging strategies are exposed to some level of gap risk, there are numerous benefits to 

dynamic hedging over buying put options. These include no broker premiums, no up-front costs, 

complete flexibility to change adjust or remove the hedge and no exposure to counter party risk. 

The fact remains however that all portfolio insurance techniques result in a significant drag on the 

portfolio’s performance.  

So the question is how can investors protect their portfolios against large drawdowns without 

having to give up substantial upside? The answer lies in properly understanding and monitoring 

market volatility.  
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RE-THINKING VOLATILITY: BLACK SWANS VS. WHITE SWANS 

Many researchers and quantitative strategists (including Black Swan enthusiast Nassim Taleb and 

his dedicated followers) have long advocated the importance of paying greater consideration to the 

tails of the distribution, calling attention to the fact that traditional risk management methods 

typically underestimate the frequency and/or severity of tail events. Although the normality 

assumption of asset returns certainly makes the mathematics a lot easier, it undeniably struggles to 

explain the empirical evidence.   

Modern Portfolio Theory (MPT) has been the crux of the 60/40 strategic asset allocation paradigm, 

which many plan sponsors employ in one form or another.  One of the key assumptions of MPT is 

that asset returns follow a normal distribution with constant volatility.  However if we examine 

Figure 1, which plots the levels of the S&P 500 index (blue line) and its implied volatility (red line) 

over the last 20 years, it clearly shows that volatility does not remain constant but in fact changes 

significantly over time. We note that, over the measurement period, the VIX index ranged from 

under 10 per cent to a peak of over 77 per cent.    

 

Figure 1: S&P500 index and VIX 1990:2010 

 

 

 

 

 

 

 

 

 

 

 

To illustrate how the time varying nature of volatility affects MPT, and in particular the associated tail 

risk assumptions, we can look to the most recent financial crisis.  If we use the average historical 

volatility of the S&P 500 as our reference point, the monthly decline in U.S. equity markets during 

October 2008 would be considered close to a four-standard-deviation event. Under the common 
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assumption that returns are normally distributed, a four standard deviation has a nearly one in 

10,000 chance of occurring, implying that a monthly loss of that magnitude should occur 

approximately once every 750 years. Such a rare event should, from a statistical point of view, be 

considered somewhat of a Black Swan. However, when we consider the actual returns of the 

S&P500 over the last 80 years, October 2008 only ranks ninth in terms of worst monthly 

performances, implying that such a significant drawdown is not nearly as unlikely as we would 

imagine. The assumption of normally distributed historical returns clearly underestimates the 

probability of tail events. 

There are two possible avenues that can be pursued to better characterize and model the inherent 

risk in equity returns. The first is to use complex statistical distributions based, for example, on 

extreme value theory to help parameterize the true tail risk. This is a highly quantitative approach 

and represents a significant shift away from the traditional way of thinking. The second and more 

appealing approach is to simply re-think how we measure and interpret volatility within our 

traditional mean-variance framework. Rather than the historical level, we believe that the prevailing 

level of volatility in the market is the relevant measure. If we use the prevailing level of volatility as 

our reference point, the drawdown experienced in October 2008 is closer to a one-standard- 

deviation event. October 2008 suddenly becomes much less of a Black Swan, just an undesirable 

white one. 

THE VOLATILITY OF VOLATILITY: A STORY OF TWO TAILS 

 When we consider the historical return distribution of a given asset, the volatility provides us with a 

measure of the dispersion of the returns around the mean. Figure 2 illustrates two Normal 

distributions: the blue distribution has volatility (standard deviation) of 15 per cent while the red 

distribution has a volatility of 30 

per cent. We note that while the 

mean return for the two 

distributions is the same, the 

probability of a large loss (or gain) 

is significantly higher for the red 

distribution. In fact, the probability 

of losing 30 per cent or more is 

approximately eight times higher 

for the red distribution. 

The important take away from this 

graph is that the two distributions 

do not necessarily represent two 

different assets; in fact, they can 

Figure 2: Comparison of Tail risk for Normal distributions with    

different volatilities 



 

5 

 

Figure 3: Volatility regimes for typical Canadian pension fund 
equity exposure (1990:2010)

represent the same asset at two different points in time. Conditions in the markets change over 

time and, as a consequence, the risk (volatility) profile of a given asset also varies.  As market 

volatility increases, the distribution of returns for the asset flattens and the tails appear to fatten 

relative to their average historical distribution. Furthermore, as volatility increases, the probability of 

the asset undergoing large swings becomes much greater and historical probabilities are no longer 

representative of actual loss potential. The temporal cumulative effect of variable volatility leads to 

asymmetric tails in the assets return distribution, and in particular the ‘unwanted’ negative fat tails. 

With this in mind, we note that efficient frontier analysis/strategic asset allocation based on a static 

measure of volatility is relatively useless as a risk management tool. 

VOLATILITY REGIMES AND ASSET RETURNS 

Thus far we have shown that volatility is dynamic and therefore maintaining a static strategic asset 

allocation can put significant capital at risk during periods of heightened volatility. However, before 

we can begin thinking about how we can potentially incorporate volatility in our tail risk management 

programs, we must understand the relationship between market returns and volatility.   

There is substantial empirical evidence that market returns form volatility clusters - in other words, 

as noted many years ago by Mandelbrot (1963), "large changes (in returns) tend to be followed by 

large changes (in returns), of either sign and small changes tend to be followed by small changes." 

Let us consider the last 20 years 

of data on the typical equity 

exposure of a Canadian 

pension fund2 (50% TSX, 25%  

EAFE and 25% S&P500). A 

Hidden Markov Model (HMM) 

is used to identify the presence 

of three volatility regimes (high; 

medium; and low) and to 

estimate the parameters for 

the three regimes. Figure 3 

presents the annualized 

average volatility for each 

regime and the corresponding 

annualized return.  

                                                  
2  For the sake of simplicity, we assume the portfolio is fully currency hedged 
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There is a clear trend across the three regimes.  The high volatility regime, which occurs 8%of the 

time, produces an average volatility of 33% and an average annualized return of -38%. Markets find 

themselves in the medium volatility regime 45% of the time, when the average volatility and 

average annualized return are 12% and 7% respectively. The most likely regime is the low volatility 

regime (47% probability) and it offers by far the best risk/reward tradeoff, with an average volatility 

of 6% and an average annualized return of 19%. Most of the risk premium provided by equity 

markets is extracted during these periods of low volatility.  

We believe that there is a fundamental behavioral explanation for this persistent market 

phenomenon. As we can observe in Figure 4, bull markets tend to last longer and develop over time 

as market participants become increasingly confident in equity returns. These drawn out periods of 

positive returns and low volatility generate very significant capital appreciation. In contrast, most 

major market declines are of short duration and develop rapidly as fear takes hold of market 

participants. The sharp drawdowns are therefore much more dramatic and the volatility is markedly 

higher. On this basis, knowing the regime that we are in provides us with important information 

about the short term risk/return trade-off that the markets are offering.  

Figure 4: Cumulative returns and volatility regimes for proxy portfolio 

 

 

 

 

 

 

 

USING VOLATILITY TO SMOOTH RETURNS AND MANAGE TAIL RISK 

The fact that equity volatility is not constant implies that the level of risk (and therefore the 

probability of a large drawdown) for a given portfolio is constantly changing. If, however, we can 

accurately measure the prevailing level of volatility and effectively hedge against changes in that 

volatility, we can greatly reduce tail risk and potentially improve our portfolio’s risk adjusted returns. 

Because most assets tend to exhibit volatility clustering, the recent (realized) volatility of an asset 

provides useful information about the near term risks. An abundance of literature has been 

published on the notable dependence and forecastability of the volatility of asset returns and its 

implications on asset allocation, asset pricing and risk management. Bollerslev, Chou and Kroner 
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(1992) provide a fine review of the academic literature on utilizing GARCH to forecast volatility, while 

Ghysels, Harvey and Renault (1996) surveyed the literature on stochastic volatility, Franses and van 

Dijk (2000) on regime-switching and volatility, and Andersen, Bollerslev and Diebold (2002) on 

realized volatility models. 

The most common approach to using volatility for tail-risk hedging purposes involves the purchase 

of variance swaps. Variance swaps are over-the-counter (OTC) forward contracts on volatility in 

which the buyer agrees to swap a fixed variance level on a particular market index for actual realized 

variance from now until the maturity date. As such, variance swaps provide pure exposure to the 

realized volatility of an asset. They can be used to take views on future volatility, to capture the 

spread between realized and implied volatility and to hedge asset volatility exposure. A tail risk 

hedging strategy would simply involve purchasing a basket of variance swaps on the particular 

market which you are trying to hedge.  The drawbacks of such an approach are that variance swaps 

are OTC products that are relatively illiquid, offer limited capacity, are priced based on the prevailing 

level of implied volatility and are accompanied by a generous brokerage premium.  Most recently, 

these instruments have garnered much attention and, as a consequence, there is overwhelming 

demand on the long-side for variance swaps making them extremely expensive. 

DYNAMIC EXPOSURE AND CONSTANT VOLATILITY 

The underlying principle of constant volatility is to systematically adjust the exposure to a given 

asset (or portfolio of assets) conditional to its current volatility in order to maintain a pre-specified 

level of risk.  For example if we were to target a 12 per cent level of risk for a given asset and the 

current volatility of the asset was 14 per cent we would lower our exposure to the asset class by a 

commensurate amount to yield a 12 per cent volatility and vice versa if the current volatility was 

lower than our target. 

The rational for maintaining a constant volatility is two-fold. Firstly, most significant market 

corrections have been preceded by an increase in market volatility. By conditioning one’s exposure 

to the level of volatility in the market, the impact of the market correction will be significantly 

dampened. Secondly, empirical evidence shows that asset returns tend to be greater during periods 

of low volatility. Most bull markets have been characterized by extended periods of below-average 

volatility. Markets generally trend upwards in an organized and relatively smooth pattern. During 

these periods, investors should maximize their exposure to the asset as the risk-reward tradeoff is 

most favorable. As volatility increases, exposure to the asset should be reduced in order to maintain 

the desired level of risk.  

The idea of using volatility as a trading signal is by no means a novel idea. For many years, trends in 

volatility have been exploited by active managers and derivatives traders. For example, option 

traders seek to identify volatility clusters to take advantage of the asymmetry in implied volatility 
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surfaces. Trend followers in the equity and currency markets often condition their strategies on 

volatility states, often assuming that market trends are more stable in low volatility environment. 

During the recent crisis, interest in volatility has reached unprecedented levels, with several volatility 

based products being developed for both institutional and retail clients. With the introduction of 

ETF’s that replicate the short and mid-term Volatility Index (VIX) and volatility swaps, investors can 

now directly invest in volatility-based products. Increasingly, market participants are realizing the 

importance of incorporating volatility in the asset allocation process. The idea of using volatility as a 

risk conditioning variable to optimize the portfolio has been proven to be extremely efficient. 

Fleming, Kirby and Ostdiek (2001, 2002) studied the economic value of volatility timing and found 

that volatility timing strategies outperform a static portfolio in a mean-variance optimization 

framework. More recently, Cooper (2010) defines the volatility of volatility “vovo” and identifies 

trading strategies using leveraged ETF’s to target the desired risk exposure. The author concludes 

that constant volatility strategies are able to profit from the upside of leverage without  all of the 

downside. In effect, Cooper (2010) finds that risk smoothing can generate alpha due to the 

predictability of volatility. Although these results clearly support the predictability and use of volatility 

as a conditioning variable, we are still confronted with the issue of how to translate the prevailing 

level of volatility to a level of portfolio exposure. To address this issue, we propose an innovative 

approach based on the Payoff Distribution Model (PDM) to target a constant level of portfolio 

volatility and control the risks related to higher moments of the distribution. 

THE PAYOFF DISTRIBUTION MODEL 

The PDM was introduced by Dybvig (1988) to price and evaluate the distribution of consumption for 

a given portfolio. The main idea was to propose a new performance measure that allowed 

preferences to depend on all the moments of a distribution, providing a richer framework for 

decision making than the traditional mean-variance approach. In this paper we extend the PDM to a 

more general portfolio and risk management methodology. The PDM allows us to derive and price 

any contingent claim on an underlying asset or pool of assets. Specifically, we use the PDM to solve 

for the payoff function that provides us with the target (desired) return density conditional to the 

distributional properties of underlying asset. In effect it provides us with the necessary distortion 

that must be applied to the distribution of the underlying asset in order to generate the desired 

distributional properties. We employ the methodology proposed in Papageorgiou et al. (2008) to 

replicate such distribution payoffs by delta managing the underlying asset. By construction the 

aggregation of the monthly payoffs will deliver the specified target density over long term. 

The first step in the PDM approach is to derive the monthly payoff structure for the target 

distribution. In the case of a constant volatility fund, we target a Normal distribution and level of 

volatility. Once the monthly payoff structure is determined, we dynamically adjust the portfolio 

exposure in the underlying asset to achieve two key objectives: 1) a constant level of volatility, 
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regardless of the prevailing level of volatility in the market, and 2) a Normal distribution of monthly 

returns, in order to “normalize” the fat-tailed distribution of the underlying asset. In Amin and Kat 

(2003), the authors show that given an underlying asset SUnder with monthly returns RUnder and a 

target distribution FTarget, there exists a function g(RUnder)  such that the distribution of g (.) is the 

same as the distribution FTarget. This payoff's return function g is calculated using the distribution 

function Funder of the underlying asset and the marginal distribution function of the targeted 

distribution FTarget. 

The exact expression for g is given by 

݃ሺݔሻ ൌ ௔௥௚௘௧்ܨ
ିଵ ൫ܨ௎௡ௗ௘௥ሺݔሻ൯; ݔ ׊ א ܴ 

 

Instead of being written on the price of the underlying like traditional call and put options, this payoff 

function g is written on the underlying asset’s monthly returns. This implies a more adapted payoff 

functions that integrates the entire risk profile of the asset. 

IMPLEMENTATION OF THE MODEL 

In this section, we present a brief overview of the Payoff Distribution model and demonstrate how 

the model can be used to derive the required exposure so that the target volatility strategy can be 

implemented. 

The steps required to generate a synthetic fund with a target Normal distribution and constant 

volatility are as follows: 

1. Define the underlying asset or fund and if required, its tradable proxies. In our case we will 

restrict our study to equity and commodity indices where listed futures contracts are available. 

2. Select the desired statistical properties of the target fund. We target a Normal distribution of 

monthly returns and a pre-specified level of volatility to illustrate the benefits of the strategy. 

3. Estimate the daily process of the underlying asset returns and infer its monthly distribution. 

To adapt the methodology of Papageorgiou et al. (2008) to a dynamic volatility environment we 

model the daily returns of the underlying assets as a simple GARCH (1,1) process. This model 

allows us to capture two specific features of the volatility, namely the short term serial correlation 

and the long-run mean reversion. GARCH family models have been widely employed in the finance 

industry to characterize the evolution of return variability. We could have used more adapted 

GARCH models, such as NGARCH or EGARCH, but we opted to keep the modeling approach 

relatively simple to better highlight advantages of the hedging methodology. 
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The GARCH (1,1) can be written under the physical measure such as: 

log
ܵ௎௡ௗ௘௥,௧

ܵ௎௡ௗ௘௥,௧ିଵ
ൌ ܴ௧ ൌ ߤ ൅ .݅~߳   ,௧߳௧ߪ ݅. ݀. ܰሺ0,1ሻ 

௧ߪ
ଶ ൌ ߱ ൅ ௧ିଵߪߚ

ଶ ൅ ሺܴ௧ିଵߙ െ ߙ ݄ݐ݅ݓ    ,ሻଶߤ ൅ ߚ ൏ 1 

 

Where ܵ௎௡ௗ௘௥,௧ is the level of the underlying asset at time t (in days), and ܴ௧ is the daily log-return. 

The parameters will be estimated using standard maximum likelihood maximization. The estimation 

is performed every month using all available data. 

 

4. Derive the monthly payoff of the targeted distribution. The payoff, or the function g, can be 

written in closed form such as: 

݃ሺݔሻ ൌ ௔௥௚௘௧்ߤ ൅ ௔௥௚௘௧்ߪ כ Φିଵ ൤Φ ൬
ݔ െ ௎௡ௗ௘௥ߤ

௎௡ௗ௘௥ߪ
൰൨ ,     with ݔ the monthly underlying return. 

Where 

௔௥௚௘௧்ߤ ௔௥௚௘௧ is the monthly targeted expected return. For the sake of simplicity we set்ߤ ൌ  .௎௡ௗ௘௥ߤ

 .௎௡ௗ௘௥ is the monthly expected return of the underlying, computed as the historical expected returnߤ

 ௎௡ௗ௘௥ is the monthly volatility of the underlying, set as the possible levels of forecasted volatility ofߪ

the underlying at the end of the month. 

 .௔௥௚௘௧ is the targeted monthly volatility, that will allow the constant volatility property்ߪ

Φ is the standard normal cumulative distribution function and Φିଵ the inverse. 

 

5. Derive the hedging strategy throughout the month. In essence, the dynamic trading strategy 

distorts the distribution of the underlying asset so as to generate the desired payoff. We price and 

derive the replication strategy by minimizing the root mean square hedging error using a Monte 

Carlo approach under the real probability measure. For more details on the hedging methodology 

one could refer to Papageorgiou et al. (2008). 
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Figure 5: Delta Surface evolution from Day 1 to end-of-month 

 

As a discrete time hedging strategy, delta surfaces are computed for every day during the month.  

In figure 5 above, we illustrate the evolution of the exposure grid through time, with representations 

of day 1, day 10 and end-of-month exposure. The exposure is conditional to the GARCH forecasted 

volatility of the underlying asset and its cumulative monthly performance.  

IMPLEMENTING A CONSTANT VOLATILITY AS AN INDEXED FUND 

To illustrate the effectiveness of the constant volatility approach in managing tail risk, and 

normalizing return distributions, we implement the strategy on various equity indices and the GCSI 

commodity index on an out of sample basis from January 1990 to August 2010. All the indices are 

assumed fully currency hedged and all profits/losses are reinvested on a monthly basis in the 

underlying asset. Trading is done on a daily basis according to the forecasted daily GARCH volatility 

and the cumulative month-to-date performance of the underlying asset. Performance is presented 

net of management fees, margin and financing costs and implementation costs (25bps). 
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IMPLEMENTING A CONSTANT VOLATILITY OVERLAY ON A PORTFOLIO 

The constant volatility framework could also be implemented on the top of an existing  potfolio of 

assets. To do so, tradable benchmarks representing the assets in the portfolio must be  defined and 

an overlay of long and short futures contracts is used to adjust the portfolio’s market exposures to 

target a pre-specified distribution and level of volatility. Importantly, the overlay does not, in any 

form, impact the strategic asset or manager allocation decisions or affect the alpha component of 

the portfolio. It simply aims to smooth exposure to market (beta) risk. The strategy can be 

implemented using exchange traded futures contracts, thereby eliminating any potential liquidity or 

capacity constraints, counterparty risk and offering full transparency with minimal transaction costs. 

RESULTS 

The analysis in this paper is  performed on the Canadian pension fund proxy portfolio (50% TSX, 

25% S&P 500 and 25% MSCI EAFE) and  with a 12% target level of volatility, which was selected 

because  it is close to the median level of volatility over the sample period. We provide robustness 

tests with respect to both the specified level of volatility and the composition of the underlying 

portfolio in the following section. 

Figure 6 illustrates the advantages of implementing a 12% constant volatility strategy on the 

Canadian pension fund proxy. The blue line shows the cumulative return of the benchmark equity 

portfolio, while the red line represents the cumulative return of a 12% constant volatility portfolio.  

Figure 6: Cumulative performance of base equity portfolio and constant volatility strategy 
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As shown in Figure 7, during periods of 

“normal” volatility (near the 12 per cent 

target) the strategy is almost fully invested 

in the underlying assets through futures 

contracts, and hence tracks the underlying 

portfolio quite closely. Only when volatility 

diverges from the target level, does the 

constant volatility strategy come into play.  

Figure 8 illustrates the modeled GARCH 

volatility on the out-of-sample generated 

returns of the constant volatility strategy and 

the base portfolio. The realized volatility 

evolves slightly above the targeted 12% 

value but does not suffer anywhere near the 

same variability as the base portfolio. 
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Figure 8: Monthly GARCH volatility for the base portfolio and the 12% constant volatility strategy 
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Table 1 summarizes the performance of 

the two strategies. We compute several 

performance and risk measures, such 

as Sharpe Ratio, Omega Ratio and 

95% 1-month value at risk. In 

contrast to the Sharpe Ratio, the 

Omega Ratio introduced by Keating 

and Shadwick (2002) relaxes the 

hypothesis that returns follow a 

Gaussian distribution. This measure 

leads to a full characterization of the 

risk reward properties of the 

distribution by measuring the overall 

impact of all moments. The numbers 

confirm the superior risk-adjusted 

return for the constant volatility fund:  

the Sharpe Ratio increases from 0.23 

to 0.36 and Omega Ratio goes from 

2.28 to 2.70. The magnitude of the 

worst drawdowns are also greatly 

reduced, both on a monthly and annual basis. Finally it is interesting to note that the constant 

volatility approach essentially eliminates the higher moments (skewness and excess kurtosis) of the 

return distribution, essentially rendering the distribution Normal. We present two common normality 

tests to test for the Gaussian nature of the monthly returns series. We note that both tests exhibit 

high p-values for the constant volatility strategy according to which we cannot reject the Normal 

distribution assumption of the returns at the 5% level. 

Table 2 highlights the performance of the constant volatility strategy during the two largest market 

drawdowns during the sample period, specifically the collapse of the tech bubble and the recent 

financial crisis.  

Table 2: Performance during drawdowns 

 

Tech Bubble 

(Aug 2000 to March 2003) 

 Financial Crisis 

(Oct 2007 to March 2009) 

 

Maximum 

Drawdown 

Months to 

Recovery 

 Maximum 

Drawdown 

Months to 

Recovery 

Base Equity Portfolio 43.32% 35  48.10% -- 

Cons. Vol. Strategy 38.35% 21  30.97% -- 

 Base Equity 
Portfolio 

12% 
Const. Vol. Strategy 

 

Ann. Return 7.40% 8.58%  

Ann. Volatility 14.50% 13.08%  

Sharpe Ratio 0.23 0.34  

Omega Ratio 2.28 2.70  

Skewness -0.88 0.03  

Excess Kurtosis 2.08 -0.30  

Correlation -- 93.42%  

Worst Month -17.57% -9.70%  

Best Month 10.08% 12.28%  

Worst Year -36.43% -20.94%  

Best Year 32.46% 35.73%  

95% VaR 1-Month -7.51% -5.46%  

Jarque Bera p-value 0.1% 50%  

Liliefors p-value 1.2% 18%  

    

Table 1: Descriptive statistics for equity portfolio and 
constant volatility strategy 
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There are several interesting observations to take away from this analysis: 

 During the recent credit crisis, the constant volatility fund greatly reduced the size of the 

drawdown.  As volatility rose in 2008, the strategy progressively decreased market exposure 

in order to maintain the volatility at 12 per cent, thereby protecting the portfolio when 

markets subsequently plunged; 

 During the bull markets in the late 1990s and from 2002-2007, the strategy actually over 

performed the base portfolio. This is simply because the level of realized volatility during 

these up-trending markets was below the 12 per cent target and therefore leverage was 

added to bring the risk exposure back to the desired level; 

 During the 2000-2003 recession and market correction, the strategy only provided marginal 

downside protection. This is not surprising as markets drifted downwards over an extended 

period of time with no sustained increase in volatility.  

ROBUSTNESS TO TARGET VOLATILITY 

In Table 3 below we illustrate the results of a target volatility strategy which targets Normal 

distributions and volatilities ranging from 6% to 20% for the Canadian Pension fund proxy equity 

portfolio. 

Table 3: Constant Volatility Strategies for different target volatilities  

 

 

 

 

Targeted Volatility <14% 

 

Equity 

Portfolio 
6% 7% 8% 9% 10% 11% 12% 13% 

Ann. Return 7.4% 5.6% 6.2% 6.7% 7.2% 7.5% 8.1% 8.6% 9.1% 

Ann. Volatility 14.5% 6.6% 7.6% 8.8% 9.8% 10.9% 11.9% 13.1% 14.1% 

95% VaR 

1-Month 
-7.5% -2.6% -3.1% -3.6% -4.1% -4.5% -4.9% -5.5% -5.9% 

Jarque-Berap-value 0.1% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 

Lilliefors p-value 1.2% 18.6% 12.7% 19.3% 26.8% 14.7% 22.3% 18.3% 7.1% 
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 Targeted Volatility >14% 

 
Equity 

Portfolio 
14% 15% 16% 17% 18% 19% 20% 

Ann. Return 7.4% 9.6% 9.9% 10.4% 10.8% 11.4% 12.0% 12.2% 

Ann. Volatility 14.5% 15.2% 16.4% 17.5% 18.6% 19.7% 20.8% 22.0% 

95% VaR 1-Month -7.5% -6.3% -6.9% -7.4% -7.9% -8.3% -8.7% -9.3% 

Jarque-Bera p-value 0.1% 50.0% 50.0% 50.0% 50.0% 50.0% 48.9% 50.0% 

Lilliefors p-value 1.2% 16.7% 13.7% 13.1% 10.3% 15.8% 15.5% 22.6% 

 

The results are robust to the different target values of volatility although the realized volatilities of 

the funds are slightly higher than the targeted values. This is due to the fact that the monthly 

profit/loss of the strategy is reinvested in the fund. These out-of-sample results, that incorporate 

implementation constraints such as financing and management costs, support the ability of the 

model to generate the desired risk profile. Regardless of the target volatility level, the monthly 

returns for all the funds generated using the approach pass the tests for Normality. 

ROBUSTNESS TO INDICES 

In Table 4 below we show the performance of the constant volatility strategy on different assets; in 

particular different equity indices and the GSCI commodity index. For all the assets we target a 

Normal distribution with a 12% monthly annualized volatility.  

 

 

 

 

 

 

 

 

 



 

17 

 

Table 4: Constant Volatility Strategies across indices 

12% Volatility 
Target TSX 60 SP500 RUSSELL 2000 MSCI EAFE 

Ann. Return 8.55% 8.08% 8.59% 6.47% 9.17% 7.25% 4.39% 3.34%

Ann. Volatility 15.91% 12.47% 15.16% 11.23% 19.65% 13.45% 17.62% 13.22%

Sharpe Ratio 0.28 0.32 0.29 0.21 0.26 0.23 0.01 -0.06

Omega Ratio 2.12 3.03 2.22 2.96 1.62 2.02 1.35 1.39

Skewness -0.79 -0.16 -0.63 0.12 -0.57 0.39 -0.46 0.05

Excess Kurtosis 2.25 -0.10 1.06 0.05 0.92 0.23 1.11 -0.46

Correlation 100.00% 93.76% 100.00% 92.25% 100.00% 92.36% 100.00% 94.16%

Worst Month -20.41% -11.52% -16.79% -8.94% -20.80% -8.71% -20.18% -8.15%

Best Month 12.09% 10.09% 11.44% 11.02% 16.53% 14.87% 15.40% 10.13%

Worst Year -31.17% -13.48% -37.00% -20.32% -33.79% -19.38% -42.99% -26.55%

Best Year 34.18% 31.02% 37.58% 45.37% 47.29% 34.59% 39.29% 34.92%

95% VaR 1-Month -8.20% -5.34% -7.36% -4.80% -9.54% -5.39% -8.85% -6.04%

Jarque-Bera p-value 0.10% 50.00% 0.10% 50.00% 0.16% 3.37% 0.18% 26.68%

Lilliefors p-value 3.66% 36.38% 0.14% 50.00% 0.10% 4.90% 1.32% 50.00%
 

12% Volatility 
Target MSCI EEM NIKKEI 225 GSCI 

Ann. Return 11.36% 10.10% -3.86% -2.96% 6.55% 5.62%

Ann. Volatility 24.23% 16.37% 22.46% 12.98% 21.37% 12.50%

Sharpe Ratio 0.30 0.37 -0.36 -0.55 0.11 0.12

Omega Ratio 1.56 2.10 0.85 0.76 1.36 2.06

Skewness -0.74 -0.30 -0.16 0.00 -0.09 0.20

Excess Kurtosis 1.77 0.42 0.57 -0.16 2.00 0.04

Correlation 100.00% 95.53% 100.00% 94.98% 100.00% 93.09%

Worst Month -29.29% -14.00% -23.83% -10.08% -27.77% -7.61%

Best Month 17.14% 13.19% 20.07% 9.87% 21.10% 11.85%

Worst Year -53.18% -25.30% -41.11% -24.20% -42.80% -20.50%

Best Year 78.58% 56.20% 41.51% 32.51% 50.31% 28.51%

95% VaR 1-Month -12.25% -7.47% -11.25% -6.52% -9.25% -5.44%

Jarque-Bera  
p-value 0.10% 5.31% 8.72% 50.00% 0.10% 41.20%

Lilliefors p-value 0.19% 37.37% 50.00% 41.36% 8.61% 50.00%

 

 
For each index, the left column shows the result of a direct investment in the asset over the period 1990:2010, whereas the 

right hand column is the output of the 12% constant volatility target find on the asset. 
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The results in table 4 lend strong support to the benefits of implementing a constant volatility 

framework. The most notable transformation that occurs to the statistical properties of the different 

assets when we implement the payoff distribution model is the “Normalization” of the returns. In all 

cases, both the skewness and excess kurtosis are greatly reduced, and both the Jarque-Bera and 

Lilliefors tests indicate that the returns are Gaussian. Furthermore, correlations between the 

constant volatility funds and their underlying assets are always greater than 90%, demonstrating 

that the dynamic leverage does not dramatically alter the nature of the return series; it simply 

smoothes the volatility exposure over time. In term of performance, the 12% constant volatility 

funds tend to underperform the underlying indices due to lower level of realized volatility , but 

deliver a superior risk-adjusted return. Finally, maximum drawdowns are greatly reduced across all 

assets, demonstrating the important role that controlling volatility can play in reducing tail risk.  

CONCLUSION 

Since the collapse of Lehman Brothers in 2008, tail-risk hedging has become an increasingly 

important concern for investors. Traditional approaches such as purchasing options or variance 

swaps as insurance are often expensive, illiquid and result in a substantial drag on performance. 

Furthermore, due to the time-varying nature of volatility, asset returns have been shown to behave 

in a non-Normal fashion which increases the likelihood of negative tail events for portfolios which 

maintain static asset allocation. A more cost-effective and prudent approach to managing risk is to 

actively manage the exposure of a portfolio, based on the prevailing level of volatility within the 

underlying assets,  in order to maintain a constant risk exposure. We implement a robust 

methodology based on Dybvig’s (1988) payoff distribution model to target a constant level of 

volatility, and “Normalize” the monthly returns. This approach of portfolio and risk management can 

help investors obtain the desired risk exposure over the short-term and long-term, reduce exposure 

to tail-risk and, in general, increase the risk–adjusted performance of the portfolio. 

DISCLAIMER 

This document was prepared for institutional and sophisticated investors only and without regard to any 
individual’s circumstances. It is not to be construed as a solicitation, an offer, or an investment 
recommendation to buy, sell or hold any securities. Any returns discussed represent past performance 
and are not necessarily representative of future returns, which will vary. Any views expressed herein are 
those of the author(s), are based on available information, and are subject to change without notice. This 
material and/or its contents are current at the time of writing and may not be reproduced or distributed in 
whole or in part, for any purpose, without the express written consent of Brockhouse Cooper Asset 
Management Inc.  We accept no liability for any errors or omissions which may be contained herein and 
accept no liability whatsoever for any loss arising from any use of or reliance on this document or its 
contents. 
 

© 2010 Brockhouse Cooper Asset Management Inc. All rights reserved. 
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