GetMaxBuyLotSize_BasedOnIndexDropPercentageX

Overview
I need a function that returns the maximum lot size that can be traded (long) on an index without exceeding a % maximum draw down of the account and based on a % drop in the index value.
Use Case
Hence, here is the use case,
1) This needs to work on any Index.
2) My robot uses this function to work out the maximum lots that I can buy long that will allow my account to draw down no more than X amount given a Y drop in the index price.
3) The robot uses this function in determining trade entry.
Here is the robot. (You don’t need the robot, just work on a function for me)
[image: Graphical user interface

Description automatically generated with medium confidence]
4) My robot will continue to call this function each minute and output the result to the EA window as follows.

[image: Text

Description automatically generated]

5) Your job is just to get this function correct. I will plumb it into my EA.

Technical Requirement

1) MQL5: The function must be written in MQL5 syntax and work with Meta trader 5.
2) Overview: The purpose of this function is to return the maximum lot size that can be traded based on the possibility of an account drawdown of X percent and an index fall of Y percent in the price value of the given index.
3) The function exists in a class called is called Class_Buy and is named as follows: Class_Buy::GetMaxBuyLotSize_BasedOnIndexDropPercentageX
4) The parameters are:
5) double Percentagte_Max_Drawdown = 30 (this is the max drawdown of the account used in the calculation where 30 represents 30% drawdown. Default to 30%. The parameter is in percentage format so to get it to decimal format multiply by 0.01 inside the function)
6) double Percentage_Index_Fall = 50 (percentage index fall represents a fall in the index price of the account by a given percentage amount where 50 represents 50% index price fall. Default to 50%. The parameter is in percentage format so to get it to decimal format multiply by 0.01 inside the function)
7) Retrieve the account details e.g something like this

 // Retrieve account information
 double accountBalance = AccountInfoDouble(ACCOUNT_BALANCE);
 long accountLeverage = AccountInfoInteger(ACCOUNT_LEVERAGE);
 string accountCurrency = AccountInfoString(ACCOUNT_CURRENCY);
 string symbol_currency = SymbolInfoString(_Symbol, SYMBOL_CURRENCY_BASE);

8) Retrieve Symbol details e.g something like this
 // Retrieve symbol information
The symbol will be the current robot symbol eg _Symbol
 double pointValue = SymbolInfoDouble(_Symbol, SYMBOL_POINT);
 double currentPrice = SymbolInfoDouble(_Symbol, SYMBOL_BID);
 double tickValue = SymbolInfoDouble(_Symbol, SYMBOL_TRADE_TICK_VALUE);

9) Perform the Max Lot Size Calculation
This is the hard bit

10) Adjust by Volume Step e.g something like this
 // Calculate maximum lot size based on margin available
 double maxMargin = accountBalance * accountLeverage;
 double maxLotSize = maxMargin / marginRequired;

 // Calculate lot size based on volume step
 double volumeStep = SymbolInfoDouble(symbol, SYMBOL_VOLUME_STEP);
 double lotSize = MathFloor(maxLotSize / volumeStep) * volumeStep;

 // Check lot size against minimum and maximum values
 double minLotSize = SymbolInfoDouble(symbol, SYMBOL_VOLUME_MIN);
 double maxLotSizeSymbol = SymbolInfoDouble(symbol, SYMBOL_VOLUME_MAX);
 if (lotSize < minLotSize) {
 lotSize = minLotSize;
 } else if (lotSize > maxLotSizeSymbol) {
 lotSize = maxLotSizeSymbol;
 }

11) Adjust to account currency lot e.g something like this
Note you need to cater for cross currency also. What I have below is just an example
 // Convert lot size to account currency
 string ForexPair = accountCurrency + symbol_currency;
 double exchangeRate = SymbolInfoDouble(ForexPair, SYMBOL_BID);
 if (exchangeRate == 0) {
 exchangeRate = SymbolInfoDouble(ForexPair, SYMBOL_LAST);
 }
 // Check if exchange rate came back ... some pairs dont exist
 if (exchangeRate == 0)
 {
 exchangeRate = 1;
 }

 double lotSizeInAccountCurrency = lotSize * pointValue * exchangeRate;

 return lotSizeInAccountCurrency;

Testing Required:
Test on all the following indexes GER40, US30, JP225, China50 and HK50
Use the following values in testing.
Percentagte_Max_Drawdown = 20%, 30% and 50%
Percentage_Index_Fall = 20%, 30% and 50%
Account_Leverage = 1:100
Account Balance in Testing: 10,000 AUD, 20,000 AUD, 100,000 AUD, 500,000 AUD

If you have any questions on there requirements, please reach out to me.

Appendix 1

Here is some sample code I wrote, just use this for ideas but note that it does not work, hence why I need your help.
Note: the requirements are listed above.
Only use this as a sample of what I was writing and keep in mind this is not complete code and doesn’t work.

//***
//GetMaxBuyLotSize_BasedOnIndexDropPercentageX
//returns the maximum lot size that can be traded without exceeding the maximum loss calculated based on a 50% drop in the index value.
//***
double Class_Buy::GetMaxBuyLotSize_BasedOnIndexDropPercentageX(string symbol, double percentage_stop_loss_percent = 50)
{
 // Retrieve account information
 double accountBalance = AccountInfoDouble(ACCOUNT_BALANCE);
 long accountLeverage = AccountInfoInteger(ACCOUNT_LEVERAGE);
 string accountCurrency = AccountInfoString(ACCOUNT_CURRENCY);
 string symbol_currency = SymbolInfoString(_Symbol, SYMBOL_CURRENCY_BASE);

 // Define constants and variables
 const double INDEX_VOLUME_VALUE = 1000; // Contract size of 1 lot
 const double CONVERSION_FACTOR = 0.01;

 // Retrieve symbol information
 double pointValue = SymbolInfoDouble(symbol, SYMBOL_POINT);
 double currentPrice = SymbolInfoDouble(symbol, SYMBOL_BID);
 double tickValue = SymbolInfoDouble(symbol, SYMBOL_TRADE_TICK_VALUE);

 // Check if necessary information is available
 if (accountBalance == 0 || accountLeverage == 0 || pointValue == 0 || currentPrice == 0 || tickValue == 0) {
 return 0; // Return 0 if any necessary information is missing
 }

 // Calculate margin factor based on stop loss percentage
 double marginFactor;
 if (percentage_stop_loss_percent <= 10) {
 marginFactor = 0.05;
 } else if (percentage_stop_loss_percent <= 20) {
 marginFactor = 0.1;
 } else if (percentage_stop_loss_percent <= 30) {
 marginFactor = 0.15;
 } else {
 marginFactor = 0.2;
 }

 // Convert percentage to decimal
 double stopLossPercent = percentage_stop_loss_percent * CONVERSION_FACTOR;

 // Calculate maximum loss
 double maxLoss = accountBalance * accountLeverage * stopLossPercent;

 // Calculate margin required for maximum loss
 double marginRequiredPerContract = (tickValue * marginFactor * currentPrice);
 double marginRequired = (maxLoss / marginRequiredPerContract);

 // Calculate maximum lot size based on margin available
 double maxMargin = accountBalance * accountLeverage;
 double maxLotSize = maxMargin / marginRequired;

 // Calculate lot size based on volume step
 double volumeStep = SymbolInfoDouble(symbol, SYMBOL_VOLUME_STEP);
 double lotSize = MathFloor(maxLotSize / volumeStep) * volumeStep;

 // Check lot size against minimum and maximum values
 double minLotSize = SymbolInfoDouble(symbol, SYMBOL_VOLUME_MIN);
 double maxLotSizeSymbol = SymbolInfoDouble(symbol, SYMBOL_VOLUME_MAX);
 if (lotSize < minLotSize) {
 lotSize = minLotSize;
 } else if (lotSize > maxLotSizeSymbol) {
 lotSize = maxLotSizeSymbol;
 }

 // Convert lot size to account currency
 string ForexPair = accountCurrency + symbol_currency;
 double exchangeRate = SymbolInfoDouble(ForexPair, SYMBOL_BID);
 if (exchangeRate == 0) {
 exchangeRate = SymbolInfoDouble(ForexPair, SYMBOL_LAST);
 }
 // Check if exchange rate came back ... some pairs dont exist
 if (exchangeRate == 0)
 {
 exchangeRate = 1;
 }

 double lotSizeInAccountCurrency = lotSize * pointValue * exchangeRate;

 return lotSizeInAccountCurrency;
}

2 | Page

image1.png

image2.png

