
Parallel Exploration of the Structure of Random Functions
Prof. Dr. Jörg Keller, FernUniversität, 58084 Hagen, Germany

Abstract
We present an algorithm to compute the size of all components and cycles of the graph associated with a random function
on n elements, without explicitly constructing that graph. The algorithm is shown to have runtimeO(n2) in the worst
case andO(n

p
n) on the average. Its space requirements are much smaller thann, and it can be efficiently parallelized,

making it suitable for largen. Its simple control structure also allows an efficient implementation on programmable
hardware. We report on our first experiences with sequential and parallel implementations. The algorithm can be applied
to compute the period (and sizes of unwanted additional cycles) of pseudo-random number generators and stream ciphers
with a non-bijective state-transition function, such as the A5 algorithm used in the GSM standard.

1 Introduction
Pseudo-random number generators (PRNGs) are often used
in cryptography, e.g. to generate session keys or to encrypt
stream ciphers. PRNGs consist of a state, taken from a fi-
nite set of statesS, and a state-transition functionf : S !
S. Clearly, a PRNG also must provide an output function
to derive the next generated number from the current state,
but we will not need that function here.
Among other parameters, the period of the PRNG, i.e. the
minimum number of state-transitions before a state occurs
again, is an important criterion for the deployment decision
of a particular PRNG. Often, the state-transition function
contains additional, smaller cycles besides the main cycle
that defines the period. In this case, there exists a set of un-
wanted states in which the PRNG should not start, because
they lead to a much smaller period.
While the period of a simple PRNG can be analytically
derived, this is often not possible for more sophisticated
PRNGs. In this case, the period might be found experi-
mentally. The challenge lies in the sizen = jSj of the
state setS, which might be as large asn = 240.
The problem is especially important for PRNGs with a
non-bijective state-transition functionf , because there the
probability of a short period is much higher than for a
bijective functionf [1]. An example of a non-bijective
PRNG is the A5 stream cipher that encrypts packets trans-
mitted between a mobile phone and its base station in the
GSM network [5]. Also, while in bijective state-transition
functions the lengths of the small cycles give the number
of unwanted start states, this is not true for non-bijective
state-transition functions, where each component of the as-
sociated graph consists of a cycle to which trees of states
are attached. Hence, to determine the number of unwanted
states one needs the sizes of the components. Note that
the longest cycle does not necessarily represent the largest
component.
In the sequel, a bijective functionf will also be called
permutation, a non-bijective functionf will also be called
mapping.
We consider the graphG = (V;E) whereV = S andE =

f(s; f(s)) j s 2 Sg. A bijective state-transition function
partitions the states into cycles of successive states. Algo-
rithms to compute the cycles' lengths can be derived from
in-situ permutation algorithms, their runtime isO(n2) in
the worst case, andO(n logn) in the average case. For a
survey, see e.g. [2]. A key technique is to avoid explicit
construction ofG asn can be as large as264 in the tar-
geted applications. Consequently, even parallel algorithms
for the problem have been developed [3].
However, all these algorithms fail for non-bijective state-
transition functions, which partition the states into com-
ponents, each consisting of one cycle with one or several
attached trees. Each tree is directed towards its root, which
sits on the cycle. We present an algorithm to compute the
structure of such a graph. The algorithm needs timeO(n2)
in the worst-case andO(n

p
n) on the average. The algo-

rithm allows to give the size of the main cycle and the size
of the component containing it, and to reveal additional,
small components that contain the set of “unwanted” states,
from which the PRNG should not start.
The algorithm can easily be parallelized because of its large
number of independent tasks. Its simple control structure
and small storage requirements also allow for an efficient
implementation in hardware. We present first experimental
results for sequential and parallel implementations.
The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the problem to be solved in detail and
outline the basic algorithmic technique to be used. In Sec-
tion 3, we present the complete algorithm and its analysis.
In Section 4, we present some experiments done with an
implementation. In Section 5, we conclude.

2 The Structure of Permutations and
Mappings

Consider the graphG defined in the introduction. If func-
tion f is bijective, then it can be inverted and each node
has a unique predecessor. Thus,G only consists of cycles.
To find the structure off , we need the length of each cy-
cle. To report each cycle only once, we define the leader



x f(x)
0 3
1 2
2 1
3 4
4 7
5 7
6 3
7 6
8 7

Figure 1 An example of a non-bijective function and its
graph. We see two components: one consisting of a cycle
of length 2, and one with 7 elements, a cycle of length 4,
and two trees.

of the cycle to be the element with smallest index on it.
Now one can start in an arbitrary elementi and follow the
cycle until either an elementj < i is met ori is reached
again. In the former case,i is not the leader, in the latter
case,i is the leader and the cycle length can be reported as
the number of steps done. This simple algorithm has worst
case runtimeO(n2) and was shown by Knuth [4] to have
expected runtimeO(n logn) if each bijective functionf is
equally likely. Note that the graphG is not constructed,
and hence memory consumption is very small, making the
algorithm's code and data fit into the first level cache of the
processor it runs on.
If function f is not bijective, then some nodes ofG might
have no predecessor and some nodes might have more than
one predecessor. The graphG consists of one or more
components, each consisting of one cycle, and one or more
trees directed towards their roots. The tree roots are sitting
on the cycles. The leaves of the trees are the nodes with
indegree 0. The structure of the graphG consists of a list
of all components. For each component, the number of
nodes in this component, the length of the cycle, and the
height of the largest tree in the component are reported.
Each component can be uniquely identified by the leader
of its cycle.
An example of a non-bijective functionf and its associated
graphG is given inFigure 1.
When we want to treat non-bijective functions, there are
two main differences to Knuth's algorithm that we must
take into account:

1. An element in a tree is never reached again. Instead,
the algorithm must find out when a cycle has been
reached.

2. For an elementi in a tree, the method to abort the
search whenj < i is reached makes no sense, be-
cause at least the cycle must be reached to identify
the component ofi.

Basically, we track the complete path fromi to a cycle of
G. In order to detect that we have reached a cycle, we
proceed as follows. While following the path throughG
starting ini, we record from time to time an elementx

that we visit; we callx ananchor. After each step, we test
whether we have reachedx again. By doubling the time
between successive recordings, we will finally detect that
we are on a cycle. The number of recordings to be done is
logarithmic in the length of the path. The number of steps
taken so far is an upper bound on the lengthti of the tree
path fromi to the cycle.
When we have detected that we are on a cycle, then we run
around the cycle once more, thereby obtaining the cycle
length li and identifying the cycle leadercli. We know
the number of stepst we have done in total so far, and
we know the distances of the anchors and the cycle length.
Hence we can compute the first anchorx that lies on the
cycle and the last anchorx0 on the tree path. They could
be apart byt � ti=2. By running fromx around the cycle
for li � t steps, we reach a pointx00 on the cycle from
which we reachx again int steps. Now we simultaneously
follow the paths fromx0 andx00. After each step, we check
whether the elements reached are identical. If this happens
for the first time, we have reached the entry point into the
cycle. Now we can compute the lengthti of the tree path.
The complete procedure described will be called
findcycle() in the sequel. It is called with parame-
ter i, and returns the tree path lengthti (which is zero if
i is on the cycle), the cycle lengthli, and the cycle leader
cli.

Lemma 1 If the path through G starting in i follows
a tree for ti steps before reaching a cycle of length li,
then at most 2:5ti + 4li steps are taken by procedure
findcycle().

Proof: The tree path fromi until entering the cycle is run
only once, takingti steps. If an anchor was recorded im-
mediately prior to entering the cycle, then at mostti steps
could be done on the cycle before the first anchor sitting on
the cycle is recorded. Ifi itself is on the cycle and the cycle
lengthli is a power of two, then we will have been round
the cycle once before we have a chance to reach the anchor
in time. To reach the anchor again, we have to do a second
round of the cycle. Determining the cycle leader necessi-
tates running around the cycle one more time, hence the
number of steps so far is at most2ti + 3li.
To compute the length of the tree path, we first doli � t

steps on the cycle and thent steps on the cycle and on the
tree path. Hence we doli + t � li + ti=2 steps. In total,
we have2:5ti + 4li steps. q.e.d.

3 The Complete Algorithm and its
Analysis

The complete algorithm now consists of the followingsteps,
which are performed for each elementi, wherei = 0; 1; 2;
: : : ; n� 1:

1. Execute procedurefindcycle(), described in the
previous section, oni and obtaincli, li, ti.

2. If a component with cycle leadercli has already
been found, then increase its size by one and re-



place its current tree heighth bymaxfti; hg.
3. If no component with leadercli has been found yet,

then create a new one with identifying cycle leader
cli, cycle lengthli, size1, and tree heighth = ti.

Lemma 2 The algorithm correctly computes the struc-
ture of G.

Proof: As procedurefindcycle() is executed for ev-
ery element, it is surely executed for every leader, and thus
every component is detected. Now, consider a particular
component. The cycle length is identical no matter which
element of this component first initiated the call tofind-
cycle(). Hence, the cycle length of that component is
correctly computed. Asfindcycle() is executed for
each tree element of this component, the tree height of the
component is the maximum of all heights observed. The
size is incremented each time an element of the compo-
nent is detected. Thus, the component's size is computed
correctly as well. q.e.d.

Lemma 3 If function f can be evaluated in constant time,
then the algorithm has a worst-case runtime of O(n2) and
an expected runtime of O(n

p
n) if each random mapping

is equally likely.

Proof: The runtime of procedurefindcycle() is clearly
O(n), since every element on the path fromi to the entry
of the cycle is visited only once, every element on the cycle
is visited at most twice, and there are no more thann dis-
tinct elements. For each visit, at most a constant number of
operations plus one evaluation of functionf are necessary,
which take constant time.
As procedurefindcycle() is calledn times, the worst
case runtime isO(n2). This bound is sharp. Forf(x) =
x+ 1 mod n, the runtime is�(n2).
The exact runtime of procedurefindcycle() isO(ti+
li). The average tree height and average cycle length
of a component areO(

p
n) if each mapping is equally

likely [1]. Hence the average runtime of procedure
findcycle() is O(

p
n). The time to search for the ex-

istence of a component is at mostO(logn) with a suitable
data structure. As the above steps are executed forn ele-
ments, the average runtime of the algorithm isO(n

p
n).
q.e.d.

The algorithm can be parallelized for a multiprocessor by
distributing the iterations of its outer loop over the avail-
able processors. As there is no communication necessary
between different iterations, there is no difference between
shared-memory and message-passing systems. Each pro-
cessor maintains its “local” structure. In the end the local
structures must be merged into one, which can be consid-
ered as a kind of post-processing which can be neglected
here because the structures' sizes will be small and the pro-
cessing time to merge them into one will be dominated by
the algorithm itself.
The load should be well balanced because of the large num-
ber of iterations to be distributed, where each iteration has
the same expected runtime. This is a sharp difference to
algorithms for permutations. Those are difficult to paral-

n av. var.
10001.839181 1.327707
20001.803836 1.457447
40001.955553 1.880349
80001.863986 1.618747

160002.177782 2.542506
320001.819600 1.496151
640002.179798 2.560023

1280001.976349 1.897604

Table 1 Average and variance of runtimes in relation to
n
p
n

lelize, because the runtime of one iteration could be pro-
portional to the length of the longest cycle, which has an
expected value of approximately0:624 � n [6, p. 358].

4 Experiments
We implemented the algorithm from the previous section
in C on a PC with a Pentium II processor running at 333
MHz under the FreeBSD Unix operating system. We com-
piled the program withgcc version 2.7.2.3 using options-
O6 -fexpensive-optimizations -pedantic
-fomit-frame-pointer -DINTEL_GCC.
We tested the algorithm forn = 1000; 2000; 4000; : : : ;
128000. For eachn, we generated 100 mappings on which
we ran the algorithm. Each mapping was generated by al-
locating an array of sizen and randomly assigning values
between 0 andn � 1 to all array elements. As PRNG, we
used�lrand48 with seeds0; : : : ; 99.
We counted the number of evaluationst of functionf as
a measure of runtime, to avoid influences from caches and
the like. For each experiment, we recordedt=(n

p
n). We

computed the average and the variance over the 100 exper-
iments done for each value ofn. The results are depicted
in Table 1.
We see that in the average, about2n

p
n evaluations of

functionf are performed. The variance is quite large which
can, at least partly, be attributed to the small number of
samples. The fastest instance we saw needed0:51 � n

p
n

evaluations, the most expensive instance6:96 �n
p
n evalu-

ations, which means a factor of almost 14 in performance.
The experiments support our average-case analysis; the
constant factor is pretty small. Thus, the algorithm is us-
able in practice.
In addition, we measured the absolute runtime of the al-
gorithm on our platform. Experiments withn = 128; 000
took about 4 seconds on the chosen platform which means
an execution rate of about23 � 106 evaluations off per
second.
We also implemented a parallel variant of the algorithm on
the Störtebecker cluster of the University of Lübeck. We
used the PVM library to generate one process on each pro-
cessor and distributed the iterations of the outer loop over
the processes. In the end, we merged the processes' re-



sults, because one component could be detected by several
processes.
For six processors, we achieved a speedup of5:95 for a
static mapping of loop iterations to processes, hinting an
almost perfectly balanced load as expected. For the exper-
iments we used a randomly chosen function withn = 106

to have enough iterations per processor.

5 Conclusions and Future Work
We have presented a new algorithm to compute the struc-
ture of random mappings, and given an analysis of its per-
formance. We have indicated an application area for this
algorithm. We have presented an implementation together
with the results of preliminary tests on (pseudo-)randomly
generated mappings. The experimental data support our
claim that the algorithm is practical. Currently we are in
the phase of obtaining more experimental data to be able
to give answers on average cycle size and tree depths as
well, both for generated mappings and mappings from ap-
plications. We hope to present these results in the final
version of the paper.
In a further step, we will implement the algorithm on a
multiprocessor to compute the structure of a stream cipher
with a medium sized state space. For generators with large
state spaces, such as A5/1 with264 states, the algorithm is
not yet practical in its current form. However, we want to
improve the algorithm with a two phase technique from [3]
which could bring a further performance improvement.
Furthermore, with the simple control structure of the algo-
rithm, it could be implemented in hardware, e.g. in FPGAs
or simple ASICs. An average size ASIC could probably
host about 16 instances of the parallel algorithm. Hence,
a chip farm with 1,024 chips could be able to achieve239

evaluations per second. With it, we could tackle state spaces
of 240 within one day.

6 References
[1] W. G. Chambers. On Random Mappings and Ran-

dom Permutations. InProc. Fast Software Encryp-
tion, 2nd International Workshop, Leuven, Belgium,
Dec. 1994. Lecture Notes in Computer Science
1008, pp. 22–28, Springer, 1995.

[2] F. E. Fich, J.I. Munro, P.V. Poblete. Permuting in
Place.SIAM Journal on Computing, 24(2), pp. 266–
278, 1995.

[3] J. Keller, J. F. Sibeyn. Beyond External Computing:
Analysis of the Cycle Structure of Permutations. In
Proceedings Euro-Par 2001, European Conference
on Parallel Computing, August 28-31, 2001, Manch-
ester, UK. Lecture Notes in Computer Science 2150,
pp. 333–342, Springer, 2001.

[4] D. E. Knuth. Mathematical Analysis of Algorithms.
In Proc. of IFIP Congress 1971, Information Pro-
cessing 71, pp. 19–27, North-Holland Publ. Co.,
1972.

[5] B. Schneier.Applied Cryptography 2nd Edition.
John Wiley & Sons, New York, 1996.

[6] R. Sedgewick, Ph. Flajolet.An Introduction to the
Analysis of Algorithms. Addison Wesley, Reading,
Mass., 1996.


