Parallel Exploration of the Structure of Random Functions
Prof. Dr. Jorg Keller, FernUniversitat, 58084 Hagen, Germany

Abstract

We present an algorithm to compute the size of all components and cycles of the graph associated with a random function
on n elements, without explicitly constructing that graph. The algorithm is shown to have ru@tim® in the worst

case and)(n\/n) on the average. lts space requirements are much smallenfteard it can be efficiently parallelized,

making it suitable for large:. Its simple control structure also allows an efficient implementation on programmable
hardware. We report on our first experiences with sequential and parallel implementations. The algorithm can be applied
to compute the period (and sizes of unwanted additional cycles) of pseudo-random number generators and stream ciphers
with a non-bijective state-transition function, such as the A5 algorithm used in the GSM standard.

1 Introduction {(s,f(s)) | s € S}. A bijective state-transition function

Pseudo-random number generators (PRNGs) are often u titions the states into cycl?s of successive stgtes. Algo-
ithms to compute the cycles' lengths can be derived from

in cryptography, e.g. to generate session keys or to encrypt . . . : . .
stream ciphers. PRNGs consist of a state, taken from a f1-Situ permutation aIgonthms, their runtimed¥(n®) in
nite set of states, and a state-transition functigh: 5 — the worst case, an@(n logn) in the average case. For a

S. Clearly, a PRNG also must provide an output function>UrVey, see €.g. [2]. A key technique is to avoid explicit

; 4 ¥
to derive the next generated number from the current Statgpnstructlon of¢ asn can be as large & in the tar

but we will not need that function here geted applications. Consequently, even parallel algorithms
Among other parameters, the period of the PRNG, i.e. thEOrthe problem have beep develqped [3]- —

minimum number of state-transitions before a state occurs ©VEver. all these algorithms fail for non-bijective state-
again, is an important criterion for the deploymentdecisiontr"’msmtOn funﬁtlons,'m{hlch ?artmon tlhe gttﬁtes Into com- |
of a particular PRNG. Often, the state-transition functionPON€MN's, €ach consisting or one cycle with one or severa

contains additional, smaller cycles besides the main CyCIgttached trees. Each tree is directed towards its root, which

that defines the period. In this case, there exists a set of RS otn thefcycle;]. we prﬁs_leirr]\t ar|1 algtc;]rlthm t% Comp;“e the
wanted states in which the PRNG should not start, becaus%ruC ure of such a graph. The algorithm needs tine-)

they lead to a much smaller period. In the worst-case an@(n\/n) on the average. The algo-
While the period of a simple PRNG can be analyticallyrithm allows to give the size of the main cycle and the size
derived, this is often not possible for more sophis’[icateuDf the component contalnlng it, and to Eeveal addyl’tlonal,
PRNGs. In this case, the period might be found eXperi_smallcomponents that contain the set of “unwanted” states,

mentally. The challenge lies in the size= |S| of the flfﬁm Vl‘/h'c.?hthe PRNG.ThSUId noltlsitgrt.d b fits|
state sefs, which might be as large as= 219 e algorithm can easily be parallelized because of its large

The problem is especially important for PRNGs with anumber of independent tasks. Its simple control structure

non-bijective state-transition functigh because there the gnd small stprage requirements also alloyv for an gfﬁcient
probability of a short period is much higher than for a|mplementat|on|n hardware. We present first experimental

bijective functionf [1]. An example of a non-bijective results for sequential and parallel implementations.
PRNG is the A5 stream cipher that encrypts packets '[rans-.r-he ;emawéder thhfhpaperk;ls orgtanézed alls fgl!ov;s.tlpl Seg—
mitted between a mobile phone and its base station in th on =, we describe the probiem fo be solved in detail an

GSM network [5]. Also, while in bijective state-transition outline the basic algorithmic technique to be used. In Sec-

functions the lengths of the small cycles give the numbef'©" 3, we present the complete algorithm and its analysis.

of unwanted start states, this is not true for non-bijectiveIn Section 4, we present some experiments done with an

state-transition functions, where each component of the agpplementaﬂon. In Section 5, we conclude.

sociated graph consists of a cycle to which trees of states

are attached. Hence, to determine the number of unwant@ T he Structure of Permutations and
states one needs the sizes of the components. Note that ;

the longest cycle does not necessarily represent the largest M appings

component. Consider the grapty defined in the introduction. If func-

In the sequel, a bijective functiofi will also be called tion f is bijective, then it can be inverted and each node
permutation, a non-bijective functighwill also be called has a unique predecessor. Thtdspnly consists of cycles.
mapping. To find the structure of, we need the length of each cy-
We consider the grapi = (V, ') whereV = SandZ = cle. To report each cycle only once, we define the leader

=
=

that we visit; we call ananchor After each step, we test

{ 0 @@ whether we have reachedagain. By doubling the time
between successive recordings, we will finally detect that
we are on a cycle. The number of recordings to be done is

1 ° o logarithmic in the length of the path. The number of steps
taken so far is an upper bound on the lengtbf the tree

path from: to the cycle.

o o o When we have detected that we are on a cycle, then we run
around the cycle once more, thereby obtaining the cycle
lengthl; and identifying the cycle leadet;. We know

) o] _ the number of steps we have done in total so far, and

Figure 1 An example of a non-bijective function and its \ye know the distances of the anchors and the cycle length.

graph. We see two components: one consisting of a cyclgance we can compute the first anchothat lies on the

of length 2, and one with 7 elements, a cycle of length 4cyc|e and the last anchat on the tree path. They could

and two trees. be apart by < ¢;/2. By running fromz around the cycle

for [; — ¢ steps, we reach a point’ on the cycle from
which we reachr again int steps. Now we simultaneously

of the cycle to be the element with smallest index on it.follow the paths frome’” andz”. After each step, we check

Now one can start in an arbitrary elemerind follow the ~ whether the elements reached are identical. If this happens

cycle until either an element < i is met or: is reached for the first time, we have reached the entry point into the

again. In the former casé,is not the leader, in the latter cycle. Now we can compute the lengitof the tree path.
case; is the leader and the cycle length can be reported ahe complete procedure described will be called
the number of steps done. This simple algorithm has wordti ndcycl e() in the sequel. It is called with parame-
case runtime)(n?) and was shown by Knuth [4] to have ter i, and returns the tree path length(which is zero if
expected runtimé(n log n) if each bijective functiory is ¢ is on the cycle), the cycle length and the cycle leader
equally likely. Note that the grap&' is not constructed, cl;.

and hence memory consumption is very small, making the emma1 If the path through G starting in follows

algorithm’s code and data fitinto the first level cache of they tree for ¢; steps before reaching a cycle of length i;,

processor it runs on. then at most 2.5¢; + 4{; steps are taken by procedure

If function f is not bijective, then some nodes@fmight i ndcycl e().

have no predecessor and some nodes might have more t

one predecessor. The graphconsists of one or more

components, each consisting of one cycle, and one or mo
trees directed towards their roots. The tree roots are sittin
on the cycles. The leaves of the trees are the nodes Wi[
indegree 0. The structure of the graghconsists of a list
of all components. For each component, the number

©O~NoOUDWNRE O
~NoOoWNNbPRPO®

né%of: The tree path from until entering the cycle is run
only once, taking; steps. If an anchor was recorded im-
Fﬁediately prior to entering the cycle, then at mgsiteps

uld be done on the cycle before the first anchor sitting on

e cycle isrecorded. ffitself is on the cycle and the cycle
IEngthli is a power of two, then we will have been round
N e cycle once before we have a chance to reach the anchor
nodes in this component, the length of the cycle, and th time. To reach the anchor again, we have to do a second
height of the largest tree in the component are reporte ound of the cycle. Determining th,e cycle leader necessi-

Each component can be uniquely identified by the IeaOIe‘tra'[es running around the cycle one more time, hence the
of its cycle. '

I . . . number of steps so far is at mast + 3/;.
An example of a non-bijective functighand its associated To compute tr?e length of the trete+path we firstde ¢
graphd is given inFigure 1. '

I . steps on the cycle and thesteps on the cycle and on the
When we want to treat non-bijective functions, there ar

ST . Gree path. Hence we dp+ ¢ < [; + t;/2 steps. In total,
two main differences to Knuth's algorithm that we mustWe have2.5t; + 4l; steps. g.ed.

take into account:
1. Anelementinatreeis never reached again. Instead,
the algorithm must find out when a cycle has beenr3 The Complete Algorithm and its
reached. ;
2. For an elementin a tree, the method to abort the Analyss
search when < i is reached makes no sense, be-The complete algorithm now consists of the following steps,
cause at least the cycle must be reached to identifyhich are performed for each eleméntherei = 0,1, 2,

the component of. o,n—1:
Basically, we track the complete path franto a cycle of 1. Execute procedufd ndcycl e() , described inthe
G. In order to detect that we have reached a cycle, we previous section, ohand obtaircl;, I;, ¢;.
proceed as follows. While following the path through 2. If a component with cycle leadef; has already

starting in:, we record from time to time an element been found, then increase its size by one and re-

place its current tree heightby max{t;, h}. n av. var

3. If no component with leadef; has been found yet, 10001.839181 1.327707
then create a new one with identifying cycle leader 20001.803836 1.457447

el;, cycle length;, sizel, and tree height = ¢,. 40001.955553 1.880349
Lemma?2 The algorithm correctly computes the struc- 80001.863986 1.618747
ture of G. 1600Q2.177782 2.542506
. . 320001.819600 1.496151

Proof: As procedurd i ndcycl e() is executed for ev- 640002.179798 2560023
ery element, itis surely executed for every leader, and thus 128004 1:976349 1:897604

every component is detected. Now, consider a particular
component. The cycle length is identical no matter whichrap|e 1 Average and variance of runtimes in relation to
element of this component firstinitiated the calffond- , 7

cycl e() . Hence, the cycle length of that component is

correctly computed. A$i ndcycl e() is executed for

each tree element of this component, the tree height of thl%lize, because the runtime of one iteration could be pro-

component is the maximum of all heights observed. The ortional to the length of the longest cycle, which has an

size is incremented each time an element of the compa- .
nent is detected. Thus, the component's size is compute"ad(peCted value of approximately§24 - n [6, p. 358].

correctly as well. g.e.d.)
Lemma3 Iffunction f canbeevaluatedinconstant time, 4 EXper Iments

then the algorithmhas a worst-caseruntimeof O(n?) and e jmplemented the algorithm from the previous section
an expected runtime of O(n/n) if each randommapping i ¢ on a PC with a Pentium 11 processor running at 333
isequally likely. MHz under the FreeBSD Unix operating system. We com-
Proof: The runtime of proceduriei ndcycl e() isclearly piled the program witlgcc version 2.7.2.3 using options
O(n), since every element on the path frérto the entry 06 - f expensi ve-optim zati ons -pedantic

of the cycle is visited only once, every elementon the cycle f omi t - f r ame- poi nt er - DI NTEL_GCC.

is visited at most twice, and there are no more thatis- We tested the algorithm for = 1000, 2000, 4000, . . .,
tinctelements. For each visit, at most a constant number a28000. For eachn, we generated 100 mappings on which
operations plus one evaluation of functipare necessary, we ran the algorithm. Each mapping was generated by al-

which take constant time. locating an array of size and randomly assigning values
As procedurd i ndcycl e() is calledn times, the worst between 0 an@ — 1 to all array elements. As PRNG, we
case runtime i$)(n?). This bound is sharp. Fof(z) = usedrand48 with seeds, . . ., 99.

z + 1 mod n, the runtime i€ (n?). We counted the number of evaluatianef function f as

The exact runtime of procedufé ndcycl e() isO(t;+ a measure of runtime, to avoid influences from caches and
l;). The average tree height and average cycle lengte like. For each experiment, we recordén./n). We
of a component ar®(/n) if each mapping is equally computed the average and the variance over the 100 exper-
likely [1]. Hence the average runtime of procedureiments done for each value af The results are depicted
findcycl e() is O(y/n). The time to search for the ex- in Table 1.
istence of a component is at ma@stlog n) with a suitable We see that in the average, aba@ut,/n evaluations of
data structure. As the above steps are executed &@e- functionf are performed. The variance is quite large which
ments, the average runtime of the algorithmig.\/n). can, at least partly, be attributed to the small number of
g.e.d. samples. The fastest instance we saw ne@ded- n,/n
The algorithm can be parallelized for a multiprocessor byevaluations, the most expensive instaB@s - n./n evalu-
distributing the iterations of its outer loop over the avail- ations, which means a factor of aimost 14 in performance.
able processors. As there is no communication necessaThe experiments support our average-case analysis; the
between different iterations, there is no difference betweegonstant factor is pretty small. Thus, the algorithm is us-
shared-memory and message-passing systems. Each pble in practice.
cessor maintains its “local” structure. In the end the localn addition, we measured the absolute runtime of the al-
structures must be merged into one, which can be considiorithm on our platform. Experiments with= 128,000
ered as a kind of post-processing which can be neglectadok about 4 seconds on the chosen platform which means
here because the structures' sizes will be small and the pran execution rate of aboa - 10° evaluations off per
cessing time to merge them into one will be dominated bysecond.
the algorithm itself. We also implemented a parallel variant of the algorithm on
The load should be well balanced because of the large nurthe Stortebecker cluster of the University of Lubeck. We
ber of iterations to be distributed, where each iteration hagsed the PVM library to generate one process on each pro-
the same expected runtime. This is a sharp difference tgessor and distributed the iterations of the outer loop over
algorithms for permutations. Those are difficult to paral-the processes. In the end, we merged the processes' re-

sults, because one component could be detected by severf]
processes.

For six processors, we achieved a speedup.®d for a [6]
static mapping of loop iterations to processes, hinting an
almost perfectly balanced load as expected. For the exper-
iments we used a randomly chosen function with: 10°

to have enough iterations per processor.

5 Conclusionsand Future Work

We have presented a new algorithm to compute the struc-
ture of random mappings, and given an analysis of its per-
formance. We have indicated an application area for this
algorithm. We have presented an implementation together
with the results of preliminary tests on (pseudo-)randomly
generated mappings. The experimental data support our
claim that the algorithm is practical. Currently we are in
the phase of obtaining more experimental data to be able
to give answers on average cycle size and tree depths as
well, both for generated mappings and mappings from ap-
plications. We hope to present these results in the final
version of the paper.

In a further step, we will implement the algorithm on a
multiprocessor to compute the structure of a stream cipher
with a medium sized state space. For generators with large
state spaces, such as A5/1 witH states, the algorithm is
not yet practical in its current form. However, we want to
improve the algorithm with a two phase technique from [3]
which could bring a further performance improvement.
Furthermore, with the simple control structure of the algo-
rithm, it could be implemented in hardware, e.g. in FPGAs
or simple ASICs. An average size ASIC could probably
host about 16 instances of the parallel algorithm. Hence,
a chip farm with 1,024 chips could be able to achievé
evaluations per second. With it, we could tackle state spaces
of 249 within one day.

6 References

[1] W. G. Chambers. On Random Mappings and Ran-
dom Permutations. IiProc. Fast Software Encryp-
tion, 2nd International Workshoheuven, Belgium,
Dec. 1994. Lecture Notes in Computer Science
1008, pp. 22—-28, Springer, 1995.

[2] F. E. Fich, J.I. Munro, P.V. Poblete. Permuting in
Place.SIAM Journal on Computing@4(2), pp. 266—
278, 1995.

[3] J. Keller, J. F. Sibeyn. Beyond External Computing:
Analysis of the Cycle Structure of Permutations. In
Proceedings Euro-Par 2001, European Conference
on Parallel Computingdugust 28-31, 2001, Manch-
ester, UK. Lecture Notes in Computer Science 2150,
pp. 333-342, Springer, 2001.

[4] D. E. Knuth. Mathematical Analysis of Algorithms.
In Proc. of IFIP Congress 1971Information Pro-
cessing 71, pp. 19-27, North-Holland Publ. Co.,
1972.

B. Schneier. Applied Cryptography 2nd Edition
John Wiley & Sons, New York, 1996.

R. Sedgewick, Ph. FlajolefAn Introduction to the
Analysis of Algorithms Addison Wesley, Reading,
Mass., 1996.

